Alzheimer's Disease Detection Using 3D Deep Learning Model

> Submitted By Happy Ramani 19MCEC04

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING INSTITUTE OF TECHNOLOGY NIRMA UNIVERSITY

AHMEDABAD-382481 May 2021

Alzheimer's Disease Detection Using 3D Deep Learning Model

Major Project

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology in Computer Science and Engineering

Submitted By Happy Ramani (19MCEC04)

Guided By Dr Swati Jain

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING INSTITUTE OF TECHNOLOGY NIRMA UNIVERSITY AHMEDABAD-382481

May 2021

Certificate

This is to certify that the major project entitled "Alzheimer's Disease Detection Using 3D Deep Learning Model" submitted by Happy Ramani (19MCEC04), towards the partial fulfillment of the requirements for the award of degree of Master of Technology in Computer Science and Engineering of Nirma University, Ahmedabad, is the record of work carried out by her under my supervision and guidance. In my opinion, the submitted work has reached a level required for being accepted for examination. The results embodied in this Major Project Part-II, to the best of my knowledge, haven't been submitted to any other university or institution for award of any degree or diploma.

Dr Swati Jain Internal Guide & Associate Professor CSE Department Institute of Technology Nirma University, Ahmedabad

Dr Madhuri Bhavsar Professor & Head CSE Department Institute of Technology Nirma University, Ahmedabad

Dr Priyanka Sharma Professor & PG Coordinator (M.Tech - CSE) CSE Department Institute of Technology Nirma University, Ahmedabad

Dr Rajesh Patel Director Institute of Technology Nirma University, Ahmedabad

I, Happy Ramani, 19MCEC04, give undertaking that the Major Project entitled "Alzheimer's Disease Detection Using 3D Deep Learning Model" submitted by me, towards the partial fulfillment of requirements for the degree of Master of Technology in Computer Science & Engineering of Institute of Technology, Nirma University, Ahmedabad, contains no material that has been awarded for any degree or diploma in any university or school in any territory to the best of my knowledge. It is the original work carried out by me and I give assurance that no attempt of plagiarism has been made. I understand that in the event of any similarity found subsequently with any published work or any dissertation work elsewhere; it will result in severe disciplinary action.

Signature of Student Date: 08 May 2021 Place: Rajkot

Endorsed by Dr Swati Jain (Signature of Guide)

Acknowledgements

It gives me immense pleasure in expressing thanks and profound gratitude to **Dr Swati Jain**, Associate Professor, Computer Science and Engineering Department, Institute of Technology, Nirma University, Ahmedabad for her valuable guidance and continual encouragement throughout this work. The appreciation and continual support she has imparted has been a great motivation to me in reaching a higher goal. Her guidance has triggered and nourished my intellectual maturity that I will benefit from, for a long time to come.

It gives me an immense pleasure to thank **Dr Madhuri Bhavsar**, Hon'ble Head of Computer Science And Engineering Department, Institute of Technology, Nirma University, Ahmedabad for her kind support and providing basic infrastructure and healthy research environment.

A special thank you is expressed wholeheartedly to **Dr Rajesh Patel**, Hon'ble Director, Institute of Technology, Nirma University, Ahmedabad for the unmentionable motivation she has extended throughout course of this work.

I would also thank the Institution, all faculty members of Computer Science and Engineering Department, Nirma University, Ahmedabad for their special attention and suggestions towards the project work.

> - Happy Ramani 19MCEC04

Abstract

Alzheimer's disease is one of the leading causes of death in the present era of the world. No treatment is available for Alzheimer's disease after it is in a higher stage. Therefore, it is required to detect disease, when it is in the initial stage. The physical symptoms of the disease cannot be noticed by the patient, in an earlier stage, that's why researchers proposed deep learning-based solutions to detect it earlier. In this study, I aimed to present an architecture of convolutional neural network (CNN) model for detecting Alzheimer's disease to handle 2D and 3D data. The proposed 2D model is fast and accurate compared to the AlexNet model. I preprocessed the Alzheimer's Disease Neuroimaging Initiative (ADNI) image dataset of the patient's magnetic resonance images (MRIs). After training and testing of the presented model, I obtained 72.13% accuracy to determine AD vs. NC. The proposed 3D model is more accurate compared to one existing research work. ADNI dataset of T1-weighted images had been used and preprocessed for testing of model. After validating model on that, it gives 96.15% accuracy. Details about the survey of research work and the proposed model architecture are given in this report.

