
Performance Analysis of Arm Cortex-R
Series Processors

Project Report

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology

In Electronics & Communication Engineering

(VLSI Design)

By

ANISHA HAZRA

19MECV02

Electronics & Communication Engineering Department

Institute of Technology

Nirma University

Ahmedabad - 382 481

May, 2021

Performance Analysis of Arm Cortex-R
Series Processors

Project Report

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology

In Electronics & Communication Engineering

(VLSI Design)

By

ANISHA HAZRA

19MECV02

Institute Guide: Industrial Guide:

Dr. Amisha P. Naik Rajendra Saini

Associate Professor (EC) Staff Engineering/Manager

Institute of Technology, System Analysis and Benchmarking

Nirma University, Arm Embedded Technologies Pvt Ltd

Ahmedabad Bangalore

Electronics & Communication Engineering Department Institute of

Technology

Nirma University

Ahmedabad - 382 481

May, 2021

Certificate

This is to certify that the Project Report entitled “Performance Analysis of Arm Cortex-R Series

Processors" submitted by Anisha Hazra, Roll No. – 19MECV02, towards the partial fulfillment

of the requirements for the award of degree in Master of Technology in the field of VLSI

Design in Electronics & Communication Engineering department of Nirma University,

Ahmedabad is the record of work carried out by her under our supervision and guidance. The

work submitted has in our opinion reached a level required for being accepted for

examination. The results embodied in this major project Part-I to the best of our knowledge

have not been submitted to any other University or Institution for award of any degree or

diploma.

Institute Guide Industrial Guide

Dr. Amisha P. Naik Rajendra Saini

Associate Professor (EC) Staff Engineer/Manager

Institute of Technology, System Analysis and Bechmarking

Nirma University, Arm Embedded Technologies Pvt Ltd

Ahmedabad Bangalore

Head of Department Director

Dr. Dhaval Pujara Institute of Technology,

Professor and Head, Nirma University.

EC Department, Ahmedabad

Institute of Technology,

Nirma University,

Ahmedabad

iii

iv

Acknowledgement

In the current scenario of competitive life there is a race of existence in which those are having

will to come forward succeed. A project work acts like a bridge between theoretical and

practical working. With this willing I took this specific task. The ultimate result of this project

needed much direction and help from many individuals and I am extremely privileged to have

got them all for my project.

With immense pleasure I express my sincere thanks and regards to my Institute guide Dr.

Amisha Naik for her exceptional guidance, extremely useful advice and continuous

encouragement at all the phases of the task. I would like to express my gratitude and sincere

thanks to Dr. Usha Mehta, P.G. Coordinator of M.Tech VLSI Design for her valuable guidance

and constant support during review process.

It gives me an immense pleasure to thank Dr.Dhaval Pujara, Hon'ble Head of Electronics and

Communication Engineering Department, Institute of Technology, Nirma University,

Ahmedabad and for his kind support and providing basic infrastructure and healthy research

environment and a special thank you is expressed wholeheartedly to Hon'ble Director,

Institute of Technology, Nirma University, Ahmedabad for the unmentionable motivation he

has extended throughout course of this work.

Sincere gratitude to my manager Mr. Rajendra Saini. His constructive criticisms at different

stages of my work were thought-provoking and has helped me focus on my ideas. I would like

to express my gratitude and sincere thanks to my Director Mr. Kaleshwar Vemuri for his

valuable guidance and advice during the project work. I also take this opportunity to convey

sincere thanks to my colleagues at Arm Bangalore for their smiles and friendship making every

work assignment enjoyable and memorable. None of this would have been possible without

their love and support.

Last but not the least, nobody has been more important to me in the pursuit of this project

than the members of my family. I would like to thank my parents, whose love and support

always lie with me in whatever I pursue. They are the ultimate role models.

ANISHA HAZRA

19MECV02

v

Abstract

This project is based on the Performance Analysis of Cortex-R series processors which are
mainly used in Real Time Applications. The Cortex-R family is intended to be utilized in
applications where time and safety are critical issues.

The Performance Analysis of such processors is done with the help of certain Industry
standard benchmarks like CoreMark, Dhrystone, EEMBC, Automotive, Consumer,
Networking, Office, Telecom, FPMark, Stream etc. These tests are written in C and cannot
run on cores and hence compilers like Arm Compilers or GNU Compiler Collection are used
to convert those tests from c files into binary executable files. The performance can be
optimized or enhanced with the help of optimization flag options during the binary build.

Running Benchmarks on our models provides us with a cycle count. This cycle count is a
measure of CPU cycles and reflects the time taken by that CPU core to complete certain
task. Those cycles are used to calculate the performance scores. We compare those scores
with the golden data in our Dashboards. In case when much deviation in performance is
observed from the golden data then debugging takes place. Debug can be performed either
with Tarmac or with Waveforms. Debug with Tarmac is also done when we are not able to
pass some test cases. Waveforms can be used to reconfirm the delays that we have
considered. Verdi Synopsys is used for the Waveform generation purpose. Once we have
all the performance data, then Dashboard creation takes place for all Cortex-R series
processors. A dashboard refresh is done whenever there is a new Milestone release or
there is a new Toolchain release. This dashboard is shared with the Marketing group for
external purposes.

