
Development of monkey tool for sequential,
concurrent and random scenario

Submitted By

Palak Dixit

19MCEC03

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2021

Development of monkey tool for sequential,
concurrent and random scenario

Major Project

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology in Computer Science and Engineering

Submitted By

Palak Dixit

(19MCEC03)

Under the guidance of

External Guide Internal Guide

Mr. Suraj Haldar Dr. Swati Jain

System Validation engineer, Associate Professor,CSE Department

Intel Technology Pvt. Ltd., Institute of Technology,

Bengaluru. Nirma University, Ahmedabad.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2021

Certificate

This is to certify that the major project entitled “D”evelopment of monkey tool for

sequential,concurrent and random scenario submitted by Palak Dixit (19MCEC03),

towards the partial fulfillment of the requirements for the award of degree of Master of

Technology in Computer Science and Engineering of Nirma University, Ahmedabad, is

the record of work carried out by her under my supervision and guidance. In my opinion,

the submitted work has reached a level required for being accepted for examination. The

results embodied in this Major Project Part-II, to the best of my knowledge, haven’t

been submitted to any other university or institution for award of any degree or diploma.

Dr. Swati Jain Dr. Priyanka Sharma

Internal Guide & Associate Professor Professor & PG Coordinator (M.Tech - CSE)

CSE Department CSE Department

Institute of Technology Institute of Technology

Nirma University, Ahmedabad Nirma University, Ahmedabad

Dr. Madhuri Bhavsar Dr. Rajesh N Patel

Professor & Head Director

CSE Department Institute of Technology

Institute of Technology Nirma University, Ahmedabad

Nirma University, Ahmedabad

iii

Certificate

This is to certify that the major project entitled Development of monkey tool for se-

quential,concurrent and random scenario submitted by Palak Dixit (19MCEC03),

towards the partial fulfillment of the requirements for the award of degree of Master of

Technology in Computer Science and Engineering of Nirma University, Ahmedabad, is

the record of work carried out by her under our supervision and guidance. In my opinion,

the submitted work has reached a level required for being accepted for examination.

Mr. Biswadeep Sengupta Mr. Suraj Haldar

Manager External guide

Intel technology Pvt. Ltd. Intel technology Pvt. Ltd.

iv

digital signature
5/17/2021

Statement of Originality
———————————————————————————————————————

I, Palak Dixit, 19MCEC03, provide endeavor that the key Project named as “Devel-

opment of monkey tool for sequential,concurrent and random scenario” pre-

sented by me, towards the partial fulfillment of the necessities for the degree of M.Tech

in Computer Science & Engineering of Institute of Technology, Nirma University,

Ahmedabad, contains no material that has been awarded for any degree or diploma in

any university or school to the best of my knowledge. It is the original work meted out

by me and I give assurance that no attempt of plagiarism has been made.It contains no

material that is revealed or written earlier, except where reference has been created. I

perceive that in the event of any similarity found after with any revealed work or any

thesis work elsewhere; it will result in severe disciplinary action.

———————–

Signature of Student

Date:

Place:

Endorsed by

Dr Swati Jain

(Signature of Guide)

v

18/5/2021

Surat

Acknowledgements

It gives me pleasure in submitting this project report towards successful completion of

my major project. First and foremost,i would like to thank Dr Swati Jain who is Asso-

ciate Professor of Computer Science and Engineering Department branch in Institute of

Technology, Nirma University, Ahmedabad for her valuable guidance during this project.

I would like to express my sincere gratitude to Dr Madhuri Bhavsar, Hon’ble Head

of Computer Science And Engineering Department, Institute of Technology, Nirma Uni-

versity, Ahmedabad for providing basic infrastructure and healthy research environment.

It gives me an immence pleasure to thank my manager Mr.Biswadeep sengupta,

Manager, chrome validation team, Intel Technology Pvt. Ltd. for his constant support

throughout my internship project.

A special thanks to Dr Rajesh Patel, Hon’ble Director, Institute of Technology,

Nirma University, Ahmedabad for his motivation.

I would also like thank all my friends for their help and support as well as faculty mem-

bers of Computer Science and Engineering Department, Nirma University, Ahmedabad

for their special attention and suggestions throughout the development of this project.

- Palak Dixit

19MCEC03

vi

Abstract

Executing the concurrent tests puts a greater emphasis on user’s real-world scenario,

and also help to showcase the robustness and performance capabilities of Intel platform.

