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ABSTRACT 

Signal processing algorithms like Discrete Fourier Transform, Discrete Cosine Transform, and 

Fast Fourier Transform find various applications in the field of Image processing, Wireless 

communication, Robotics, and many others. It covers basically three operations viz. Multiply, Shift 

and Accumulate. Hence if the input data goes on rising as in cases where high resolution is required 

the amount of multiply operations also rises significantly. For example, the number of complex 

multiplication operations in case of Discrete Fourier Transform is N2, where N is the number of 

points. Latency becomes an important issue which needs to be addressed in today’s era as we, 

humans, thrive for the fastest systems with maximum resolution. Multiplierless techniques for this 

purpose has been always a research area as it helps in reduction of the later part. Multipliers bound 

to increase the latency especially in the algorithms which use complex multiplications, for instance 

to evaluate a single complex multiplications minimum four real multiplications are required. 

Hence, in techniques where number of such complex multiplications need to be evaluated, latency 

increases to an exponential amount as in case of Discrete Fourier transform. To reduce latency we 

need to either emphasize on reduction in amount of data to be processed or change the processing 

structure which can affect the overall time to output. There are three broad techniques found in the 

literature for addressing this issue. Complex Multiplication techniques itself requires four real 

multiplication and two adders and hence it becomes practically infeasible for the case where large 

amount of data needs to be transformed. Coordinate rotation of digital computer (CORDIC) 

(Volder) based techniques are well known for the Multiplierless implementation of the sinusoids. 

However it carries certain drawbacks viz. large number of iterations and accuracy. This thesis 

addresses the issues of Multiplierless implementation of the rotation for two different cases viz. 

CORDIC based techniques and Coefficient combined selection and Shift and Add implementation 

(CCSSI) (Garrido, Qureshi, and Gustafsson). It proposes improvement to the existing CORDIC 

based approach as well as CCSSI. Platform used for the implementation of the proposed approach 

is MATLAB. At the end the work presents a tunable multiplier less architecture for implementation 

of sinusoidal as well as non-sinusoidal transforms.  

 

 



The thesis provides two different contributions in the field. 

1) It proposes an efficient approach for the implementation of the Mixed Scaling and Rotation 

CORDIC (Lin and Wu) algorithm and also improves its SQNR by weighted amplifying 

factors. 

 

2) The second contribution provides Coefficient combined & shift and add implementation 

(CCSSI) (Garrido, Qureshi, and Gustafsson) based approach to design  Multiplierless 

rotators for various sinusoidal as well as non-sinusoidal transforms adding case of multiple 

constant rotators also. A novel tunable Combined co-efficient scaling and shift and add 

approach is proposed which takes into the following parameters.  

- Number of bits,  

- Number of adders,  

- Maximum allowable error 

- Number of points. 

The approach improves the range of coefficients with respect to number of adders (the range 

taken is from 2 to 10 adders), and number of bits (the range taken is from 1 to 64 bits), 

compared to the existing approaches and is shown in the results in Table 4.16. It also presents 

the Multiplierless architecture for the tunable parameter shown above. 
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Chapter 1 

Introduction 

 

 

 

 

Signal processing algorithms like Discrete Fourier Transform, Discrete Cosine Transform, 

and Fast Fourier Transform Transforms find various applications in the field of Image processing, 

Wireless communication, Robotics, and many others. It covers basically three operations viz. 

Multiply, Shift and Accumulate (Rabiner and Gold). Hence, if the input data goes on rising as in 

cases where high resolution is required, the amount of multiply operations also rises significantly. 

For example, the number of complex multiply operations in case of Discrete Fourier Transform is 

N2, where N is the number of points. Latency becomes an important issue which needs to be 

addressed in today’s era as the target is to design the fastest systems with maximum resolution. To 

reduce latency, emphasize needs to be given on either reduction in amount of data to be processed 

or changing the processing structure which can affect the overall time to output. Multiplierless 

techniques for this purpose has been always a research area as it helps in reduction of the later part. 

There are three broad techniques found in the literature for addressing this issue. Complex 

Multiplication techniques itself requires four real multiplication and two adders and hence it 

becomes practically infeasible for the case where large amount of data needs to be transformed. 

