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AbstractAbstract  

 
 
 
 
This report is aimed to obtain the general solution for interaction effect of arbitrarily 

oriented two cracks in isotropic material subjected to various loading. The cracks are 

present due to inclusions or irregularities in the material. The stress analysis is based on 

the theory of elasticity by using the Muskhelishvili's complex variable method. The 

complex stress function is determined for the plane stress condition to determine the 

stress intensity factor. 

It starts with a general idea about the complex functions and its use in stress analysis for 

the less complex shape. The proposed method helps to study interaction effect of two 

arbitrarily oriented cracks.  

Also the FEM solutions for stress intensity factor for the same case using ANSYS 

software are to be determined and result were compared for different loading condition as 

well as different crack orientation.  
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CCHHAAPPTTEERR  11  

IINNTTRROODDUUCCTTIIOONN  
  

11..11  IINNTTRROODDUUCCTTIIOONN  

The failure of materials is a challenging interdisciplinary problem of both 

technological and fundamental interests. From the technological point of view, the 

understanding of the failure mechanisms of materials under various external conditions 

may improve dramatically the integrity of structures in a wide range of applications. 

From the theoretical point of view, the understanding of the way materials fail entails the 

development of new mathematical methodologies and necessitates the introduction of 

new concepts in non-linear and solid state physics.  

  During most of its historical development, the science of Mechanics of Materials 

relied principally on closed-form (not computational) mathematical theorists. Much of 

their work represents mathematical intuition and skill of a very high order, challenging 

even for advanced researchers of today.   

Fracture mechanics is based on the implicit assumption that there exists a crack in 

structural component. The crack may be man made such as a hole, notch, a slot etc. The 

crack may appear due to manufacturing defects like slag, inclusions in a weldment or 

heat affected zones due to uneven cooling. A dangerous crack may be nucleated and 

grown during the service of the component. The presence of theses cracks may weaken 

the structure and lead to a reduction in its operational life. In order to ensure safety and 

reliability, it is necessary to be able to predict the behavior of cracks under service 

conditions. That is, to predict how fast the cracks grow and how strong the cracked 

structure is; both depend upon the stress intensity factor which governs the stress field at 

the crack tip. 

 About 40-50 years ago when analysis for the growth of a crack was not available, 

a reasonably high factor of safety was chosen to account for unforeseen factors. A large 

part of the ambiguity has been cleared with the development of stress analysis by theory 

of elasticity. This enable designer to use much lower factor of safety, thus reducing cost 
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of structural components. At the same time weight of component is reduced and  

reliability is enhanced. 

  The designer is frequently required to predict the fatigue behavior of cracks 

emanating from these discontinuities so as to assess the residual life and to avoid 

catastrophic failure. However, the problem is complicated by the fact that these critical 

load bearing structures contain residual stresses and interacting stress concentration 

features such as holes, in homogeneities and inclusions. To accurately describe the 

fracture behavior of structures, it is necessary to account for the complex geometry of the 

crack in the calculation of the stress intensity factors (SIFs). The engineering design 

demands for stress intensity factor solutions for various kinds of geometries are 

increasing rapidly, especially in the aeronautical industry, the chemical industry and 

nuclear power industry. 

 

1.2 Aim of the Project:  

The presence of cracks introduces stresses in the components. The crack tip stress 

intensity factor has a major influence on the structural integrity of every machine. The 

method which can help to analyze the interaction effect between two cracks is worth 

developing. The present study derives motivation from such an issue. The aim of the 

present work is to derive the close form solution that can determine the stress intensity 

factors at the tips of two cracks in an infinite isotropic plate and to study the interaction 

effect between them for various geometrical parameters and loading conditions. The 

analysis is based on the two-dimensional theory of elasticity by using the 

Muskhelishvili's complex variable approach. The complex stress functions are used to 

evaluate the stress intensity factors (SIFs) at the crack tips. 

The investigations have been carried out with the following objectives. 

1. The two cracks are arbitrarily oriented in the infinite isotropic plate 

2. To present an important method for analyzing the interaction effect of two cracks for 

an infinite plate subjected to various loading conditions. 

3. Derivation of solutions for complex stress functions that can determine the interaction 

effect on stress intensity factors for two cracks for an infinite plate subjected to various 

loading conditions. 
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4. Analysis of stress intensity factors for the above cases for various geometrical 

parameters. 

5. Solution of particular problems using FEM analysis. 

The stress intensity factors at the crack tips and their variations with respect to the 

geometrical parameters are presented for the specific cases. 

The following cases have been studied 

The infinite plate with two cracks subjected to 

1. Uniformly distributed arbitrary biaxial load at infinity, 

The interaction effects of following parameters will be studied. 

1. Effect of crack length variations, 

2. Effect of inclination between cracks, 

3. Effect of variation of centre distance between cracks. 

 

1.3 Methodology 
The present study is concerned with the derivation of solutions that can determine the 

stress intensity factors at the tips of two cracks in an infinite isotropic plate and the 

interaction effect between two cracks for various loading conditions. The two cracks are 

arbitrarily oriented. The analysis is based on the two dimensional theory of elasticity by 

using the Muskhelishvili's complex variable approach. The complex stress functions are 

used to evaluate the stress intensity factors at the crack tips. In the present solution the 

problem of the infinite plate with two cracks subjected to various loading conditions will 

be solved using Muskhelishvili [1] complex stress functions. In the present method the 

solution in terms of two complex functions is to be obtained without a hole or 

discontinuity in an infinite plate for the given loading condition. The results of the 

analysis will be compared with the results using FEM  
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CChhaapptteerr  22  

LLiitteerraattuurree  RReevviieeww  

 
2.1 Introduction 
 

Analytical methods of stress analysis greatly facilitate the parametric study and 

provide the more accurate solutions. Various design methods have been proposed by a 

number of researchers for analyzing stresses and deflections in plates. During the last 

decade many authors have proposed analytical, experimental or numerical techniques to 

analyze the stresses and deflections. Some of the methods to determine the stress 

intensity factor are, 

 

2.2 Stress intensity factor evaluation methods, 
1) Close form solutions: 

Complex function theory (conformal mapping, boundary collocation method, 

Laurent series expansion, integral transforms (Fourier, Mellin, Hanckel transforms) eigen 

function expansion) limited to very simple cases 

2) Computational solutions (FEM, BEM, FDM …) 

3) Experimental solutions (photo elasticity, moiré interferometry….) 

 

2.3 Solutions for In-plane loading 
Ukadgaonkar and Awasare alone have given the mathematical equations more 

explicitly for each stage of solution. Uniaxial, biaxial and shear stresses are considered on 

isotropic plates containing circular [2], elliptical, triangular [3] and rectangular holes. An 

elliptical hole is considered for the anisotropic case. Solutions for biaxial and shear 

stresses are obtained by superposition of the solutions of uniaxial loading. 
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2.4 Mapping function: 
The research on stress concentration problems is ongoing. Application of complex 

stress functions by Kolosov and Muskhelishvili has enabled the solutions of various 

boundary value problems in a much simple way. V.G. Ukadgaonkar and D.K.N. Rao give 

the stress distribution around triangular holes in anisotropic plates 

 Xiangqiao Yan fined the solution for a numerical analysis of cracks emanating 

from a square hole in a rectangular plate under biaxial loads by the boundary element 

method.. Based on the displacement field around the crack tip, the following formulas 

exist for the stress intensity factors (SIFs) KI and KII at the crack tips. [4] 

 

}5.0r/)r(Dy{limK 0r)1(4
2G

I →ν−
π

=
 

}5.0r/)r(xD{lim
0r)1(4

2GK II →ν−
π

=
 

 

Where Dy(r) and Dx(r) are the normal and shear components of displacement 

discontinuity at a distance r from the crack tip(s). 

A closed form solution for the infinite plate containing Hole with cusps and applied by 

concentrated forces by complex variable function. He has given that here are several 

approaches to solve this problem. 

 First of them was given by Muskhelishvilli. The kernel of the first approach is that, 

making an operation like,  on the boundary condition equation and 

using the behaviors of the complex variable function, the complex potentials

∫γ
ζ−σσπ )/d[...]()i2/1(

)(ζφ   and 

)(ζψ  can be always obtained.  

