

Multiplierless Tunable Architecture for

Signal Processing Transforms

A Thesis Submitted to

Nirma University

In Partial Fulfilment of the Requirements for

The Degree of

Doctor of Philosophy

in

Technology & Engineering

By

Pratik Pravinkumar Trivedi

(13EXTPHDE95)

Electronics and Communication Engineering Department

Institute of Technology, Nirma University

Ahmedabad, Gujarat, India

February 2020

Nirma University

Institute of Technology

I
< -'f t

(L'L L/,'
l-/

SurreaurFuE pue ,t3o1ouqce1Jo .(llnceC .uueq

tuJJ^\

nJa\f

:OI

qcreesau pue serpnls IerolJo(JJo {UnceJ ,ueeq 1il11

-n*

lueulJedeCl SulreaurBusruuruluoJ pue scruoJl3o[g <pEeH

:qFnorql paprBruol

&

:aIE(I

'uorlenlP_\a toJ

]ues eq u l?ql pueuuoceJ J pue SuFaaurSufl uorlsJrunururoJ puB sJru0rfrel!
ur euueJ8o,rd 'cl'qd roJ eleprpue3 e Jo pelJedxe pJ€puels eql Jo sr srsrql eql

Jo rJo,^^ eqJ 'uorle8llse^ul pue qJJeeseJ [nJeJes -reuB pe]elduo3 rJo.r lpur;rJo
u^\o srq sr srseqt eqJ'3cuuprn8 pue uorsr^redns,{u rapun (sogaHarISgl)
rpe^rJr d {!l?Jd 'Jtr{i

'(q psJudeJd ueoq seq srrrJoJsuBJr SursseJord lBuSrs roJ

e-rnlralrqrrv elquunr ssaFarldrllnIN pellrrus srseql er.Jl leql .{31uec ol sr srql

EPIND

ABSTRACT

Signal processing algorithms like Discrete Fourier Transform, Discrete Cosine Transform, and

Fast Fourier Transform find various applications in the field of Image processing, Wireless

communication, Robotics, and many others. It covers basically three operations viz. Multiply, Shift

and Accumulate. Hence if the input data goes on rising as in cases where high resolution is required

the amount of multiply operations also rises significantly. For example, the number of complex

multiplication operations in case of Discrete Fourier Transform is N2, where N is the number of

points. Latency becomes an important issue which needs to be addressed in today’s era as we,

humans, thrive for the fastest systems with maximum resolution. Multiplierless techniques for this

purpose has been always a research area as it helps in reduction of the later part. Multipliers bound

to increase the latency especially in the algorithms which use complex multiplications, for instance

to evaluate a single complex multiplications minimum four real multiplications are required.

Hence, in techniques where number of such complex multiplications need to be evaluated, latency

increases to an exponential amount as in case of Discrete Fourier transform. To reduce latency we

need to either emphasize on reduction in amount of data to be processed or change the processing

structure which can affect the overall time to output. There are three broad techniques found in the

literature for addressing this issue. Complex Multiplication techniques itself requires four real

multiplication and two adders and hence it becomes practically infeasible for the case where large

amount of data needs to be transformed. Coordinate rotation of digital computer (CORDIC)

(Volder) based techniques are well known for the Multiplierless implementation of the sinusoids.

However it carries certain drawbacks viz. large number of iterations and accuracy. This thesis

addresses the issues of Multiplierless implementation of the rotation for two different cases viz.

CORDIC based techniques and Coefficient combined selection and Shift and Add implementation

(CCSSI) (Garrido, Qureshi, and Gustafsson). It proposes improvement to the existing CORDIC

based approach as well as CCSSI. Platform used for the implementation of the proposed approach

is MATLAB. At the end the work presents a tunable multiplier less architecture for implementation

of sinusoidal as well as non-sinusoidal transforms.

The thesis provides two different contributions in the field.

1) It proposes an efficient approach for the implementation of the Mixed Scaling and Rotation

CORDIC (Lin and Wu) algorithm and also improves its SQNR by weighted amplifying

factors.

2) The second contribution provides Coefficient combined & shift and add implementation

(CCSSI) (Garrido, Qureshi, and Gustafsson) based approach to design Multiplierless

rotators for various sinusoidal as well as non-sinusoidal transforms adding case of multiple

constant rotators also. A novel tunable Combined co-efficient scaling and shift and add

approach is proposed which takes into the following parameters.

- Number of bits,

- Number of adders,

- Maximum allowable error

- Number of points.

The approach improves the range of coefficients with respect to number of adders (the range

taken is from 2 to 10 adders), and number of bits (the range taken is from 1 to 64 bits),

compared to the existing approaches and is shown in the results in Table 4.16. It also presents

the Multiplierless architecture for the tunable parameter shown above.

aZ1616 :etuq
- lf '

-uepn$ aql fq eperu uorlerulcep e^oqe eql esropue I

(soEanarxaEr)

Ipe^t{ d {l
q rcJ | :ereq

'tsurpu"lsJepun

pue e8pe11Y\ou1 ,(ru Jo Neq eql ol pelrc pu? perreJer 'pe8pelrrroulce ueeq

eneq (qsm puu sleuJnof's1ooq o] pelrrurl lou lnq Surpnlcur) seoJnos Jeqlo tuog

uels] lsrJeletu reqlo ,{uu ro suerSerp 'lxel eql luql eJBIcep requnJ .(qereq op 1

'pJe1Y\€ crwepeceJo

pull-reqlo .(ue ro eruoldrp 'aerSep u go lsanb ur f pog ro ,(lrsre,rrun Jeqlo fue o1

peilrulqns ueeq lou seq IJoAr srqJ 'u,tvrou1 f,peerlu s}ce3: cgrluercs Jo uorl"[eJJoc

7 senbruqcel / slceJ rvr?u Jo fre,rocsrp eql ol Surpuel sr qcJ"eseJ eqJ 'rus!

ou sur?luoc pue eru ,{q lno per.rJsc rlc-reeseJ 7 suorleSltselur luepued

er{}Jo eruoc}no eq} sF&ue Jeur8rro sr pellruqns srseql eq} leql ereloep fqereq

'U Jepun peqrrcserd se IJo/y\ qoJeeseJ ,(tu pue Jeurruos srsdou.(s-erd trom esJnoc

aqt paleldruoc eler1 I reqr eJelcep ,{qereq op ,(lrsrenrull euurN go Suueaur8ug

puu {Solouqral Jo fllneug aqt repun eururerSor4 leroloo6l roJ g6flCHdJXfl€I
'oN uorlellsr8es Surreeq 'reloqcg r{cJuese1 se perelsrSer 'rpa,rrr; d :llluJd 't

I

,tSolouqcelJo elqpsul
z$1sre,rp1 srrrJlN

ACKNOWLEDGEMENT

First and foremost, I would like to express my eternal gratitude to God and my parents, whose blessings

have made me what I am today.

I am always thankful to my thesis supervisor, Late Dr. Tanish Zaveri , for his valuable suggestions, inspiring

guidance and consistent support. I am thankful to Nirma University for providing an opportunity to carry

out this research. I am thankful to Dr. P N Tekwani, Director Research and Innovation Cell, Nirma

University for his valuable support. I am also thankful to Dr. Rajesh N Patel, Director, Institute of

Technology, Nirma University for providing opportunity and support to carry out this research. I wish to

express my sincere gratitude to the Nirma University for allowing me to join Ph.D. Programme and

providing support during the course of this programme.

I am also very grateful to my research progress committee members, Dr. Nagendra P Gajjar, Professor,

Institute of Technology,Nirma University, Ahmedabad and Dr. N.M.Patel, Professor, Birla Vishwakarma

Mahavidyalaya (BVM) V.V. Nagar for their insightful suggestions and discussion. Their constructive

criticism and comments help me to nurture and strengthen my research work.

I am also grateful to Dr.Sanjay Chaudhary, Dean, School of engineering and Applied Science, Ahmedabad

University, Dr. Mehul Raval, Professor, Pandit Deendayal Petroleum University, Gandhinagar who actively

encouraged me at each and every stage of my work. I also want to thank all my colleagues at School of

engineering and Applied Science, Ahmedabad University for their immense support and guidance.

I express my sincere thanks to Dr. Dhaval Shah, Dr. Akash Mecwan, Dr. Ruchi Gajjar, Dr. Vijay Savani,

Dr. Piyush Bhatasana, for their fruitful suggestions and encouragement. I would also like to thank all

friends, colleagues and well-wishers for their direct or indirect support in the successful completion of

this work.

Special thanks to my friends and my daughter for their motivational support and unconditional love. The

time devoted to this thesis is from their accounts.

Contents

Chapter 1 Introduction……………………………………………………………….12

1.1 Motivation…………………………………………………………………....13

1.2 Objectives………………………………………………………………….....14

1.3 Contribution of the thesis………………………………………………….....15

1.4 Organization of the thesis…………………………………………………….16

Chapter 2 Literature Review and Background Theory……………………………...18

2.1 Rotators used in hardware……………………………………………………18

2.2 Standard CORDIC………………………………………………………....…19

2.3 Angle Recoding CORDIC……………………………………………………21

2.4 Unified CORDIC…………………………………………………………..…21

2.5 Reconfigurable CORDIC…………………………………………………….23

2.6 Enhanced Scaling Free CORDIC…………………………………….…..…..23

2.7 EEAS CORDIC……………………………………………………………….25

2.8 Mixed Scaling and Rotation CORDIC (MSR CORDIC)…………………….26

2.9 CORDIC II: A new Improved Algorithm……………………………………27

2.10 Multiplication by two integers using minimum number of adders……….....28

 2.10.1Multiplierless Constant Multiplication Algorithms…………………...29

2.11 Coefficient Combined Selections and Shift and Add Implementation….......30

Chapter 3 Proposed Approach based on Mixed Scaling Rotation CORDIC……......35

3.1 MSR Algorithm……………………………………………………………..36

3.2 The Proposed Enhanced MSR Scheme…………………………………......38

3.3 The Proposed Algorithm……………………………………….…....……... 41

3.4 Results and Discussions………………………………………….…………43

Chapter 4 Coefficient Combined Selections and Shift and Add Implementation based

Approach…………………………………………………………………………....48

4.1 Proposed Approach based on CCSSI ………………………………………48

4.2 Coefficients Selection for Non-Sinusoidal Transform…………………….. 58

4.3 Coefficient Selection based on the number of adders ………………………60

4.4 Realization of the proposed Architecture…………………………………...68

4.5 Results and Discussions ………………………………………………70

Chapter 5 Conclusions and Future Scope…………………………………………...77

5.1 Conclusions…………………………………………………………............77

5.2 FutureScope…………………………………………………………………78

Publication ………………………………………………………………………79

References………………………………………………………….……………….80

List of Tables

Table 4.1 MCR Remaining Kernel for b = 5 and max.error = 0.05 for two angles 51

Table 4.2 MCR Remaining Kernel for b = 6 and max.error = 0.05 for two angles 52

Table 4.3 MCR Remaining Kernel for b = 7 and max.error = 0.05 for two angles 52

Table 4.4 MCR Remaining Kernel for b = 8 and max.error = 0.05 for two angles 53

Table 4.5 MCR Remaining Kernel for b = 5 and max.error = 0.05 for five angles 54

Table 4.6 MCR Remaining Kernel for b = 6 and max.error = 0.05 for five angles 55

Table 4.7 MCR Remaining Kernel for b = 7 and max.error = 0.05 for five different angles. 56

Table 4.8 MCR Remaining Kernel for b = 8 and max.error = 0.05 for five angles 57

Table 4.9 MCR Remaining Kernel for N = 8 ... 59

Table 4.10 MCR Remaining Kernel for N = 16 ... 60

Table 4.11 Remaining Kernel for 4 Adders ... 62

Table 4.12 Remaining Kernel for 6 Adders ... 63

Table 4.13 Remaining Kernel for 8 Adders ... 64

Table 4.14 Remaining Kernel for 10 Adders…………………………………………………….…..65

Table 4.15 MCR Remaining Kernel based on the proposed approach ... 66

Table 4.16 Comparison of Multiplierless Rotator of various approaches with the Proposed

approach………………………………………………………………………………………………67

Table 4.17 Number of unique coefficient obtained …………………………………………………75

List of Figures
Figure 1.1 Block diagram of the MSR based system... 15

Figure 1.2 Block diagram of the CCSSI based proposed framework 16

Figure 2.1 Block Diagaram of the CCSSI based Approach ... 31

Figure 2.2 (a) Initial design space with the required angles ... 33

Figure 2.2 (b) Reduced coefficient based on the delta angle ... 33

Figure 2.2 (c) Further reduction of coefficient based on the fixed scaling factor 33

Figure 3.1 SQNR Comparison between MSR_CORDIC and the proposed scheme 43

Figure 3.2 (a) Comparing the relationship between SQNR performances and scaling factor value

of 𝑣𝑢𝑝𝑝𝑒𝑟 in generalized scheme of MSR-CORDIC and proposed MSR-CORDIC NSPT = 3 and N

= 3 .. 45

Figure 3.2 (b) NSPT = 4 and N = 2 .. 46

Figure 3.3 Analysis of MSR-CORDIC and proposed scheme for different combinations of

NSPT……………………………………………………………………….47

Figure 4.1 Block Diagram of the Proposed Approach ... 49

Figure 4.2 (a) Initial design space with the required angles .. 50

Figure 4.2 (b) Reduced coefficient based on the delta angle .. 50

Figure 4.2 (c) Further reduction of coefficient based on the fixed scaling factor 50

Figure 4.3 Realization of rotator for proposed framweork .. 68

Figure 4.4 Realization of combined rotator design for kernel-1 from Table-4.15. 69

Figure 4.5 Trade-off between minimum Rotation Error vs. number of bits b. 71

Figure 4.6 Trade-off between minimum Rotation Error vs. number of bits b 72

Figure 4.7 Trade-off between minimum Rotation Error vs. number of bits b. 73

Figure 4.8 Trade-off between minimum Rotation Error vs. number of bits b 74

List of Abbreviations
AR Angle Recoding

CORDIC Coordinate Rotation Digital Computer

CCSSI
Coefficient Combined Selection and Shift and Add

Implementation

CSD Canonic Signed Digit

DCT Discrete Cosine Transform

DFT Discrete Fourier Transform

DSP Digital Signal Processing

EEAS Extended Elementary Angle Set

FFT Fast Fourier Transform

FIR Finite Impulse Response

FPGA Field Programmable Gate Array

IIR Infinite Impulse Response

MCM Multiple Constant Multiplication

MCR Multiple Constant Rotator

MSR Mixed Scaling Rotation

MVR Moving Vector Rotation

SCM Single Constant Multiplication

SCR Single Constant Rotator

Chapter 1

Introduction

Signal processing algorithms like Discrete Fourier Transform, Discrete Cosine Transform,

and Fast Fourier Transform Transforms find various applications in the field of Image processing,

Wireless communication, Robotics, and many others. It covers basically three operations viz.