Also, with Android container introduced in Chrome OS, it provides opportunity to be

included in concurrent test suite to replicate the real-world scenario of running multiple

applications simultaneously.

As a part of Chrome system validation team in CCG, i have introduced system level

“concurrent test suite”. i have observed that when multiple testcases are running con-

currently, the system resources like CPU and memory are gradually exhaust, and there

are very high chances of system crash or failures.

Technical Key terms: Automation, Monkey, ADB, Concurrent, Random, Sequen-

tial

vii

List of Figures

2.1 adb shell . 3
2.2 adb devices . 4
2.3 working of monkey . 5
2.4 Framework of monkey testing . 6

3.1 servo v2 . 10
3.2 servo v4 . 11
3.3 Chamelium . 12

4.1 Flow of autotest system . 14
4.2 Directory Structure of client side testcases 15
4.3 Directory Structure of server . 16

5.1 Execution on Host machine . 18
5.2 Execution on DUT . 19
5.3 Structure of testcase . 19
5.4 Execution flow for individual testcase . 20
5.5 execution flow of combined TC . 22
5.6 Sequential execution . 23
5.7 Concurrent execution . 24
5.8 Random execution . 25
5.9 Execution status of testcases . 25

viii

Contents

Certificate iii

External Certificate iv

Statement of Originality v

Acknowledgements vi

Abstract vii

Abbreviations viii

List of Figures viii

1 Introduction 1
1.1 Problem Statement . 1
1.2 Solution . 1
1.3 Outline of report . 2

1.3.1 ADB Shell and monkey tool . 2
1.3.2 Testing . 2
1.3.3 Autotest . 2
1.3.4 Execution of testcase . 2
1.3.5 Conclusion . 2

2 ADB Shell and monkey tool 3
2.1 ADB . 3
2.2 Monkey Tool . 3

2.2.1 Monkey Testing . 4

3 Testing 8
3.1 Mode of testing . 8

3.1.1 Manual Testing . 8
3.1.2 Automation Testing . 9

3.2 Automation hardwares . 10
3.2.1 Servo v2: . 10
3.2.2 Servo v4: . 11
3.2.3 Chamelium: . 11

ix

4 Autotest 13
4.1 Testcase . 14

4.1.1 Client side . 15
4.1.2 Server side . 16

5 Execution of testcase 18
5.1 Execution for individual testcase . 18
5.2 Control Files . 20
5.3 Different scenarios for execution of testcases 21
5.4 Debugging . 24

6 Conclusion 26
6.1 Future Scope . 26

x

Chapter 1

Introduction

The objective of this project is to develop a monkey tool that will create user scenar-

ios and check for kernel panic, errors, or issues. It will address the issue of replicate

the real-world scenario of end-user as seen in Field Testing with automation. It will be

implemented in the chrome validation team with Automation is done using Python Au-

totest. The expected functionalities of this tool contain sending input events (keyboard,

touch), opening URLs, and perform tasks like YouTube playing, graphic website usages,

browsing content, install-uninstalling of apps, etc., measuring CPU load, memory load,

temperature, controlling time between events, etc.

1.1 Problem Statement

When a user performs heavy lifting tasks concurrently, there will be an exhaustion of

the system resources (memory and CPU bandwidth), and which result in failures in

completion of tasks.Existing test suites such as MTBF test suite and Android’s Monkey

emphasize on running only in serial manner, and do not replicate the real-world user

scenario.Intention of this work is to fill up this gap.

1.2 Solution

To leapfrog from the traditional sequential stress testing, i have developed a “sequen-

tial,random and concurrent test suite”. It includes a set of workloads to map user sce-

nario, and then continuously measure the metrics during the execution of the tests and it

will be platform and OS agnostic solution (Windows/Android/Chrome). I have observed

that when multiple workloads execute concurrently over a period of time, the system re-

1

sources (CPU, memory) gradually exhaust, and there are more chances of system failures

which couldn’t be otherwise identified in sequential execution of the same test scenario.

1.3 Outline of report

1.3.1 ADB Shell and monkey tool

In this chapter a brief explanation of ADB shell and it’s working.Then monkey tool is

explained with objective,performance and cost,working of monkey.