Second approach is given by England, Bowie and Wu. The kernel of second 

approach is that, using the properties of the rational function )(ζω  and the traction free 

condition on the hole contour, one can always make a continuation of the function from 

the exterior of unit circle into the interior of unit circle, then the complex potentials can 

be obtained.  
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The third approach given by Mulikusi is most effective and interesting. The kernel of 

third approach is one first defines the complex potentials )(ζφ  and 

)()('/)(')/1()( ζψ−ζωζφζω−=ζω  on the whole complex plane. Then by using the 

conditions concerning applied forces, the principal part of the functions )(ζω and )(ζφ  on 

the region∑−
>ζ )1( can be easily found. 

He has done the elastic analysis for the 

1) An infinite plate containing hypocycloid hole [4] 

The mapping function for the hypocycloid crack is, 

,n/)(z n−ζ+ζ=ζω=     (n, integer) 

Maps the unit circle and its exterior (on the ζ-plane) into the hypocycloid contour and its 

exterior (on the z-plane)  

An infinite plate containing symmetric aerofoil crack 

The mapping function for the aerofoil crack is 

)1m0(,
m
)m1()(z

2

<<
−ζ

−
+ζ=ζω=  

Maps the unit circle and its exterior (on the ζ-plane) into the symmetric airfoil crack and 

its exterior (on the z-plane) 

3) An infinite plate containing symmetric lip crack 

The mapping function ( ) '
m

1
m

1
2
m1m)(z

222

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ζ

+
−ζ

−
+

ζ
−ζ=ζω=  (0<m<1) 

Maps the unit circle and its exterior (on the ζ -plane) into the symmetric lip crack and its 

exterior (on the z-plane)  

4) Mapping function for the triangular hole.[3] 

The outside region of the triangular hole is mapped external to the unit circle in the -

plane. The mapping function for the triangular hole due to Schwarz-Cristobel 

Transformation is expressed in the following form 

,
mmmmmm

R

)(z

17
6

14
5

11
4

8
3

5
2

2
1

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ζ

+
ζ

+
ζ

+
ζ

+
ζ

+
ζ

ε+ζ=

ζω=
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Where m1=1, m2=1/5, m3 =5/4, m4=1/891, m5=1/243, m6=1/37179, where ε varies from -

1/3 to1/3 

5) Mapping function for the region outside the hole. [2] 

The outside region of any shape of hole in z-plane can be conformally mapped external to 

the unit circle in  plane by means of a mapping function given in a general form by 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ζ

+ζ=ζω= ∑
=

N

1k
k
km

R)(z  

 

Where mk are the constants of the mapping function corresponding to the power of ζ    

6) In the elliptic notch case, the following mapping function is introduced [12] 
 

)1m0(mR)(z ≤≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ζ

+ζ=ζω=  

 
Which maps the ellipse contour and its exterior (on the z-plane) into the unit circle unit 

and its exterior (on the ζ -plane) 
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CChhaapptteerr  33  

CCoommpplleexx  vvaarriiaabbllee  ffoorrmmuullaattiioonn  

3.1 Introduction: 

Earlier methods in the Theory of Elasticity assume stress functions and the 

method provide the proof of existence of solutions, where as the Complex variable 

approach deduces the explicit solutions. This method is useful in solving many two 

dimensional problems of stress concentrations, contact problems, and the problems of 

Fracture mechanics. 

 The analysis is based on the two-dimensional theory of elasticity by using the 

Muskhelishvili's complex variable approach [1]. The complex stress functions are used to 

evaluate the stress intensity factors (SIFs) at the crack tips. The aim of the present work is 

to derive the close form solution that can determine the stress intensity factors at the tips 

of two cracks in an infinite isotropic plate. Further these solutions are used to obtain the 

interaction effect between two cracks using Schwarz's alternating method [5] various 

geometrical parameters and loading conditions. 

In many problems of practical interest, it is convenient to use stress functions as 

complex functions of two variables. We will see that these have the ability to satisfy the 

governing equations automatically, leaving only adjustments needed to match the 

boundary conditions. For this reason, complex-variable methods play an important role in 

theoretical stress analysis, and even in this introductory treatment we wish to illustrate the 

power of the method.  

 

3.1.2 Analytic Function: 
 
A complex function is said to be analytic on a region S if it is complex differentiable at 

every point in S. If a complex function is analytic on a region S, it is infinitely 

differentiable in S. A complex function may fail to be analytic at one or more points 

through the presence of singularities, or along lines or line segments through the presence 

of branch cuts. [6] 
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    Fig3.2: Region S closed bounded  

Points of no analyticity are called singular points.  They are important for certain 

applications in physics and engineering. 

 
3.1.3 Harmonic Function: 
A function z of two real variables x and y is said to be harmonic in a given domain of the 

xy plane if throughout that domain, it has continuous partial derivatives of the first and 

second order and satisfies the partial differential equation. Harmonic functions are called 

potential functions in physics and engineering  

Let f(z) = f (x + iy) = u(x, y) + iv(x, y)  be an analytic function in the domain S. If all 

second-order partial derivatives of u and v are continuous, then both u(x,y) and v(x,y) are 

harmonic function in  S. 

Most applications of conformal mapping involve harmonic functions, which are 

solutions to Laplace’s equation, [6]  

02 =φ∇  

From Cauchy Riemann condition it is easy to show that the real and imaginary 

parts of an analytic function are harmonic, but the converse is also true: Every harmonic 

function is the real part of an analytic function, φ=φ Re  the complex potential. 

 

3.2 Airy’s stress function ( φ  ): 

A state of plane stress or strain in a two-dimensional solid, free from body forces, may be 

specified by three mutually orthogonal stress components. These may be stated as first-

order differential equations. If the three stress components are equal to the appropriate 
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second order partial derivatives of an arbitrary function,φ  , then they satisfy the 

equilibrium conditions.  

In spite of the fact that Airy spoke in italics he was sufficiently well-understood for the 

function, φ  to be called an Airy stress function. [7] 

 

2

2

yxx ∂
∂

=
φσ  

 

2

2

xyy ∂
∂

=
φσ  

 

yxxy ∂∂
∂

=
φτ

2

             (3.1) 

 
3.3 Biharmonic Equation: 
The equation of equilibrium condition is as follows, 

0=
∂

∂
+

∂
∂

yx
xyxx τσ

         (3.2) 

 
By plugging in the equations associated with Airy's Stress Function into the equilibrium 

condition, we can illustrate that the functions do indeed satisfy equilibrium.  

 

02

3

2

3

=
∂∂

∂
−

∂∂
∂

yxyx
φφ  

 
The compatibility condition is given by 

0
2

2

2

2

2

=
∂∂

∂
−

∂

∂
+

∂
∂

yxxy
xyyyxx γεε

                            (3.3)        

By substitute the components of Airy's Stress Function into our compatibility condition 

and simplify.  

02 4

4

22

4

4

4

=
∂
∂

+
∂
∂

+
∂
∂

yyxx
φφφ           (3.4) 
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Equation (3.4) is also known in mathematics as the Biharmonic Equation and can be 

expressed compactly as:                        (3.5) 022 =φ∇∇

Where  is the Laplacian Operator 2∇

3.3.1 Representation of biharmonic equation: 

If P is a harmonic function then according to Cauchy Riemann condition   P + iQ 

is an analytic function. [5] 

Let us put,    P2 =φ∇

                        0224 =φ∇∇=φ∇

So it’s integral also analytic.   