Multiply, Shift and Accumulate (Rabiner and Gold). Hence, if the input data goes on rising as in

cases where high resolution is required, the amount of multiply operations also rises significantly.

For example, the number of complex multiply operations in case of Discrete Fourier Transform is

N2, where N is the number of points. Latency becomes an important issue which needs to be

addressed in today’s era as the target is to design the fastest systems with maximum resolution. To

reduce latency, emphasize needs to be given on either reduction in amount of data to be processed

or changing the processing structure which can affect the overall time to output. Multiplierless

techniques for this purpose has been always a research area as it helps in reduction of the later part.

There are three broad techniques found in the literature for addressing this issue. Complex

Multiplication techniques itself requires four real multiplication and two adders and hence it

becomes practically infeasible for the case where large amount of data needs to be transformed.

Coordinate rotation of digital computer (CORDIC) based techniques are well known for the

Multiplierless implementation of the sinusoids. However, it carries certain drawbacks viz. large

number of iterations and accuracy. This thesis addresses the issues of Multiplierless

implementation of the rotation for two different cases viz. CORDIC (Volder; Meher et al.;

Aggarwal et al.) based techniques and Coefficient combined selection and Shift and Add

implementation (CCSSI) (Garrido, Qureshi, and Gustafsson). It proposes improvement to the

existing CORDIC based approach as well as CCSSI. Platform used for the implementation of the

proposed approach is MATLAB. In the end, this thesis work presents a tunable multiplier-less

architecture for implementation of sinusoidal as well as non-sinusoidal transforms.

1.1. Motivation

Digital signal processing, scientific computing, and other communication applications,

signal transforms are a major part of signal analysis. Transform algorithms such as the Discrete

Fourier Transform (Meher and Park), Discrete Cosine Transform (Meher and Park) and many

more used in many of the digital signal processing applications. These algorithms are designed in

a highly structured form and exhibits a large amount of parallelism. Thus, these algorithms are

well suited for the hardware implementation as a sequential data-path on a field-programmable

gate array (FPGA) (Li et al.; Tang et al.; Möller et al.; Andraka; Andraka) and DSP processors (He

and Torkelson, “Design and Implementation of a 1024-Point Pipeline FFT Processor”;

Wanhammar). These algorithms require many arithmetic steps to perform such as addition,

subtraction and multiplication. There are many processors which handle the complex and huge

multiplications which are necessary for the signal transform. Performing multiplication on

hardware is much computationally costly as well as it also requires complex hardware which

eventually requires a huge space for the development of the hardware.

In today's time with the increase in technological advancement, the requirement for the

smaller, portable, cost-effective and efficient performance of any system is necessary. For adaptive

signal processing systems, these are the important factors and more importantly the computational

cost on the hardware point. Thus such computationally costly and power-consuming operation on

the hardware is multiplication. It requires real-time hardware multipliers for adaptive signal

processing which consume too much power and require memory which is scare system resources.

Portable devices such as mobile phones and other communication devices require such multipliers

for the signal analysis at the software level but on contrary the power consumption increases which

leads to shorter battery life. Thus, to reduce the power consumption, design of multipliers can be

obtained by designing algorithms for signal processing in such a way that requires fewer hardware

multipliers.

Signal processing algorithms for the transforms such as Discrete Fourier transform or Fast

Fourier transform use complex numbers (Twiddle Factor) (Andersson) which are multiplied with

signal and their corresponding frequency analysis is obtained. Here, these complex numbers used

in the algorithms are fixed which can be obtained by rotation of a fixed angle on the complex

plane. Implementation of getting such a complex number on hardware is done using different

Rotators. This rotator takes an angle as an input to it and performs rotation based on the input

angle. There are various algorithms such as Coordinate rotation digital computer (CORDIC)

(Volder) which uses these rotators. Thus, there arises a need to select a complex number that

increases the efficiency of the use of rotators and improves the performance.

The approach used for designing such an architecture is by combining the selection of the

coefficient for the transforms and using multiplier-less multiplication algorithms such as Canonical

signed digit (CSD) (Voronenko and Püschel).

Single Constant Multiplication (SCM) and Multiple Constant Multiplications (MCM)

(Voronenko and Püschel; Möller et al.; Aksoy et al.; Dempster and Macleod, “Constant Integer

Multiplication Using Minimum Adders”; Gustafsson). These algorithms use adders and shifter to

perform multiplication. These algorithms are limited to constant multiplication but since most of

the signal processing algorithms require multiplication with a constant number these multiplierless

multiplication algorithms can be implemented on low-cost hardware devices such as field-

programmable gate array (FPGA).

1.2 Objective

The objective of this thesis is to design a tunable multiplier-less architecture for

determining the coefficients on the basis of tunable parameters like the signal space, the number

of adders required, maximum allowable error and angles. It reduces the hardware architecture

used in the multiplierless constant rotators for the signal processing transform. It also provides the

optimized number of coefficients which will be used by the sinusoidal transforms like Discrete

Fourier transform, Discrete Cosine transform, Walsh-Hadamard transform (Ahmed and Rao,

“Walsh-Hadamard Transform”) as well as non-sinusoidal transforms like the Binary HAAR

transform.

Based on study of the existing techniques for designing the multiplier-less architecture for

signal processing transforms available in the literature, following research objectives are addressed

in the thesis:

1) It proposes an efficient approach for the implementation of the Mixed Scaling and Rotation

CORDIC algorithm and also improves its SQNR by weighted amplifying factors.

2) The second contribution provides Coefficient combined and shift and add implementation

(CCSSI) based approach for the design of multiplier-less rotators for various transforms

for multiple constant rotators as well.

3) Designing a unique tunable multiplier-less architecture for the design of sinusoidal as well

as non-sinusoidal transforms.

1.3 Contribution of the thesis

This thesis addresses two major contribution in the architecture of multiplier-less

algorithms. First, it provides a simple and efficient method to increase the SQNR for the Mixed

Scaling Rotation CORDIC (Lin and Wu) approach. It then presents a combined architecture for

the MSR CORDIC algorithm for designing the sinusoidal transforms. Figure 1.1 presents the block

diagram of the overall framework for the first contribution.

Figure 1.1 Block diagram of the MSR based system

The second technique presents designing of constant rotators that combines the coefficient

selection and the shift and adds implementation in the design process. It takes into the

consideration the tunable parameters viz. Signal space, maximum error that can be allowed and

number of adders and based on these inputs it provides number of possible optimum coefficients

MSR

CORDIC

Weighted

Amplifying factor

Extended

MSR

CORDIC

(improve

d SQNR)

that satisfies the conditions. It also presents a multiplierless tunable architecture for the optimum

coefficients generated which immensely reduce the latency which a multiplication based

algorithms might have required. Emphasize is more on generation of optimum coefficients that is

majorly evaluated by Canonic signed digit algorithm (CSD). Results shows that the framework

works better than the existing algorithms present in the literature. The overall block diagram for

the system is as shown in Figure 1.2 below.

N (number of points) Coefficients

B (Number of bits)

e_max (error)

Number of adders

Figure 1.2 Block diagram of the CCSSI based proposed framework

1.4 Organization of the thesis

The thesis has five chapters followed by the references. The first chapter is the

Introduction. Chapter 2 gives the literature review and background theory. Chapter 3 describes

the proposed algorithm for first contributions. The Second Proposed Algorithm and Tunable

Architecture is discussed in Chapter 4. At the end conclusion of the work with the future scope is

discussed in Chapter 5 which is then followed by References.

Chapter 2 (Literature Survey): In this chapter study of various multiplication algorithms

are discussed. Also, the bottleneck and research issues based on the study of different algorithms

are highlighted.

Chapter 3 (Proposed Multiplierless Approach based on MSR CORDIC): This chapter

presents proposed techniques for addressing the research issues of Mixed Scaling and Rotation

CORDIC algorithm.

Chapter 4 (CCSSI based proposed multiplierless architecture): This chapter extends the

existing CCSSI algorithm with for different angles and defines a tunable architecture for

Coefficient combined scaling and shift and add implementation approach.

Proposed Framework

The first technique proposes a weighted amplifying factor based approach for improving

the SQNR keeping the hardware same for the Mixed Scaling and Rotation CORDIC algorithm.

The Second technique addresses the issue of optimizing the number of coefficient in the

CCSSI algorithm based on the tunable parameters, the considered parameters are signal space,

maximum allowable error and number of adders. Also an architecture for the tunable multiplierless

algorithm for sinusoidal as well as non-sinusoidal transform is addressed. Given number of points,

number of adders, maximum error, and signal space it generates the coefficients for the signal

processing transform. The results of the overall framework are presented and discussed.

Chapter 5 (Conclusion and Future scope): This chapter summarizes and presents the

conclusions of the overall thesis. The scope of the future work in the domain is discussed.

Chapter 2

Literature Review and Background Theory

In the chapter below background on Rotators and different multiplierless multiplication

algorithm is provided. Later in the chapter, study of various existing techniques for multiplierless

architectures are discussed followed by the research issues of the existing techniques.

2.1. Rotators used in Hardware

A Rotation operation in the signal processing algorithms is a multiplication by a

complex number whose magnitude is equal to one. Discrete Fourier transform (DFT) or Fast

Fourier transform (FFT) (Ahmed and Rao, “Fast Fourier Transform”), Discrete sine or cosine

transform (DCT) and also many filters such as IIR filters and FIR filters uses rotation operation in

their algorithms (Garrido and Grajal).

A rotation of a complex number in a complex plane is carried out by multiplying a complex

number with 𝑒𝑗𝛼. The new obtained complex number is at the angle 𝛼. Mathematically it can be

written as

[
𝑋
𝑌

] = [
𝑐𝑜𝑠𝛼 −𝑠𝑖𝑛𝛼
𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼

] [
𝑥
𝑦] (2.1)

where 𝑥 and 𝑦 are the current complex point (𝑥 + 𝑗𝑦) and X and Y are the point (𝑋 + 𝑗𝑌)

obtained after rotation by angle 𝛼.

The values obtained from the above equation are scaled by a factor of K which remains

fixed once the number of iterations are decided. But, the scaling factor inherent to this algorithm

is an important drawback in this method.

 For implementing this rotation on hardware either the CORDIC algorithm or complex

multipliers are popular approaches found in the literature.

2.2. Standard CORDIC (Volder)

CORDIC stands for the Coordinate Rotation in Digital Computer. In the digital system, the

CORDIC algorithm uses shift and add implementation for the micro rotation which is more simple

and easy to implement on hardware whereas ,complex multipliers (Despain) uses real multipliers

with the adders which are much complex to implement on the hardware.

To implement such algorithms a rotator is required in the hardware which performs rotation

based on the given angle. There are two main types of rotators:

 1. General Rotators

 2. Constant Rotators

In the case of general rotators, it can carry out rotation based on any angle which is given

as an input to the rotators. This type of rotator is usually implemented by the complex multipliers

which consist of four real multipliers and two adders. The coefficient obtained by the rotation is

simply multiplied with a signal as an input to these complex multipliers. On the other hand, in case

of constant rotators, they are designed to rotate based on a fixed angle. The rotations are fixed by

specific angles and these types of rotators are used by the CORDIC algorithms. Algorithms such

as CORDIC use micro rotations by breaking angles that are easy to implement using constant

rotators and multiplication is carried out using shifters and adders in the hardware.

This process tries to look for an optimal way from the hardware point of view, a way to

ensure that the computation is as fast as possible with accepted accuracy so to make the architecture

of the hardware as simple as possible. CORDIC is a simple shift-add iterative procedure to perform

several computing tasks. It works in two modes: the rotation-mode and the vectoring-mode. In the

Rotation-mode, CORDIC determines the components of a vector because of the rotation of a given

vector by a certain angle. It is widely used for complex multiplications and graphic applications.

Using vectoring-mode CORDIC, the magnitude as well as the phase angle of a planar vector are

estimated from its component values.

The following equations demonstrate rotation of a vector with the help of CORDIC

algorithm.

 [
𝑋𝑖 + 1
𝑌𝑖 + 1

] = 𝐾𝑖 [
1 −𝑡𝑎𝑛𝛼𝑖

𝑡𝑎𝑛𝛼𝑖 1
] [

𝑥𝑖
𝑦𝑖

] (2.2)

where, 𝑡𝑎𝑛𝛼𝑖= 2(-i)

Hence it brings,

𝑋𝑖 + 1 = 𝑘𝑖 (𝑥𝑖 − 𝑑𝑖 𝑦𝑖 2−𝑖) (2.3)

𝑌𝑖 + 1 = 𝑘𝑖 (𝑦𝑖 + 𝑑𝑖 𝑥𝑖 2−𝑖) (2.4)

Where, 𝑑𝑖 𝑡𝑎𝑘𝑒𝑠 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 (+1, −1).

CORDIC suffers the drawback of large number of iterations (i), for example., to get the

value of angle of 45 degree it takes on the fixed i number of iterations, whereas for the value i=0 ,

the value of 45 degree can be reached.

2.3 Angle Recoding CORDIC (Hu and Naganathan)

The disadvantage for CORDIC algorithm is addressed in the second version which is

named as Angle recoding CORDIC. In the equations od the CORDIC given below it tries 𝑑𝑖 to

take on the value of (+1,0,-1) which is nothing but allowing the CORDIC algorithm to take on the

value of zero and then finding the minimum number of steps to reach a particular angle with the

help of Greedy algorithm.

𝑋𝑖 + 1 = 𝑘𝑖 (𝑥𝑖 − 𝑑𝑖 𝑦𝑖 2−𝑖) (2.5)

𝑌𝑖 + 1 = 𝑘𝑖 (𝑦𝑖 + 𝑑𝑖 𝑥𝑖 2−𝑖) (2.6)

Where, 𝑑𝑖 𝑡𝑎𝑘𝑒𝑠 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 (+1,0, −1).

2.4 Unified CORDIC (Walther)

CORDIC algorithms then can be computed with help of linear, circular, and hyperbolic

trajectories. Depending upon their equation, trajectories of the vectors will be defined and

generated by the successive iterations. Out of these three categories, circular and hyperbolic are

more prevalent and widely used. Circular CORDIC is mainly used for the computation of

sine/cosine functions, waveform generation, implementation of digital filters, transform

computation, matrix calculations etc., whereas, Hyperbolic CORDIC is used for the computation

of exponents and sinh/cosh functions, neural networks. CORDIC has a wide range of applications

and is also used to simplify other basic and important algorithms like Eigen-value estimations, QR

decomposition, phase and frequency estimations, singular value decomposition ,synchronization

in digital receivers, graphics processing and robot manipulation, both rotation and vectoring-

modes. The hardware implementation of these applications requires more than one CORDIC

processor operating in different modes and trajectories (Aggarwal et al.).

The following equations shows the Unified CORDIC with multiple trajectories. The

parameter 𝑚 determines the type of trajectory.