Coordinate rotation of digital computer (CORDIC) based techniques are well known for the 

Multiplierless implementation of the sinusoids. However, it carries certain drawbacks viz. large 

number of iterations and accuracy. This thesis addresses the issues of Multiplierless 

implementation of the rotation for two different cases viz. CORDIC (Volder; Meher et al.; 

Aggarwal et al.) based techniques and Coefficient combined selection and Shift and Add 

implementation (CCSSI) (Garrido, Qureshi, and Gustafsson). It proposes improvement to the 



existing CORDIC based approach as well as CCSSI. Platform used for the implementation of the 

proposed approach is MATLAB. In the end, this thesis work presents a tunable multiplier-less 

architecture for implementation of sinusoidal as well as non-sinusoidal transforms. 

 

1.1. Motivation 

Digital signal processing, scientific computing, and other communication applications, 

signal transforms are a major part of signal analysis. Transform algorithms such as the Discrete 

Fourier Transform (Meher and Park), Discrete Cosine Transform (Meher and Park) and many 

more used in many of the digital signal processing applications. These algorithms are designed in 

a highly structured form and exhibits a large amount of parallelism. Thus, these algorithms are 

well suited for the hardware implementation as a sequential data-path on a field-programmable 

gate array (FPGA) (Li et al.; Tang et al.; Möller et al.; Andraka; Andraka) and DSP processors (He 

and Torkelson, “Design and Implementation of a 1024-Point Pipeline FFT Processor”; 

Wanhammar). These algorithms require many arithmetic steps to perform such as addition, 

subtraction and multiplication. There are many processors which handle the complex and huge 

multiplications which are necessary for the signal transform. Performing multiplication on 

hardware is much computationally costly as well as it also requires complex hardware which 

eventually requires a huge space for the development of the hardware. 

In today's time with the increase in technological advancement, the requirement for the 

smaller, portable, cost-effective and efficient performance of any system is necessary. For adaptive 

signal processing systems, these are the important factors and more importantly the computational 

cost on the hardware point. Thus such computationally costly and power-consuming operation on 

the hardware is multiplication. It requires real-time hardware multipliers for adaptive signal 

processing which consume too much power and require memory which is scare system resources. 

Portable devices such as mobile phones and other communication devices require such multipliers 

for the signal analysis at the software level but on contrary the power consumption increases which 

leads to shorter battery life. Thus, to reduce the power consumption, design of multipliers can be 

obtained by designing algorithms for signal processing in such a way that requires fewer hardware 

multipliers. 



Signal processing algorithms for the transforms such as Discrete Fourier transform or Fast 

Fourier transform use complex numbers (Twiddle Factor) (Andersson) which are multiplied with 

signal and their corresponding frequency analysis is obtained. Here, these complex numbers used 

in the algorithms are fixed which can be obtained by rotation of a fixed angle on the complex 

plane. Implementation of getting such a complex number on hardware is done using different 

Rotators. This rotator takes an angle as an input to it and performs rotation based on the input 

angle. There are various algorithms such as Coordinate rotation digital computer (CORDIC) 

(Volder) which uses these rotators. Thus, there arises a need to select a complex number that 

increases the efficiency of the use of rotators and improves the performance. 

The approach used for designing such an architecture is by combining the selection of the 

coefficient for the transforms and using multiplier-less multiplication algorithms such as Canonical 

signed digit (CSD) (Voronenko and Püschel). 

Single Constant Multiplication (SCM) and Multiple Constant Multiplications (MCM) 

(Voronenko and Püschel; Möller et al.; Aksoy et al.; Dempster and Macleod, “Constant Integer 

Multiplication Using Minimum Adders”; Gustafsson). These algorithms use adders and shifter to 

perform multiplication. These algorithms are limited to constant multiplication but since most of 

the signal processing algorithms require multiplication with a constant number these multiplierless 

multiplication algorithms can be implemented on low-cost hardware devices such as field-

programmable gate array (FPGA). 

 

1.2 Objective 

The objective of this thesis is to design a tunable multiplier-less architecture for 

determining the coefficients on the basis of tunable parameters like the signal space, the number 

of adders required, maximum allowable error and angles.  It reduces the hardware architecture 

used in the multiplierless constant rotators for the signal processing transform. It also provides the 

optimized number of coefficients which will be used by the sinusoidal transforms like Discrete 

Fourier transform, Discrete Cosine transform, Walsh-Hadamard transform (Ahmed and Rao, 

“Walsh-Hadamard Transform”) as well as non-sinusoidal transforms like the Binary HAAR 

transform. 