   ( ) ∫ +=+=φ
z

dx)QiP(
4
1IiRz

0

 

.
0I2and0R2thisfrom =∇=∇   

If u1 is another harmonic function then 1uIyxR ++=φ which satisfies the biharmonic 

equation. Then we can write  ( ) ( )[ ]zzzRe ψ+φ=φ  

( )[ ] thatso1uzRewhere =ψ  

( )zz)((z)z(z)z2 ψ+ψ+φ+φ=φ                 (3.6) 

3.4 Complex Variable Formulation: 
 

From equation (3.1) we have, 

yX

2
i2y

2
xyiy

yX

2
i2X

2
xyiy

∂∂

φ∂
−

∂
φ∂

=τ+σ

∂∂

φ∂
+

∂
φ∂

=τ−σ

        (3.7) 
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Let, 
 

)z(')z('z)z(
y

i
X

f ψ−φ+φ=
∂

φ∂
+

∂
φ∂

=         (3.8) 

By solving the equations (3.6) and (3.7) we get 

])z('[Re4]')z('[2yx φ=φ+φ=σ+σ (z)        

And  

])z('')z(''z[2xyi2xy ψ+φ=τ+σ−σ       (3.9) 

From above two equations we get the stresses for the plane stress condition. [5] 

3.5 Governing Equations for Mapping Procedure: 

For the problems on the stress distribution around triangular holes, rectangular 

holes, non-circular holes, the conformal mapping procedure is followed. In the solution 

of such problem the crack in the Z plane is mapped in to the circle in the ζ plane, which 

has its center at the origin ζ= 0 and radius equal to unity. The mapping function to map 

an infinite plate containing a crack in the Z plane, to a region outside a unit circle in 

ζ plane is given by Sih [5] 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ζ

+ζ=ζω=
1

2
a)(  z        (3.10)  

Where a is the crack length. 

Hence and can be written as, )z(φ )z(ψ

)())((),())(( ζψ=ζωψζφ=ζωφ  

The stresses and displacement can be written as, 

            

       =4Re )]z('[φ   ⎥⎢=+
)('Re4

ζω
σσ xy

⎦

⎤

⎣

⎡
)('

ζφ

 

  )]z(')z(''z[2)('
'

)(
)(')(

)('
2i2 xyxy ψ+φ=⎥

⎦

⎤
⎢
⎣

⎡
ζψ+⎥

⎦

⎤
⎢
⎣

⎡
ζω
ζφ

ζω
ζω

=τ+σ−σ    (3.11) 
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The Stress function in the ζ  plane is given by [5], 

 
)(

2
a)'iC'B(log

)1(2
)F'iF(

)( 1 ζφ+ζ++ζ
κ+π

+−
=ζφ ηζ

 

 

)(
2
a)'iC'B(log

)1(2
)F'iF(

)( 1 ζψ+ζ++ζ
κ+π

+
κ=ζψ ηζ 

 

            (3.12) 

 

Where, 

i) Fξ and Fη are the resultant forces in the ξ and η directions respectively on the boundary 

of the unit circle in the mapped plane. 

ii) The constants B, C, B', C' indicate the stresses and rigid body rotation at infinity and 

are given by 

    
4

21
4

yxB
σ+σ

=
σ+σ

=      (3.13) 

     

             (3.14) α−σ−−=+σ−= 2xyxy )(
2

)2(
2

'iCB στσ+ i2
1 e1i1'

 

    ∞ω
κ+

=
1

G2C  

Where,  denote the rigid body rotation at infinity, for the analysis of stresses the 

constant C can be set to zero, 

∞ω

G = modulus of rigidity, 

κ = 3 - 4ν  for plane strain, 

ν+
ν−

=κ
1
3  For plane stress, 

ν = Poisson’s ratio, 

σx, σy, τxy are the stresses at infinity. 
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σ1, σ2 are the principal stresses at infinity and α the angle mode by σ1 with x axis. In the 

absence of boundary stresses at the edge of the crack, and if the rigid body rotation C = 0 

then equations (3.12) becomes, 

 

)()()( 10 ζφ+ζφ=ζφ         (3.15) 

)()()( 10 ζψ+ζψ=ζψ  

Where, 

))(
2
a)(B())(

2
a)(iCB()(0 ζ=ζ+=ζφ  

))(
2
a)('iC'B()(0 ζ+=ζψ        (3.16) 

We Have,    

            

      
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ζ

1
2
a 

ζ
=ζω )(

      

     ⎟⎟
⎠

⎞
⎜
⎝ ζ2
⎜ ζ+=ζω )( ⎛ 1a

 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ζ

−=ζω 2

11
2
a)('  

 

             (3.17) ( )2

2
(' ζ−= 1a)ζω

 

)(1 ζφ  And )(1 ζψ are the analytic stress functions and given by [5], 

   

     dt
)t(
)t(f

i2
 −=

1)( 0
1 ∫ ζ−π

ζφ

 

    

                                    (3.18) 
)('

)('
)(dt

)t(
)t(f

i2
1)( 1

0
1 ζφ

ζω
ζω

−
ζ−π

−=ζψ ∫
  
Therefore )( 1 ζψ  can be written as, 

     
)('

)1(
)1(dt

)t(
)t(f

i2
1)( 12

2
0

1 ζφ
−ζ
ζ+ζ

−
ζ−π

−=ζψ ∫ 
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Where t is the boundary value of and   , fo(t) is the analytical boundary condition and 

given by,  

ζ

)t()t('
)t('
)t()t()t(f 0000 ψ+φ

ω
ω

+φ=       (3.19) 

 

In general stress functions )t(and)t( ψφ  give the boundary condition as, 

)t()t('
)t('
)t()t()t(f ψ+φ

ω
ω

+φ=        (3.20) 

By substituting the values of eqa (3.17) for t=ζ , 

)t()t('
)t1(t

1t)t()t(f 2

2

ψ+φ
−
+

+φ=       (3.21) 

To evaluate equations )(and)( 11 ζψζφ the Cauchy integral theorem and the 

residue theorem are used. 

The stresses in the Cartesian co-ordinates in terms of the stress functions in the 

mapped plane are given by (ρ and θ are polar co-ordinates). 

             

⎥
⎦

⎤
⎢
⎣

⎡
ζω
ζφ

=σ+σ=σ+σ ρθ )('
)('Re4xy  

 

⎥
⎦

⎤
⎢
⎣

⎡
ζψ+⎥

⎦

⎤
⎢
⎣

⎡
ζω
ζφ

ζω
ζω

=τ+σ−σ )('
'

)(
)(')(

)('
2i2 xyxy  

 
 

In polar coordinates stresses can be given as, 
 

0i2
xyxy e)i2(i2 λ

ρθρθ τ+σ−σ=τ+σ−σ  
 

)('
)('e

2

2
i2 0

ζωρ
ζωζ

=λ        (3.22) 

 

)('
)(')i2(i2

2

2

xyxy
ζωρ
ζωζ

τ+σ−σ=τ+σ−σ ρθρθ        
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Where, λ0 = angle between ρ and X-axes. 
 
3.5.1 Stress Intensity Factors 

The mode-I and mode-II stress intensity factors (SIF) for the crack tips are obtained by 

using the resulting stress function in equation given by Erdogan and Sih [5]. 

 

1)('
a

2iKK III ±ζφ
π

=−                   (3.23) 

 
a = crack length, 

+ sign for ζ = 1 and η=0 and 

- sign for ζ = -1 and η=0 and 

)(' ζφ Stress function given by corresponding approximation solution.  

The derivative of )(ζφ  in the above equation is obtained from eqn. (3.15). 

3.6 Closing Remarks 

In this chapter complex variable formulation and governing equations for 

mapping are given. The analytical solutions of stress intensity factors for a crack in an 

infinite plate are formulated by using complex variable method.  
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CChhaapptteerr  44  

GGeenneerraall  ssoolluuttiioonn  ffoorr  iinnppllaannee  llooaaddiinngg  wwiitthh  aarrbbiittrraarryy    

bbiiaaxxiiaall  llooaaddiinngg  ccoonnddiittiioonn 
 

4.1 Problem configuration 

The arbitrary biaxial loading condition is introduced in boundary conditions to 

consider several cases of in-plane loads. This condition considers any arbitrary 

orientation of uniaxial and biaxial stresses or moments as well as shear stress or twisting 

moments applied at infinity. This condition has been adopted from Ukadgaonkar’s [5] 

solution for the elliptical hole in an isotropic plate. By means of this condition, solutions 

for biaxial loading or shear or twist can be obtained without the need for superposition of 

the solutions of the uniaxial loading. This is achieved by merely introducing the biaxial 

loading factor λ and the orientation angle α in the boundary conditions at infinity. A 

remotely applied loading is considered about the arbitrary co-ordinate axes x ′ ο y  ′ that 

makes an angle α with xoy axes in the principle directions of the body. 