 𝑋𝑖 + 1 = 𝑥𝑖 − 𝑚 𝑑𝑖 𝑦𝑖 2−𝑖 (2.7)

 𝑌𝑖 + 1 = 𝑦𝑖 + 𝑑𝑖 𝑥𝑖 2−𝑖 (2.8)

𝑚 = 0 ,1, −1 𝑓𝑜𝑟 𝑙𝑖𝑛𝑒𝑎𝑟, 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑎𝑛𝑑 ℎ𝑦𝑝𝑒𝑟𝑏𝑜𝑙𝑖𝑐 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦.

As the equations of hyperbolic, circular, and linear CORDIC are different, therefore each

will have a different architecture. The algorithm works on bringing all the different trajectories

into a single combined architecture, thus it presents reconfigurable CORDIC (Co-ordinate

Rotation Digital Computer) architectures which can be configured to operate either for circular or

hyperbolic trajectories in rotation as well as vectoring-modes by manipulating equations in such a

way that changing one value may change to either of the remaining two algorithms. It propose

three reconfigurable CORDIC designs: a reconfigurable rotation mode CORDIC that operates

either for circular or hyperbolic trajectory, a reconfigurable vectoring-mode CORDIC for circular

and hyperbolic trajectories, and a generalized reconfigurable CORDIC that can operate in any of

the modes for both circular as well as hyperbolic trajectories. The reconfigurable CORDIC can

perform the computation of various trigonometric and exponential functions, logarithms (Hoang

et al.; De Caro, Genovese, et al.; Sai and Hoang; Paul et al.; Johansson et al.; De Caro, Petra, et

al.; Pineiro et al.; Juang et al.; Goel et al.), square-root, etc. of circular and hyperbolic CORDIC

using either rotation-mode or vectoring mode of operation in one single circuit. The various

applications include digital synchronizers, graphics processors, scientific calculators and many

other applications. Because all the three architectures are implemented in one architecture and in

a combined way, it saves a lot of area as well. In Unified CORDIC however, it is difficult to

increase the region of convergence (Hu et al.) for all the three trajectories. For instance, the ROC

for circular is in the range [-99, 99] and for the hyperbolic trajectory the same comes down to 60.4

degrees. Also the scaling factor are different for the trajectories.

2.5 Reconfigurable CORDIC (Aggarwal et al.)

Unified CORDIC discussed in the sections above takes care of three different trajectories

viz. Circular, Linear and Hyperbolic CORDIC operations by adding a parameter to the basic

CORDIC equations. However, the major drawback it suffers from is in the region of convergence

(ROC). The hyperbolic function cannot be defined of the entire range of ROC. Since the hyperbolic

functions lack symmetry, the second order approximations of Taylor series can only get the ROC

of 22.50.The drawback for the ROC in Unified CORDIC is in changing the scaling operations

using the second order Taylor series approximations, the algorithm imposes restrictions on the

basic shift i=4 which limits the region of convergence to 7.160 however this can be increased to

22.50 by increasing the number of iterations.

Reconfigurable CORDIC proposes the CORDIC with 1) Reconfigurable Rotational mode

with trajectories viz. Circular and Hyperbolic and extends the ROC for the entire range of

computations. 2) Reconfigurable Vectoring mode with trajectories viz. Circular and Hyperbolic

functions with extended ROC. It takes the third order Taylor series approximations for deriving

the matrices for the CORDIC operation. Same set of elementary angles are used to derive both

Circular and Hyperbolic operations. The pipelined structure (He and Torkelson, “Design and

Implementation of a 1024-Point Pipeline FFT Processor”; Gorman and Wills; He and Torkelson,

“Designing Pipeline FFT Processor for OFDM (de) Modulation”; Oh and Lim) proposed helps

decrease the latency inculcated by the algorithm. However, the algorithm do not generate the

accuracy levels without using multipliers. Also, the latency is increased for recursive design

proposed.

2.6 Enhanced Scaling free CORDIC (Jaime et al.)

Enhanced Scaling Free CORDIC has been implemented successfully in wireless

applications. This new enhancement and some further improvements in this method have obtained

some architectures which are able to reach 35% lower latency and 36% reduction in area and power

consumption compared to the original architecture. This scaling free CORDIC is mainly intended

for rotation mode but it can also be used for vectoring mode. It makes micro rotation following the

same direction. In this algorithm, the approximations are made in the following form:

 sin 𝑥 = 𝑥 −
𝑥

3!

3
+

𝑥

5!

5
−

𝑥

7!

7
+ ⋯ (2.9)

cos 𝑥 = 1 −
𝑥

2!

2
+

𝑥

4!

4
−

𝑥

6!

6
+ ⋯ (2.10)

This method also overcomes the calculation of the z factor that was performed in the

standard CORDIC. A scaling free CORDIC iteration can be expressed as follows:

This brings down the enhanced CORDIC equations as

𝑋𝑖 + 1 = 𝑥𝑖 (1 −
𝑥

2!

2
+

𝑥

4!

4
−

𝑥

6!

6
+ ⋯) − 𝑦𝑖 (x −

𝑥

3!

3
+

𝑥

5!

5
−

𝑥

7!

7
+ ⋯)

(2.11)

𝑌𝑖 + 1 = 𝑦𝑖 (1 −
𝑥

2!

2
+

𝑥

4!

4
−

𝑥

6!

6
+ ⋯) + 𝑥𝑖 (x −

𝑥

3!

3
+

𝑥

5!

5
−

𝑥

7!

7
+ ⋯)

(2.12)

Scaling free CORDIC method can be implemented on hardware by just adders and shifters.

But the only problem with this system is its extremely small range of convergence.

2.7 EEAS CORDIC (Meher et al.)

In digital system, numbers need to be defined with a finite number of bits, which leads to

quantization error. cos 𝛼 𝑎𝑛𝑑 sin 𝛼 in equation (2.1) can be written as C and S which are integers

and can be implemented in a digital system. The range of this C and S which uses b bits is given

as [−2𝑏−1, 2𝑏−1 − 1] . This transforms the equation in a digital system as,

[
𝑋𝐷

𝑌𝐷
] = [

𝐶 −𝑆
𝑆 𝐶

] [
𝑥
𝑦] (2.13)

where, 𝑋𝐷 𝑎𝑛𝑑 𝑌𝐷 represents the point in the digital system, and C and S are obtained by a different

method which is discussed further in this section.

As mentioned in the above section on Rotators used in Hardware, there are two types of

rotators one is a general rotator and the second type of rotator is a constant rotator. CORDIC

algorithm uses general rotations and also breaks down rotation angle into a series of k-micro

rotations which can be represented as 𝛼𝑘 = ± tan−1 2−𝑘. These angles use only two adders and

calculate the rotation as

[
𝑋𝐷

𝑌𝐷
] = [

2𝑘 −𝛿𝑘

𝛿𝑘 2𝑘] [
𝑥
𝑦] (2.14)

where, C is denoted as 2𝑘 and S as 𝛿𝑘. Here 𝛿𝑘 belongs to set {-1, 1} which is required to determine

the direction of rotation. There also exists a notion of scaling factor as for C and S which is denoted

by R and this algorithm calculates scaling for each angle k as 𝑅(𝑘) = √22𝑘 + 1.

The extended elementary angle set (EEAS) CORDIC algorithm (Meher et al.) is based on

constant rotators. Constant rotators work on a fixed angle only due to which, this algorithm

considers the elementary angles only, given by 𝛼𝑘 = tan−1 (𝛿𝑘2−𝑎𝑘 + 𝛾𝑘2−𝑏𝑘). The values

𝛿𝑘& 𝛾𝑘 belongs to set {-1, 0, 1} and 𝑎𝑘 & 𝑏𝑘 belongs to N. The value of 𝑏𝑘 > 𝑎𝑘 and a value 𝑐𝑘 =

𝑏𝑘 − 𝑎𝑘, the rotation which uses four adders can be determined as

[
𝑋𝐷

𝑌𝐷
] = [

2𝑏𝑘 −(𝛿𝑘2𝑐𝑘 + 𝛾𝑘)

(𝛿𝑘2𝑐𝑘 + 𝛾𝑘) 2𝑏𝑘] [
𝑥
𝑦] (2.15)

2.8 Mixed Scaling and Rotation CORDIC (Lin and Wu)

The algorithm uses 2 ∗ (𝐼𝑘 + 𝐽𝑘 + 1) adders per micro rotation and each micro rotation is

calculated as

[
𝑋𝐷

𝑌𝐷
] = [

∑ 𝛿𝑘𝑖2𝑎𝑘𝑖
𝐼𝑘−1
𝑖=0 − ∑ 𝛾𝑘𝑗2𝑏𝑘𝑗

𝐽𝑘−1
𝑗=0

∑ 𝛾𝑘𝑗2𝑏𝑘𝑗
𝐽𝑘−1
𝑗=0 ∑ 𝛿𝑘𝑖2𝑎𝑘𝑖

𝐼𝑘−1
𝑖=0

] [
𝑥
𝑦] (2.16)

The major difference between the conventional CORDIC algorithm and EEAS CORDIC

& MSR-CORDIC is that the algorithm provide a solution to compensate scaling which depends

on the rotation angle.

Other approaches to reduce the number of micro rotation (Meher et al.) suggest selecting

the subset of micro rotation in CORDIC and approximating the rotation angle to reduce rotation

error.

Another approach for designing rotators is based on optimizing the real constant

multiplication which quantize cos 𝛼 𝑎𝑛𝑑 sin 𝛼 by b number of bits, the rotation is given as,

[
𝑋𝐷

𝑌𝐷
] = [

⌊2𝑏 𝑐𝑜𝑠 𝛼⌉ −⌊2𝑏 𝑠𝑖𝑛 𝛼⌉

⌊2𝑏 𝑠𝑖𝑛 𝛼⌉ ⌊2𝑏 𝑐𝑜𝑠 𝛼⌉
] [

𝑥
𝑦] (2.17)

where, ⌊𝐷⌉ represents a rounding operation. Here, the multiplication of ⌊2𝑏 𝑐𝑜𝑠 𝛼⌉ 𝑎𝑛𝑑 ⌊2𝑏 𝑠𝑖𝑛 𝛼⌉

with 𝑥 and 𝑦 is implemented by using shift and add operations.

One of the simple approaches is to use a canonic signed digit (CSD) (Garrido, Grajal, and

Gustafsson) transform which was described in the above section on multiplierless multiplication.

This approach provides less number of adders compared to convention binary multiplication.

There also many other approaches that can further reduce the number of adders in multiplication

which are known as single constant multiplication (SCM) and Multiple constant multiplication

(MCM) (Voronenko and Püschel) techniques.

There exist many other approaches which are based on trigonometric identities (Philipov

et al.; Arguello et al.; James; Garrido, Qureshi, Takala, et al.). These approaches and algorithms

restrict the set of coefficients used for the rotation.

2.9 CORDIC II: A New improved Algorithm (Garrido,

Källström, Kumm, et al.)

Unlike the prior CORDIC algorithms, The CORDIC II algorithm uses new angle sets to reach

faster convergence. The basic CORDIC uses micro-rotations for the implementations of rotators

which increases the latency of the algorithm. CORDIC II algorithm uses a combinations of Friend

angles, Uniform scaled rotations (USR) and Nano rotations to reach to a particular angle. Friend

angles are those angles ai for which there exists a set of coefficient Pi = Ci + j Si, whose angle is ai,

such that there magnitudes are same. USR uses the same scaling as the redundant CORDIC.

CORDIC II uses six rotation stages in pipeline that uses the one of the three angle sets.

Stage 1: This stage takes care of trivial angles + 1800, + 900 and set the left over angles in the

range from + 450. The Architecture of this takes two negators and four 2:1 multiplexers.

Stage 2: It uses friend angles and defines their architecture. It consists of five adders and seven

2:1 multiplexers.

Stage 3: This uses USR CORDIC. Its architecture consists of two adders and two 2:1

multiplexers.

Stage 4 & 5: These two stages uses conventional CORDIC algorithm for rotations by angles

1.7900 and 0.8950.

Stage 6: The sixth stage uses Nano rotations. It uses two adders, two shifters and scaling.

By using the proposed stages, the CORDIC II algorithm requires minimum number of adders

than the conventional CORDIC used so far. However, CORDIC II algorithm defines sinusoidal

rotators only all the six stages takes care for circular rotation matrix.

2.10 Multiplication by two integers using the minimum

number of adders (Dempster and Macleod, “Multiplication

by Two Integers Using the Minimum Number of Adders”)

This method talks about the minimum adder graph algorithm which designs shifters and

adder circuits that aid multiplication by integers using minimum number of adders. It considers

the circuit as a graph made up of two input adders. It performs an exhaustive search of all possible

graph topologies and produces two Tables out of which one contains the number of adders required

to produce the circuit and other contains the partial products of the adders. Further, it also talks

about reusing the repeating products which come up while multiplying two numbers. So, if an

adder block has the same two inputs as before it doesn’t need to calculate that again. Also, it takes

care of cases in which one or two inputs of the adders are powers of 2. If that is the case, no extra

adders are required as that can be achieved with shifters alone. Thus, the algorithm proposed claims

the fewest adders required in a circuit.

2.10.1 Multiplier-less Constant Multiplication Algorithms

(Voronenko and Püschel)

There are many existing algorithms provided in the literature where the constant

multiplication is carried out using a network of binary shifters and adders. Implementation on the

hardware point of view binary multiplication is very easy and less costly since the hardware cost

depends on the number of adders or subtractors used for the constant multiplication. Shifts in the

hardware can be implemented by hardwiring. In literature, there are many algorithms available for

the multiplierless constant multiplication such as canonic signed digit (CSD), single constant

multiplication (SCM), multiple constant multiplications (MCM).

In this approach the binary multiplier can be represented by an equation as below,

 𝐶 = ∑ -𝑐𝑖2𝑖𝑛
𝑖 =0 (2.18)

Here in the above equation 𝐶 is the output and 𝑐𝑖 is the coefficient which belongs to set

{0, 1}. Here, the number of adders required for the multiplication are determined by calculating

the number of nonzero 𝑐𝑖 in the above equation. Thus, in the signed digit notation, the number of

adders used for the constant multiplication will be N-1 if there are total N nonzero 𝑐𝑖 in the above

equation.

In the concept of a canonic signed digit c belongs to different set which is {-1, 0, 1} and it

is represented as 1̅ in the binary representation of the number. Thus, by including -1 in the set, the

number of adders used for the multiplication of constants can be reduced. The method for

calculating the number of adders is the same as signed digits which are calculating the total number

of nonzero 𝑐𝑖 in the binary representation and subtract 1 from it which gives the number of adders.

But before calculations, one needs to reduce every two consecutive 1's in the number with -1

representation. For instance, if 7 needs to be multiplied with a constant x i.e. required to find 7x.