Based on study of the existing techniques for designing the multiplier-less architecture for 

signal processing transforms available in the literature, following research objectives are addressed 

in the thesis:  

1) It proposes an efficient approach for the implementation of the Mixed Scaling and Rotation 

CORDIC algorithm and also improves its SQNR by weighted amplifying factors. 

2) The second contribution provides Coefficient combined and shift and add implementation 

(CCSSI) based approach for the design of multiplier-less rotators for various transforms 

for multiple constant rotators as well.  

3) Designing a unique tunable multiplier-less architecture for the design of sinusoidal as well 

as non-sinusoidal transforms. 

 

1.3 Contribution of the thesis 

 

This thesis addresses two major contribution in the architecture of multiplier-less 

algorithms. First, it provides a simple and efficient method to increase the SQNR for the Mixed 

Scaling Rotation CORDIC (Lin and Wu) approach. It then presents a combined architecture for 

the MSR CORDIC algorithm for designing the sinusoidal transforms. Figure 1.1 presents the block 

diagram of the overall framework for the first contribution. 

 

 

 

 

 

 

Figure 1.1 Block diagram of the MSR based system 

 

The second technique presents designing of constant rotators that combines the coefficient 

selection and the shift and adds implementation in the design process. It takes into the 

consideration the tunable parameters viz. Signal space, maximum error that can be allowed and 

number of adders and based on these inputs it provides number of possible optimum coefficients 

MSR 

CORDIC 

Weighted 

Amplifying factor 

Extended 

MSR 

CORDIC 

(improve

d SQNR) 



that satisfies the conditions. It also presents a multiplierless tunable architecture for the optimum 

coefficients generated which immensely reduce the latency which a multiplication based 

algorithms might have required. Emphasize is more on generation of optimum coefficients that is 

majorly evaluated by Canonic signed digit algorithm (CSD). Results shows that the framework 

works better than the existing algorithms present in the literature. The overall block diagram for 

the system is as shown in Figure 1.2 below. 

 

N (number of points)                   Coefficients 

B (Number of bits) 

e_max (error) 

Number of adders 

 

Figure 1.2 Block diagram of the CCSSI based proposed framework 

 

1.4 Organization of the thesis 

The thesis has five chapters followed by the references. The first chapter is the 

Introduction. Chapter 2 gives the literature review and background theory.  Chapter 3 describes 

the proposed algorithm for first contributions. The Second Proposed Algorithm and Tunable 

Architecture is discussed in Chapter 4. At the end conclusion of the work with the future scope is 

discussed in Chapter 5 which is then followed by References. 

Chapter 2 (Literature Survey): In this chapter study of various multiplication algorithms 

are discussed. Also, the bottleneck and research issues based on the study of different algorithms 

are highlighted. 

Chapter 3 (Proposed Multiplierless Approach based on MSR CORDIC): This chapter 

presents proposed techniques for addressing the research issues of Mixed Scaling and Rotation 

CORDIC algorithm. 

Chapter 4 (CCSSI based proposed multiplierless architecture): This chapter extends the 

existing CCSSI algorithm with for different angles and defines a tunable architecture for 

Coefficient combined scaling and shift and add implementation approach.  

Proposed Framework 



The first technique proposes a weighted amplifying factor based approach for improving 

the SQNR keeping the hardware same for the Mixed Scaling and Rotation CORDIC algorithm.  

The Second technique addresses the issue of optimizing the number of coefficient in the 

CCSSI algorithm based on the tunable parameters, the considered parameters are signal space, 

maximum allowable error and number of adders. Also an architecture for the tunable multiplierless 

algorithm for sinusoidal as well as non-sinusoidal transform is addressed. Given number of points, 

number of adders, maximum error, and signal space it generates the coefficients for the signal 

processing transform. The results of the overall framework are presented and discussed. 

   

Chapter 5 (Conclusion and Future scope): This chapter summarizes and presents the 

conclusions of the overall thesis. The scope of the future work in the domain is discussed. 

 

 



Chapter 2 

Literature Review and Background Theory 

 

 

 

In the chapter below background on Rotators and different multiplierless multiplication 

algorithm is provided. Later in the chapter, study of various existing techniques for multiplierless 

architectures are discussed followed by the research issues of the existing techniques. 