List of Figures

1.1	Leading causes of death $[2]$	3
2.1	Literature Survey Taxonomy	6
3.1	Preprocessing steps of proposed system	15
3.2	CNN Model Architecture	16
3.3	Accuracy and loss for CNN model	17
3.4	Accuracy and loss for AlexNet model	18
4.1	CNN Model Architecture	20
4.2	3D - CNN Model Summary	21

List of Tables

2.1	2D CNN based literature summary	7
2.2	2D Transfer Learning based literature summary	8
2.3	2D Conventional Approaches based literature summary	9
2.4	3D CNN based literature summary	10
2.5	3D Transfer Learning based literature summary	11
2.6	3D Graph CNN based literature summary	12
2.7	3D Explainable AI based literature summary	13
3.1	Dataset Representation	14
3.2	Comparison of Proposed Model and AlexNet	17
4.1	Dataset Representation - 3D	20
4.2	Comparison of Proposed Model and Existing work	22

Contents

Ce	tificate	iii
\mathbf{St}	tement of Originality	iv
A	knowledgements	v
Al	stract	vi
\mathbf{Li}	t of Figures	vii
\mathbf{Li}	t of Tables	viii
1	Introduction 1.1 General	$ \begin{array}{c} 1 \\ 1 \\ 2 \\ 2 \\ 4 \\ 4 \\ 4 \\ 5 \\ 5 \end{array} $
2	Literature Survey 2.1 General	6 7 8 9 10 11 12 13
3	Details of 2D model 3.1 Dataset and Data Preprocessing 3.1.1 Dataset Representation 3.1.2 Data Preprocessing 3.2 Proposed CNN Model	14 14 14 15 15

	3.3	Results	16
4		4.1.1 Dataset Collection	19 19 19 20
	$4.2 \\ 4.3$	Proposed model implementation	20 21
5	Futı	ıre Work	23
6	Con	clusion	24
Re	eferei	nces	25

Chapter 1

Introduction

1.1 General

Alzheimer's disease (AD) is a neuro-degenerative disease and the most common cause of dementia usually seen in elder people i.e. more than 60 years of age. A person suffering from Alzheimer's disease lost their ability to remember things at the level of that, they need a full-time assistant. I have referred a few research papers which diagnose Alzheimer's disease and classify Alzheimer's disease stages. I surveyed technologies that are used by researchers and how they used that technology in their research work.

Based on this survey, I decided to work with MRIs to diagnose Alzheimer's disease using a deep learning approach. Information and facts about Alzheimer's disease is given in followed subsection. The introduction of deep learning technologies that I have used in my research work is given in this section's subsections. With that objective and scope of my work is described. How I had used these techniques in my proposed models - 2D CNN and 3D CNN, results for the same are explained in detail in followed chapters.

1.2 Objective of study

Presently AD is becoming a leading cause for death. Minor changes in the neurons of the brain cannot be noticed by humans and to cure Alzheimer's disease when it is in a higher stage, treatment is not available. Thus, as if Alzheimer's disease is detected in an early stage, it can be prevented by further growth. As CNN is one of the most recent techniques of deep learning used in this research area, I have proposed a CNN model architecture and implemented 2D and 3D CNN model for early detection of AD.

1.3 Scope of Work

In my research work, I studied Alzheimer's disease, the cause of disease, the impact of Alzheimer's disease, and recent research work done in this area. By referring to this survey, I have proposed a model architecture. For the implementation of that, I studied the CNN model and the basic components of that. After implementing a 2D model using the proposed architecture for diagnosing Alzheimer's disease, I compared this model experimental results with the AlexNet model. As AlexNet model is used in majority research work. Presented model use image dataset of MRIs for training and testing purposes. Using 3D images, 3D CNN model had been trained and tested, results of the same has been compared with state-of-art of this research area.

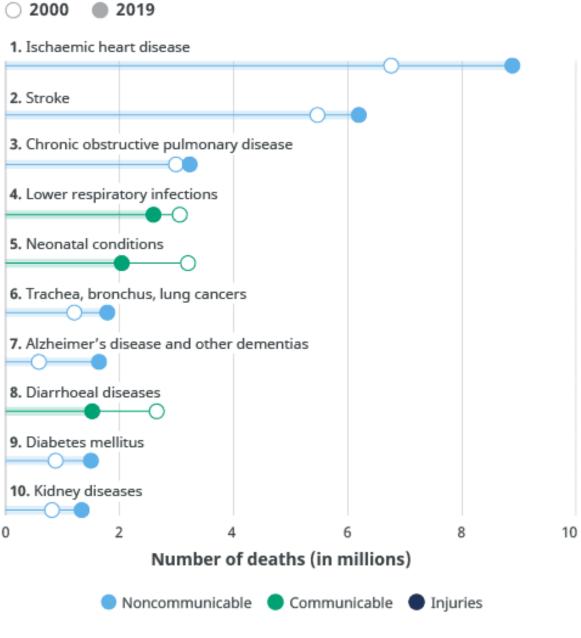
1.4 Information & facts about Alzheimer's Disease

Alzheimer's Association Report - "2019 Alzheimer's disease facts and figures" [1] describe facts related to the impact of Alzheimer's disease, cost required to care an Alzheimer's patient, and overall impact of Alzheimer's disease on society. Between 2000 and 2017, deaths resulting from heart disease, prostate cancer, and stroke are decreased while recorded deaths caused by AD is increased by 145%. Every year a large time is spent for caring Alzheimer's patients and other dementia patients. Though the number of death caused by Alzheimer's disease is increasing every year. Leading causes of death globally from 2000 to 2019 has been shown in Fig. 1.1 [2], which has been referred from WHO Global Health Estimates.