The binary representation of 7 can be written as 111, and using shifters and adders x can be

multiplied as (𝑥 ≪ 2 + 𝑥 ≪ 1 + 𝑥) which shows that 2 adders are required for multiplication of

constant x with 7. But using canonic signed digit method multiplication can be performed using

only one adder. hence substituting two consecutive 1's with -1 it can be done as given 11 and can

be written as 101̅, by substituting in the same way in 7, it can be written as 1001̅ which shows

that only 1 adder is required for the multiplication of x with 7. This can be represented in the form

of adders and shifters as (𝑥 ≪ 3 − 𝑥).

The CSD transform as described above cannot be directly applied to a negative number.

However, for finding CSD transform of a negative number, first take CSD transform of a positive

number and then flip the sign of nonzero digits in the binary which gives CSD transform for a

negative number. Thus using CSD transform number of adders and cost of hardware can be saved,

however, it is not the optimal solution.

2.11 Combined Coefficient Selection and Shift and

Implementation (CCSSI) (Garrido, Qureshi, and Gustafsson)

This approach uses the combined coefficient selection and shit-and-add implementation

(CCSI) method and calculates the total number of coefficients obtained for different cases. The

approach does not set any restriction to C + j S selection it selects the best and efficient coefficient

which is then used for multiplication with x and y using shift-and-add implementation.

It can solve two types of rotation problems SCR and MCR. The goal here is to find the

optimal coefficient and the total number of coefficients with the given input angles based on N

point DFT , word length i.e. b bits, maximum allowed error 𝑒𝑚𝑎𝑥 and number of allowed adders

that can be used, which is represented in the block diagram in the Figure-2.1 below.

An example to explain this approach is considered with word length to be b = 5, 𝑒𝑚𝑎𝑥 = 0.05,

angle = 14 & 38 and the number of allowed adders is 4.

1) Step-1: First complete design space which consists of all possible finite word length values as

illustrated in Figure-2.2 (a) for our example. For this consider 22𝑏−2 different coefficient

values for every angle in the provided set of angles.

2) Step-2: Narrow down the set of coefficient based on the angle 𝛿 = sin−1 𝑒𝑚𝑎𝑥 from the angles

taken into consideration. This is shown in the Figure-2.2 (b). Considering the coefficient in the

range of 𝑎𝑛𝑔𝑙𝑒𝑠 𝛼 + 𝛿 𝑎𝑛𝑑 𝛼 − 𝛿 , get the coefficient which has the rotation error less than

the 𝑒𝑚𝑎𝑥.

3) Step-3: Under this step, the coefficients are further reduced based on the scaling. In the

example considered, fixed scaling is used. Here the bound for reducing search space based on

scaling is taken as 2 ∗ 𝑅𝑓𝑖𝑥𝑒𝑑 ∗ 𝑒𝑚𝑎𝑥 , Figure-2.2 (c) illustrate the same.

CCSSI

N

b

e_ma

x

adde

rs

Optimal Coefficient

Coefficient

Total number

of coefficient

 Figure 2.1: Block Diagram of the CCSSI based approach

4) Step-4: The number of adders required to implement each rotation is determined. Before that

kernels are formed based on the remaining coefficient till Step-3. A kernel is the set of the

coefficient for M angles. The next step is the number of adders are calculated for the kernel

and then reduced set of kernel based on the maximum adder bound.

5) Step-5: Calculate the number of efficient coefficients obtained at the end.

Figure 2.2: Steps for the proposed approach. (a) Initial design space with the required angles. Here

are represented angle alpha = 14 & 38. (b) Reduced coefficient based on the delta angle. (c) Further

reduction of coefficient based on the fixed scaling factor.

 Summary

This Chapter discussed various techniques used for the multiplierless algorithms. CORDIC

based approaches are well known for implementation of multiplierless architectures however, it

carries certain drawbacks which increases the latency of the architecture and hence various

versions of CORDIC are discussed. Unified CORDIC approach takes care of three different

trajectories viz. Linear, Circular and Hyperbolic and hence it reduces the hardware overhead.

However, the common region of convergence and scaling factor are major issues of it. Mixed

Scaling Rotations (MSR) CORDIC is an efficient technique to determine the coefficients,

however, the SQNR can be improved which can improve the performance of the algorithm

 Coefficient Combined Selection and shift and Add implementation (CCSSI) approach

gives more flexibility compared to the CORDIC based approaches and it also tries to optimize the

hardware for particular tunable parameters like number of bits, number of adders and maximum

allowable error. This helps in improving the latency of the architecture by minimizing the hardware

required for a particular coefficient to be generated. MCR based coefficient selection pose an

important bottleneck for CCSSI based algorithm as it is difficult to find common radius for the

given tunable parameters. With CCSSI sinusoidal as well as non-sinusoidal coefficients also can

be found.

Chapter 3

Proposed Approach Based On Mixed Scaling

CORDIC

Co-ordinate Rotational Digital Computer (CORDIC) is an iterative arithmetic algorithm

based on the principles of two dimensional geometry. The algorithm offers simple hardware

implementation consisting of shift and add operations. It is suitable for the computation of

trigonometric and hyperbolic functions, multiplication and division operations and logarithms. The

simplicity of implementing these mathematical operations leads to its applications in Digital Signal

Processing, such as Fast Fourier Transformation (FFT) (Heideman et al.; Ahmed and Rao, “Fast

Fourier Transform”; James), Eigenvalue Decomposition, Singular Value Decomposition and QR

factorization (Walther).

The iterative nature of the conventional CORDIC algorithm affects the speed of

computation. Several algorithms have been proposed in the literature such as Angle Recording

(AR), Fast CORDIC, Extended Elementary Angle Set (EEAS) , Modified Vector Rotational

(MVR), Mixed Scaling Rotation (Meher et al.) amongst others to reduce the number of iterations.

MSR-CORDIC can also be seen as the universal vector rotational CORDIC engine encompassing

aforementioned algorithms. It significantly reduces the number of iterations thereby improving the

speed and enhancing the signal-to-quantization-noise-ratio (SQNR) performance. It offers a

unique feature of allowing intermediate vectors to have values other than unity by controlling the

amplifying factor. The algorithm can be applied to the applications where the rotation angles are

usually known beforehand.e.g. The twiddle factor in FFT (Ahmed and Rao, “Fast Fourier

Transform”).

The main theme of the proposed approach lies in redefining the amplifying factor by

introducing terms for representing the direction of the rotations. It is based on the principles of

geometry consisting micro-rotations with scaling and MSR-CORDIC algorithm. With redefined

amplifying factor, the optimal parameters then can be calculated similar to (Lin and Wu) such that

norm error and angle error are minimized at the same time. The main contribution lies in the fact

that it provides higher SQNR performance while preserving the features of MSR-CORDIC.

A strong feature of the proposed algorithm is that it does not require additional hardware

when compared to the existing MSR-CORDIC implementations.

3.1 Mixed Scaling and Rotation (MSR) CORDIC:

MSR-CORDIC algorithm is designed such that the rotations and scaling operations are

performed at the same time. Unlike the conventional CORDIC, the MSR-CORDIC algorithm

minimizes the errors in both the angle and norm. It also provides the feature of adjusting the range

of the norm. These unique features of MSR-CORDIC provide better SQNR performance, global

solution and reduction of round off noise. The algorithm 1 recalls the MSR-CORDIC scheme (Lin

and Wu).

Various parameters are as follows: n denotes the nth iteration, N denotes the total number

of iterations, ɳi(n); µj(n) Є {1, 0, 1}; si(n); tj(n) Є {0, 1,.. S}, where S denotes the number of

maximum shifts; I and J denotes the number of signed-power-of-two (SPT) terms of x(n) and y(n)

respectively; ɵn is the nth elementary angle; Z(n) is the accumulative angle, and Z(0) is 0; �̅�n

denotes the product of the amplifying factors in the nth iteration, and �̅�0 is 1. P denotes the scaling

factor, and Nspt is denoted as the SPT term used which is the sum of I and J.

The design parameters si(n), tj(n), ɳi(n) and µj(n)are selected such that the angle error

|Z(N) − ɵ| and norm error |1 − 𝑃| are minimized at the same time; where ɵ is the targeted

angle.

Algorithm 1 MSR-CORDIC Scheme

1: for n: =1 to N

2: Perform micro-rotations and scaling

 [
𝑥(𝑛)
𝑦(𝑛)

] =

[

∑ɳ𝑖(𝑛)2−𝑠𝑖(𝑛)

𝐼

𝑖=1

∑µ𝑗(𝑛)2−𝑡𝑗(𝑛)

𝐽

𝑗=1

∑µ𝑗(𝑛)2−𝑡𝑗(𝑛)

𝐽

𝑗=1

∑ɳ𝑖(𝑛)2−𝑠𝑖(𝑛)

𝐼

𝑖=1

]

 [
𝑥(𝑛 − 1)
𝑦(𝑛 − 1)

]

 (3.1)

3: Calculate elementary angle

𝜃𝑛 = 𝑡𝑎𝑛−1 (

∑ µ𝑗(𝑛)2−𝑡𝑗(𝑛)𝐽
𝑗=1

∑ ɳ𝑖(𝑛)2−𝑠𝑖(𝑛)𝐼

𝑖=1

)

 (3.2)

4: Update accumulation angle

Z(n)=Z(n-1) + 𝜃𝑛
 (3.3)

5: Amplifying factor in the nth rotation

𝑝𝑛 = √(∑ 2−𝑠𝑖(𝑛)

𝐼

𝑖=1

)

2

+ (∑ 2−𝑡𝑗(𝑛)

𝐽

𝑗=1

)

2

 (3.4)

6: Product of the amplifying factor in the nth rotation

𝑝𝑛̅̅ ̅ = 𝑝𝑛−1̅̅ ̅̅ ̅̅ 𝑋 𝑝𝑛
 (3.5)

7: end

8: Scaling factor

𝑃 = ∏𝑝𝑛

𝑁

𝑛=1

 (3.6)

|1 − 𝑃| are minimized at the same time; where ɵ is the targeted angle.

3.2 The Proposed Enhanced MSR Scheme

Given a rotation angle 𝜃 and vector[𝑥 , 𝑦]𝑇, the resultant vector [𝑥′, 𝑦′]𝑇 can be

computed as follows:

[
𝑥′

𝑦′] = [
cos 𝜃 −sin 𝜃
sin 𝜃 cos 𝜃

] [
𝑥
𝑦]

 (3.7)
The resultant angle can be decomposed of multiple angles by using the concept of micro-

rotations. Hence, (3.7) gets modified to

[
𝑥′

𝑦′] = (∏ [
cos 𝜃𝑛 −sin 𝜃𝑛

 sin 𝜃𝑛 cos 𝜃𝑛
]𝑁

𝑖=1) [
𝑥
 𝑦]

 (3.8)

 Where, 𝜃 = ∑ 𝜃𝑛

𝑁
𝑛=1

N is the total number of rotations and 𝜃𝑛 is the nth rotation angle.

The principal theme of the proposed work is to replace (3.8) by scaled products such that

[
𝑥′

𝑦′] = (∏ [
𝑣𝑛 cos 𝜃𝑛 −𝑣𝑛sin 𝜃𝑛

 𝑣𝑛sin𝜃𝑛 𝑣𝑛cos 𝜃𝑛
]𝑁

𝑖=1) [
𝑥
 𝑦]

 (3.9)

Where, 𝑣𝑛 is the scaling factor,

𝜃 = ∑ 𝜃𝑛

𝑁

𝑛=1

 (3.10)
And

∏𝑣𝑛 = 1

𝑁

𝑛=1

 (3.11)

It can be observed from (3.10) that scaling operation is performed in parallel to the micro-

rotation. It is also important to note that the intermediate vectors may have norms other than unity.

Though, to retain the norm of the original vector, multiplication of all the scaling factors shall be

unity. The trivial equality 𝑐𝑜𝑠2𝜃 + 𝑠𝑖𝑛2𝜃 = 1 and (3.12) can be utilized to produce,

∏(√(𝑣𝑛 cos 𝜃𝑛)2 + (𝑣𝑛 sin 𝜃𝑛)2)) = 1

𝑵

𝒏=𝟏

 (3.12)

Further, it can be observed that there is a stark similarity between the structure of MSR-

CORDIC and the method of micro-rotations coupled with scaling as used in (3.10) – (3.12).

The proposed novel MSR-CORDIC algorithm uses this concept in redefining the original

MSR-CORDIC. Equation (3.1) from MSR-CORDIC is analogous to equation (3.9). Based on

(3.13) the amplifying and the scaling factors defined in the algorithm 1 are modified as

𝑣𝑛 = √(∑ ɳ
𝑖
(𝑛)2−𝑠𝑖(𝑛)

𝐼

𝑖=1

)

2

+ (∑ 𝜇
𝑗
(𝑛)2−𝑡𝑗(𝑛)

𝐽

𝑗=1

)

2

 (3.13)

𝑉 = ∏𝑣𝑛

𝑁

𝑛=1

 (3.14)

The redefined amplifying factor contains additional terms ɳi(n) and µj(n). All the

remaining equations (3.1) – (3.3) and (3.5) – (3.6) remain the same. The summary of the same is

given in algorithm 2.

The proposed new MSR-CORDIC preserves all the features provided by the MSR-

CORDIC. It can be adopted for both normal and generalized MSR-CORDIC schemes. Further, it

is important to note that there is no need of any additional adders or shifters in comparison to the

conventional MSRCORDIC schemes. The boundary condition in the proposed scheme remains

the same as of the classical scheme, i.e. 𝑣𝑢𝑝𝑝𝑒𝑟 = 𝑝𝑢𝑝𝑝𝑒𝑟 ,𝑣𝑙𝑜𝑤𝑒𝑟 = 𝑝𝑙𝑜𝑤𝑒𝑟 . With the same

hardware complexity, the proposed MSR-CORDIC provides greater SQNR performance.