Performance Analysis can be either Emulation or Simulation based. Emulator used in this
project is Veloce/Strato which is an Emulation tool by Mentor Graphics. Simulation based
analysis is done on Cycle Models. Improvements to the existing performance numbers is
done by updating the platform files.

In this project the Cortex-R8 processor has been added to the Unified R-Class System by
tuning its Read and Write Latencies to that of the common latency of the external system.
After fixing the latencies, performance and code size calculation is done. To automate the
process of speed and code size calculation, a python script has been used which calculated
the performance numbers and code sizes and prints them in a CSV format file. This file can
be uploaded to Tableau Software to create graphical representation of data and
dashboards.

During this project, the Dashboard refresh has been done each time whenever there is a
new compiler version release. The current data is always compared with the previous
version which keeps a check on the CPU core performance as well as the Compiler
performance. Sometimes huge difference in data can be either due to Performance bug or
due to Compiler bug.

vi

Abbreviations

CPAK Cycle Model Performance Analysis Kit

DMIPS Dhrystone Million Instructions Per Seconds

HPM High Performance Mobile

SIMD Single Instruction Multiple Data

MMU Memory Management Unit

CSD Computational Storage Device

SSD Solid State Device

ECC Error Correcting Code

FPP Fast Path Port

ITCM Instruction Tightly Coupled Memory

DTCM Data Tightly Coupled Memory

I Cache Instruction Cache

D Cache Data Cache

MPU Memory Protection Unit

FPU Floating Point Unit

ACP Accelerator Coherency Port

SCU Snoop Control Unit

AXI Advanced eXtensible Interfaces

LLPP Low Latency Peripheral Port

LLRAM Low Latency RAM Port

EEMBC Embedded Microprocessor Benchmark Consortium

HDD Hard Disk Drive

SDD Solid State Drive

LTO Link Time Optimization

vii

Contents

Certificate……………………………………………………………………………………………………….……..iii

Acknowledgements………………………………………………………….…………………………….………iv

Abstract…………………………………………………………………………………………….……………………v

Abbreviations……………………………………………….………………………………………….…………….vi

List of Figures……………………………………………………………………………………….…………………ix

List of Tables………x

1 Introduction……………………………………………………………………………………………………….1
1.1 Team Profile ... 1
1.2 Motivation ... ……………………………1
1.3 Objective……………………………………………………………………………………………….………2

1.4 Scope of Project ... 2

2 Literature Review……………..………………………………………………………………………………..3
2.1 Industry Standard Benchmarks………………………………………………………………………3
2.2 Arm Compiler…………………………………………………………………………………………………3
2.3 Applications of Cortex-R Series Processors.………………………………….………………..5
2.4 Arm Cortex-R Processor Specifications…………………………………………………………..7

3 Hardware Design…………………………………………………………………………………………………9

3.1 Arm Cortex-R8 Processor……………………………………………………………………………….9

3.2 Features and Benefits…………………………………………………………………………………….11

3.3 Applications……………………………………………………………………………………………………11

4 Software Design…………………………………………………………………………………………………..12
4.1 Performance Analysis and Benchmarking…….. ……………………………………………….13
4.2 Code Size……..14
4.3 Optimization for Code Size and Performance………………………………………………….14

5 Calculation…….15
5.1 Performance ... 15

5.1.1 Coremark Performance……………………………………………………………………..15
5.1.2 Dhrystone Performance…………………………………………………………………….16

5.2 Code Size…….17
5.2.1 Code Size for Coremark……………………………………………………………………..17

viii

5.2.2 Code Size for Dhrystone …………………………………………………………………….18

6 Experimental Results and Discussion……………………………………………………………………19
6.1 Block Diagram of R-Class External System…………………………………………………….…19
6.2 External System Latency………………………………………………………………………….…..…19

6.2.1 External System Read Latency…………………………………………….…………..….19
6.2.2 External System Write Latency………………………………………….…………..……20

6.3 Characteristics…………………………………………………………………………..……………..…….21
6.4 Performance and Speed……………………………………………………………………......………23
6.5 Performance Comparison………………………………………………….………….………..………23