Detection of Alzheimer's disease in the early stage is required but symptoms of the disease arise after 20 years or more than that, as minor changes in the brain are unnoticeable by the affected person. Some serious changes in the brain are experienced such as memory loss or language problems only after a long time.

As the disease proceeds, neurons in the brain are destroyed. Neurons in the brain are connected by synapses for information flow. Signals are travel from one neuron to another neuron in the brain. At that time, the growth of the protein fragment betaamyloid plaques outside neurons and the growth of an abnormal form of the protein tau tangles inside neurons are two of particular brain changes associated with Alzheimer's disease. Beta-amyloid plaques are the reason for neuron death by preventing neuron-

Leading causes of death globally



Source: WHO Global Health Estimates.

Figure 1.1: Leading causes of death [2]

to-neuron communication. Tau tangles block the transportation of nutrients and other molecules inside the neurons. It's all about causes of AD and related facts.

1.5 Used Technologies

1.5.1 Convolutional Neural Network (CNN)

"Convolutional Neural Network (CNN) is a well-known deep learning architecture inspired by the natural visual perception mechanism of the living creatures." [3] From the invention of the first framework of CNN to present, there is a large development has done on CNN. Some benchmark models of CNN are also developed by researchers such as LeNet, AlexNet, IncenptionNet, VGGNet, ResNet, GoogleNet, etc. Fundamental components of CNN are convolutional layer, pooling layer, activation function, loss function, regularization, and optimization.

There is a wide category of applications for CNN. For instance, image classification, text recognition, object detection, natural language processing, etc. This was an overview of CNN. And the reason for being this much popular is that CNN automatically extracts important features without any human intervention therefore CNN is having better learning capacity compared to other predecessors.

1.5.2 Convolution Layers

The convolution layer is an essential component of the CNN framework, which performs the feature extraction by using an aggregation of non-linear and linear operations. By making proper use of convolutional layers in model architecture, the representation ability of input can be improved in the application.

Convolutional layers are having learnable parameters such as filters or kernels. Each filter is convolved over the entire input volume and calculate the dot product between input and values of the filter in the forward pass. The output of this process is the activation map of that filter. By doing this process, as per the given parameters, the network learns a specific type of feature.

1.5.3 Pooling Layers

A pooling layer implements a downsampling procedure, which decreases the in-plane dimensionality of the feature maps to introduce a translation invariance to small shifts and reduce the number of succeeding learnable parameters [4]. Pooling layers do not have any learnable parameters, while parameters like filter size, padding, and stride are hyperparameters of the pooling layer.

The pooling layer divides the input image into to group of non-overlapping portions and that each sub-portion gives the output as per requirement like maximum value or minimum value etc. Based on that, pooling layers are having three most used variations: Max pooling, min pooling, and average pooling.

1.5.4 Fully Connected Layers

The output of the last convolutional layer or pooling layer is converted into a onedimensional array of a vector, which means the last layer is flattened. This flattened layer is connected to dense layers, which are called fully connected layers as each input is connected to all output using learnable weight.

Activation functions and the number of nodes can be defined as parameters in the fully connected layers. After extracting features from the input using the convolutional layer and down-sampling them using the pooling layer, the output of that layers is mapped by a combination of fully connected layers to the final output of the network. The last layer from a set of fully connected layers is having a similar number of nodes as the number of classes.

Chapter 2

Literature Survey

2.1 General

Across the past several years, many techniques are developed to diagnose Alzheimer's disease and classify its stages. Because of the inadequate dataset, most of the research work is done on publicly available Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset and Open Access Series of Imaging Studies (OASIS) dataset. This research work can be categorized into proposed techniques based on convolutional neural networks, mechanisms based on transfer learning, models based on graph neural network, methodologies which uses explainable AI and other methodologies. Details of various approaches have been explained in below section.