3.3 The Proposed Algorithm

Algorithm 2 Proposed MSR-CORDIC Scheme with weighted

amplifying factors

1: for n: =1 to N

2: Perform micro-rotations and scaling using equation

 [
𝑥(𝑛)
𝑦(𝑛)

] =

[

∑ɳ𝑖(𝑛)2−𝑠𝑖(𝑛)

𝐼

𝑖=1

∑µ𝑗(𝑛)2−𝑡𝑗(𝑛)

𝐽

𝑗=1

∑µ𝑗(𝑛)2−𝑡𝑗(𝑛)

𝐽

𝑗=1

∑ɳ𝑖(𝑛)2−𝑠𝑖(𝑛)

𝐼

𝑖=1

]

 [
𝑥(𝑛 − 1)
𝑦(𝑛 − 1)

]

 (3.15)

3: Calculate elementary angle using equation

𝜃𝑛 = 𝑡𝑎𝑛−1 (

∑ µ𝑗(𝑛)2−𝑡𝑗(𝑛)𝐽
𝑗=1

∑ ɳ𝑖(𝑛)2−𝑠𝑖(𝑛)𝐼

𝑖=1

)

 (3.16)

4: Update accumulation angle using equation

Z(n)=Z(n-1) + 𝜃𝑛
 (3.17)

5: Weighted Amplifying factor in the nth rotation

𝑣𝑛 = √(∑ ɳ
𝑖
(𝑛)2−𝑠𝑖(𝑛)

𝐼

𝑖=1

)

2

+ (∑ 𝜇
𝑗
(𝑛)2−𝑡𝑗(𝑛)

𝐽

𝑗=1

)

2

 (3.18)

6: Product of the amplifying factor in the nth rotation

𝑣𝑛̅̅ ̅ = 𝑣𝑛−1̅̅ ̅̅ ̅̅ 𝑋 𝑣𝑛
Where 𝑣0 = 1
 (3.19)

7: end

8: Scaling factor

𝑉 = ∏𝑣𝑛

𝑁

𝑛=1

 (3.20)

3.4 Results and Discussions

A comparison of the proposed scheme and MSR-CORDIC in terms of the SQNR outcome

is presented in this section. It is shown that the proposed scheme results in better SQNR

performance. The constraints are fixed in the same way as outlined in (Lin and Wu) for the purpose

of simplicity and fairness. An exhaustive search for each type of constraint is carried out to

generate 512 distinct parameters sets of si(n), tj(n), ɳi(n) and µj(n).

MSR-CORDIC offers two sets of schemes, namely, Normalized MSR-CORDIC and

Generalized MSR-CORDIC. A comparison between the proposed scheme and MSR-CORDIC is

presented in Fig.1 with NSPT = 4. Normalized scheme takes any one set of (I; J) that satisfies I +

J = 4, i.e. (4; 0), (0; 4), (1; 3), (3; 1) and (2; 2). It is important to note that sets (4; 0) and (0; 4)

offer only scaling operation and hence they are not considered for the comparison. The SQNR

performance of (1; 3) and (3; 1) are same. Hence, only unique combinations such as (1; 3) is taken

into account for the simulations. Unlike the normalized scheme which has the fixed choice of

combinations for (I; J), Generalized scheme selects the combination which minimizes the angle

error |Z(N) − ɵ| and norm error |1 − 𝑉| the most at the same time.

The following observations can be made from Figure 3.1:

1) For the proposed method similar to the MSR-CORDIC, the generalized scheme offers the

better SQNR performance when compared to the Normalized scheme. Furthermore, the

SQNR performance of (2; 2) is higher when compared to (1; 3).

2) The plot shows that the proposed scheme offers higher SQNR performance for both the

schemes when compared with that provided by corresponding MSR CORDIC

counterparts.

Figure.3.1 SQNR Comparison between MSR_CORDIC and the proposed scheme

The scaling factor in the conventional CORDIC algorithm is fixed as per the number of

iterations. Though, with other algorithms such as Angle recoding, MVR and EEAS (Meher et al.),

the scaling factor changes with every iteration. This leads to higher round-off noise error and hence

deteriorates SQNR performance. The word length can be defined if range of the scaling factor is

known a priori. Thus, the round-off noise can be reduced.

MSR-CORDIC allows to determine the range for the scaling factor such that 𝑝𝑢𝑝𝑝𝑒𝑟 <

𝑝𝑛̅̅ ̅ < 𝑝𝑙𝑜𝑤𝑒𝑟 holds true. The parameter 𝑝𝑙𝑜𝑤𝑒𝑟 is fixed as 1 𝑝𝑢𝑝𝑝𝑒𝑟
⁄ as per the boundary

constraint explained in (Lin and Wu) and the same holds true for 𝑣𝑛̅̅̅̅ .

The analysis of SQNR performance with the change in scaling factor is depicted in Figure.

3.2. The parameters are selected as NSPT = 3, N = 3 and NSPT = 4, N = 2 for Figure. 3.2 (a) and

Figure. 3.2 (b) respectively. Following can be observed from the plot:

1) Similar to MSR-CORDIC, the proposed scheme saturates when 𝑣𝑢𝑝𝑝𝑒𝑟 is 1.5.

2) The proposed scheme has better SQNR performance for the same parameters. When

𝑣𝑢𝑝𝑝𝑒𝑟 value reaches 1.3, the SQNR performance of the proposed scheme is better than

the saturated SQNR value of MSR-CORDIC.

Figure 3.2 (a) Comparing the relationship between SQNR performances and scaling factor value

of vupper in generalized scheme of MSR-CORDIC and proposed MSR-CORDIC NSPT = 3 and

N = 3.

(b)

Figure 3.2 (b) Comparing the relationship between SQNR performances and scaling factor value

of 𝑣𝑢𝑝𝑝𝑒𝑟 in generalized scheme of MSR-CORDIC and proposed MSR-CORDIC. NSPT = 4 and N

= 2.

The analysis of the SQNR performance with different NSPT is shown in Figure 3.3. For a

comparison of both, conventional and proposed MSR-CORDIC schemes, the parameters are

selected as NSPT = 3 and NSPT = 4 with N = 2. It can be observed that the performance of the

higher NSPT term is better in both the schemes. Also, the SQNR performance of the proposed

scheme is better when compared with the same NSPT term of the other scheme.

A further observation can be made that the hardware complexity of the proposed algorithm

is the same as MSR CORDIC since scaling and micro-rotation equation for both the algorithm

remains analogous. Hence, the proposed algorithm enhances the SQNR performance without

adding hardware complexity. During the extensive and numerous simulations runs in addition to

those being reported, no instance could be found where the proposed scheme resulted in inferior

SQNR performance than that afforded by the conventional MSR-CORDIC algorithm.

Figure 3.3 Analysis of MSR-CORDIC and proposed scheme for different combinations of NSPT.

Summary

An enhanced MSR-CORDIC algorithm is proposed in this chapter that employs weighted

amplifying factors. The proposed algorithm can be implemented with both, Generalized and

Normalized schemes. The algorithm provides better SQNR performance with no added hardware

complexity. The results are compared with the existing MSR approach and it is found that the

proposed generalized MSR CORDIC shows 6.6 % improvement for a given value of I + J = 3 and

N = 2in the SQNR compared to the existing MSR CORDIC algorithm.

Chapter 4

CCSSI based Proposed Approach

4.1 Proposed Approach based on CCSSI

The proposed approach uses the combined coefficient selection and shift-and-add

implementation (CCSI) (Garrido, Qureshi, and Gustafsson) technique and calculates the total

number of coefficient obtained for the different cases. This approach does not set any restriction

to C+jS selection, it selects the best and efficient coefficient which is then used for multiplication

with x and y using shift-and-add implementation. This approach is further extended to 64 point

FFT and variation of the number of coefficient with the bits, Number of points and Number of

adders is obtained. The design process which is followed for this work is as follow

Proposed approach can solve two types of rotation problems SCR and MCR. The goal here

is to find the optimal coefficient and total number of coefficients with the given input angles based

on N point transform, word length i.e. b bits, maximum allowed error 𝑒𝑚𝑎𝑥 and number of allowed

adders that can be used, which is represented in the block diagram in the Figure-4.1 below.

An example to explain the proposed approach is considered where, word length is taken to

be b = 5, 𝑒𝑚𝑎𝑥 = 0.05, angle = 14 & 38 and number of allowed adders is 4.

Step-1: First complete design space which consists of all possible finite word length values as

illustrated in Figure-4.2 (a). For this, 22𝑏−2 different coefficient are considered for every angle

in the provided set of angles.

Step-2: Narrow down the set of coefficient based on the angle 𝛿 = sin−1 𝑒𝑚𝑎𝑥 from the angles

taken into consideration. This is shown in the Figure-4.2 (b). Considering the coefficient in the

range of 𝑎𝑛𝑔𝑙𝑒𝑠 𝛼 + 𝛿 𝑎𝑛𝑑 𝛼 − 𝛿 , get the coefficient which has the rotation error less than

the 𝑒𝑚𝑎𝑥.

Step-3: Under this step, the coefficients are further reduced based on the scaling. In the

example considered, fixed scaling is used. Here the bound for reducing search space based on

scaling is taken as 2 ∗ 𝑅𝑓𝑖𝑥𝑒𝑑 ∗ 𝑒𝑚𝑎𝑥, Figure-4.2 (c) illustrate the same.

Step-4: The number of adders required to implement each rotation is determined. Before that

kernels are formed based on the remaining coefficient till Step-3. A kernel is the set of the

coefficient for M angles. The next step is the number of adders are calculated for the kernel

and then reduced set of kernel based on the maximum adder bound.

CCSSI

N

b

e_max

adde

rs

Optimal Coefficient

Total number

of coefficient

Figure 4.1: Block Diagram of proposed approach

Step-5: Calculate the number of efficient coefficients obtained at the end.

Figure 4.2: Steps for the proposed approach. (a) Initial design space with the required angles. Here

are represented angle alpha = 14 & 38. (b) Reduced coefficient based on delta angle. (c) Further

reduction of coefficient based on fixed scaling factor.

Table 4.1: MCR Remaining Kernel for b = 5 and max.error = 0.05 for two angles

b = 5, max.error = 0.05

Angle 1 Angle 2 R Error

14 10 + 10i 14.0711 0.0050506

15 11 + 11i 15.2782 0.018207

15 10 + 10i 14.5711 0.029437

14 10 + 11i 14.719 0.048849

14 11 + 10i 14.719 0.048849

15 11 + 12i 15.8296 0.052408

The Number of kernels is calculated with the algorithm described above for different

parameters viz. number of bits (b) and maximum error and the observations are indicated in the

Tables 4.1 to 4.8.

It is observed from the Table 4.1, that for maximum error bound of 0.05 and number of

bits of space equals 5, 24 different coefficients are generated which can implement five angles.

However it is important to note that all the different kernels generated are accumulated around the

radius of 14 and 15 approximately which indicates that the CCSSI is suitable of generating the

common radius used in the algorithms like Fast Fourier transform and other sinusoidal transforms.

To observe the effect of number of bits on the total number of coefficients generated and

the error bound, The number of bits are from varied b=5 till b=8. Table 4.2, 4.3 and 4.4 depicts the

results. As the number of bits or the word length increases, the number of coefficient increases as

well in the given space and hence more coefficients are included.

Table 4.2: MCR Remaining Kernel for b = 6 and max.error = 0.05 for two angles

b = 6, max.error = 0.05

Angle 1 Angle 2 R Error

14 10 + 10i 14.0711 0.005051

16 11 + 11i 15.7782 0.014059

15 11 + 11i 15.2782 0.018207

15 10 + 10i 14.5711 0.029437

14 10 + 11i 14.719 0.048849

14 11 + 10i 14.719 0.048849

Table 4.3: MCR Remaining Kernel for b = 7 and max.error = 0.05 for two angles

b = 7, max.error = 0.05

Angle 1 Angle 2 R Error

14 10 + 10i 14.0711 0.005051

16 11 + 11i 15.7782 0.014059

15 11 + 11i 15.2782 0.018207

15 10 + 10i 14.5711 0.029437

14 10 + 11i 14.719 0.048849

14 11 + 10i 14.719 0.048849

Table 4.4: MCR Remaining Kernel for b = 8 and max.error = 0.05 for two angles

b = 8, max.error = 0.05

Angle 1 Angle 2 R Error

14 10 + 10i 14.0711 0.005051

16 11 + 11i 15.7782 0.014059

15 11 + 11i 15.2782 0.018207

15 10 + 10i 14.5711 0.029437

14 10 + 11i 14.719 0.048849

14 11 + 10i 14.719 0.048849

The results were extended for three, four and five different angles as well and Tables 4.5,

4.6, 4.7 and 4.8 shows the different coefficients found for five angles for radius equal to 15.

Increasing the number of angles i.e. N, also be termed as number of points in transforms like FFT,

the number of unique coefficients found for an error bound of 0.05 are closer to the radius of 15.

For the Table 4.5 below the Coefficient combined and shift and add implementation algorithm is

able to generate four angles closer to the radius and only Angle-5 needs to be taken outside of the

error bound of 0.05. Hence, for number of points like N=256,512 or 1024 which is required in

applications like OFDM. The algorithm can be found suitable for finding maximum number of

coefficients for a given error bound.

 Table 4.5: MCR Remaining Kernel for b = 5 and max.error = 0.05 for five angles

b = 5, max.error = 0.05

Angle-1 Ange-2 Angle-3 Angle-4 Angle-5 R Error

14 14 + 3i 13 + 5i 12 + 8i 10 + 10i 14.0158 0.029014

15 15 + 3i 14 + 6i 13 + 9i 11 + 11i 15.5488 0.035295

15 15 + 3i 14 + 6i 12 + 8i 11 + 11i 15.0069 0.038974

15 15 + 3i 15 + 6i 13 + 8i 11 + 11i 15.5447 0.04121

15 14 + 3i 14 + 6i 12 + 8i 10 + 10i 14.7678 0.042369

15 14 + 3i 14 + 6i 13 + 8i 11 + 11i 14.9349 0.043767

14 15 + 3i 13 + 6i 12 + 8i 10 + 10i 14.6388 0.044977

15 15 + 3i 13 + 6i 12 + 8i 10 + 10i 14.6388 0.044977

14 14 + 3i 13 + 6i 11 + 8i 10 + 10i 13.9702 0.047274

15 14 + 3i 14 + 6i 13 + 8i 10 + 11i 14.8359 0.04767

15 15 + 3i 14 + 6i 13 + 8i 10 + 11i 14.8359 0.04767

15 14 + 3i 14 + 6i 13 + 8i 11 + 10i 14.8359 0.04767

15 15 + 3i 14 + 6i 13 + 8i 11 + 10i 14.8359 0.04767

15 14 + 3i 14 + 6i 12 + 8i 10 + 11i 15.01 0.048311

15 14 + 3i 14 + 6i 12 + 8i 11 + 10i 15.01 0.048311

15 14 + 3i 13 + 6i 12 + 8i 10 + 11i 14.7409 0.048529

15 15 + 3i 13 + 6i 12 + 8i 10 + 11i 14.7409 0.048529

15 14 + 3i 13 + 6i 12 + 8i 11 + 10i 14.7409 0.048529

15 15 + 3i 13 + 6i 12 + 8i 11 + 10i 14.7409 0.048529

15 15 + 3i 14 + 6i 13 + 9i 10 + 11i 15.1043 0.049766

15 15 + 3i 14 + 6i 13 + 9i 11 + 10i 15.1043 0.049766

Table 4.6: MCR Remaining Kernel for b = 6 and max.error = 0.05 for five angles

b = 6, max.error = 0.05

Angle-1 Ange-2 Angle-3 Angle-4 Angle-5 R Error

14 14 + 3i 13 + 5i 12 + 8i 10 + 10i 14.0158 0.029014

15 15 + 3i 14 + 6i 13 + 9i 11 + 11i 15.5488 0.035295

15 15 + 3i 14 + 6i 12 + 8i 11 + 11i 15.0069 0.038974

15 15 + 3i 15 + 6i 13 + 8i 11 + 11i 15.5447 0.04121

15 14 + 3i 14 + 6i 12 + 8i 10 + 10i 14.7678 0.042369

15 14 + 3i 14 + 6i 13 + 8i 11 + 11i 14.9349 0.043767

14 15 + 3i 13 + 6i 12 + 8i 10 + 10i 14.6388 0.044977

15 15 + 3i 13 + 6i 12 + 8i 10 + 10i 14.6388 0.044977

14 14 + 3i 13 + 6i 11 + 8i 10 + 10i 13.9702 0.047274

15 14 + 3i 14 + 6i 13 + 8i 10 + 11i 14.8359 0.04767

15 15 + 3i 14 + 6i 13 + 8i 10 + 11i 14.8359 0.04767

15 14 + 3i 14 + 6i 13 + 8i 11 + 10i 14.8359 0.04767

15 15 + 3i 14 + 6i 13 + 8i 11 + 10i 14.8359 0.04767

15 14 + 3i 14 + 6i 12 + 8i 10 + 11i 15.01 0.048311

15 14 + 3i 14 + 6i 12 + 8i 11 + 10i 15.01 0.048311

15 14 + 3i 13 + 6i 12 + 8i 10 + 11i 14.7409 0.048529

15 15 + 3i 13 + 6i 12 + 8i 10 + 11i 14.7409 0.048529

15 14 + 3i 13 + 6i 12 + 8i 11 + 10i 14.7409 0.048529

15 15 + 3i 13 + 6i 12 + 8i 11 + 10i 14.7409 0.048529

15 15 + 3i 14 + 6i 13 + 9i 10 + 11i 15.1043 0.049766

15 15 + 3i 14 + 6i 13 + 9i 11 + 10i 15.1043 0.049766

Table 4.7: MCR Remaining Kernel for b = 7 and max.error = 0.05 for five different angles