6.5.1 CoreMark Performance…………………………………………………………….………..21
6.5.2 Dhrystone Performance…………………………………………………………...………..21

7 Conclusion………………………….………………………………………………………………….……………25

8 References……..26

9 Appendix………..27

ix

List of Figures

▪ Figure 2.1 Flowchart of Arm Compiler ... ….6

▪ Figure 3.1 Architecture of Cortex-R8 Processor ..…..7

▪ Figure 5.1 Coremark Performance Output12

▪ Figure 5.2 Dhrystone Performance Output13

▪ Figure 5.3 Coremark Code Size Output14

▪ Figure 5.4 Dhrystone Code Size Output15

▪ Figure 6.1 Flow of R-Class External System ... …..16

▪ Figure 6.2 External System Read Latency for Cortex-R8 …..17

▪ Figure 6.3 External System Write Latency for Cortex-R817

▪ Figure 6.4 Percentage change in Coremark performance w.r.t Cortex-R4…………. 21

▪ Figure 6.5 Percentage change in Dhrystone performance w.r.t Cortex-R4………….21

x

List of Tables

▪ Table 4.1 Optimization for code performance .. .10

▪ Table 4.2 Optimization for code size ...10

▪ Table 4.3 Optimization for both code size and code performance 11

▪ Table 6.1 Characteristics of Cortex-R82 processor18

▪ Table 6.2 Characteristics of Cortex-R52+ processor18

▪ Table 6.3 Characteristics of Cortex-R52 processor18

▪ Table 6.4 Characteristics of Cortex-R8 processor19

▪ Table 6.5 Characteristics of Cortex-R7 processor18

▪ Table 6.6 Characteristics of Cortex-R5 processor19

▪ Table 6.7 Characteristics of Cortex-R4 processor19

▪ Table 6.8 Coremark and Dhrystone Performance .. .20

1

Chapter 1

Introduction

1.1 Team Profile

 System Engineering Group of Arm is responsible for the design and delivery of System IP, Security

IP and Imaging IP. It also ensures all Arm IP works well together in a holistic view through the

creation of evaluation systems and test chips. It consists of System Integration, Performance

Analysis and Benchmarking, Implementation, Tooling, IP Verification etc. Early System

Integration is done to prove IP Interoperability and System Architecture. Functional Verification

at System Level is done for IP bug hunting and soak testing. IP Performance (CPU) at System Level

to characterize and analyze performance.

1.2 Motivation

Cortex-R series processors are meant for quick and deterministic handling of a process. It

assures high performance during scenarios having real time constraints within a pace of

circumstances. All these benefits are consolidated into a balanced package that gives

performance, power and area optimization. These features make Cortex-R series processors

a favorable choice in the industry for reliable systems that requires maximum resistance to

error.

The purpose of this team and this project is to serve system level performance data and

analysis to the stakeholders. The key focus is the debugging of outliers and report the

performance bugs.

The motivation for a system level performance analysis comes from an idea to see how the

Arm IPs are working together when then are all integrated as a system and not just working

independently. As independently the constraints could be less hence the performance could

be better, but when stitched together a lot more constraints get added and hence the Analysis

becomes more interesting to understand.

2

1.3 Objective

▪ To make Arm IP performant and power efficient.

▪ To serve system level performance data.

▪ To report and fix the performance bugs.

▪ To showcase performance of Cortex-R series processors using various benchmarks,

various compilers and on various platforms

1.4 Scope of Project

The idea of this project is to understand and analysis the performance of Arm Cortex-R series

processors at system level and not at component level. Since individually components like

interconnect, memory controller, memory may give best of their performances, but while

working in a system bound environment the real time constraints like time constraint,

memory constraint might impact the performance as whole.

To do the performance analysis in an efficient way, industry standard benchmarks are used.

These benchmarks are designed in such a way that they can provide an idea to fulfill the

practical life purposes of a CPU core. Based on the performance number achieved,

comparison between any cores can be done, as a specific benchmark will focus on a particular

real life application.

As there is always a requirement of balance between performance power and area, once the

performance is achieved, further it is handled to take care of the power consumptions. Hence

power, performance and area should be always balanced.

3

Chapter 2

Literature Review

2.1 Industry Standard Benchmarks

▪ CoreMark - CoreMark is a simple but sophisticated benchmark that is used to test the

functionality of a microcontroller (MCU) or central processing unit (CPU). The main
functionality which Coremark checks for an MCU/CPU is the pipeline operation,
memory access (or cache) and handling of integer operations.

▪ Dhrystone - This benchmark checks the general performance of a CPU in Dhrystone
per second. The test reports general performance in Dhrystone per second. Dhrystone
consists of standard code and focuses on string handling. It does not have any floating-
point operations. It is efficiently influenced by hardware and software design, compiler
and linker options, code optimizing, cache memory, wait states, and integer data
types.

▪ EEMBC- It stands for Embedded Microprocessor Benchmark Consortium. It consists of

industry standard benchmarks like:-

▪ Automotive – This consists of genereic workload tests, basic automotive

algorithms and signal processing algorithms also. Signal processing tests includes

algorithms which are important for sensors used in engine knock detection,

vehicle stability control, and occupant safety systems.

▪ Consumer – It consists of tests like JPEG compression and JPEG decompression

tests. It is used to test the performance of processors used in digital cameras

and other consumer electronic devices.