1.3.2 Testing

In this chapter, Testing is explained elaborately. It also discusses the types of testing

such as ”manual testing and automation testing” along with benefits and drawbacks.It

also talks about the automation hardwares like servo v2,servo v4 and chamelium.

1.3.3 Autotest

In this chapter mainly autotest and testcase are explained elaborately. It also discusses

the types of testcases such as client side and server side. This chapter also includes the

methods like initialize(), cleanup(), warmup(),setup() which can be overridden.

1.3.4 Execution of testcase

In this chapter,first it discuss about 2 platforms as HOST and DUT is shown for execu-

tion of testcases.Then there are different figures as structure of testcase,structure of debug

files,random scenario,concurrent scenario,sequential scenario,execution flow of combined

script along with execution status of testcases in the form of pie-chart for better under-

standing.

1.3.5 Conclusion

In this chapter,conclusion of the project is written along with future task.

2

Chapter 2

ADB Shell and monkey tool

In order to explore random scenario from ”sequential,random and concurrent test suite”,i

am using utility of monkey tool and ADB shell of android since monkey tool is concerned

with randomness of event.

2.1 ADB

ADB stands for ”Android Debug Bridge”.ADB is a kind of command-line program which

will allows us to interact with tool.ADB includes activities like installing apps and de-

bugging apps.ADB contains 3 parts as client,server and daemon.It is a kind of ”client

and server” framework.

Figure 2.1: adb shell

2.2 Monkey Tool

”Monkey is a Program that runs on emulator and which works upon generating the

pseudo-random streams of user events such as clicks, touches, gestures. Monkey can runs

directly on the emulator by giving adb shell monkey command.”

Objective:

The objective of monkey tool is to do Stress Tests as well as Unit Tests. It is helpful to

3

catch frequent bugs and exceptions more fast and more easy. It is also suffiecient enough

for handling the system level events in a effective way.

Performance and Cost:

Since the monkey is included as part of the android SDK,it is kept up-to-date by google

and has excellent reliability.Running the tool on a virtual device can take a lot of pro-

cessing power compared to external device.Due to packaged with Android SDK,it is free

to use.So,it is compatible with any existing android project.

Working of monkey: For execute the monkey,you must have a device or emulator

connected to ADB. At the time of running,you can run only one device at a time,otherwise

it will give error.

Figure 2.2: adb devices

2.2.1 Monkey Testing

In monkey tool testing, testing engineer is considered as ’Monkey’ by accepting the fact

that if any monkey uses the system then it will give some random input without having

any knowledge.The testing by monkey tool is a ”software testing technique in which the

testing is performed on the device under test randomly and it will authenticate whether

product application is crashes or not.”

Testing engineer provides random data to the application with no predefined test-

cases.The objective of Monkey testing is to detect the bugs and errors in the product

application utilizing exploratory techniques.Due to this random manner in testing,it is

possible that testing engineers can’t reproduce those bugs.Monkey testing is done to

make sure that the specifications given by the client are properly addressed in the soft-

ware.Monkey testing is generally carried out as random, automated unit tests.

4

Figure 2.3: working of monkey

Monkey Testing is additionally remembered for Android Studio as a feature of the

standard testing devices for stress testing.In a few cases, Monkey Testing is committed

to ”Unit Testing or GUI Testing” too.

Framework of monkey testing:

As per the given below figure, we are able to see that the primary step is to start the DUT.

DUT executes in an exceedingly separate method, there’s a requirement for synchroniza-

tion with the completion of the DUT’s startup. A primary synchronization purpose is

that the planning of most windows.

Many systems display a home screen to alert the user to the continued initialization

of the device. Usually, the startup screen disappears and, as a result, the actual main

window is displayed when the application is ready for use.In order to stop the interaction

5

with the home screen, the start-up procedure should be customized, for example by

specifying additional time.

Figure 2.4: Framework of monkey testing

Advantages of monkey testing:

• It is very helpful for testing engineer in the case of full exposure to identify new or

say out-of-box errors while executing tests since those are different from previously

implemented scenarios.

• It is easy to execute since there is just need of random data to arrange random tests

in the system.

• It has benefit in the case of required skills because monkey testing can be performed

and accessed by anyone without having proper knowledge of the test or application.

• It is very cost-effective since amount for setting up of environment and execution

of testcases is very less.

• It is useful while doing stress testing and load testing as there are generally random

and adhoc scenarios for testing.