 b = 7, max.error = 0.05

Angle-1 Ange-2 Angle-3 Angle-4 Angle-5 R Error

14 14 + 3i 13 + 5i 12 + 8i 10 + 10i 14.0158 0.029014

15 15 + 3i 14 + 6i 13 + 9i 11 + 11i 15.5488 0.035295

15 15 + 3i 14 + 6i 12 + 8i 11 + 11i 15.0069 0.038974

15 15 + 3i 15 + 6i 13 + 8i 11 + 11i 15.5447 0.04121

15 14 + 3i 14 + 6i 12 + 8i 10 + 10i 14.7678 0.042369

15 14 + 3i 14 + 6i 13 + 8i 11 + 11i 14.9349 0.043767

14 15 + 3i 13 + 6i 12 + 8i 10 + 10i 14.6388 0.044977

15 15 + 3i 13 + 6i 12 + 8i 10 + 10i 14.6388 0.044977

14 14 + 3i 13 + 6i 11 + 8i 10 + 10i 13.9702 0.047274

15 14 + 3i 14 + 6i 13 + 8i 10 + 11i 14.8359 0.04767

15 15 + 3i 14 + 6i 13 + 8i 10 + 11i 14.8359 0.04767

15 14 + 3i 14 + 6i 13 + 8i 11 + 10i 14.8359 0.04767

15 15 + 3i 14 + 6i 13 + 8i 11 + 10i 14.8359 0.04767

15 14 + 3i 14 + 6i 12 + 8i 10 + 11i 15.01 0.048311

15 14 + 3i 14 + 6i 12 + 8i 11 + 10i 15.01 0.048311

15 14 + 3i 13 + 6i 12 + 8i 10 + 11i 14.7409 0.048529

15 15 + 3i 13 + 6i 12 + 8i 10 + 11i 14.7409 0.048529

15 14 + 3i 13 + 6i 12 + 8i 11 + 10i 14.7409 0.048529

15 15 + 3i 13 + 6i 12 + 8i 11 + 10i 14.7409 0.048529

15 15 + 3i 14 + 6i 13 + 9i 10 + 11i 15.1043 0.049766

15 15 + 3i 14 + 6i 13 + 9i 11 + 10i 15.1043 0.049766

Table 4.8: MCR Remaining Kernel for b = 8 and max.error = 0.05 for five angles

b = 8, max.error = 0.05

Angle-1 Ange-2 Angle-3 Angle-4 Angle-5 R Error

14 14 + 3i 13 + 5i 12 + 8i 10 + 10i 14.0158 0.029014

15 15 + 3i 14 + 6i 13 + 9i 11 + 11i 15.5488 0.035295

15 15 + 3i 14 + 6i 12 + 8i 11 + 11i 15.0069 0.038974

15 15 + 3i 15 + 6i 13 + 8i 11 + 11i 15.5447 0.04121

15 14 + 3i 14 + 6i 12 + 8i 10 + 10i 14.7678 0.042369

15 14 + 3i 14 + 6i 13 + 8i 11 + 11i 14.9349 0.043767

14 15 + 3i 13 + 6i 12 + 8i 10 + 10i 14.6388 0.044977

15 15 + 3i 13 + 6i 12 + 8i 10 + 10i 14.6388 0.044977

14 14 + 3i 13 + 6i 11 + 8i 10 + 10i 13.9702 0.047274

15 14 + 3i 14 + 6i 13 + 8i 10 + 11i 14.8359 0.04767

15 15 + 3i 14 + 6i 13 + 8i 10 + 11i 14.8359 0.04767

15 14 + 3i 14 + 6i 13 + 8i 11 + 10i 14.8359 0.04767

15 15 + 3i 14 + 6i 13 + 8i 11 + 10i 14.8359 0.04767

15 14 + 3i 14 + 6i 12 + 8i 10 + 11i 15.01 0.048311

15 14 + 3i 14 + 6i 12 + 8i 11 + 10i 15.01 0.048311

15 14 + 3i 13 + 6i 12 + 8i 10 + 11i 14.7409 0.048529

15 15 + 3i 13 + 6i 12 + 8i 10 + 11i 14.7409 0.048529

15 14 + 3i 13 + 6i 12 + 8i 11 + 10i 14.7409 0.048529

15 15 + 3i 13 + 6i 12 + 8i 11 + 10i 14.7409 0.048529

15 15 + 3i 14 + 6i 13 + 9i 10 + 11i 15.1043 0.049766

15 15 + 3i 14 + 6i 13 + 9i 11 + 10i 15.1043 0.049766

The coefficients with common kernels are considered in the Tables, however, the number

of coefficients found, increases with increased number of bits. This is done to ensure that the

kernels can also be generated with the help of number of bits=5. For transforms like DFT, this can

be very useful as the number of kernels can be found out for single radius barring few points. It is

very efficient in determining the kernels for non-sinusoidal transform with different scaling.

4.2 Coefficient selection for Non-sinusoidal transforms:

Sinusoidal transforms like DFT require a common radius for the coefficient as their

trajectory is circular. However, this is not the case in terms of non-sinusoidal transforms where the

coefficients can be from different radius at different points. CCSSI also helps in getting the

coefficients for non-sinusoidal transforms like HAAR, where the trajectory is not circular. The

fundamental aim is to find the coefficients at different radius with minimum possible error.

 The CCSSI algorithm was implemented for these cases and the results are indicated in

Table 4.9, 4.10 below. The Table 4.9 and 4.10 is implemented indicating values for N= 8, 16.

For Number of points (N) = 8, b = 5 bits and max error bound of 0.05, 35 unique

coefficients can be found for two different angles. R indicates the values of radius where the points,

given the conditions, are determined. With eight bits the number of coefficient is taken as one,

however the max error bound is reduced in the order 10-2 , which immensely improves the

accuracy.

The analysis of the same is carried out and the Table 4.10 shows the results for N = 16. As

the number of points increases, the number of unique coefficients also increases as seen in the

Tables. It is observed that Coefficient combined selections and shift and add implementation

approach can also be used to determine the coefficients for given error bound for non-sinusoidal

transforms.

Table 4.9: MCR Remaining Kernel for N = 8

N = 8

b (bits) Angle 1 Angle 2 Min_er

ror at

Radius

Min_Error Max_

Error

Number of

unique

coefficients

R

5 7 5 + 5i 7.0355 0.0050506 0.05 35 3,4,6,7
,8,9,10
,11,12,
13,14,
15…. 14 10 + 10i 14.0711 0.0050506

 10 7 + 7i 9.9497 0.0050506

6 24 17 +17i 24.0208 0.0008666 0.005 4 17,24,
27,31

 17 12 + 12i 16.9853 0.0008666

7 41 29 + 29i 41.0061 0.0001487 0.0009 21 17,24,
34,41,
48,51,
58,65,
68,72,
85,89,
92,96,
102,10
6,109,
113,11
9,120,
126

 58 41 + 41i 57.9914 0.0001487

8 99 70 + 70i 98.9975 2.55e-05 0.0001 1 99

 Table 4.10: MCR Remaining Kernel for N = 16

N = 16

b

(bits)

Angle

1

Angle 2 Angle 3 Min_error

at Radius

Min_E

rror

Max_Er

ror

Number of

unique

coefficients

R

5 13 12 + 5i 9 + 9i 12.8653 0.0106 0.05 123 7,8,9,1
0,
11,12,
13,14,
15….

6 24 22 + 9i 17 + 17i 23.8856 0.0065 0.02 5 13,24,
26,28,
31

7 105 97 + 40i 74 + 74i 104.7833 0.0020 0.007 318 24,41,
42,
44,48,
58,……
.

8 120 111 + 46i 85 + 85i 120.0784 0.0010 0.004 38 65,67,
79,81,
83…

4.3 Coefficient selection based on the number of adders

This section provides design of the rotators based on the steps indicated above. Also, this

section provides an overview on how number of adders are calculated. Furthermore, the analysis

work and simulations are carried out in MATLAB. First part will be calculation of number of

adders for the kernel based on given method in (Garrido, Qureshi, and Gustafsson).

First calculate number of adders for single constant rotation which is describe below, If the

Rotation coefficient is give as P = C + j S the total number of adders for P is given as

𝐴𝑅(𝑃) = 2 ∙ 𝐴𝑀(𝐶, 𝑆) + 2 (4.1)

Where AM (C, S) is number of adders used for multiplying C and S with constant and it is

calculated based on CSD (Aksoy et al.) approach. Similarly if P is just real number or imaginary

number then the total number of adder for P is given as

𝐴𝑅(𝑃) = 2 ∙ 𝐴𝑀(𝐶) (4.2)

Or

𝐴𝑅(𝑃) = 2 ∙ 𝐴𝑀(𝑆) (4.3)

CSD approach is used to compute AM (C) and AM (S). These cases are considered in order

to make a better use of adders and design simple rotators. SCR (Garrido, Qureshi, and Gustafsson)

technique is used for calculation of adders, Using it calculate number of adders for every

coefficient in the kernel for each angle and then maximum number of adders are evaluated.

Number of adders for kernel can be represented as

𝐴𝐾 = max {𝐴𝑅(𝑃𝑖)} (4.4)

Table 4.11: Remaining Kernel for four Adders

Adder = 4

N Point Parameters

N=8

b Min_err Max_err Bound

4 0.0050506 0.08

5 0.0050506 0.05

6 0.00086655 0.02

7 0.00086655 0.01

8 0.00041386 0.005

9 0.00041386 0.0025

10 0.00041386 0.001

11 5.34E-05 0.0005

12 0.0003

 b Min_err Max_err Bound

N=16

4 0.054689 0.08

5 0.042992 0.05

6 0.015633 0.02

7 Nan 0.01

8 Nan 0.005

9 Nan 0.0025

10 Nan 0.001

11 Nan 0.0005

12 Nan 0.0003

 b Min_err Max_err Bound

N=32

4 Nan 0.08

5 0.046525 0.05

6 Nan 0.02

7 Nan 0.01

8 Nan 0.005

9 Nan 0.0025

10 Nan 0.001

11 Nan 0.0005

12 Nan 0.0003

 b Min_err Max_err Bound

N=64

4 nan 0.08

5 nan 0.05

6 nan 0.02

7 nan 0.01

8 nan 0.005

9 nan 0.0025

10 nan 0.001

11 nan 0.0005

12 nan 0.0003

Table 4.12: Remaining Kernel for Six Adders

Adder = 6

N Point Parameters

N=8

b Min_err Max_err Bound

4 Nan 0.08

5 0.018207 0.05

6 0.0018144 0.02

7 0.00014868 0.01

8 2.55E-05 0.005

9 2.55E-05 0.0025

10 4.38E-06 0.001

11 7.51E-07 0.0005

12 0.0003

 b Min_err Max_err Bound

N=16

4 0.043011 0.08

5 0.010679 0.05

6 0.010679 0.02

7 0.0061425 0.01

8 0.0039763 0.005

9 Nan 0.0025

10 Nan 0.001

11 Nan 0.0005

12 0.0003

 b Min_err Max_err Bound

N=32
4 0.05735 0.08

5 0.029019 0.05

6 0.01958 0.02

7 Nan 0.01

8 Nan 0.005

9 Nan 0.0025

10 Nan 0.001

11 Nan 0.0005

12 0.0003

 b Min_err Max_err Bound

N=64

4 0.071201 0.08

5 0.037401 0.05

6 Nan 0.02

7 Nan 0.01

8 Nan 0.005

9 Nan 0.0025

10 Nan 0.001

11 Nan 0.0005

12 0.0003

Table 4.13: Remaining Kernel for Eight Adders

Adder = 8

N Point Parameters

N=8

b Min_err Max_err Bound

4 Nan 0.08

5 0.048849 0.05

6 Nan 0.02

7 0.0015501 0.01

8 0.00014868 0.005

9 4.38E-06 0.0025

10 4.38E-06 0.001

11 7.51E-07 0.0005

12 0.0003

 b Min_err Max_err Bound

N=16

4 Nan 0.08

5 0.037055 0.05

6 0.0065304 0.02

7 0.0043808 0.01

8 0.0018509 0.005

9 0.00050129 0.0025

10 0.00049558 0.001

11 0.00026925 0.0005

12 0.0003

 b Min_err Max_err Bound

N=32

4 Nan 0.08

5 0.029014 0.05

6 0.0116 0.02

7 0.0086775 0.01

8 Nan 0.005

9 Nan 0.0025

10 Nan 0.001

11 Nan 0.0005

12 0.0003

 b Min_err Max_err Bound

N=64

4 Nan 0.08

5 0.033444 0.05

6 0.016457 0.02

7 Nan 0.01

8 Nan 0.005

9 Nan 0.0025

10 Nan 0.001

11 Nan 0.0005

12 0.0003

Table 4.14: Remaining Kernel for Ten Adders

Adder = 10

N Point Parameters

N=8

b Min_err Max_err Bound

4 Nan 0.08

5 Nan 0.05

6 Nan 0.02

7 Nan 0.01

8 Nan 0.005

9 0.00028495 0.0025

10 9.16E-06 0.001

11 4.38E-06 0.0005

12 0.0003

 b Min_err Max_err Bound

N=16

4 Nan 0.08

5 Nan 0.05

6 0.0075697 0.02

7 0.005827 0.01

8 0.0010805 0.005

9 0.00085848 0.0025

10 0.0003629 0.001

11 0.00011062 0.0005

12 0.0003

 b Min_err Max_err Bound

N=32

4 Nan 0.08

5 Nan 0.05

6 0.014816 0.02

7 0.0058553 0.01

8 0.0032401 0.005

9 0.0017499 0.0025

10 Nan 0.001

11 Nan 0.0005

12 0.0003

 b Min_err Max_err Bound

N=64

4 Nan 0.08

5 Nan 0.05

6 0.017113 0.02

7 0.0077183 0.01

8 0.003861 0.005

9 Nan 0.0025

10 Nan 0.001

11 Nan 0.0005

12 0.0003

Tables 4.11 to 4.14 shows the variation of number of adders from 4 to 10 and filtering the

kernels from the steps found in the above sections. The Tables indicates the optimized kernels

found for the given number of adders with the minimum and maximum error for N number of

points. The maximum error was varied from 0.08 to 0.003 and kernels found with minimum error

are indicated, based on this, the number of adders are determined. Nan indicates undetermined

values. Table 4.15 shows the summary of the found kernel with other parameters. An example is

considered to determine the tunable architecture.