▪ Networking – It is used to check the performance of processors during tasks of

moving packets in networking applications.

▪ Office – It is used to test the performance of processors in printers, plotters, and

other office automation systems that are used for text and image processing

tasks.

▪ Telecom – It is used to find the performance of processors in modem and related

fixed-telecom applications. The tests of this benchmark suite, also serve as a

representation of traditional DSP algorithms.

▪ FPMark – As the name suggests, it’s a floating point benchmark suite. It is used

to check performance of CPUs in embedded applications such as audio, video,

4

DSP, graphics, automotive, and motor control. The benchmark tests in this suite

have options of floating-point precision: single-precision (SP) and double-

precision (DP). The tests can be also differentiated by dataset size which can be

small, medium or large. These combinations of tests are useful for a broad range

of microcontrollers and platforms.

▪ Stream - The STREAM benchmark is a simple synthetic benchmark program that
measures sustainable memory bandwidth (in MB/s) and the corresponding
computation rate for simple vector kernels which are Copy, Scale, Sum and Triad. It
focuses on data movements than data calculations. It is designed to work with
datasets much larger than the available cache for a system, so that the results are
more indicative of the performance of very large, vector style applications.

2.2 Arm Compiler

Arm Compiler is a convenient choice for converting or compiling source codes written
in high level languages like C into a set of machine language instructions because Arm
compiler is supported with all the latest releases of Arm which consists of the latest
features of Arm’s architecture. Arm Compiler supports all the latest Arm Cortex as
well as the processors that are in development phase.

The Arm Compiler also has options of optimization techniques which helps in saving
space and enhances the performance. This includes scheduling of low-level
microarchitecture-specific instructions, elimination of unused sections, and Link-Time
Optimization (LTO).

Workflow of Arm Compiler consists of few main stages which are Compilation stage,
Linking stage and the Execution stage:-

▪ Compile – In this phase, all the C sources, C++ Sources and the GNU syntax
assembly are passed on to armclang. Armclang is compatible with the source
code originally written for GCC and also supports GNU syntax assembly.

▪ Link – In this phase we have object files being converted to images, with the
help of user libraries. It consists of an embedded linker that can combine objects
and libraries into executable files. Armar is an archiver that helps a set of object
files to be combined together. Arm C libraries and Arm C++ libraries are also
being used. Arm C libraries by Arm are used for performance and code density
optimization.

▪ Execute – In this stage the image is converted into a binary using ‘fromelf’,
Fromelf is an utility for image converser and is used as a disassembler.

5

Figure 3.1: Flowchart of Arm Compiler

2.3 Applications of Cortex-R Series Processors

▪ Cortex-R82: This processor has performance which is highest among the processors

which are working in real time scenarios from Arm. The architecture that is uses is the

Armv8-R AArch64 architecture. It is also the first processor to implement this mode of

architecture. Being a powerful real time processor, it is used in smart storage

applications. It has outstanding features of larger memory capacity, rich operating

system support such as Linux and can help to accelerate ML Workloads. Its field of

application lies in datacenters and Enterprise-grade SSDs.

6

▪ Cortex-R52+: It provides virtualization for real time for applications working for

functional safety, along with maintenance of the compatibility of software. Its

advantages includes deterministic computation for high performance real time

responsiveness. Its areas of applications are Medical Robots and Industrial

Automation

▪ Cortex-R52: It delivers the highest level of integrated capability for functional safety

of any Arm processor. Its main features are software separation, multiple OS support

and real time responsiveness with lowest Cortex-R latency.

▪ Cortex-R8: It uses the Armv7-R architecture and delivers highest performance in its

category of processors using the similar architecture. Major benefits of this processor

are coherency upto four cores, 11-stage out-of-order pipeline and configurable ports.

It is used in applications of WiFi, LTE, 5G Modems and also for Mass Storage.

▪ Cortex-R7: It is a real-time dual core processor with advanced dynamic and static

branch prediction.

▪ Cortex-R5: It uses the Armv7-R architecture and provides extended fault containment

for real-time applications. It can be said to be a seamless real time embedded

processor. It has functional safety support with advanced safety features, efficient

high performance processing because of dual core, and system level integration. It

used used in mass storage systems for HDD and SDD and in Medical Systems for e.g in

remote telemedicine applications, bioinformatics and robotics.

▪ Cortex-R4: It is the smallest deeply embedded real-time processor among all the R-

Class processors. It has real time deterministic microarchitecture, high performance

efficient processing and build-in error handling. It is used in Hybrid Automotive

Clusters that combine traditional meters with graphical displays, in space constrained

applications such as HDD and SDD controllers.

7

2.4 Arm Cortex-R Processor Specifications

▪ Instruction Set Architecture – Cortex-R4, R5, R7 and R8 uses the Armv7-R

architecture while Cortex-R52, R52+ and R82 uses the advanced Armv8-R

architecture.