• Automation of monkey testing is easy with tools.

6

• It is sufficient for any mobile applications,web applications as well as desktop ap-

plications since it’s setup is easy.

• it is efficient enough to save the system from time crunch as well as complete

breakdown by detecting major bugs and by doing quick fixing for the same.

7

Chapter 3

Testing

Testing is one of the principal element in the domain of quality assurance in soft-

ware.Testing can be categorized in 2 ways as automatic and manual.Manual testing is

deal with creating a test case in manual manner and execute those test cases with none

tool dependency.It includes surfing various application scenarios ,combinations of inputs,

compatibility of actual results and expected performance along with keeping track of

those observations.At other end,automation testing is deal with executing a testcase us-

ing an automation tools and hardwares like servo and chamelium.Objective of the same

is to decrease the number of experiments to be run physically and not take out manual

testing all together.[11] Testing include running the test,detecting a bug,checking the type

of bug by classifying it,developer has to check it and fix that bug and then as a last step

new release will be issued to test team.

3.1 Mode of testing

Based on the way of execution of testcases, testing can be categorized in two categories:

1. Manual Testing 2. Automation testing

3.1.1 Manual Testing

Manual Testing is concerned with ”testing method in which the engineers develop their

testcase manually as well as executing those testcases in order to find bugs within

the product”.Manual testing could be a arduous activity because for that testing en-

gineer should contain specific skillset along with creativity,patience,good observation

power,innovative ideas etc. [4][6].Manual testing can be categorized into Integration

8

Testing,Acceptance Testing,Black Box Testing,White Box Testing,Unit Testing,System

Testing.Manually Testing is beneficial to use instead of automation testing when scenar-

ios are like if project is running in it’s initial phase,if there is a case when any testcase is

unautomatable as captcha, if duration of project is short etc.

Drawbacks of manual testing are following:

• Accuracy is less since it is human-driven because there are chances that testing

engineers may commit mistakes

• These testcases takes up huge amount of time since it’s executed by human resources

and implies a high cost.So it is very time consuming,resources consuming and very

slow

• Reliability is less as there are possibilities to get incorrect results since manual

verification is prone to human errors in some cases

• Not efficient enough for long term projects and large-scale projects

• Large amount of human resources required as so many testers have to execute

testcases manually

3.1.2 Automation Testing

”Automated testing is a teting for any large, long-lived software project to maintain sta-

bility while permitting rapid development and Test design and development together can

be automated to reduce human effort and save cost ”[12].

Benefits of automation testing

• Fast: It is faster than the manual testing.

• Cost Effective: Test cases are executed by using automation tool so less tester are

required in automation

• Repeatable: The same test case (record and replay) can be re-executed using testing

tools testing

• Reusable: Test suits can be re-used on different versions of the software.

9

• Programmable: It is programmable by testing engineers.

• More reliable: Automation tests perform precisely same operation each time they

are run.

• Test Coverage: Wider test coverage of application features

3.2 Automation hardwares

3.2.1 Servo v2:

• Debug board used in Chrome OS test and development which enables automated

testing.

• Provides software access to device GPIOs, EC and UART ports

• Connected to the debug header on the Chrome OS device and to an Ubuntu host

machine

• Helps in flashing EC and firmware on the Chrome OS devices

• No longer manufactured but still used in early bring ups

Figure 3.1: servo v2

10

3.2.2 Servo v4:

• Latest version of Servo which is used in newer platforms

• Combines the functionality of the following devices into one:

Ethernet-USB dongle Muxable USB port uSD to USB 3.0 dongle Pass through

charger Case-Closed Debug(CCD) interface

Figure 3.2: servo v4

3.2.3 Chamelium:

• It allows us to simulate all types of displays using EDIDs of the displays.

• It emulates user behavior such as plugging(or unplugging) in an external monitor

• Chamelium receives video and audio output from Chromebooks, converts to RGB(Video)

/ I2S(Audio) formats and stores in RAM

• Source code for the underlying test infrastructure and logic comes with the Chromium

OS source code.