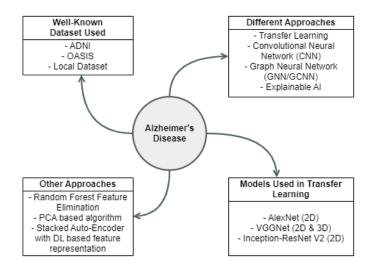


Figure 2.1: Literature Survey Taxonomy

2.2 Based on 2D - Convolutional Neural Network

Paper Title	Year	Dataset	Method Used	Result
A novel deep learning	2017	OASIS T1-	Data aug-	73.75% for classifica-
based multi-class clas-		weighted MRI	mentation	tion of AD
sification method for			with deep	
alzheimer's disease			CNN	
detection using brain			model	
MRI data				
Convolutional neural	2018	ADNI 1.5T MRI	Skull-	79.9% for MCI-to-AD
networks-based MRI			stripping	conversion
image analysis for the			and his-	
alzheimer's disease			togram	
prediction from mild			normaliza-	
cognitive impairment			tion	
Classification of	2017	ADNI 1.5T T1-	2D+	91.41% - AD vs NC
SMRI for alzheimer's		weighted MRI	Fusion	69.53% - AD vs MCI
disease diagnosis with			approach	65.62% - NC vs MCI
cnn: Single siamese			along with	
networks with $2d+$			the CNN	
approach and fusion			model	
on adni				
Brain MRI analysis	2018	OASIS T1-	Data aug-	93.18% for AD vs CN
for alzheimer's dis-		weighted MRI	mentation	
ease diagnosis using			with deep	
an ensemble system			CNN	
of deep convolutional			model	
neural networks				

Table 2.1: 2D CNN based literature summary

2.3 Based on 2D - Transfer Learning

Paper Title	Year	Dataset	Method Used	Result
Transfer learning	2019	OASIS	Image	92.8% for classifying
assisted classifica-			segmenta-	ADstages
tion and detection of			tion and	
alzheimer's disease			AlexNet	
stages using 3d MRI				
scans				
Analysis of brain sub	2019	Local 1.5T 2D	Segmentation	95% for AD vs CN
regions using opti-		T2 weighted	of brain re-	
mization techniques		MRI	gions and	
and deep learning			AlexNet	
method in alzheimer				
disease				
Intelligent alzheimer's	2018	ADNI T1-	Inception-	98.41% for AD vs CN
detector using deep		weighted MRI	ResNet V2	
learning			deep archi-	
		0.1.070	tecture	
A data augmentation-	2019	OASIS	Data	98.41% for AD vs CN
based framework to			augmenta-	
handle class imbal-			tion and	
ance problem for			AlexNet	
alzheimer's stage				
detection	2010	ADNI		
Transfer learning with	2019	ADNI	Pretrained	99.36% for AD vs NC
intelligent training			weights of	95.91% for three-class
data selection for pre-			the VGG	classification
diction of alzheimer's			model	
disease				

Table 2.2: 2D Transfer Learning based literature summary

2.4 Based on 2D - Conventional Approaches

Paper Title	Year	Data	aset	Method Used	Result
Automated classifi-	2018	ADNI	clinical	Random	67% for AD vs CN
cation of alzheimer's		data		forest	
disease using deep				feature	
neural network (dnn)				elimi-	
by random forest				nation	
feature elimination				method	
				and neural	
				network	
Classification of	2019	ADNI		Principal	95% for classifying AD
alzheimer's disease		Function	al	Com-	stages
stages: An approach		MRI(fMI	RI)	ponent	
using pca-based algo-		dataset		Analysis	
rithm				(PCA)	
				based	
				algorithm	
Deep learning-based	2018	ADNI		DL-based	95.9% for AD vs CN
feature representa-				feature	85% for MCI vs CN
tion for AD/MCI				represen-	75.8% for MCI-C vs
classification				tation	CN
				along with	
				stacked	
				auto-	
				encoder	

Table 2.3: 2D Conventional Approaches based literature summary

2.5 Based on 3D - Convolutional Neural Network

Paper Title	Year	Dataset	Method Used	Result
A Novel Deep Learn-	2020	Local T1-	Residual	90% accuracy
ing Approach with		weighted	extraction	
a 3D Convolutional			approach -	
Ladder Network for			CNN	
Differential Diag-				
nosis of Idiopathic				
Normal Pressure				
Hydrocephalus and				
Alzheimer's Disease				
Automated MRI-	2020	ADNI - 3T T1-	3D-CNN-	$95.74 \pm 2.31\%$ aacu-
Based Deep Learning		weighted	SVM	racy
Model for Detection of				
Alzheimer's Disease				
Process				
A deep learning model	2019	ADNI T1	CNN	90% accuracy
for early prediction of		weighted $1.5T$ &		
Alzheimer's disease		3T		
dementia based on				
hippocampal magnetic				
resonance imaging				
data				
3D-Deep Learning	2019	Local research	CNN	85.27% accuracy
Based Automatic Di-		center data		
agnosis of Alzheimer's				
Disease with Joint				
MMSE Prediction				
Using Resting-State				
fMRI				
Alzheimer's Disease	2020	35 subjects - lo-	CNN	90.91% accuracy
stage identification		cal data		
using deep learning				
models				