 

4.2 Boundary Condition at Infinity 

The Boundary condition about the arbitrary coordinate axes x ′ ο y  ′ for in plane 

loading given in following [2];    

                                                     

              ,                        ,                          ,                                                         (4.1)   λ=σ Py ='σ 0' =xτ

 

Fig.4.1 shows the infinite plate with two cracks subjected to arbitrary biaxial loading 

condition. 

By applying the relation of transformation of axes, the boundary conditions in 

eqns. (4.1) about xoy axes are given by: 

 

 

              (4.2)   

P'x ∞→zat

yxyx σσσσ +=+ ''

ατσστσσ xyxyxyxy ii 2
'' )( +−=+− ie
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By applying above relations we can write stresses as,  

[ ]α−λ++λ=σ 2cos)1()1(
2
p

x  

[ α−λ−+λ=σ 2cos)1()1(
2
p

y ]          (4.3) 

[ α−λ=τ 2sin)1(
2
p

xy ]            

 

From equation (3.13), (3.14) and (4.3) the boundary condition about xoy axes can be written 

explicitly as: 

)1(
4
p)]z('[ReB +λ=φ=           (4.4) 

α−λ−=ψ=+ i2e)1(
2
p)]z('[Re'iC'B          (4.5)  

 

The boundary conditions in equation (4.4) and (4.5) are useful to determine the stress 

functions for the crack free plate. 

 

4.2.1 Applications of Arbitrary Biaxial Loading Condition 

With reference to Fig. 4.1, the following values of λ and α will be taken in to eqn. 

(4.1) to obtain different conditions of loading. 

1. Inclined uniaxial tension or cylindrical bending   : λ = 0 and α ≠ 0 

(a) Loading along X-axis      : λ = 0 and α = π/2 

(b) Loading along Y-axis      : λ = 0 and α = 0 

2. Hydrostatic tension or all around moment at infinity   : λ =1 and α ≠ 0 

(a) Equal biaxial tension or moment     : λ = 1 and α = 0     (4.6) 
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Fig: 4.1 Infinite plate with crack subjected to arbitrary biaxial load. 
 

4.3 Solution for an infinite plate with single crack subjected to arbitrary 

biaxial load 

Conformal mapping technique is applied to map the crack in the z plane to a 

region outside the unit circle in the ζ  plane using following mapping equation. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ζ

+ζ=ζω=
1

2
a)(  z  

Where a is the crack length.  

The stress functions are given by equations (3.14). 
 

)()()( 10 ζφ+ζφ=ζφ                      (4.7) 
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)()()( 10 ζψ+ζψ=ζψ          (4.8) 
 

Where )(0 ζφ and )(0 ζψ given by, 

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ζ

+ζ=ζφ
1

2
aB)(0         (4.9) 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ζ

+ζ+=ζψ
1

2
a'iC'B)(0         (4.10) 

 
From above equation (4.9) we get, 
 

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ζ+

ζ
=ζφ

1
2
aB)(0        (4.11) 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ζ+

ζ
−=ζψ

1
2
a'iC'B)(0       (4.12)    

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ζ

+=ζφ 20
11

2
aB)('        (4.13) 

 

( ⎥⎦
⎤

⎢⎣
⎡ ζ−=ζφ 2

0 1
2
aB)(' )         (4.14)   

 
Substituting stress functions from equation (4.10) and (4.11) in to the boundary condition 

equation (3.19) we get, 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
=

t
1t'iC'B

t
1tB2

2
a)t(f

2

0       (4.15) 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
=

t
1t'iC'B

t
1tB2

2
a)t(f

2

0       (4.16) 

Substituting the equations (4.11) and (4.12) in the equations (3.18) so that )(1 ζφ and 

)(1 ζψ can be obtained. 

dt
)t(

)t(f
i2

1)( 0
1 ∫ ζ−π

−=ζφ  

And 

)('
)('
)(dt

)t(
)t(f

i2
1)( 1

0
1 ζφ

ζω
ζω

−
ζ−π

−=ζψ ∫  

Evaluating the Cauchy’s integral, 
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( )( )
ζ

++
−=ζφ

'iC'BB2
2
a)( 1         (4.17) 

And 

( ) ( )( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ζ+

ζ
++++

−ζζ
+ζ

−=ζψ
1

'iC'B'iC'BB2
1

1
2
a)( 2

2

1     (4.18) 

 

The Stress functions are obtained as, 

( )( )
⎥
⎦

⎤
⎢
⎣

⎡
ζ

++
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ζ

+ζ=ζφ
'iC'BB21B

2
a)(         (4.19) 

( )( )
( ) ( )( ) ( ) ⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ζ+

ζ
++++

−ζζ
+ζ

−
ζ

−+
−=ζψ

1
'iC'B'iC'BB2

1
1'iC'BB2

2
a)( 2

2

    (4.20) 

These complex stress functions satisfy the stress free boundary condition exactly as  

f (t) = 0. 

 
4.4 Stress Intensity Factors 

The mode-I and mode-II stress intensity factors (SIF) for the crack tips are obtained by 

using the resulting stress function in equation given by Erdogan and Sih [6]. 

1)('
a

2iKK iiIII ±ζφ
π

=−                   (4.21) 

 
a = crack length, 

+ sign for ζ = 1 and η=0 and 

- sign for ζ = -1 and η=0 and 

)(' ii ζφ Stress function given by corresponding approximation solution.  

The derivative of )(ζφ  in the above equation is obtained from equation (4.9) 
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CChhaapptteerr  55  

TThhee  IInntteerraaccttiioonn  ooff  TTwwoo  CCrraacckkss  SSuubbjjeecctteedd  ttoo  AArrbbiittrraarryy  

BBiiaaxxiiaall  LLooaadd 
5.1 Introduction 

The infinite plate containing two cracks subjected to an arbitrary biaxial load is 

considered to study their interaction effect. The interaction effect of two cracks for the 

infinite plate subjected to various loading is studied in the form of complex stress 

functions, which are obtained by Schwarz's alternating method [7]. The stress intensity 

factors at the crack tips are evaluated using equation given by Sih and Edrogen and their 

variations with respect to geometrical parameters are presented for the following cases. 

1. Effect of center distance between two cracks, 

2. Effect of inclination of cracks of two cracks, 

3. Effect of biaxial load factor λ . 

 

5.2 Interaction Effect of Two cracks 
The interaction effect of two cracks for the infinite plate subjected to the arbitrary 

biaxial loading is studied in the form of complex stress functions, which are obtained by 

Schwarz's alternating method [5] Fig. 5.1 shows two cracks subjected to the arbitrary 

biaxial load and a, b are the crack lengths, α and β are the angles made by the cracks with 

the direction of load. 

 

5.2.1 Schwarz's alternating method for multiply connected region: 

By using Schwarz's alternating method the problem of multiply connected region 

can be reduced to the series of simply connected region problem. The Schwarz's 

alternating method is applied to the doubly connected region as follows.  

First the problem of an infinite plate with the first crack is solved for the given 

boundary condition by using the procedure followed for a single crack solution. The 

complex stress functions are determined. These stress functions are transformed to the 

center of the second crack by rotation and translation. The boundary condition at the 
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second crack boundary is determined, by using the transformed stress functions. This 

boundary condition does not satisfy the required boundary condition at the second crack. 

Hence a new problem of second crack subjected to a combination of the negative of this 

boundary condition and the required boundary condition on the crack boundary is solved, 

which gives the corrected stress functions. The superposition of the transformed and 

corrected stress functions gives the required second approximation solution for the 

multiply connected region which is valid near second crack. These stress functions satisfy 

the boundary condition exactly at the second crack. Similarly starting from the second 

crack, the second approximation solution around the first crack can be evaluated. 