An example of MCR with three angles to obtain the optimized coefficient for fixed scaling

is taken here. The angles taken care are𝛼1 = 0𝑜 𝛼2 = 22.5𝑜 𝑎𝑛𝑑 𝛼3 = 45𝑜 . Given these angles

as an input, the number of coefficients are reduced based on adders and scaling factors to design

efficient rotators. The maximum allowable error and number of adders are considered as 0.05 and

6 respectively.

After performing the steps provided in the proposed approach the remaining coefficient are

as shown in the Table 4.15. The coefficient can be selected based on the requirement. The kernel

with the minimum rotation error i.e. 1.068x10-2 is at approximate radius 13 and also satisfies the

requirement of number of adders. However, coefficients which can be used with lesser number of

adders than 6 are also available, but there always exists a trade-off between the rotation error and

number of adders.

Table 4.15: MCR Remaining Kernel based on the proposed approach

𝛼1 = 0𝑜 𝛼2 = 22.5𝑜 𝛼3 = 45𝑜 R Err Adder

7 7+3i 5+5i 7.31 4.301x10-2 6

10 10+4i 7+7i 10.344 4.301x10-2 4

11 10+4i 8+8i 10.8474 4.299x10-2 4

13 12+5i 9+9i 12.8653 1.068x10-2 6

Table 4.16: Comparison of Multiplierless Rotator of various approaches with the Proposed

approach.

Table 4.16 provides the comparison for the existing algorithms with the design space, angle

set and Scaling. While CORDIC based techniques are wide but are only limited to Unity scaling

and single constant rotation. The CCSSI based technique allows the flexibility in terms of

parameters like Scaling, Single constant rotator and multiple constant rotator as well and also the

degree of freedom allowed in space is an important advantage. This makes the Algorithm feasible

to be considered for multiple radius and hence, multiple trajectory transforms as well.

APPROACH

DESIGN SPACE OPTIMIZATION PROBLEM

Coefficient Selection Shift-and-Add Optimization
Design Space Size Scaling Angle Set

General Rotators: angles not known a priori

Conventional CORDIC
(Volder) Small High (Direct) Small Uniform

General
Rotations

Complex Multiplier
(Chang and Parhi) Small Low Small Unity

General
Rotations

Constant Rotators: angles known a priori

Lifting Schemes (Chan
and Yiu) Small Medium (CSD) Small Unity SCR

EEAS CORDIC (Meher et
al.) Medium High (Direct) Small Unity/Arbitary SCR

MRS-CORDIC (Lin and
Wu) Large Medium (CSD) Medium Unity SCR

CORDIC for Fixed Angles
(Meher and Park) Medium High (Direct) Medium Unity/Arbitary SCR

Trigonometric Identities
(CSD) (Voronenko and

Püschel) Medium Medium (CSD) Medium Unity MCR for FFT

Trigonometric Identities
(SCM) (Thong and

Nicolici) Medium High (MCM) Medium Unity MCR for FFT

Base-3 Rotator (Chang
and Parhi) Medium

High (SCM,
MCM) Medium Uniform MCR for FFT

Rotator Using CSD
(Gustafsson) Small Medium (CSD) Small Unity MCR

Rotator Using MCM
(Voronenko and

Püschel) Small High (MCM) Small Unity MCR

CCSSI (Garrido, Qureshi,
and Gustafsson) Maximum (Complete Freedom)

High (SCM,
MCM) Large Any

SCR and
MCR

Extended CCSSI
(Proposed)

Maximum (Complete
Freedom) Medium (CSD) Large Any Any

4.4 Realization of Proposed Architecture

Realization of these coefficients in the form of shifters and adders is shown in the Figure-

4.3 and combined realization of the kernel is shown in Figure-4.4. For combined realization,

multiplexers are used to will determine the coefficient. In Figure-4.3 realization of the rotator for

𝛼 = 22.5𝑜 using 7 + 3 i is shown, Combined realization for the First kernel is shown in Figure-

4.4.

Figure 4.1: Realization of rotator for proposed framework (alpha = 22.5 using 7 + 3i)

Figure 2.4: Realization of combined rotator design for kernel-1 from Table-4.15

Shift and add implementation of rotator is given in the above Figures.

The next section covers the results and conclusions obtained from this approach for various

experiments carried out during this project.

4.5 Results and Discussions

This section provides the results of the proposed approach which is obtained based on

several observations. The experiments carried out are for the N point FFT where the values of N

are considered from 8 to 64. Since the solution for N = 4 is trivial it is not taken into consideration.

Also, word length (bits) is considered for the design space starting from 4 to 12 for better accuracy.

In an N-point FFT, twiddle factor needs to be calculated to transform signal from one form to

another. The twiddle factors are specific set of angles which are generated by dividing

circumference of a circle in a complex plane into K equal parts. Eight angles can be found for 8

point by dividing [0, 2𝜋] into 8 equal parts at angles [0,
𝜋

4
,

𝜋

2
,

3𝜋

4
, 𝜋,

5𝜋

4
,

3𝜋

2
,

7𝜋

4
]. Here, the only

angle which belongs to [0,
𝜋

4
] is considered, since the points which belongs at an angle greater

than
𝜋

4
 can be generated by interchanging the values and changing signs of the corresponding

points.

Based on these criterion, results are presented in the range [0,
𝜋

4
]. For calculation of

number of adders required for the coefficient, Canonic Signed Digit approach is considered.

Figure 4.3: Graph representing trade-off between minimum Rotation Error vs. number of bits b.

First, the adder requirement is calculated using Canonic signed Digit for each coefficient

in the kernel of m angles, then it is checked for the maximum number of adders required in that

kernel.

Figures 4.5 to 4.8 presents the proposed results for the W8, W16, W32, and W64. The results

in the form of graph shows the trade-off between minimum rotation error and word length (b-bits).

Number of minimum required adders and maximum allowed rotation error are considered to obtain

the coefficient for the set of kernels. The optimum coefficient values are chosen based on the

minimum rotation error and the number of adders.

Figure 4.4: Graph representing trade-off between minimum Rotation Error vs. number of bits b.

Figures 4.5 and 4.6 depicts that the coefficients with minimum error around 10-6 to 10-4 for

higher bits can be found with less number of adders are determined. When the number of points

(N) is increased, the requirement for number of adders for multiplication also increases and less

number of coefficients are obtained.

Figure 4.5: Graph representing trade-off between minimum Rotation Error vs. number of bits b.

Figure 4.6: Graph representing trade-off between minimum Rotation Error vs. number of bits b.

Further, the number of unique coefficients obtained were calculated for different number

of bits and various N points. This is summarized in the Table-4.18 which shows that with increase

in number of bit for particular error bound and N point almost linear increase in number of unique

coefficient is achieved.

Table 4.17: Number of unique coefficients obtained

Summary

In this chapter the Coefficient combined selection and shift and add implementation

approach was analyzed and further extended to different criterions. Firstly, analysis was done to

find the number of coefficients that can be determined for a common radius given the number of

bits. It is observed that as the number of bits and number of points are increased, it is possible to

generate maximum number of coefficients for a common radius except few. This algorithm hence

is suitable for determining the point for sinusoidal transform for large number of points. For N =

2 or 4, other techniques can be used for determining the number of points. Also, the algorithm is

tested for number of adders as a parameter. It is observed that when number of DFT points

increases minimum rotation error for the kernel also increases because of increase in number of

angles, overlapping coefficient increases and also the maximum rotation error changes for each

kernel which leads to increase in minimum rotation error.

The algorithm is suitable for finding the kernels for the non-sinusoidal transforms as well

as it does not set any restrictions on the trajectory. The overall multiplier less architecture for the

algorithm is also proposed.

Chapter 5

Conclusions and Future Scope

5.1 Conclusions

In this thesis various approaches for multiplierless algorithms are proposed and

investigated.

CCSSI based Approach:

The proposed approach uses the combined coefficient selection and shift-and-add

implementation for the design of low complexity multiplierless constant rotators. This approach is

further extended finding total number of unique coefficients which are obtained with the help of

CCSSI method for different number of bits and N points. Experimental results based on this

approach are provided. Significant low complexity and improvement are observed based on

simulation with respect to different existing approach. The overall framework of the proposed

approach is also presented. It is observed that the proposed framework presents tunable

multiplierless architecture which is used to determine the coefficients for both sinusoidal as well

as non-sinusoidal transforms. The tunable architecture can be used based on the applications so as

to implement based on the number of adders, number of bits and number of points. With the

proposed algorithm any coefficient can be generated based on the provided number of adders as

an input. For instance, an angle of 22.50 is generated with the help of only 6 adders and 4 shifters.

Experimental results shows that the architecture can be used for various applications as it is flexible

enough depending on the parameters chosen.

MSR based Approach:

 The proposed algorithm incorporates the technique of weighted amplifying factors. The

proposed approach can be implemented with, both Generalized and Normalized schemes. The

algorithm provides better SQNR performance with no added hardware complexity. The results are

compared with the existing MSR approach and it is found that the proposed generalized MSR

CORDIC shows 6.6 % improvement for a given value of I + J =3 and N=2 indicated in Figure

3.3in the SQNR compared to the existing MSR CORDIC algorithm . Mixed scaling and rotation

algorithm is extended with weighted amplifying factors. The algorithm can be used to implement

multiplierless architecture for sinusoidal transforms like Discrete Fourier transform.

References

Aggarwal, Supriya, Pramod K. Meher, and Kavita Khare. "Concept, design, and implementation

of reconfigurable CORDIC." IEEE Transactions on Very Large Scale Integration (VLSI)

Systems 24.4 (2015): 1588-1592.

Ahmed, Nasir, and Kamisetty Ramamohan Rao. "Fast fourier transform." Orthogonal

Transforms for Digital Signal Processing. Springer, Berlin, Heidelberg, 1975. 54-84.

Ahmed, Nasir, and Kamisetty Ramamohan Rao. "Walsh-hadamard transform." Orthogonal

Transforms for Digital Signal Processing. Springer, Berlin, Heidelberg, 1975. 99-152.

Aksoy, Levent, Ece Olcay Güneş, and Paulo Flores. "Search algorithms for the multiple constant

multiplications problem: Exact and approximate." Microprocessors and Microsystems 34.5

(2010): 151-162.

Andersson, Rikard. "FFT hardware architectures with reduced twiddle factor sets." (2013).

Andraka, Ray. "A survey of CORDIC algorithms for FPGA based computers." Proceedings of

the 1998 ACM/SIGDA sixth international symposium on Field programmable gate arrays.

1998.

Arguello, F., et al. "Parallel architecture for fast transforms with trigonometric kernel." IEEE

Transactions on Parallel and Distributed Systems 5.10 (1994): 1091-1099.

Bluestein, Leo. "A linear filtering approach to the computation of discrete Fourier

transform." IEEE Transactions on Audio and Electroacoustics 18.4 (1970): 451-455.

Chang, Yun-Nan, and Keshab K. Parhi. "High-performance digit-serial complex

multiplier." IEEE Transactions on Circuits and Systems II: Analog and Digital Signal

Processing 47.6 (2000): 570-572.

Chan, S. C., and P. M. Yiu. "An efficient multiplierless approximation of the fast Fourier

transform using sum-of-powers-of-two (SOPOT) coefficients." IEEE signal processing

letters 9.10 (2002): 322-325.

Chen, Chuen-yau, and Cheng-yuan Lin. "High-resolution architecture for CORDIC algorithm

realization." 2006 International Conference on Communications, Circuits and Systems. Vol.

1. IEEE, 2006.

De Caro, Davide, et al. "Accurate fixed-point logarithmic converter." IEEE Transactions on

Circuits and Systems II: Express Briefs 61.7 (2014): 526-530.

De Caro, Davide, Nicola Petra, and Antonio GM Strollo. "Efficient logarithmic converters for

digital signal processing applications." IEEE Transactions on Circuits and Systems II:

Express Briefs 58.10 (2011): 667-671.

Dempster, Andrew G., and Malcolm D. Macleod. "Constant integer multiplication using

minimum adders." IEE Proceedings-Circuits, Devices and Systems 141.5 (1994): 407-413.

Dempster, Andrew G., and Malcolm D. Macleod. "Multiplication by two integers using the

minimum number of adders." 2005 IEEE International Symposium on Circuits and Systems.

IEEE, 2005.

Despain, Alvin M. "Fourier transform computers using CORDIC iterations." IEEE Transactions

on Computers 100.10 (1974): 993-1001.

Despain, Alvin M. "Very fast Fourier transform algorithms hardware for implementation." IEEE

Transactions on Computers 5 (1979): 333-341.

Garrido, Mario, Oscar Gustafsson, and Jesús Grajal. "Accurate rotations based on coefficient

scaling." IEEE Transactions on Circuits and Systems II: Express Briefs 58.10 (2011): 662-

666.

Garrido, Mario, et al. "CORDIC II: a new improved CORDIC algorithm." IEEE Transactions on

Circuits and Systems II: Express Briefs 63.2 (2015): 186-190.

Gálvez, Mario Garrido. “Efficient hardware architectures for the computation of the FFT and

other related signal processing algorithms in real time.” Diss. Universidad Politécnica de

Madrid, 2009.

Garrido, Mario, and Jesus Grajal. "Efficient memoryless CORDIC for FFT computation." 2007

IEEE International Conference on Acoustics, Speech and Signal Processing-ICASSP'07.

Vol. 2. IEEE, 2007.

Garrido, Mario, et al. "Hardware architectures for the fast Fourier transform." Handbook of

Signal Processing Systems. Springer, Cham, 2019. 613-647.