▪ Pipeline Depth – Cortex-R4 and R5 has similar pipeline i.e 8 stage in-order and dual

issue. Cortex-R7 and R8 has similar pipeline i.e 11 stage out-of-order, superscalar

pipelines. Cortex-R52, R52+ and R82 has 8 stage, in-order pipeline. Cortex-R52 and

R52+ has superscalar while R82 has triple issue.

▪ Address Bits - All R-Class cores except R82 has 32 Address Bits. Only R82 has 40

address bits.

▪ Addressable Memory - All R-Class processors except R82 has 4GB Addressable

memory. Only R82 has 4TB addressable memory.

▪ ECC on Memories – Error Control Correction is present in all R series processors.

▪ MPU or MMU - All R-Class processors except R82 has Memory Protection Unit. Only

R82 has both, i.e Memory Protection Unit and Memory Management Unit.

▪ Maximum MPU Regions – This is 12 in case of R4, and 16 in case of R5 and R7. R8

has 24 PMU regions, R52 and R52+ has 24+24 and R82 has 32+32.

▪ Symmetric Multi Processing Support (SMP) – R4 has 1 core and no coherency, R5

has 2 cores and IO coherency, R7 has support upto MP2. R8, R52 and R52+ has

support upto MP4 with R52 having no coherency. R82 on the other hand has upto

MP8.

▪ Floating Point Unit (FPU) – This unit is optional across all R-Class processors.

▪ SIMD (Neon) – There is no neon feature available in R4, R5, R7 and R8. While in R52,

R52+ and R82 it is optional.

▪ Maximum External Interrupts – This valus is upto 480 in case of R4, R5, R7 and R8

while R53 and R52+ has upto 960 external interrupts. R82 on the other hand has

56K+ interrupts.

▪ Bus Protocol – R4, R5, R7 and R8 uses AXI3 bus protocol, R52 and R52+ uses AXI4

and R82 uses the AXI5 bus protocol.

8

▪ L2 Cache – This feature is only present in case of R82 having 0KB – 4MB L2 Cache.

▪ Dual Core Lock-Step (DCLS) – This feature is available only in R5, R52, R52+ and R82.

▪ Safety Documentation Package - This feature is available only in R5, R52, R52+ and

R82.

▪ Software Test Library- This feature is available only in R5, R52, R52+ and R82.

9

Chapter 3

Hardware Design

2.5 Arm Cortex-R8 Processor

The Cortex-R8 processor is the highest performance Armv7-R processor used for real

time purposes. It has a 32-bit CPU core with the Armv7-R architecture. The important

features includeds 11-stage pipeline and superscalar out-of-order execution. It has

widespread applications in real time scenarios like in LTE and 5G models and mass

storage applications such as SSDs and HDDs.

The architecture of Cortex-R8 processor includes major components like Error Correcting

Code block, Fast Path Port, 1MB Instruction Tightly Coupled Memory Interface, 1MB Data

Tightly Coupled Memory interface, Memory Protection Unit, Floating Point Unit with both

Single Precision and Double Precision options. Other blocks include Accelerator Coherency

Port, Snoop Control Unit, Advanced eXtensible Interfaces (Slave and Master), Low Latency

Peripheral Port and Low Latency RAM Port.

▪ The Instruction Set Architecture used by Cortex-R8 is Armv7-R. Pipeline depth used in

it is a 11 stage out-of-order and superscalar pipeline. Pipeline is basically a

microarchitecture feature of such processors. It has 32 address buts and a 4GB

addressable memory. It has the support of Error Correction Code on Memory. There

is an optional Fast Path Port which is a 32-bit AMBA AXI port provided for each core.

This is used to closely integrate peripherals which are latency-sensitive with a specific

core within the processor.

▪ It includes the Memory Protection Unit but does not support the Memory

Management Unit. The maximum MPU regions supported by R8 are 24. It also

supports Symmetric Multi Processing (SMP) which is upto MP4. The optional Floating

Point Unit can work for either single precision-only or both single and double

precision. Floating point operations taking place are addition, subtraction,

multiplication, division, multiplication and accumulation, square root, conversions

between fixed and floating-point, and floating-point constant instructions etc.

10

Figure 3.1: Architecture of Cortex-R8 Processor

▪ 1 MB ITCM - 1 MB Instruction Tightly Coupled Memory interface

▪ 1 MB DTCM - 1 MB Data Tightly Coupled Memory interface

▪ I Cache - Instruction Cache is 0KB – 64KB

▪ D Cache - Data Cache is 0KB – 64KB

▪ L2 Cache – Not avaliable

▪ SIMD (Neon) is not present in case of R8. The maximum external interrupts allowed

are upto 480. Bus protocol used by R8 is AXI4. Also, features like Dual Core Lock-Step

(DCLS), Safety Documentation Package and Software Test Library are not available

with Cortex-R8 processor.