Table 2.4: 3D CNN based literature summary

2.6 Based on 3D - Transfer Learning

Paper Title	Year	Dataset	Method Used	Result
3D Convolutional	2020	ADNI and OA-	3D CNN	73.4% - ADNI
Neural Networks		SIS dataset T1	model	69.9% - OASIS
for Diagnosis of		weighted MRI	inspired by	
Alzheimer's Disease			VGG-16	
via structural MRI				
Deep Convolution	2020	ADNI fMRI and	VGG 16	99.95% - fMRI
Neural Network Based		PET		73.46% - PET
System for Early Di-				
agnosis of Alzheimer's				
Disease				
Deep residual learning	2020	ADNI	Modified	89.3% AD vs CN
for neuroimaging:			form of	
An application to			deep resid-	
predict progression to			ual neural	
Alzheimer's disease			networks	
			(ResNet)	
A multi-model deep	2019	ADNI T1 -	ResNet	88.9% AD vs CN
convolutional neural		weighted struc-	and	
network for auto-		tural MRI	DenseNet	
matic hippocampus			with seg-	
segmentation and			mentation	
classification in				
Alzheimer's disease				
Deep Learning Frame-	2019	MRI data	LSTM	94.82% AD vs CN
work for Alzheimer's		and 18-Fluoro-	network	
Disease Diagnosis via		DeoxyGlucose	framework	
3D-CNN and FSBi-		PET data	instead of	
LSTM			the FC	
			layer in	
			3D-CNN	

Table 2.5: 3D Transfer Learning based literature summary

2.7 Based on 3D - Graph Convolutional Neural Network

Paper Title	Year	Dataset	Method Used	Result
Anatomical Land-	2020	ADNI	Landmarks	91.57% Accuracy
marks and DAG			and DAG	
Network Learning for			network	
Alzheimer's Disease			feature	
Diagnosis			learning	
			(LDNFL)	
			based clas-	
			sification	
			framework	
Classification of Mild	2020	ADNI	Combined	82.7% EMCI vs NC
Cognitive Impairment			high-order	88.7% LMCI vs NC
Based on a Combined			network	
High-Order Network			and GCN	
and Graph Convolu-			for MCI	
tional Network			classifica-	
			tion	
Attention-Guided	2020	ADNI	Attention	93.67% Accuracy
Deep Graph Neural			Guided	
Network for Longi-			Deep	
tudinal Alzheimer's			Graph	
Disease Analysis			Neural	
			(AGDGN)	
			network	
Cortical graph neu-	2019	ADNI	Cortical	85.8% CN vs. AD
ral network for AD			graph	
and MCI diagnosis			neural	
and transfer learning			network	
across populations				
Graph convolutional	2019	ADNI	GCNN	89% using GCNN
neural networks For				65% using SVM
AAlzheimer's Disease				
Classification				

Table 2.6: 3D Graph CNN based literature summary

2.8 Based on 3D - Explainable AI

Paper Title	Year	Dataset	Method Used	Result
Understanding	2020	ADNI	E2E layer	78% AD vs CN
Alzheimer disease's			followed	
structural connectivity			by an E2N	
through explainable			layer and	
AI			two fully-	
			connected	
			(FC) layers	
Explainable CNN- At-	2020	DementiaBank	Unified C-	92.2% AD vs CN
tention Networks (C-		dataset	Attention	
Attention Network)			Network	
For Automated Detec-				
tion Of Alzheimer's				
Disease				

Table 2.7: 3D Explainable AI based literature summary

Chapter 3

Details of 2D model

In this chapter details regarding 2D model is described such as which dataset is used, which preprocessing techniques had been applied, implementation of model and results.

3.1 Dataset and Data Preprocessing

3.1.1 Dataset Representation

To diagnose Alzheimer's disease, I used the Alzheimer's Disease Neuroimaging Initiative (ADNI) collaborative dataset from their LONI Image Data Archive (IDA) [5, 6]. From there, I selected 715 Magnetic Resonance Images (MRIs). There is an Axial view of PD/T2 weighted - FSE/TSE MRIs in NiFTI format. These images are split into 160 Alzheimer's Disease (AD), 343 Mild Cognitive Impairment (MCI), and 212 Normal Aging / Cognitively Normal (CN). MCI is one of the different stages of Alzheimer's disease, subjects of MCI and AD subjects are merged in one class vs. CN subjects to diagnose Alzheimer's disease. Hence 503 subjects are of AD and 212 of CN.

	Subject	Age [Range]	Gender $[M/F]$
AD+MCI	503(160+343)	[55, 91]	296/207
CN	212	[60,90]	107/105

Table 3.1: Dataset I	Representation
----------------------	----------------

Table 3.1 contains information about the dataset used such as age range and gender about all subjects.