 
 

Fig: 5.1 Infinite plate with two cracks subjected to arbitrary biaxial load. 
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5.3 Determination of stress functions 
 
5.3.1. Scheme of solution 

The isotropic plate containing the cracks is subjected to remotely applied tensions 

 at the outer edges as shown in Fig. 5.1.  The edges of the crack are 

free from loading. To determine the stresses around the crack, the solution is split into 

two stages.  

P'x λ=σ∞ λ=σ∞ 'y

First stage solution 

The stress functions )(and)( ζψζφ are obtained for a crack free plate due to applied 

stresses and . The boundary conditions f'x
∞σ 'y

∞σ 1(t1),f2(t2) on a fictitious crack are 

determined from these stress functions. 

 
Second stage solution  

For the second stage solution, the plate with crack is applied by a negative of the 

boundary conditions f1(t1), f2(t2) on its crack boundary in the absence of remote loading 

The stress functions of the second stage solution are determined from these boundary 

conditions.  
 
5.3.2 First stage solution. 
The stress function for the first crack of crack length a, is given by, 

For first crack 

( )( )
⎥
⎦

⎤
⎢
⎣

⎡

ζ
++

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ζ

+ζ=ζφ
11

111
'iC'BB21B

2
a)(  

( )( )
( ) ( )( ) ( ) ⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ζ

+ζ++++
−ζζ

+ζ
−

ζ
−+

−=ζψ
1

12
11

2
1

1
11

1'iC'B'iC'BB2
1

1'iC'BB2
2
a)(      (5.1) 

 

The stress functions for the second crack of crack length b is given by, 

For second crack 

 
( )( )

⎥
⎦

⎤
⎢
⎣

⎡

ζ
++

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ζ

+ζ=ζφ
22

222
'iC'BB21B

2
b)(  
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( )( )
( ) ( )( ) ( ) ⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ζ

+ζ++++
−ζζ

+ζ
−

ζ
−+

−=ζψ
2

22
22

2
2

2
22

1'iC'B'iC'BB2
1

1'iC'BB2
2
b)(      (5.2) 

 
The first approximation solution is defined as vectorial addition of the stress components 

at any point i.e. stress at any point in plane is a vector sum of the individual stress 

components due to the loading of the first crack boundary and second crack boundary. 

However, this does not take into account the interaction effect of the other crack in the 

vicinity [10]. 
 
5.3.3 Second stage solution. 

For the first crack gives stress functions φ1(ζ1) and ψ1(ζ1) Starting from the first crack to 

account interaction effect on the second crack the stress functions given by equations 

(4.19) and (4.20)are transformed to the second crack center O2 by rotation through an 

angle (α+β) and translation through distance C0 in the mapped plane ξ-η plane where C0 

is given by, 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

0
00 C

1C
2
aZ           (5.3) 

Where, Zo is the center distance between two cracks in Z plane. This equation has root. 
 

1
a
Z

a
Z

C 2

2
00

0 −+=           (5.4) 

Transforming the stress function to the center of second crack [7]   Ref. Fig.4.3. 

( )[ )(i)(i
021212 eeC

2
a)( β+α−β+α+ζφ=ζφ ]    

( )[ ] )('CeeC
2
a)( 2120

)(i)(i
021212 ζφ++ζψ=ζψ β+αβ+α             (5.5) 

The transformed stress functions are, 

( ) ( )
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⎦
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These transformed stress functions give a boundary condition f12(t2) on the second crack 
as  

( )
)t()t('

)t1(t
1t)t()t(f 2122122
22

2
2
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Boundary condition f12(t2) on the second crack given as , 
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This will be causing additional loading at the second crack boundary. But the true loading 

condition at the second crack is a stress free boundary condition. In order to achieve the 

stress free boundary condition at the second crack, a new problem of an infinite plate 

with second crack is solved with the boundary condition f2(t2) given by 

f2(t2)= -f12(t2) 
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The corrected stress functions valid near the second crack can be obtained  
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Similarly )( 222 ζψ can be obtained 
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Where )(' 222 ζφ is derivative of )( 222 ζφ  

 

 

5.3.4 Stress Function for the Second Crack 

The stress function )( 22 ζφ  and  for the second crack can be obtained by superposing the 

corresponding transformed stress function )( 212 ζφ  equation(5.6) and corrected stress 

function )( 222 ζφ   
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And the stress function )( 22 ζψ  valid near the second crack can be obtained by superposing 
the corresponding transformed stress function )( 212 ζψ  equation (5.7) and corrected stress 
function )( 222 ζψ equation (5.13) 
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Equations   (5.11) and (5.12) are the second approximation stress functions valid near the 

second crack. These stress functions satisfy the stress free boundary condition exactly on 

the edge of the second crack. 

 

5.3.5 Stress Function for the First Crack 
Starting from the second crack stress functions from equations, the stress function valid 

near the first crack is obtained as 

)()()( 11112111 ζφ+ζφ=ζφ      

)()()( 111212111 ζψ+ζψ=ζψ          

The stress function for the second crack )( 22 ζφ  and )( 22 ζψ from the first approximation 

are given by the equations (4.19), starting from the second crack to account interaction 

effect on the first crack, the stress functions given by the equations.(4.19) are transformed 

to the center of the first crack O1 by rotation through an angle (α+β) and translation 

through distance C1 in the mapped plane ξ-η plane where C1 is given by 
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Transforming the stress function to the center of first crack 
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The transformed stress functions are 
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These transformed stress functions give a boundary condition f21(t1) on the second crack 
as  
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Boundary condition f21(t1) on the first crack given as , 
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This will be causing additional loading at the first crack boundary. But the true loading 

condition at the first crack is a stress free boundary condition. In order to achieve the stress 

free boundary condition at the first crack, a new problem of an infinite plate with first crack 

is solved with the boundary condition f1(t1) given by, 

f1(t1)= -f21(t1) 

The corrected stress functions valid near the first crack can be obtained as, 
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Similarly )( 111 ζψ can be obtained 
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Where )(' 111 ζφ is derivative of )( 111 ζφ   

 
The stress function )( 11 ζφ  for the second crack can be obtained by superposing the 

corresponding transformed stress function )( 121 ζφ  and corrected stress function )( 111 ζφ   

)()()( 11112111 ζφ+ζφ=ζφ  
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Similarly, 
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The equations (5.22) and (5.23) are the second approximation stress functions valid near 

the first crack and are found to satisfy the stress free boundary condition exactly at the 

first crack. 

While evaluating the Cauchy's integrals following conditions are to be satisfied. 
 

0C , 1C1 〉 and ( ))(i
0 eC β+α+ and ( ) 1eC )(i

0 〉− β+α   
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And ( ))(i
1 eC β+α−+ ( ) 1eC )(i

1 〉− β+α−          (5.24) 
 
These conditions give a minimum center distance in a mapped plane for the validity of 

solution. 

 

5.4 Stress Intensity Factors 
The mode-I and mode-II stress intensity factors (SIF) for the crack tips are obtained by 

using the resulting stress function in equation given by Erdogan and Sih [6]. 