11

2.6 Features and Benefits

▪ Four-Core Coherency – Coherency upto four cores helps in the simplification of software

development. The updates are synchronized since the data exchange between the

cores is maintained. Furthermore, the accelerator coherency port are synchronized

with the non coherent accelerators and peripherals in the system.

▪ 11-Stage Out-of-Order Pipeline – This leads to faster processing as the 11-Stage Out-of-

Order Pipeline makes the most use of the execution bandwidth. Because of the longer

pipeline, there is high clock speeds and the out-of-order takes care of minimized

processors and forward progress.

▪ Configurable Ports – There are multiple ports offered by Cortex-R8 processor to the

system. These are configurable and hence leads to flexible design options and low

latency control of accelerators and peripherals. Advantage of this feature is lowest

latency and highest throughputs in the end products.

2.7 Applications

▪ WiFi, LTE and 5G Modems – The most recent WiFi, high category LTE, and 5G

requires increased transmission speeds. To meet such needs, Cortex-R8 provides,

low latency, high performance and power efficient applications. This supports the

highest LTE categories and 5G. It creates flexible options to increase feature sets and

carries additional workloads reliably.

▪ Mass Storage – Because of the increasing need of storage speed and capacity,

storage drivers need to deliver performance reliability, latency reduction and

improvement in error correction. Cortex-R8 Processors provide the responsive

power required for high performance HDD and SSD controllers.

12

Chapter 4

Software Design

4.1 Performance Analysis and Benchmarking

Performance Analysis and Benchmarking explains the measurement of performance of CPU
cores in various ways. Based on the analysis results, any inefficient section of code can be
improved. This procedure includes running benchmarks on the Arm processors, after that the
profiling facilities are used to improve the performance of our code as well as the size. When
developing application software or comparing the Arm with another processor, following
parameters can be measured:

▪ code and data sizes
▪ overall execution time
▪ time spent in specific parts of an application.

With the help of above information, Arm's performance can be compared against other
processors in benchmark tests. The comparison helps to identify performance-critical sections
of code that can be optimized. The optimization can be done by using a more efficient
algorithm, or rewriting in assembly language can also help.

4.2 Code Size

Code size is an important parameter To decide the effectiveness of the compiler for
generating code. This is helpful when we need to compare one compiler with other compilers.
During the code size calculation and the code size comparison among compilers the following
key metrics are used:

▪ Total RO Size = Code + RO Data
▪ Total RW Size = RW Data + ZI Data
▪ Total ROM Size = Code + RO Data + RW Data

Here RO Data (Read-Only Data) consists of constant strings and constant variables, RW Data
(Read-Write Data) has initialized variables and zero initialized data and ZI Data (Zero-
Initialized Data) has uninitialized global variables.

13

4.3 Optimization for Code Size and Performance

For optimizing our code, the compiler and associated tools use a lot of optimization
techniques. Some of the techniques can help in improving the performance of the code while
other techniques reduce the size of the code. Hence often, these optimizations techniques
work with opposite effects to each other. It means that if by the use of some optimization
technique the code performance is improving it might lead to increased code size and if by
some technique the code size reduce, it might reduce the performance. It explains that to
achieve higher performance, the compiler can unroll small loops but this in return will create
a disadvantage of increased code size. By default there is no optimization offered by
armclang. The default optimization level is -O0.

Table 4.1: Optimization for code performance

Table 4.2: Optimization for code size

Table 4.3: Optimization for both code size and code performance

14

Optimization can also be done by making following choices during coding:-

▪ Loop Termination Conditions - Optimizing loop termination conditions can help in
improving both code size and performance. Loops with decrementing counters that
decrement to zero usually produce smaller, faster code than loops with incrementing
counters.

▪ Unrolling Loops – Performance can be improved by manual unrolling of loops. It
means that the number of loop iterations are getting reduced, but the amount of
work done in each iteration getting increased. It improves performance at the
expense of code size.

▪ Reducing Debug Information – Image size can be reduced by reducing debug
information in objects and libraries. This is useful because we do not need debug
information while checking the performance. Debug information can be traced when
root causing for outliers.

▪ Inline Functions – Use of inline functions offers a trade-off between code size and
performance.

15

Chapter 5

Calculation

5.1 Performance

5.1.1 CoreMark Performance

Figure 5.1: Coremark Performance Output

CoreMark: Measurement characteristics
▪ Above result is the CoreMark output from a development board containing a Cortex-M4

processor running at 168 MHz.
▪ The CoreMark benchmark number is the number of iterations per second.
▪ In the output shown, the CoreMark number is 478.266287.
▪ Score = CoreMarks / MHz.
▪ Score = CoreMark number (478.266287) / Processor Speed in MHz (168)
▪ Score = 478.266287 / 168 = 2.8468

16

5.1.2 Dhrystone Performance

Figure 5.2: Dhrystone Performance Output

17

Dhrystone: Measurement characteristics

▪ Above result is the Dhrystone output from a development board containing a Cortex-
M3 processor running at 18.5 MHz.