 

2.1. Rotators used in Hardware 

A Rotation operation in the signal processing algorithms is a multiplication by a 

complex number whose magnitude is equal to one. Discrete Fourier transform (DFT) or Fast 

Fourier transform (FFT) (Ahmed and Rao, “Fast Fourier Transform”), Discrete sine or cosine 

transform (DCT) and also many filters such as IIR filters and FIR filters uses rotation operation in 

their algorithms (Garrido and Grajal). 

A rotation of a complex number in a complex plane is carried out by multiplying a complex 

number with 𝑒𝑗𝛼. The new obtained complex number is at the angle 𝛼. Mathematically it can be 

written as  

 

 

[
𝑋
𝑌

] =  [
𝑐𝑜𝑠𝛼 −𝑠𝑖𝑛𝛼
𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼

] [
𝑥
𝑦]                                 (2.1)  



where 𝑥 and 𝑦 are the current complex point (𝑥 + 𝑗𝑦) and X and Y are the point   (𝑋 + 𝑗𝑌) 

obtained after rotation by angle 𝛼.  

The values obtained from the above equation are scaled by a factor of K which remains 

fixed once the number of iterations are decided. But, the scaling factor inherent to this algorithm 

is an important drawback in this method. 

  For implementing this rotation on hardware either the CORDIC algorithm or complex 

multipliers are popular approaches found in the literature. 

 

2.2. Standard CORDIC (Volder) 

 

CORDIC stands for the Coordinate Rotation in Digital Computer. In the digital system, the 

CORDIC algorithm uses shift and add implementation for the micro rotation which is more simple 

and easy to implement on hardware whereas ,complex multipliers (Despain) uses real multipliers 

with the adders which are much complex to implement on the hardware.  

To implement such algorithms a rotator is required in the hardware which performs rotation 

based on the given angle. There are two main types of rotators: 

 1. General Rotators 

 2. Constant Rotators 

In the case of general rotators, it can carry out rotation based on any angle which is given 

as an input to the rotators. This type of rotator is usually implemented by the complex multipliers 

which consist of four real multipliers and two adders. The coefficient obtained by the rotation is 

simply multiplied with a signal as an input to these complex multipliers. On the other hand, in case 

of constant rotators, they are designed to rotate based on a fixed angle. The rotations are fixed by 

specific angles and these types of rotators are used by the CORDIC algorithms. Algorithms such 

as CORDIC use micro rotations by breaking angles that are easy to implement using constant 

rotators and multiplication is carried out using shifters and adders in the hardware.  



This process tries to look for an optimal way from the hardware point of view, a way to 

ensure that the computation is as fast as possible with accepted accuracy so to make the architecture 

of the hardware as simple as possible. CORDIC is a simple shift-add iterative procedure to perform 

several computing tasks. It works in two modes: the rotation-mode and the vectoring-mode. In the 

Rotation-mode, CORDIC determines the components of a vector because of the rotation of a given 

vector by a certain angle. It is widely used for complex multiplications and graphic applications. 

Using vectoring-mode CORDIC, the magnitude as well as the phase angle of a planar vector are 

estimated from its component values.  

The following equations demonstrate rotation of a vector with the help of CORDIC 

algorithm. 

 

 

                   [
𝑋𝑖 + 1
𝑌𝑖 + 1

] = 𝐾𝑖 [
1 −𝑡𝑎𝑛𝛼𝑖

𝑡𝑎𝑛𝛼𝑖 1
] [

𝑥𝑖
𝑦𝑖

]    (2.2) 

 

where, 𝑡𝑎𝑛𝛼𝑖= 2(-i) 

Hence it brings, 

 

𝑋𝑖 + 1 = 𝑘𝑖 (𝑥𝑖 − 𝑑𝑖 𝑦𝑖 2−𝑖)          (2.3) 

 

 

𝑌𝑖 + 1 = 𝑘𝑖 (𝑦𝑖 + 𝑑𝑖 𝑥𝑖 2−𝑖)                                    (2.4) 

 

Where, 𝑑𝑖 𝑡𝑎𝑘𝑒𝑠 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 (+1, −1). 

 

CORDIC suffers the drawback of large number of iterations (i), for example., to get the 

value of angle of 45 degree it takes on the fixed i number of iterations, whereas for the value i=0 , 

the value of 45 degree can be reached. 