1)('
a

2iKK iiIII ±ζφ
π

=−                   (5.25) 

a = crack length, 

+ sign for ζ = 1 and η=0 and 

- sign for ζ = -1 and η=0 and 

)(' ii ζφ Stress function given by corresponding approximation solution.  
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5.4.1 SIFs for the First Crack 

)( 11 ζφ  is the stress function obtained by the second approximation, SIF for the first crack 

is given by, 

( )
( )( )
( )

( )( )

( )( )( ) ( )( )[ ]
( ) ( )

( )( )( ) ( )( )[ ]
( ) ( )

( )( )
( )

( )
( )

( )( )
( )

( )( )

( ) ( ) ( )
( )( )[ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−+−⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

±
+

±
−⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

±⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
+

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−±

−−

+
+−±

+−
+

±
−

±
−+

−

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

±−

±−+++±−

−
±−

−+++−−

−−−
−−

−±

++
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−±
−

π
=−

β+α−

β+α−β+α−

β+α−

β+α−β+α

β+α−

β+α−β+α−β+α−

'iC'BB21
C1

1
C1

2

C

eC

C1

1
C

'iC'B

eC1e

eCC

eC1e

eCC

C1

1

C1C
'iC'BB2

C11C

C23CC1C3C11C2

C11C

C2C1C3C11C

C
e'iC'BB211

C1
e'iC'BB2

C1
e1B

2
b

a
2iKK

3

11
2

1

)(i2
1

2

11

2)(i
1

)(i

)(i
11

2)(i
1

)(i

)(i
11

2

1

11

3

1

24

1

1

2

1

2

1

2

11

2

1

2

1

24

1

1

2

1

2

11

2

1

1

)(i

2
1

)(i

2
1

)(i2

III

 

(5.26) 
 

The upper line signs are for the tip c and the lower line signs are for tip d as shown in  

Fig. 5.1 
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5.4.2 SIFs for the Second Crack 

)( 22 ζφ  is the stress function obtained by the second approximation , SIF for the second 

crack is given by, 
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(5.27) 

 
The upper line signs are for the tip c and the lower line signs are for tip d as shown in 

Fig. 5.1 
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5.5 Results and Discussions 
With these generalized functions different problems can be solved by setting the values 

of crack lengths a, b, angles α, β, loading factor λ, load P and the center distance between 

the cracks Z0. The results are obtained for stress intensity factors by using equations 

(5.35) and (5.36) for some of the cases. 

The method of solution has been tested for following cases. 

1. Effect of center distance between two cracks, 

2. Effect of inclination of cracks, 

3. Effect of biaxial load factor λ 

For calculating the results an infinite isotropic plate is considered with Young’s modulus 

2*105 N/mm2 and Poisson’s ratio 0.3 the crack length a = b = 5mm, P = 1 N/mm2. 
 
 
5.6 Single Crack Solution 
5.6.1 Effect of crack length on stress intensity factor 

The effect of crack length a on KI is studied for the single crack solution, The values of 

load factor λ = 0 and α = 0 are taken to determine the results. The results are presented in 

Table 5.1 and compared with Bowie analysis in Fig. 5.3. It is seen that the results are 

exact and the results can be compared with the results of the interaction of two cracks in 

an infinite isotropic plate. 

 

 

 

 

 

 

 

 

 

 

 

  

 36



Table 5.1 SIF for uniaxial tension along Y-axis for infinite plate with single crack  

 
Crack 
Length 

(a) 
0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 

K1/K0 2.1284 1.7979 1.6515 1.5642 1.5046 1.4607 1.4265 1.3989 1.3761 1.3568

Stress 
Intensity 
Factor 
(k1) 

1.886 2.253 2.535 2.773 2.982 3.171 3.345 3.507 3.659 3.803 

Crack 
Length 

(a) 
2.75 3 3.25 3.5 3.75 4 4.25 4.5 4.75 5 

K1/K0 1.3402 
 1.3257 1.313 1.3016 1.2913 1.2821 1.2737 1.266 1.2589 1.2523

Stress 
Intensity 
Factor 
(k1) 

3.939 4.07 4.195 4.316 4.432 4.545 4.654 4.76 4.863 4.963 

 

 
Fig: 5.2 Effect of crack length on KI for single crack solution. 
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5.6.2 Effect of Biaxial Load Factor 

The analysis is studied for Rho and λ . Crack length a=5 and α =0 are taken, results are 

given in Table 5.2, Fig.5.3 shows the results. From Table 5.2 and Fig.5.3 it is observed 

that increasing the biaxial load factor λ increases the KI  

 

Table 5.2 SIF for different loading factor at different values of rho for infinite plate with 

single crack 

Rho load factor λ=0 K1 λ=0.5 K1 λ=1 K1 λ=2 K1 
1.1  3.0835  3.1604  4.7021  3.3911 
2.1  1.4891  1.8317  2.5763  2.8596 
3.1  1.1629  1.5599  2.1413  2.7509 
4.1  1.0444  1.4611  1.9833  2.7114 
5.1  0.9884  1.4145  1.9087  2.6928 
6.1  0.9577  1.3889  1.8677  2.6825 
7.1  0.939  1.3733  1.8428  2.6763 

 

 
Fig: 5.3 Effect of biaxial load factor on KI 
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5.6.3 Effect of Orientation of α 

The analysis is studied for Rho and α crack length a=5 results are given in Table 5.3, 

Fig.5.4 shows the results. 

Table 5.3 SIF for different orientation of α and different values of rho for infinite plate 

with single crack 
 

Rho α =0 K1 α =30 K1 α =60 K1 α =90 K1 
1.1   3.0835   2.3511   0.8862   0.1538 
2.1   1.4891   1.2881   0.8862  0.6853 
3.1   1.1629   1.0707   0.8862  0.794 
4.1   1.0444   0.9917   0.8862  0.8335 
5.1   0.9884   0.9544   0.8862  0.8522 
6.1   0.9577   0.9339   0.8862  0.8624 
7.1   0.939   0.9214   0.8862   0.8686 

 
 

 
Fig: 5.4 Effect of orientation of α on KI 
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5.7 Interaction effect of two cracks 
5.7.1 Interaction of Two Equal Collinear Cracks 

The analysis is studied for, a = b and α = ß. for the loading along Y-axis as shown. To 

analyze the effect of center distance between two cracks the results are obtained for 

2*(a)/d ratio varying from 0.91 to 0.1. It is observed that the results are matching exactly 

with the results obtained by Ukadgaonkar  

 

 
Fig: 5.5 Interaction of two cracks with equal collinear cracks subjected to uniaxial 

tension along Y-axis 
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From Table 5.2 and Fig. 5.6 it is observed that as the center distance between two cracks 

is increased the SIF decreases. When the distance between the crack tips is equal to the 

crack length i.e. 2*(a)/d = 0.5, the interaction effect is less than 5%. When two cracks are 

far apart from each other the solution of second approximation reduces to the single 

crack. For the ratio 2*(a)/d less than 0.5, the SIF for inner and outer crack tips is equal and 

the interaction effect is negligible. For all the above loading cases, KII is obtained as zero for 

all the crack tips. KI for tip a is same as that for tip c and KI for tip b is same as that of tip d. 

 

2a/zo Present Method (K1/K0) Ukadgaonkar (K1/K0) 

0.9 1.2457 1.257 
0.8 1.1742 1.154 
0.7 1.131 1.097 
0.6 1.0683 1.06 
0.5 1.049 1.036 
0.4 1.029 1.02 
0.3 1.0192 1.01 
0.2 1.0061 1.0043 
0.1 1.0013 1.001 

 

Table 5.4 Effect of center distance for two equal collinear cracks subjected to uniform 

tensile load along Y-axis. 
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Fig 5.6 Effect of center distance for two equal collinear cracks subjected to uniform 

tensile load along Y-axis. 
 
5.7.2 Interaction of Two Equally Inclined Cracks Subjected to Uniaxial Tension 

along Y-Direction 

The analysis is studied for a = b, 2*(a)/d = 0.1 and α = ß. Fig. 4.7 shows the loading 

diagram. Table 4.3 and Fig.4.8 Shows the results as seen from Table 5.3 the results 

obtained by the present method are in good agreement with those obtained by Isida [89].  
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Fig: 5.7 Interaction of two equally inclined cracks subjected to uniaxial tension along Y-

axis 

 

It is seen from Fig.4.8 that, for the same center distance as angle ß increases KI decreases 

and at ß equal to 900 KI is almost zero. For the same angle ß, if the centre distance 

decreases as the two cracks are placed close to each other, the interaction effect increases 

and as the centre distance increases the interaction effect decreases and the solution tends 

to the single crack with two cracks solution. 
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Crack Length Alpha(degree) K1/K0 

a=3mm 0 1.3257 
 30 1.0757 
 60 0.5757 
 90 0.3257 

a=6mm 0 1.2303 
 30 0.9803 
 60 0.4803 
 90 0.2303 

a=9mm 0 1.1881 
 30 0.9381 
 60 0.4381 
 90 0.1881 

 

Table 5.5 Effect of Crack Length and orientation of alpha on two equal cracks subjected 

to uniform tensile load along Y-axis. 