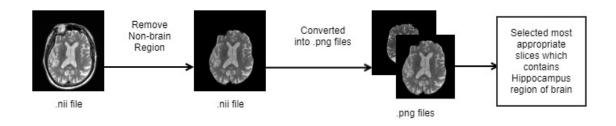


Figure 3.1: Preprocessing steps of proposed system

3.1.2 Data Preprocessing

To remove non-brain regions from the MRIs FSL-BET is used [7, 8]. After that these 3D .nii extension files are converted into 2D .png extension files using nii2png python package [9]. In this work, a 2D slice from each subject is selected which is having the Hippocampus region. These 2D slices are scaled into 227x227. These preprocessing steps are done in Ubuntu – 16.04 LTS Operating System.Preprocessing steps of proposed system are illustrated in Fig. 3.1.

3.2 Proposed CNN Model

The proposed model is implemented using Tensorflow and Keras on Google Colab. Training and test datasets are split in a ratio of 77% and 23% respectively. Accordingly, training dataset consist of 550 subjects of 387 for AD and 163 for CN, test dataset consist of 165 subjects of 116 for AD and 49 for CN.

In the proposed CNN model there is the use of convolutional layers, pooling layers, and fully convolutional layers as shown in Fig. 4.1. The proposed CNN architecture consists of three convolutional layers and each layer is followed by a max-pooling layer. After the first and last batch of the convolution layer and pooling layer there is a dropout of 0.1 rate. After the second batch of these layers, Batch Normalization is applied for 0.2 epsilon, 0.99 momentum, 0.99 renorm-momentum, -1 axis, and scale parameter with False value. Batch normalization mechanism useful to accelerate the training in deep networks [10].

Information regarding the number of filters, the size of the kernel, and the activation function of each layer is illustrated in architecture Fig. Fig. 4.1 of the proposed network. At last four fully connected convolutional layers are used with sigmoid and ReLU

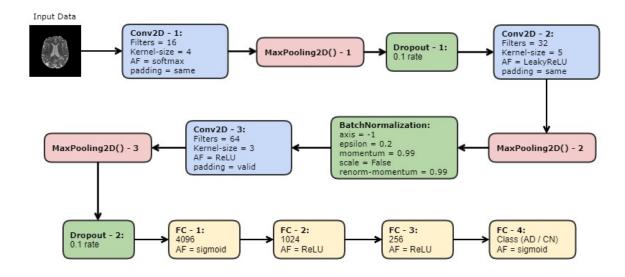


Figure 3.2: CNN Model Architecture

activation functions.

3.3 Results

The proposed model is executed on the Keras framework in python. The parameters for the training phase were: Loss was binary_crossentropy, the optimizer was stochastic gradient descent (sgd), epochs were 9, Batch-size was 128, steps per epoch was 1, and other parameters were same as their default values. The results of the model were 64.48% average training accuracy and 72.13% average testing accuracy. Fig. 3.3 exhibits the accuracy and loss for training and testing/validation phase of presented CNN model.

I compared this result with the same input on the well-known AlexNet model. In AlexNet model parameters for the training phase were: Adam optimizer with 0.001 Learning rate, binary_crossentropy, steps per epoch was 1, epochs were 9, and other parameters were set as their default values. Results for the AlexNet model were 63.88% average training accuracy and 70.83% average testing accuracy. Fig. 3.4 exhibits the accuracy and loss for training and testing/validation phase of presented AlexNet model.

AlexNet model is having more depth and hence it requires more time for the training process. In a comparison of that, the presented CNN model is taking less time for the training phase as it is having less layers. By that, the CNN model is more time-efficient than the AlexNet model.

Comparison of proposed CNN model and AlexNet is given in Table 4.1 , for the parameters, such as average testing accuracy, average testing loss, and time taken by

Figure 3.3: Accuracy and loss for CNN model

Table 3.2: Comparison of Proposed Model and AlexNet

	Proposed CNN Model	AlexNet Model
Accuracy	71.13%	69.53%
Loss	0.6-0.7%	4.5 - 5.2%
Time taken (per epoch)	t	2t

models. AlexNet model has more depth, and hence it requires more time for the training process. In a comparison of that, the presented CNN model is taking less time for the training phase as it has fewer layers. By that, the CNN model is more time-efficient and less complex in structure, than the AlexNet model. Additionally, as per the state-of-art data augmentation is used for enlarging dataset, for avoiding overfitting in deep models. But when there is a model with less depth, data augmentation can lead to overfitting instead of reducing it. Therefore, focusing on time and space trade-off, we avoided to use data augmentation and more deep model.

Moreover, as per the literature survey done for research in AD, most of the study is done using T1-weighted MRIs or dataset used which is publicly not available. While T1 weighted MRIs have their benefits, T2 weighted MRIs can identify the difference between normal and abnormal more easily, because it can recognize abnormal lesions of fluid, and demonstrate CSF better [11]. And, beta-amyloid plaques and tau tangles are

Figure 3.4: Accuracy and loss for AlexNet model

CSF biomarkers of AD [12]. Only after the comparison of different modalities of MRIs of the same subject, any modality can be said as beneficial for particular research. Hence, we presented a model which uses different modality of input set than other research studies.