 

 

 

2.3 Angle Recoding CORDIC (Hu and Naganathan) 



 

The disadvantage for CORDIC algorithm is addressed in the second version which is 

named as Angle recoding CORDIC. In the equations od the CORDIC given below it tries 𝑑𝑖 to 

take on the value of (+1,0,-1) which is nothing but allowing the CORDIC algorithm to take on the 

value of zero  and then finding the minimum  number of steps to reach a particular angle with the 

help of Greedy algorithm. 

 

 

𝑋𝑖 + 1 = 𝑘𝑖 (𝑥𝑖 − 𝑑𝑖 𝑦𝑖 2−𝑖)    (2.5) 

 

 

𝑌𝑖 + 1 = 𝑘𝑖  (𝑦𝑖 + 𝑑𝑖 𝑥𝑖  2−𝑖)                 (2.6) 

 

Where, 𝑑𝑖 𝑡𝑎𝑘𝑒𝑠 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 (+1,0, −1). 
 

2.4 Unified CORDIC (Walther) 

 

CORDIC algorithms then can be computed with help of linear, circular, and hyperbolic 

trajectories. Depending upon their equation, trajectories of the vectors will be defined and 

generated by the successive iterations. Out of these three categories, circular and hyperbolic are 

more prevalent and widely used. Circular CORDIC is mainly used for the computation of 

sine/cosine functions, waveform generation, implementation of digital filters, transform 

computation, matrix calculations etc., whereas, Hyperbolic CORDIC is used for the computation 

of exponents and sinh/cosh functions, neural networks. CORDIC has a wide range of applications 

and is also used to simplify other basic and important algorithms like Eigen-value estimations, QR 

decomposition, phase and frequency estimations, singular value decomposition ,synchronization 

in digital receivers, graphics processing and robot manipulation, both rotation and vectoring-

modes. The hardware implementation of these applications requires more than one CORDIC 

processor operating in different modes and trajectories (Aggarwal et al.).  

 

The following equations shows the Unified CORDIC with multiple trajectories. The 

parameter 𝑚 determines the type of trajectory. 



 

                                      𝑋𝑖 + 1 = 𝑥𝑖 − 𝑚 𝑑𝑖 𝑦𝑖 2−𝑖     (2.7) 

 

                                     𝑌𝑖 + 1 = 𝑦𝑖 + 𝑑𝑖 𝑥𝑖 2−𝑖       (2.8) 

 

𝑚 = 0 ,1, −1 𝑓𝑜𝑟 𝑙𝑖𝑛𝑒𝑎𝑟, 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑎𝑛𝑑 ℎ𝑦𝑝𝑒𝑟𝑏𝑜𝑙𝑖𝑐 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦.  

 

As the equations of hyperbolic, circular, and linear CORDIC are different, therefore each 

will have a different architecture. The algorithm works on bringing all the different trajectories 

into a single combined architecture, thus it presents reconfigurable CORDIC (Co-ordinate 

Rotation Digital Computer) architectures which can be configured to operate either for circular or 

hyperbolic trajectories in rotation as well as vectoring-modes by manipulating equations in such a 

way that changing one value may change to either of the remaining two algorithms. It propose 

three reconfigurable CORDIC designs: a reconfigurable rotation mode CORDIC that operates 

either for circular or hyperbolic trajectory, a reconfigurable vectoring-mode CORDIC for circular 

and hyperbolic trajectories, and a generalized reconfigurable CORDIC that can operate in any of 

the modes for both circular as well as hyperbolic trajectories. The reconfigurable CORDIC can 

perform the computation of various trigonometric and exponential functions, logarithms (Hoang 

et al.; De Caro, Genovese, et al.; Sai and Hoang; Paul et al.; Johansson et al.; De Caro, Petra, et 

al.; Pineiro et al.; Juang et al.; Goel et al.), square-root, etc. of circular and hyperbolic CORDIC 

using either rotation-mode or vectoring mode of operation in one single circuit. The various 

applications include digital synchronizers, graphics processors, scientific calculators and many 

other applications. Because all the three architectures are implemented in one architecture and in 

a combined way, it saves a lot of area as well. In Unified CORDIC however, it is difficult to 

increase the region of convergence (Hu et al.) for all the three trajectories. For instance, the ROC 

for circular is in the range [-99, 99] and for the hyperbolic trajectory the same comes down to 60.4 

degrees. Also the scaling factor are different for the trajectories.   