▪ DMIPS (Dhrystone MIPS) = Dhrystones per second / 1757.
▪ 40600.9 / 1757 = 23.11.
▪ Score = DMIPS / MHz.
▪ Score = 23.11 / 18.5 = 1.25.

5.2 Code Size

5.2.1 Code Size for CoreMark:

Figure 5.3: Coremark Code Size Output

1. First column : It gives the application code size in bytes. It includes the size of inline
data.

2. Second column : It shows the size of the inline data that has been included in the
application code size. The inline data is located in the code section and it consists of
literal pools, case-branch offset tables, and short strings.

3. Third column : It gives the of the read-only data size.
4. Fourth column : It gives read-write data size.
5. Fifth column : It gives the zero initialized data.

▪ Total RO Size = Code + RO Data = 14292 + 724 = 15016 Bytes

▪ Total RW Size = RW Data + ZI Data = 160 + 65376 = 65536 Bytes

▪ Total ROM Size = Code + RO Data + RW Data = 14292 + 724 + 160 = 15176 Bytes

18

5.2.2 Code Size for Dhrystone:

Figure 5.4: Dhrystone Code Size Output

▪ Total RO Size = Code + RO Data = 15412 + 476 = 15888 Bytes

▪ Total RW Size = RW Data + ZI Data = 64 + 10536 = 10600 Bytes

▪ Total ROM Size = Code + RO Data + RW Data = 15412 + 476 + 64 = 15952 Bytes

19

Chapter 6

Experimental Results and Discussion

6.1 Block Diagram of R-Class External System

Figure 6.1: Flow of R-Class External System

Major components of R-Class External System are CPU, Interconnect, Ideal Memory
Controller and Memory. From CPU, the data request will go to interconnect. Interconnect in
return sends that request to Memory Access. The interconnect based on the data received
from CPU decides the peripherals. There are many slaves, but interconnect to choose/send
data to which slave. Once the interconnect has the information about the peripheral, it puts
the data on memory controller, which is a peripheral.

It was observed that latency is not common across all the R-class cores. Difference in system
latencies does not lead to a fair comparison of performances between two processors. Hence
to tune the latency of all R-class cores, IMC settings are updated. This helps to obtain a
common latency so that an unified system can be achieved.

6.2 External System Latency

6.2.1 External System Read Latency :

▪ External System Latency can be calculated or even verified with Waveform Dump.
Software tool used for waveform generation here is Synopsys Verdi.

▪ External System Latency is the time taken by the request to traval from CPU output back
to CPU input. It is calculated in terms of Read Latency and Write Latency.

CPU Interconnect
Ideal

Memory
Controller

Memory

20

Figure 6.2: External System Read Latency for Cortex-R8

T = CPU (output) to CPU (input) i.e External System Read Latency

T1 = CPU (output) to Interconnect (input)

T2 = Interconnect (input) to Memory Controller (input)

T3 = Memory Controller (input) to Memory Controller (output)

T4 = Memory Controller (output) to Interconnect (output)

T5 = Interconnect (output) to CPU (input)

▪ Total Time (T) = T1 + T2 +T3 + T4 + T5

▪ T3 = Total Time taken by Interrupt Memory Controller.

▪ Here T1 and T2 are 0 ns because the request from CPU to interconnect is reaching instantly
and there is no delay. Vice versa from interconnect to CPU.

6.2.2 External System Write Latency :

Figure 6.3: External System Write Latency for Cortex-R8

T

T3

T2 T4

T

T4 T3 T2

21

6.3 Characteristics

Processor area, frequency, and power consumption are highly dependent on process,
libraries, and optimizations.

Table 6.1: Characteristics of Cortex-R82 processor

Table 6.1 explains the Cortex-R82 processor characteristics for a four-core cluster
implementation. Here 5nm refers that these characteristics are given on a low-power
process technology of 5nm with standard-performance cell libraries.

Table 6.2: Characteristics of Cortex-R52+ processor

Table 6.2 explains Cortex-R52+ processor as single processor implementation. Here 16
nm refers that the characteristics are given on low-power process technology of 16nm
with high-density, standard-performance cell libraries.

Table 6.3: Characteristics of Cortex-R52 processor

Table 6.3 Explains Cortex-R52 with the single processor implementation. 16 nm refers
that these characteristics are given on low-power process technology of 16nm with
high-density, standard-performance cell libraries.

22

Table 6.4: Characteristics of Cortex-R8 processor

Table 6.4 given the characteristics of Cortex-R8 processor as a single processor
implementation. Here 28nm refers that these specifications are given on low-power
process technology of 28nm HPM with high-density, standard-performance cell
libraries.

Table 6.5: Characteristics of Cortex-R7 processor

Table 6.5 gives Cortex-R7 with a single processor implementation. These specifications
are given as high performance characteristics for mobile process technology (28nm
HPM). The instruction cache and data cache are both 32KB in this case.