 

 
Fig: 5.8 Effect of crack length and orientation of alpha on two equal cracks subjected to 

uniform tensile load along Y-axis. 
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5.7.3 Effect of Center Distance 

The analysis is studied for a = b and α = ß. Fig. 4.10 shows the loading and results are 

given in Table 5.4. From Table5.4 it is observed that as the center distance between the 

two cracks increases the SIF at the inner tips reduces. It indicates that as the two cracks 

move away from each other the effect of interaction on SIF reduces and the SIF value 

approaches to the single crack solution. 

 
Table 5.6 Effect of center distance and orientation of alpha on two equal cracks subjected 

to uniform tensile load along Y-axis. 

 

Alpha  
Center 
Distance=10.25   

Center 
Distance=11.50 Center Distance=25

  K1 K1/K0 K1 K1/K0 K1 K1/K0 
0 5.1515 1.2998 4.9146 1.24 4.5142 1.139 

30 3.9886 1.0064 3.7453 0.945 3.2863 0.8292 
60 1.7407 0.4392 1.4322 0.3614 0.8308 0.2096 
90 0.6361 0.1605 0.2834 0.0715 -0.397 -0.1002 
120 1.7407 0.4392 1.4322 0.3614 0.8308 0.2096 
150 3.9886 1.0064 3.7453 0.945 3.2863 0.8292 
180 5.1515 1.2998 4.9146 1.24 4.5142 1.139 
210 3.9886 1.0064 3.7453 0.945 3.2863 0.8292 
240 1.7407 0.4392 1.4322 0.3614 0.8308 0.2096 
270 0.6361 0.1605 0.2834 0.0715 -0.397 -0.1002 
300 1.7407 0.4392 1.4322 0.3614 0.8308 0.2096 
330 3.9886 1.0064 3.7453 0.945 3.2863 0.8292 
360 5.1515 1.2998 4.9146 1.24 4.5142 1.139 

 
Closing remarks: 

The stress intensity factors at the crack tips are evaluated and their variations with 

respect to the geometrical parameters are presented for the specific cases in this chapter.. 

The interaction effects of following parameters have been studied. 

1. Effect of center distance between two cracks, 

2. Effect of crack length variations of two cracks, 

3. Effect of inclination between cracks of two cracks. 
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CChhaapptteerr  66  

FFEEMM  SSoolluuttiioonnss  uussiinngg  AANNSSYYSS 
6.1 Introduction 
 
The results for uniaxial loading condition for single crack are obtained. The ANSYS 10 

software is used to obtain the results by FEM. The modeling, meshing and 

postprocesssing are done by the ANSYS the results obtained will be compared with the 

results of analytical solutions. 

 
6.2ANSYS Package 
The ANSYS is a comprehensive general-purpose finite element computer program. The 

ANSYS program has many capabilities ranging from a simple, linear, static analysis to a 

complex, nonlinear, transient dynamic analysis. A typical analysis in ANSYS involves 

three distinct steps. [10] 

1. Preprocessing: Using PREP7 processor, providing data such as the geometry, 

materials, and element type to the program. 

2. Solution: Using Solution processor, defining the type of analysis, set boundary 

conditions, applies loads, and initiate finite element solutions. 

3. Postprocessing: Using POST1 (for static or steady state problems) or POST26 (for 

transient problems), reviewing the results of analysis through graphical displays and tabular 

listings. 

 

6.2.1 Solving Fracture Mechanics Problems Using ANSYS 
Fracture mechanics deals with the study of how a crack or flaw in a structure propagates 

under applied loads. It involves correlating analytical predictions of crack propagation 

and failure with experimental results. The analytical predictions are made by calculating 

fracture parameters such as stress intensity factors in the crack region, which you can use 

to estimate crack growth rate. Typically, the crack length increases with each application 

of some cyclic load, such as cabin pressurization-depressurization in an airplane. Further, 

environmental conditions such as temperature or extensive exposure to irradiation can 

affect the fracture propensity of a given material. Solving fracture mechanics problems 
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using ANSYS involves performing a linear static analysis and then using specialized 

postprocessing commands to calculate desired fracture parameters. For all the cases an 

isotropic thin plate with plane stress condition is considered. The Young’s modulus for 

the plate material is 2*105 N/mm2 and the plate thickness is 1mm The Poisson's ratio is 

0.3 taken. The external dimensions of the plate are taken large to satisfy infinite plate 

such that the ratio of size of a plate to the size of the crack is 10.The model is generated 

for all the cases using keypoints [10] 

. 

6.2.2 Modeling the Crack Region 
The most important region in a fracture model is the region around the edge of the 

crack referred as crack tip in case of 2-D model and crack front in a 3-D model.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 6.1: Singular element (a) Plane 2 and plane 82for 2Dd model (b)Solid 95 for 3D 
model 
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The stresses and the strains are singular at the crack tip, to pick up the singularity in the 

stresses, the crack faces should be coincident, and the elements around the crack tip 

(crack front) should be with singular elements. [12] 

The recommended element type for two-dimensional fracture model is PLANE2, the six-

node triangular solid. The first row of elements around the crack tip should be singular. 

The PREP7 KSCON command, which assigns element division sizes and generates 

singular elements around the crack tip. The recommended element for the three-

dimensional model is SOLID95, the 20-node element; the first row of the elements 

around the crack front should be singular elements. 

 
6.2.3 Calculating Stress Intensity Factors 
 
Once the static analysis is complete, using POST1, the general post processor, stress 

intensity factors (SIFs) can be calculated. The POST1 KCALC command calculates the 

Stress intensity factors KI, KII and KIII. To use KCALC command properly 

Following steps are to be followed. 

1. Define a local crack tip or crack front coordinate system, with X parallel to the crack 

face (perpendicular to the crack front in 3-D models) and Y perpendicular to the crack 

face. 

2. Define a path along the crack face. The first node on the path should be the crack-tip 

node. 

3. Calculate Stress Intensity Factors KI, KII and KIII using KCALC command. 
 

6.3 Single Crack Solution 
The infinite plate with single crack  

6.3.1 Infinite Plate with single Crack Subjected to Uniaxial Uniform Tensile Load at 

Infinity along Y-axis i.e. α = 0, λ = 0. 

Uniform pressure of 1 N per unit length is applied along Y-axis. The SIFs obtained by 

ANSYS and the present solution are given in Table 6.1. The corresponding deformation 

and stress contour plots are shown. 
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Table 6.1 Infinite plate with crack subjected to uniaxial uniform tensile load. 
 

 
              KI  

ANSYS  Present solution 

4.5606 3.803 

 
 

 
 

    Fig. 6.2: 1st principal stress result for loading along Y-axis 
 

 
 

c  
 

     Fig. 6.3 Stress distribution result for biaxial loading 
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6.4 Interaction of Two Cracks  
The infinite plate with two cracks following crack geometries are considered 
 
1. Plate with equal collinear cracks. 

The crack length is a = b = 5 mm. The center distance between two cracks is Zo = 11.11 

mm. i.e.2a/ Zo = 0.91. The plate size is 100 mm.x100 mm. 

 

2. Plate with unequal collinear cracks. 

The crack length for the first crack is a =3mm. and the crack length for the second crack 

is b = 6 mm. i.e. b/a = 2. The center distance between two cracks is Zo = 11.11 mm. i.e. 

2a/ Zo = 0.91. The plate size is 100 mm x100 mm. 

 

3. Plate with inclined cracks. 

The crack length is a = b = 5 mm. The center distance between two cracks is Zo = 11.11 

mm. i.e. 2a/Zo = 0.91. The angle α = 30 and ß = 0 full model of a plate is considered. 

The plate size is 100 mm x 100 mm 

 

6.4.1 Infinite Plate with Equal Collinear Cracks Subjected to Uniaxial Uniform 

Tensile Load at Infinity along Y-axis i.e. α = ß = 0, λ = 0. 

Uniform pressure of 1 N per unit length is applied along Y-axis. The SIFs obtained by 

ANSYS and the present solution are given in Table 6.2. The values are close to each 

other. The corresponding deformation and stress contour plots are shown. 

 

Table 6.2 Infinite plate with two equal collinear cracks subjected to uniaxial uniform 

tensile load. 