11

Figure 3.3: Chamelium

12

Chapter 4

Autotest

Autotest is an open-source framework which is working based on doing fully automated

testing for large scale systems and low level frameworks like hardware and kernel.By

autotest,detection of uncommon defects and unobtrusive execution regression is pos-

sible.With as minimal manual setup as possible,it is intended to give start to finish

automation for functional tests against executing hardware or kernels.This framework

is generally dependent on python.Objective of automation is to diminish the overhead

imposed on test engineers or manually execution of testcase as well as not dispose of

manual testing at all.Autotest includes activities like handling the erros in implicit man-

ner,generating the reliable outputs,executes either independent or inside any server bri-

dle.In autotest,development of a testcase must be a straightforward,known process,needed

of interaction with subset of the available framework[5].

Autotest has some fundamental prerequisites like testcase’s outcomes must be acces-

sible in a proper way in which it should be parseable by machine as well as testcases

which are developed outside of the system should be able to execute inside the system as

well without any problem.

Flow of autotest system:

13

Figure 4.1: Flow of autotest system

4.1 Testcase

The test case is a document in detail which contains input, steps to follow, specifications of

a test, expected results and preconditions of testing for a test which is executing on Device

Under Test(DUT). Expected result of test may consist output which will come by giving

inputs which are selected and it may contains post conditions.A unique test id which is

identification number of that test is there in every testcase.There should be 2 test cases

for generating the desired inclusion: one is positive or successful testcase and the other

one is negative or unsuccessful testcase.We can say positive testcase when expected result

is same as observed result and on the other hand,it is negative testcase when expected

result is different from observed result.Every testcase is not able to automate and the

selected testcases are the foundation for selection of automation tools and execution of

testcases.There is a provision in autotest as ”Suites” which is set of multiple testcases

from same domain. At the end,pre-condition should be satisfied with known input and

post-condition must be fulfilled by expected result of testcase.

Types of Test cases:

1. Client side

14

2. Server side

4.1.1 Client side

In client side,Testcases are runs on the DUT.In client side,the whole testcase and related

files will be pushed into the DUT and execution will be happening in DUT.Once the

execution gets completed,it will give the final result along with logs to the host machine.

Figure 4.2: Directory Structure of client side testcases

One disadvantage of client side TC is it is not able to maintain states across re-

boot/cold boot or suspend/resume.As an example,there is 15 lines of code and some-

where in the middle ,if there is any reboot,resume or suspend scenario then it will execute

properly that part which is before that scenario and once the DUT comes up,whatever

testcase is executing,it will get killed due to this failure scenario.so,even execution is

starting again,it will not be able to continue from the line after the reboot,resume or

suspend scenario.it will get restart again from the beginning.Due to this reason,server

side TC is recommended compare to client side TC.If there are no any reboot,resume

or suspend scenario and if there is no need of any automation hardwares like servo and

chamelium,then one should start with client side execution.

A client side testcases executes completely based on host machine.Basically the client

subdirectory of Autotest is introduced on the host machine toward the start of the

test. Thus the control file of client side testcase can execute the script which is in

main test class or pythoon file through the job.run test() fucntion .The location of

this test class is in client/site tests as we can see in figure given here.Test class or au-

totest lib.client.bin.test.test is super class of any test class.so,every time we have to pass

parameter as test.test while defining a class in main test class since we are extending it in

15

our class.after extending test.test,we have to give run once() function in our class since

run once is a main runner of any class.In run once(),we can pass any specific parameters

which is required to execute the testcase.In any class,variable version of that class should

be there.

4.1.2 Server side

Unlike client side testacases,autotest client is not there on the host machine in server side

testcases.server represents an ssh connection by host objects to the host machine.With

the help of these host objects,server is able to run the script on client side.In server side,it

follows the master-slave kind of architecture where the master will be the host machine

and client will be the DUT.In At the time of execution,each and every line of testcase

will be picked up and it will be sync with DUT.Execution will happen line by line in

DUT and then after that execution,the control will be passed to the host machine.

Figure 4.3: Directory Structure of server

There are some methods like initialize(), cleanup(), warmup(),setup() etc. which can

be overridden in our test class in which initialize() is the first method which is called

prior to execution of each testcase,warmup() deals with preparing a pre-test for getting

substantial outcome and order of this method is before calling run once and after doing

all setup by setup() method.Then setup() method is called at the time of compilation

of script as well as when version of test will be change. cleanup() always called after

completion of execution of that testcase in both pass or fail cases as there is possibility

that testcase used a large portion of the disk while creating the test files and it will arise

an issue with subsequent tests.