Table 6.6: Characteristics of Cortex-R5 processor

Table 6.6 explains Cortex-R5 with a single processor implementation. It is given on
low-power process technology (28 nm HPM) with high-density, standard-performance
cell libraries. The instruction cache and data cache are both 32KB in this case.

Table 6.7: Characteristics of Cortex-R4 processor

23

6.4 Performance and Speed

Benchmark Name

(Data Unit)

R82 R52+ R52 R8 R7 R5 R4

DhryLegal

(DMIPS/MHz)

3.41 2.09 2.09 2.50

2.50

1.67 1.68

DhryInline

(DMIPS/MHz)

4.32 2.72 2.72 2.90

2.90

2.02 2.03

DhryInlineLto

(DMIPS/MHz)

8.67 5.99 5.99 3.77

3.77

2.45 2.45

CoreMark
(CoreMark/MHz)

5.82 4.3 4.3 4.62

4.62

3.47 3.47

Table 6.8: Coremark and Dhrystone Performance

For Dhrystone we run different variants of the benchmark by enabling different flags. Some

of the Variants are DhryLegal, DhryInline and DhryInlineLto. DhryLegal result follows all the

'ground rules' which are mentioned in the Dhrystone documentation. DhryInline result allows

function inlining. DhryInlineLto result in addition allows optimizations at the time of linking

which is known as LTO or Link Time Optimization. LTO performs excessive optimization which

results in the removal of unused variables and functions in the source code. Hence the scores

are usually very high with this variant.

Coremark Scores indicates about the pipeline of that CPU core. better the pipeline, better will

be the performance. From the results it can be observed that though Cortex-R8 is an older

core compared to R52 and R52+, still it has better numbers because the pipeline is better.

Maximum coremark performance can be observed in Cortex-R82 as it has the best pipelining

out of all R-Class processors.

6.5 Performance (Speed) Comparison

The graphical representation for performance analysis can be useful to compare

performances between different compilers like GCC and Arm Compilers and between

compiler versions. The graphs below reflects the percentage change in CoreMark and

Dhrystone Performance from the oldest R-Class CPU Cortex-R4. Hence the baseline

considered for the comparison is Cortex-R4.

24

6.5.1 CoreMark Performance:

Figure 6.4: Percentage change in Coremark Performance w.r.t Cortex-R4

6.5.2 Dhrystone Performance:

Figure 6.5: Percentage change in Dhrystone Performance w.r.t Cortex-R4

25

Chapter 7

Conclusion

▪ Performance Analysis of R-Class cores with the Industry Standard Benchmark
CoreMark helps to understand the pipeline of the CPU Core. Hence it gives more
details about the Microarchitecture of the CPU core.

▪ Benchmarking of CPU cores with the Industry Standard Benchmark FPMark which is a
floating point benchmark suite is useful in emphasizing embedded applications like
Audio, Video, DSP and Graphics. It focuses on operations like Fast Fourier Transform
(used in Spectral Analysis and Image Compression), Linear Algebra, Fourier
Coefficients etc.

▪ In most systems the constraint on performance is memory as the memory data rates
are lower than the computing rates from cache. Stream Benchmarking helps in
overcoming the problems with memory bandwidth on large computer systems as it
focuses on data movement over the data calculation.

▪ Performance Analysis is done for all Cortex-R series processors using various
benchmarks like Coremark, Dhrystone, EEMBC and Stream, on various compilers like
GCC and Arm specific Compilers and on various platforms like CPAK and Emulation. It
helps in verifying the compiler performance as well as the processors’ strengths and
weak points.

▪ Fixing the Latency Issue on all R-class cores with a common latency helps in achieving
a Unified R-Class System. This becomes as a common platform for all processor
comparisons.

▪ Automated flow with a python script helps in giving all the performance data and code
size data into a CSV Format output. This CSV can be uploaded to Tableau Software and
useful data representations can be created in the Dashboard.

References

[1] Gal-On, Shay, and Markus Levy. "Exploring coremark a benchmark maximizing simplicity

and efficacy." The Embedded Microprocessor Benchmark Consortium (2012).

[2] Poovey, Jason A., Thomas M. Conte, Markus Levy, and Shay Gal-On. "A benchmark

characterization of the EEMBC benchmark suite." IEEE micro 29, no. 5 (2009): 18-29.

[3] Weiss, Alan R. "Dhrystone benchmark: History, analysis, scores and recommendations."

(2002).

[4] McCalpin, John D. "A survey of memory bandwidth and machine balance in current high

performance computers." Newsletter of the IEEE Technical Committee on Computer

Architecture (TCCA)(December 1995) (1997).

[5] McCalpin, John D. "Sustainable memory bandwidth in current high performance

computers." Silicon Graphics Inc (1995).

[6] www.arm.com

[7] www.developer.arm.com

[8] www.eembc.org

[9] www.cs.virginia.edu

Appendix

Arm Cortex-R Processor Comparison