Chapter 4

Details of 3D model

In this chapter details regarding 3D model is described such as data collection, data preprocessing and proposed model implementation in following sections.

4.1 Dataset and Data Preprocessing

4.1.1 Dataset Collection

Data used in the preparation of this research work were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), other biological markers, and clinical and neuro-psychological assessment can be combined to measure the progression of mild cognitive impairment (MCI) and early Alzheimer's disease (AD). [5, 6] To detect AD, 174 MRIs have been selected. There is an Axial view of T1 weighted MRIs in NiFTI format. These images are split into 26 Alzheimer's Disease (AD), 47 Mild Cognitive Impairment (MCI), and 101 Normal Aging/ Cognitively Normal (CN). As MCI is one of the different stages of AD, subjects of MCI and AD subjects are merged in one class vs CN subjects to diagnose AD. Hence 73 subjects are of AD and 101 of CN. .nii format has been used in model execution.

Table 4.1 contains information about the dataset used, such as age range and gender about all subjects.

	Subject	Age [Range]
AD+MCI	73(26+47)	[55, 95]
CN	101	[65, 90]

Table 4.1: Dataset Representation - 3D

4.1.2 Data Preprocessing

There are some basic data preprocessing methods, which need to be followed when working with brain MRIs such as removal of non-brain regions. Non-brain regions were removed from .nii files of ADNI using FSL-BET tool which is supported on Linux Operating System only [7, 8]. After removing unnecessary brain regions, skull-extraction/skullstripping have been done to normalize the brain tissues. At the end, inputs have been resized to 192x192x140.

4.2 Proposed model implementation

Architecture of the model is followed same for 3D model also. Model consist of convolutional layer, pooling layer, dropout, batch-normalization and fully connected layers. Model architecture is shown in Fig. 4.2

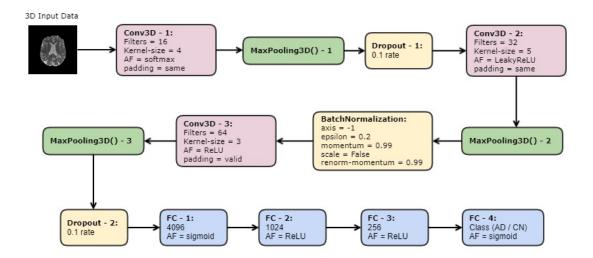


Figure 4.1: CNN Model Architecture

Model is implemented using Keras and Tensorflow. Optimal solution have been find by tuning the hyperparameters of model such as activation function, kernel size, etc. Model training have been done using Nvidia GPU with capacity of 125 GB RAM, and using Ubuntu Operating System.

4.3 Results

3D MRI dataset of 174 subjects which has preprocessed as explained in previous section, had been given as input to model. Training and validation datasets are divided in 85% and 15% respectively. Training set consist of 148 subjects and validation set consist of 26 subjects. Model summary is generated using Google colab and shown in Fig. 4.2

Layer (type)	Output	Shape	Param #
conv3d (Conv3D)	(None,	192, 192, 104, 64)	1792
<pre>max_pooling3d (MaxPooling3D)</pre>	(None,	96, 96, 52, 64)	0
dropout (Dropout)	(None,	96, 96, 52, 64)	0
conv3d_1 (Conv3D)	(None,	96, 96, 52, 32)	55328
<pre>max_pooling3d_1 (MaxPooling3</pre>	(None,	48, 48, 26, 32)	0
<pre>batch_normalization (BatchNo</pre>	(None,	48, 48, 26, 32)	96
conv3d_2 (Conv3D)	(None,	46, 46, 24, 64)	55360
<pre>max_pooling3d_2 (MaxPooling3</pre>	(None,	23, 23, 12, 64)	0
dropout_1 (Dropout)	(None,	23, 23, 12, 64)	0
flatten (Flatten)	(None,	406272)	0
dense (Dense)	(None,	4096)	1664094208
dense_1 (Dense)	(None,	1024)	4195328
dense_2 (Dense)	(None,	256)	262400
dense_3 (Dense)	(None,	1)	257
Total params: 1,668,664,769 Trainable params: 1,668,664,7 Non-trainable params: 64	705		

Model: "sequential"

Figure 4.2: 3D - CNN Model Summary

The proposed model is executed on the Keras framework in python. The parameters for the training phase were: Loss was binary_crossentropy, the optimizer was stochastic gradient descent (sgd), epochs were 2, Batch-size was 128, steps per epoch was 1, and other parameters were same as their default values. Model training and testing time is approx 4 hours. The results of the model is 96.15% accuracy and 0.80 f1-score. Results have been compared to R. Irie et al. [13]. Table 4.2 shows the comparison of research work done to the exiting research work. Additionally, proposed model is having less complex structure with more accuracy which needs less computational power compare to more complex structure. Model is trained and validated on large dataset compare to R. Irie et al.[13] research work.