The main difference between client side and server side testcases is the point of execu-

tion where the testcases are done.Execution time is lesser in the client side TC compare

16

to server side TC.

17

Chapter 5

Execution of testcase

5.1 Execution for individual testcase

There are 2 facilities in the case of platforms for executing the testcase.

1.On Host machine via chroot

2.On DUT

1.On Host Machine:

Command: test that -b $board $host testcase name

Here,test that is main command which we use to execute autotest related testcases.$board

is the type of board on which we are executing.Then $host variable deals with DUT ip

followed by testcase name which we want to execute.In given figure,we can see that board

is hatch,dut ip is 10.223.165.83 and testcase name is dummy Pass.

Figure 5.1: Execution on Host machine

18

2.On DUT:

Command: /usr/local/autotest/bin/autotest client ./site tests/test name/control

First there is need of copy the testcase to directory “/usr/local/autotest/site tests”.This

is the other way of executing the testcase in standalone way.Here autotest client is a

binary file which we have to invoke.This approach is useful when we have to execute

client-side testcase as well as when there is unavailability of host machine.

Figure 5.2: Execution on DUT

Directory Structure of Testcase: Generally any testcase includes one python file

along with required control files as we can see in figure.we can execute testcase with control

file which we want to run like an example if there is need to execute testcase in sequential

manner then we have to give testcase name as system CombinedUsecases.sequential while

executing the test that command in host machine.

Figure 5.3: Structure of testcase

19

Execution flow of individual testcase:

Figure 5.4: Execution flow for individual testcase

5.2 Control Files

The important characterizing part of any testcase is that testcase’s control file.This con-

trol file is just a Python script which is following autotest python style and which is

straightforwardly doing execution of the testcases.Any testcase is defined by it’s con-

trol file.In control file,there is no any logic part of the testcase. It contains following

parameters:

• AUTHOR which contains information of the person who had written that testcase

• DEPENDENCIES which contains the requirements for executing the testcase

20

• DOC includes arguments to be passed along with description of testcase

• TIME defines the duration of execution for the testcase.It can be consider as

LONG if testcase is taking more than 4 hours to run the testcase,it can be consider

as SHORT if execution time of testcase is less than 15 minutes and it can be consider

as MEDIUM in the case when it is taking more than 15 minutes and less than 4

hours

• TEST TYPE parameter says which type of testcase is executing, it can be of

client type or server side

• TEST CATEGORY defines the category of testcase which can be stress,functional

etc.

• NAME defines the name of the testcase

Among all these parameters,AUTHOR,DOC,NAME,TIME and TEST TYPE are manda-

tory ones in all the testcases.Important part of any control file is run test which can be

written as:

job.run test(’dummy test’)

we can pass arguments in run test if it requires any specific parameters as:

job.run test(’dummy test’,test duration=5, iterations=2)

In this job.run test(),First argument is the testcase name which is executing and rest all

are arguments in the case when testcase requires any specific parameters.

5.3 Different scenarios for execution of testcases

Here there are 3 scenarios for execution which are following:

1.Sequential

2.Concurrent

3.Random

Execution flow of combined script:

21

Figure 5.5: execution flow of combined TC

1.Sequential Scenario

In sequential scenario,execution of the functions will happen in order as written in

run once().Those functions will perform one by one.when one function will complete it’s

execution then only other function will start execution.Since it is stress type testcase as

well as it is combining 10 testcases at a time,it is taking much time around 1 hour to

execute this combined script.

22

Figure 5.6: Sequential execution

2.Concurrent Scenario

In Concurrent Scenario,execution of the functions will happen in order as written in

run once() but those functions will perform slightly different than sequential Scenario.When

one function has started it’s execution,after few seconds other function will also start it’s

execution likewise all the functions which need to get perform,they will perform together

at a time in concurrent manner.

3.Random Scenario

In Random scenario,execution of the functions will not happen in the order as written in

run once().The order of execution of those functions will be random.It will pick up any

random function from given list and perform it and after completion of that function,it

will pick up another any function in random manner.

23

Figure 5.7: Concurrent execution

5.4 Debugging

When testcase is getting failed then there is need to detect a bug,analyze that bug and

fix that bug.Every testcase has debug directory through which one can detect the issues

occurring during the execution of that testcase.generally debug directory has 4 log levels

as DEBUG,ERROR,INFO,WARNING.