Garrido, Mario, et al. "Multiplierless unity-gain SDF FFTs." IEEE Transactions on Very Large

Scale Integration (VLSI) Systems 24.9 (2016): 3003-3007.

Goel, Garvit, Gaurav Mittal, and Abhijit R. Asati. "ROM based logic design for base-2

exponential and logarithm converter using fixed point number representation." 2016

International Conference on Inventive Computation Technologies (ICICT). Vol. 3. IEEE,

2016.

Gorman, Steve F., and Jeffrey M. Wills. "Partial column FFT pipelines." IEEE Transactions on

Circuits and Systems II: Analog and Digital Signal Processing 42.6 (1995): 414-423.

Gray, A., and J. Markel. "Digital lattice and ladder filter synthesis." IEEE Transactions on audio

and electroacoustics 21.6 (1973): 491-500.

Gustafsson, Oscar, and Fahad Qureshi. "Addition aware quantization for low complexity and

high precision constant multiplication." IEEE Signal Processing Letters 17.2 (2009): 173-

176.

Garrido, Mario, Fahad Qureshi, and Oscar Gustafsson. "Low-complexity multiplierless constant

rotators based on combined coefficient selection and shift-and-add implementation

(CCSSI)." IEEE Transactions on Circuits and Systems I: Regular Papers 61.7 (2014): 2002-

2012.

Garrido, Mario, Jesús Grajal, and Oscar Gustafsson. "Optimum circuits for bit reversal." IEEE

Transactions on Circuits and Systems II: Express Briefs 58.10 (2011): 657-661.

Gorman, Steve F., and Jeffrey M. Wills. "Partial column FFT pipelines." IEEE Transactions on

Circuits and Systems II: Analog and Digital Signal Processing 42.6 (1995): 414-423.

Gustafsson, Oscar, et al. "Simplified design of constant coefficient multipliers." Circuits,

Systems and Signal Processing 25.2 (2006): 225-251.

Gustafsson, Oscar. "A difference based adder graph heuristic for multiple constant multiplication

problems." 2007 IEEE International Symposium on Circuits and Systems. IEEE, 2007.

Han, Wei, et al. "High‐Performance Low‐Power FFT Cores." ETRI journal 30.3 (2008): 451-

460.

He, Shousheng, and Mats Torkelson. "Design and implementation of a 1024-point pipeline FFT

processor." Proceedings of the IEEE 1998 Custom Integrated Circuits Conference (Cat. No.

98CH36143). IEEE, 1998.

He, Shousheng, and Mats Torkelson. "Designing pipeline FFT processor for OFDM (de)

modulation." 1998 URSI International Symposium on Signals, Systems, and Electronics.

Conference Proceedings (Cat. No. 98EX167). IEEE, 1998.

Heideman, Michael T., Don H. Johnson, and C. Sidney Burrus. "Gauss and the history of the fast

Fourier transform." Archive for history of exact sciences 34.3 (1985): 265-277.

Hoang, Van-Phuc, Xuan-Tien Do, and Cong-Kha Pham. "An efficient ASIC implementation of

logarithm approximation for HDR image processing." 2013 International Conference on

Advanced Technologies for Communications (ATC 2013). IEEE, 2013.

Hsiao, Chen-Fong, Yuan Chen, and Chen-Yi Lee. "A generalized mixed-radix algorithm for

memory-based FFT processors." IEEE Transactions on Circuits and Systems II: Express

Briefs 57.1 (2010): 26-30.

Hu, Yu Hen, and S. Naganathan. "An angle recoding method for CORDIC algorithm

implementation." IEEE Transactions on Computers 42.1 (1993): 99-102.

Hu, Xiaobo, Ronald G. Harber, and Steven C. Bass. "Expanding the range of convergence of the

CORDIC algorithm." IEEE Transactions on computers 1 (1991): 13-21.

Inguva, Sharath Chandra, and J. B. Seventline. "Enhanced CORDIC algorithm using an area

efficient carry select adder." 2017 International Conference on Intelligent Sustainable

Systems (ICISS). IEEE, 2017.

Jaime, Francisco J., et al. "Enhanced scaling-free CORDIC." IEEE Transactions on Circuits and

Systems I: Regular Papers 57.7 (2010): 1654-1662.

James, D. "Quantization errors in the fast Fourier transform." IEEE Transactions on Acoustics,

Speech, and Signal Processing 23.3 (1975): 277-283.

Jo, Byung G., and Myung Hoon Sunwoo. "New continuous-flow mixed-radix (CFMR) FFT

processor using novel in-place strategy." IEEE Transactions on Circuits and Systems I:

Regular Papers 52.5 (2005): 911-919.

Johansson, Kenny, Oscar Gustafsson, and Lars Wanhammar. "Implementation of elementary

functions for logarithmic number systems." IET Computers & Digital Techniques 2.4 (2008):

295-304.

Juang, Tso-Bing, Sheng-Hung Chen, and Huang-Jia Cheng. "A lower error and ROM-free

logarithmic converter for digital signal processing applications." IEEE Transactions on

Circuits and Systems II: Express Briefs 56.12 (2009): 931-935.

Lee, Seungbeom, and Sin-Chong Park. "Modified sdf architecture for mixed dif/dit fft." 2007

IEEE International Symposium on Circuits and Systems. IEEE, 2007.

Li, Junwei, et al. "Study of CORDIC algorithm based on FPGA." 2016 Chinese Control and

Decision Conference (CCDC). IEEE, 2016.

Lin, Chih-Hsiu, and An-Yeu Wu. "Mixed-scaling-rotation CORDIC (MSR-CORDIC) algorithm

and architecture for high-performance vector rotational DSP applications." IEEE

Transactions on Circuits and Systems I: Regular Papers 52.11 (2005): 2385-2396.

Liu, Hang, and Hanho Lee. "A high performance four-parallel 128/64-point radix-2 4 FFT/IFFT

processor for MIMO-OFDM systems." APCCAS 2008-2008 IEEE Asia Pacific Conference

on Circuits and Systems. IEEE, 2008.

Loeffler, Christoph, Adriaan Ligtenberg, and George S. Moschytz. "Practical fast 1-D DCT

algorithms with 11 multiplications." International Conference on Acoustics, Speech, and

Signal Processing,. IEEE, 1989.

Masram, Bharati Y., and P. T. Karule. "High speed 3D-DCT/IDCT CORDIC algorithm for DSP

application." European Journal of Advances in Engineering and Technology 4.12 (2017):

941-950.

Meher, Pramod K., et al. "50 years of CORDIC: Algorithms, architectures, and

applications." IEEE Transactions on Circuits and Systems I: Regular Papers 56.9 (2009):

1893-1907.

Meher, Pramod Kumar, and Sang Yoon Park. "CORDIC designs for fixed angle of

rotation." IEEE transactions on very large scale integration (VLSI) systems 21.2 (2012):

217-228.

Mishra, Ansuman, S. Sivanantham, and K. Sivasankaran. "Sine and cosine generator using

CORDIC algorithm implemented in ASIC." 2015 Online International Conference on

Green Engineering and Technologies (IC-GET). IEEE, 2015.

Möller, Konrad, et al. "Reconfigurable constant multiplication for FPGAs." IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems 36.6 (2016): 927-937.

Moroz, Leonid, Taras Mykytiv, and Martyn Herasym. "Improved scaling-free CORDIC

algorithm." 2013 11th East-West Design and Test Symposium (EWDTS). IEEE Computer

Society, 2013.

Oh, Jung-Yeol, and Myoung-Seob Lim. "New radix-2 to the 4th power pipeline FFT

processor." IEICE transactions on electronics 88.8 (2005): 1740-1746.

Oppenheim, Alan V., and Clifford J. Weinstein. "Effects of finite register length in digital

filtering and the fast Fourier transform." Proceedings of the IEEE 60.8 (1972): 957-976.

Paul, Suganth, Nikhil Jayakumar, and Sunil P. Khatri. "A fast hardware approach for

approximate, efficient logarithm and antilogarithm computations." IEEE transactions on

very large scale integration (vlsi) systems 17.2 (2008): 269-277.

Philipov, Ph, et al. "A parallel architecture for radix-2 fast fourier transform." IEEE John Vincent

Atanasoff 2006 International Symposium on Modern Computing (JVA'06). IEEE, 2006.

Pineiro, J-A., Milos D. Ercegovac, and Javier D. Bruguera. "Algorithm and architecture for

logarithm, exponential, and powering computation." IEEE Transactions on Computers 53.9

(2004): 1085-1096.

Qureshi, Fahad, and Oscar Gustafsson. "Low-complexity constant multiplication based on

trigonometric identities with applications to FFTs." IEICE Transactions on Fundamentals of

Electronics, Communications and Computer Sciences 94.11 (2011): 2361-2368.

Qureshi, Fahad. Optimization of rotations in FFTs. Diss. Linköping University Electronic Press,

2012.

Rabiner, Lawrence R., and Bernard Gold. "Theory and application of digital signal

processing." tads (1975).

Sai, Van-Thuan, and Van-Phuc Hoang. "An optimized implementation of logarithm hardware

generator for digital signal processing." 2016 IEEE Sixth International Conference on

Communications and Electronics (ICCE). IEEE, 2016.

Sarode, Namrata, Rajeev Atluri, and P. K. Dakhole. "Mixed-radix and CORDIC algorithm for

implementation of FFT." 2015 International Conference on Communications and Signal

Processing (ICCSP). IEEE, 2015.

Schulte, Michael J., and Earl E. Swartzlander. "Hardware designs for exactly rounded

elementary functions." IEEE Transactions on Computers 43.8 (1994): 964-973.

Shukla, Rohit, and Kailash Chandra Ray. "Low latency hybrid CORDIC algorithm." IEEE

Transactions on Computers 63.12 (2013): 3066-3078.

Swartzlander, Earl E., Wendell KW Young, and Saul J. Joseph. "A radix 4 delay commutator for

fast Fourier transform processor implementation." IEEE Journal of Solid-State Circuits 19.5

(1984): 702-709.

Tang, Aimei, et al. "CORDIC-based FFT real-time processing design and FPGA

implementation." 2016 IEEE 12th International Colloquium on Signal Processing & Its

Applications (CSPA). IEEE, 2016.

Tang, Ping Tak Peter. Table-lookup algorithms for elementary functions and their error analysis.

No. CONF-9106103-1. Argonne National Lab., IL (USA), 1991.

Thong, Jason, and Nicola Nicolici. "Time-efficient single constant multiplication based on

overlapping digit patterns." IEEE Transactions on Very Large Scale Integration (VLSI)

Systems 17.9 (2009): 1353-1357.

Vaidyanathan, P. "Passive cascaded-lattice structures for low-sensitivity FIR filter design, with

applications to filter banks." IEEE transactions on circuits and systems 33.11 (1986): 1045-

1064.

Volder, J. E. "IRE Trans. Electron. Comput." (1959): 330-334.

Voronenko, Yevgen, and Markus Püschel. "Multiplierless multiple constant

multiplication." ACM Transactions on Algorithms (TALG) 3.2 (2007): 11-es.

Yang, Chia-Hsiang, Tsung-Han Yu, and Dejan Markovic. "Power and area minimization of

reconfigurable FFT processors: A 3GPP-LTE example." IEEE journal of solid-state

circuits 47.3 (2011): 757-768.

Walther, John S. "A unified algorithm for elementary functions." Proceedings of the May 18-20,

1971, spring joint computer conference. 1971.

Wanhammar, Lars. DSP integrated circuits. Elsevier, 1999.

Wu, Cheng-Shing, and An-Yeu Wu. "Modified vector rotational CORDIC (MVR-CORDIC)

algorithm and architecture." IEEE Transactions on Circuits and Systems II: Analog and

Digital Signal Processing 48.6 (2001): 548-561.

Wu, Cheng-Shing, An-Yeu Wu, and Chih-Hsiu Lin. "A high-performance/low-latency vector

rotational CORDIC architecture based on extended elementary angle set and trellis-based

searching schemes." IEEE Transactions on Circuits and Systems II: Analog and Digital

Signal Processing 50.9 (2003): 589-601.

Multiplierless Tunable Architecture for

Signal Processing Transforms

A Thesis Submitted to

Nirma University

In Partial Fulfilment of the Requirements for

The Degree of

Doctor of Philosophy

in

Technology & Engineering

By

Pratik Pravinkumar Trivedi

(13EXTPHDE95)

Electronics and Communication Engineering Department

Institute of Technology, Nirma University

Ahmedabad, Gujarat, India

February 2020

Nirma University

Institute of Technology

Conclusions and Future Scope

5.1 Conclusions

In this thesis various approaches for multiplierless algorithms are proposed and

investigated.

CCSSI based Approach:

The proposed approach uses the combined coefficient selection and shift-and-add

implementation for the design of low complexity multiplierless constant rotators. This approach is

further extended finding total number of unique coefficients which are obtained with the help of

CCSSI method for different number of bits and N points. Experimental results based on this

approach are provided. Significant low complexity and improvement are observed based on

simulation with respect to different existing approach. The overall framework of the proposed

approach is also presented. It is observed that the proposed framework presents tunable

multiplierless architecture which is used to determine the coefficients for both sinusoidal as well

as non-sinusoidal transforms. The tunable architecture can be used based on the applications so as

to implement based on the number of adders, number of bits and number of points. With the

proposed algorithm any coefficient can be generated based on the provided number of adders as

an input. For instance, an angle of 22.50 is generated with the help of only 6 adders and 4 shifters.

Experimental results shows that the architecture can be used for various applications as it is flexible

enough depending on the parameters chosen.

MSR based Approach:

 The proposed algorithm incorporates the technique of weighted amplifying factors. The

proposed approach can be implemented with, both Generalized and Normalized schemes. The

algorithm provides better SQNR performance with no added hardware complexity. The results are

compared with the existing MSR approach and it is found that the proposed generalized MSR

CORDIC shows 6.6 % improvement for a given value of I + J =3 and N=2 indicated in Figure

3.3in the SQNR compared to the existing MSR CORDIC algorithm . Mixed scaling and rotation

algorithm is extended with weighted amplifying factors. The algorithm can be used to implement

multiplierless architecture for sinusoidal transforms like Discrete Fourier transform.

5.2 Future scope

CCSSI based Approach:

The proposed algorithm can be extended by using SCM and MCM algorithms for

multiplierless multiplication using shifters and adders. The coefficients at common radius for large

variety of N can be incorporated for a given error bound. Machine learning algorithms can be used

to find out common radius within the error bound. This will help the algorithm to generate

coefficients with minimum number of bits and adders for given number of points.

Mixed scaling Rotation CORDIC based Approach:

 A good future direction can be to perform a comparative analysis of the proposed scheme

with the existing CORDIC based approaches and to study the possibility of analytically deriving

optimal values of the parameters s, t, ɳ and µ, thereby obviating the need for extensive parameter

search. Also one can think of improving the latency required to generate the extensive search for

the parameters given above. Architecture of the MSR CORDIC can be parallel so as to improve

on the latency.