 Table 4.2: Comparison of Proposed Model and Existing work

	Proposed CNN Model	R. Irie et al. [13]
Dataset size	174 Subjects	69 Subjects
Accuracy	96.15%	90%

Chapter 5

Future Work

Following are the work that could be done in future for more optimized solution:

- Proposed model is beating the state-of-art in the research work done on AD based on accuracy in 3D-CNN models. Which can be optimized for other measurements such as AUC, F1-score, etc.
- 3D model had used T1-weighted MRIs as other research work of AD, model can be tested and optimized for variation of datasets.

Other than this, in today's world, Alzheimer's disease is one of the leading causes of death. For that more efficient in terms of time and space, deep, and the accurate network is required for early diagnosis of Alzheimer's disease. Clinical assessment data can be used along with image data for better results. After getting satisfactory results in that pathological and genetic data can also be used collaboratively. As this area of research is in the initial stage there are many ways open for researchers to contribute to this research area.

Chapter 6

Conclusion

As an output of this research work, I have proposed an architecture of CNN model. This model can be used for the early diagnosis of Alzheimer's disease. While most of the existing research work for AD diagnosis is done using AlexNet, the 2D CNN model of proposed architecture is time-efficient compared to AlexNet. The model is trained and tested on the ADNI dataset, which is used by the majority of researchers in this research area. In the future, the proposed model can be improved to increase accuracy and make use of the large dataset. Though, the presented model is giving 72.13% accuracy when for a similar dataset as an input, AlexNet was giving less accuracy than this. 3D version of proposed architecture is validated on T1 weighted 3D MRIs of ADNI dataset, which is giving 96.15% accuracy. This model can be improvised to cover up other measurements such as recall, precision, f1-score, etc. Though, the proposed model is giving more accuracy then compared research work.

References

- 2019 Alzheimer's disease facts and figures, Alzheimer's Dementia, Volume 15, Issue 3, 2019, Pages 321-387, ISSN 1552-5260
- [2] The top 10 causes of death from World Health Organization https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
- [3] Jiuxiang Gu, Zhenhua Wang, Jason Kuen, Lianyang Ma, Amir Shahroudy, Bing Shuai, Ting Liu, Xingxing Wang, Gang Wang, Jianfei Cai, Tsuhan Chen, Recent advances in convolutional neural networks, Pattern Recognition, Volume 77, 2018, Pages 354-377, ISSN 0031-3203
- [4] Yamashita, Rikiya, Nishio, Mizuho, Richard Kinh Gian, Togashi, Kaori, Year 2018, Date - 2018/08/01, Convolutional neural networks: an overview and application in radiology, "Insights into Imaging", SP - 611, EP - 629, Volume 9, Issue 4
- [5] A secure online resource for sharing, visualizing, and exploring neuroscience data, https://ida.loni.usc.edu/login.jsp
- [6] ACCESS DATA AND SAMPLES, http://adni.loni.usc.edu/data-samples/access-data/
- [7] M. Jenkinson, C.F. Beckmann, T.E. Behrens, M.W. Woolrich, S.M. Smith. FSL. NeuroImage, 62:782-90, 2012
- [8] FMRIB Software Library v6.0, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
- [9] NIfTI-Image-Converter https://alexlaurence.github.io/NIfTI-Image-Converter/

- [10] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: accelerating deep network training by reducing internal covariate shift. In Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37 (ICML'15). JMLR.org, 448–456.
- [11] MRI Scans

 $https://www.physio-pedia.com/MRI_{S}cans$

- [12] T. Tapiola, I. Alafuzoff, S.-K. Herukka, L. Parkkinen, P. Hartikainen, H. Soininen, and T. Pirttil a, "Cerebrospinal Fluid -Amyloid 42 and TauProteins as Biomarkers of Alzheimer-Type Pathologic Changes in theBrain," Archives of Neurology, vol. 66, pp. 382–389, 03 2009.
- [13] Irie, R., Otsuka, Y., Hagiwara, A., Kamagata, K., Kamiya, K., Suzuki, M., Wada, A., Maekawa, T., Fujita, S., Kato, S., Nakajima, M., Miyajima, M., Motoi, Y., Abe, O., Aoki, S., "A Novel Deep Learning Approach with a 3D Convolutional Ladder Network for Differential Diagnosis of Idiopathic Normal Pressure Hydrocephalus and Alzheimer's Disease.", vol. 19,4 (2020): 351-358. doi:10.2463/mrms.mp.2019-0106

Happy Project ORIGINALITY REPORT 7% 8% 5% 9% SIMILARITY INDEX 8% 5% 9% PRIMARY SOURCES INTERNET SOURCES 9% STUDENT PAPERS ORIGINALITY INDEX Submitted to Institute of Technology, Nirma University 7%

Exclude quotes	On	Exclude matches	< 2%
Exclude bibliography	On		