24

Figure 5.8: Random execution

Figure 5.9: Execution status of testcases

25

Chapter 6

Conclusion

In the first phase of project,detailed study related ADB and monkey tool with the un-

derstanding of how monkey testing is done.The monkey tool is fairly simple to use and it

is a great for apps that have a significant amount of user input involved. Executing the

concurrent tests puts a greater emphasis on user’s real-world scenario, and also help to

showcase the robustness and performance capabilities.It will ensure stronger validation

and an complete automation.

In the second phase of Major project,there is automation related understanding in depth.In

this approach, there is in-detail information related to way of executing testcases in au-

tomation in all the 3 scenarios as sequential,random and concurrent.

6.1 Future Scope

We are going to give options to users for executing functions as per their wish from

the list of functions given in that combined script.As an example,i have 5 functions as

app install(),audio play(),volume up down(),brightness up down() and USB transfer().Now

i want to perform only 2 functions from this list,then at the time of execution it should

invoke only these 2 functions instead of all which are written in run once.

26

Bibliography

[1] Alzaylaee, M.K., Yerima, S.Y. and Sezer, S., 2017, June. Improving dynamic analysis

of android apps using hybrid test input generation. In 2017 International Conference

on Cyber Security And Protection Of Digital Services (Cyber Security) (pp. 1-8).

IEEE.

[2] Abraham, R. and Erwig, M., 2006, September. AutoTest: A tool for automatic test

case generation in spreadsheets. In Visual Languages and Human-Centric Computing

(VL/HCC’06) (pp. 43-50). IEEE.

[3] Mouli, C. and Srinivasan, K., 2004, May. Intel automation and its role in process

development and high volume manufacturing. In 2004 IEEE/SEMI Advanced Semi-

conductor Manufacturing Conference and Workshop (IEEE Cat. No. 04CH37530) (pp.

313-320). IEEE.

[4] Sharma, R.M., 2014. Quantitative analysis of automation and manual testing. Inter-

national journal of engineering and innovative technology, 4(1).

[5] Admanski, J. and Howard, S., 2009, July. Autotest-testing the untestable. In Pro-

ceedings of the Linux Symposium. Citeseer.

[6] Maurya, V.N. and Kumar, R., 2012. Analytical study on manual vs. Automated

testing using with simplistic cost model. International Journal of Electronics and

Electrical Engineering, 2(1), pp.142-148.

[7] Sharma, R.M., 2014. Quantitative analysis of automation and manual testing. Inter-

national journal of engineering and innovative technology, 4(1).

27

[8] Servo,

https://chromium.googlesource.com/chromiumos/thirdparty/hdctools/ +

/HEAD/docs/servo.mdusing − servo

[9] Servo v2:

https://chromium.googlesource.com/chromiumos/thirdparty/hdctools/ +

/HEAD/docs/servov2.md

[10] Chamelium,

https://www.chromium.org/chromium-os/testing/chamelium-audio-board

[11] Testing,

softwaretestingmaterial.com/software-testing/

[12] Automation Testing,

https://www.softwaretestingmaterial.com/manual-testing-vs-automation-testing/

[13] Manual Testing,

https://www.gcreddy.com/2016/04/drawbacks-of-manual-testing.html

28

7%
SIMILARITY INDEX

8%
INTERNET SOURCES

2%
PUBLICATIONS

5%
STUDENT PAPERS

1 5%

2 2%

Exclude quotes On

Exclude bibliography On

Exclude matches < 2%

Palak Updated file
ORIGINALITY REPORT

PRIMARY SOURCES

Submitted to Institute of Technology, Nirma
University
Student Paper

www.academicscience.co.in
Internet Source

	Certificate
	List of Figures
	Introduction
	Problem Statement
	Solution
	Outline of report
	ADB Shell and monkey tool
	Testing
	Autotest
	Execution of testcase
	Conclusion

	ADB Shell and monkey tool
	ADB
	Monkey Tool
	Monkey Testing

	Testing
	Mode of testing
	Manual Testing
	Automation Testing

	Automation hardwares
	Servo v2:
	Servo v4:
	Chamelium:

	Autotest
	Testcase
	Client side
	Server side

	Execution of testcase
	Execution for individual testcase
	Control Files
	Different scenarios for execution of testcases
	Debugging

	Conclusion
	Future Scope