  KI     

ANSYS   Present solution   

a tip b tip a tip  b tip 

4.018 5.32 3.963 4.9724 
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Fig. 6.4: Stress distribution due to Y-axial loading 
 

 
 

Fig: 6.5 1st principal stress result for loading along Y-axis 
 

 

 

6.4.2 Infinite Plate with Equal Collinear Cracks Subjected to Biaxial Uniform 

Tensile Load at Infinity along X-axis and Y-axis i.e. α = ß = 0, λ = 1. 
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Uniform pressure of 1 N per unit length is applied along Y-axis. The SIFs obtained by 

ANSYS and the present solution are given in Table 6.3.. The corresponding deformation 

and stress contour plots are shown. 

Table 6.3 Infinite plate with two equal collinear cracks subjected to biaxial uniform 

tensile load. 

  KI     

ANSYS   Present solution   

a tip b tip a tip  b tip 

3.9159 5.287 4.6517 3.316 

 

 
 

Fig: 6.6 Stress Distribution due to biaxial loading 
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Fig: 6.7 1st principal stress result for biaxial loading 
 

6.4.3 Infinite Plate with Unequal Collinear Cracks Subjected to Biaxial Uniform 

Tensile Load at Infinity along Y-axis i.e. a=3mm and b=6mm α = ß = 0, λ =1. 

Uniform pressure of 1 N per unit length is applied along Y-axis. The SIFs obtained by 

ANSYS and the present solution are given in Table 6.4. The values are close to each 

other. The corresponding deformation and stress contour plots are shown. 

Table 6.4 Infinite plate with two unequal collinear cracks subjected to biaxial uniform 

tensile load. 

  KI     

ANSYS   Present solution   

c tip d tip c tip  d tip 

6.8617 4.91 8.308 6.4256 
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Fig: 6.8 Stress distribution due to Y-axial loading 

 
 
   Fig: 6.9 1st principal stress result for biaxial loading 
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Fig: 6.10 Stress distribution result due to biaxial loading 

 

6.4.4 Infinite Plate with Equal Inclined Cracks Subjected to Uniaxial Uniform 

Tensile Load at Infinity along Y-axis i.e. α =30 ß = 0, λ = 0. 

Uniform pressure of 1 N per unit length is applied along Y-axis. The SIFs obtained by 

ANSYS and the present solution are given in Table 6.5. The corresponding deformation 

and stress contour plots are shown. 

Table 6.5 Infinite plate with two equal collinear cracks subjected to uniaxial uniform 

tensile load. 

  KI     

ANSYS   Present solution   

b tip c tip b tip  c tip 

3.6159 4.32 3.186 4.471 
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Fig: 6.11 Stress distribution result due to  

Y-axial loading 

 

 
 
Fig: 6.12 1st principal stress result due to uniaxial loading 

 

 

 

6.5 Remarks 
The results obtained by FEM and the present solution are compared and they are 

found to be close to each other for most of the cases. Both analytical and EFM analysis 

shows that the maximum stress intensity factor is at the inner crack tips. The FEM is 

highly versatile and handles problems of highly complicated geometry and loading 

conditions. In fact, the tedium involved in generating the model, discretizing it, applying 
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the loads and boundary conditions and getting solution for the stresses and the stress 

intensity factors is very high as compared to the analytical solution. The present 

analytical solutions cannot compete with the solution by FEM; however, they yield the 

results for the interaction of two cracks for different loading conditions in a simple way.  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CChhaapptteerr  77  

CCoonncclluussiioonn  aanndd  SSccooppee  ffoorr  ffuuttuurree  wwoorrkk  
7.1 Introduction 
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In this chapter results and general discussions have been presented. Finally the 

main conclusions and contributions of the present work are given. Also the scope for 

future work has been suggested. 

 

7.2 Results and Discussions 
The present work has been carried out with the objectives of analyzing the 

interaction effect of two cracks in an infinite isotropic plate subjected to different 

boundary conditions, using Schwarz alternating method. The complex stress functions are 

derived which satisfies the boundary condition. The stress intensity factors at the crack 

tips are evaluated and their variations with respect to the geometrical parameters are 

presented for the specific cases. 

The interaction effects of following parameters have been studied. 

1. Effect of center distance between two cracks, 

2. Effect of crack length variations of two cracks, 

3. Effect of inclination between cracks of two cracks. 

The results for all the cases have been given and discussed in details at the 

respective chapters. Here only main results and discussions are given. 

When two cracks are present in the infinite plate subjected to a load, the stress intensity 

factors, both at the inner tips and the outer tips are greater than the stress intensity factors 

for a single crack in the infinite plate. If the two cracks are very close to each other, 

coalescence between the cracks occurs as a result of the interaction. In fact as the crack 

tips approach each other the stress intensity factors at the inner tips increases rapidly. 

When the cracks are far apart the interaction effect can be neglected and the stress 

intensity factors for the crack tips will therefore behave in a way, which is similar to that 

of a single crack in the infinite plate. 

For studying the effect of center distance between two cracks, the crack lengths have 

been assumed to be equal. It is found that as the two cracks come close to each other their 

interaction on the magnitude of stress intensity factors increases rapidly. The stress 

intensity factors for the inner crack tips are more than the stress intensity factors for the 

outer crack tips. As the center distance between two cracks becomes large. The stress 
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intensity factors at the inner and the outer crack tips approach asymptotically to the value 

of stress intensity factors for the crack tips of the single crack solution. 

For studying the effect of crack lengths the length of first crack is assumed as constant 

and the crack length of the second crack is varied. It is observed that as the length of 

second crack increases the stress intensity factors of the second crack tips increases 

rapidly, and due to the interaction effect the stress intensity factors for the first crack tips 

is also increases but the rate of increase is less. It is also seen that the stress intensity 

factors for the inner crack tips is more than the stress intensity factors for the outer crack 

tips. For studying the effect of inclination of the cracks first crack is assured to be parallel 

to the X-axis and the inclination of the second crack has been varied. It is found that the 

interaction of the inclination is more if the two cracks are close to each other. 

For the case of equal biaxial loading, it is seen that the effect of inclination of cracks is 

negligible. 

For supporting the analytical solution, particular problems have been solved using 

FEM and the results are in good agreement with that of the analytical solution. The 

amount of time and labor involved in the present method of analysis is less in comparison 

with other methods. 

This may well encourage the use of proposed method of solution. The present 

method gives more insight in to the analysis. The wide variety of problems has been 

solved and the results are found to be very encouraging. 

The results presented here are intended both to demonstrate the potential of Schwarz 

alternating method and provide the SIFs data useful for the design of structures. 
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7.3 Conclusions 
The main conclusions of the thesis are as follows 

1. The proposed method of solution helps to study interaction effect of two cracks for 

wide variety of crack geometries and loading conditions. 

2. The method of solution is good enough to obtain sufficiently accurate results. 

3. Each general solution consolidates a number of solutions available for a particular type 

of loading. The scope of the basic formulation adapted for each of these solutions has 

been enhanced considerably to make the general solution capable of considering large 

number of crack geometries and the loading conditions. 

4. The arbitrary biaxial loading condition facilitates consideration of any orientation and 

ratio of biaxial loading.  

5. The analytical results of present solutions are supported with the results obtained by 

FEM and they are in good agreement. Both the analytical and FEM analysis show that the 

stress intensity factors at the inner crack tips is higher than the stress intensity factors at 

the outer crack tips. The results of the present general solutions are satisfactory and these 

solutions are extremely useful to study the effect of crack geometries. 

 

7.4 Scope for Future Work 
1. Analytical solutions for the complex stress functions can be obtained for more than two 

cracks. 

2. Analytical solutions for the complex stress functions can be obtained for biaxial shear 

loading. 

2. Experimental verification of the present work can be carried out by 2-D photo elasticity. 

3. Anisotropic or orthotropic cases can be considered while analyzing the problems of the 

same geometry and loading conditions. 

4. General solutions can be obtained for stresses around cracks in finite width plates 

considering mechanical loads. 

5. Results for all the cases considered in the present work can be obtained by finite element 

method.  
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