 

 

 



2.5 Reconfigurable CORDIC (Aggarwal et al.) 

 

Unified CORDIC discussed in the sections above takes care of three different trajectories 

viz. Circular, Linear and Hyperbolic CORDIC operations by adding a parameter to the basic 

CORDIC equations. However, the major drawback it suffers from is in the region of convergence 

(ROC). The hyperbolic function cannot be defined of the entire range of ROC. Since the hyperbolic 

functions lack symmetry, the second order approximations of Taylor series can only get the ROC 

of 22.50.The drawback for the ROC in Unified CORDIC is in changing the scaling operations 

using the second order Taylor series approximations, the algorithm imposes restrictions on the 

basic shift i=4 which limits the region of convergence to 7.160 however this can be increased to 

22.50 by increasing the number of iterations. 

 

Reconfigurable CORDIC proposes the CORDIC with 1) Reconfigurable Rotational mode 

with trajectories viz. Circular and Hyperbolic and extends the ROC for the entire range of 

computations. 2) Reconfigurable Vectoring mode with trajectories viz. Circular and Hyperbolic 

functions with extended ROC. It takes the third order Taylor series approximations for deriving 

the matrices for the CORDIC operation. Same set of elementary angles are used to derive both 

Circular and Hyperbolic operations. The pipelined structure (He and Torkelson, “Design and 

Implementation of a 1024-Point Pipeline FFT Processor”; Gorman and Wills; He and Torkelson, 

“Designing Pipeline FFT Processor for OFDM (de) Modulation”; Oh and Lim) proposed helps 

decrease the latency inculcated by the algorithm. However, the algorithm do not generate the 

accuracy levels without using multipliers. Also, the latency is increased for recursive design 

proposed.   

 

2.6 Enhanced Scaling free CORDIC (Jaime et al.) 

Enhanced Scaling Free CORDIC has been implemented successfully in wireless 

applications. This new enhancement and some further improvements in this method have obtained 

some architectures which are able to reach 35% lower latency and 36% reduction in area and power 

consumption compared to the original architecture. This scaling free CORDIC is mainly intended 



for rotation mode but it can also be used for vectoring mode. It makes micro rotation following the 

same direction. In this algorithm, the approximations are made in the following form: 

 

                               sin 𝑥 =  𝑥 − 
𝑥

3!

3 
+ 

𝑥

5!

5 
− 

𝑥

7!

7 
+ ⋯             (2.9) 

 

cos 𝑥 =  1 − 
𝑥

2!

2 
+ 

𝑥

4!

4 
− 

𝑥

6!

6
+ ⋯                                    (2.10) 

 

This method also overcomes the calculation of the z factor that was performed in the 

standard CORDIC. A scaling free CORDIC iteration can be expressed as follows: 

 

This brings down the enhanced CORDIC equations as 

 

𝑋𝑖 + 1 = 𝑥𝑖 (1 − 
𝑥
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2 
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𝑥

4!
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𝑥

6!

6
+ ⋯ ) − 𝑦𝑖 ( x  − 
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(2.11) 

 

𝑌𝑖 + 1 = 𝑦𝑖 (1 − 
𝑥
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𝑥
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𝑥
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𝑥
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(2.12) 

 

Scaling free CORDIC method can be implemented on hardware by just adders and shifters. 

But the only problem with this system is its extremely small range of convergence. 

 

 

 

2.7 EEAS CORDIC (Meher et al.) 



In digital system, numbers need to be defined with a finite number of bits, which leads to 

quantization error. cos 𝛼 𝑎𝑛𝑑 sin 𝛼 in equation (2.1) can be written as C and S which are integers 

and can be implemented in a digital system. The range of this C and S which uses b bits is given 

as [−2𝑏−1,  2𝑏−1 − 1] . This transforms the equation in a digital system as,  

[
𝑋𝐷

𝑌𝐷
] =  [

𝐶 −𝑆
𝑆 𝐶

] [
𝑥
𝑦]   (2.13) 

 

where, 𝑋𝐷 𝑎𝑛𝑑 𝑌𝐷 represents the point in the digital system, and C and S are obtained by a different 

method which is discussed further in this section. 

 

As mentioned in the above section on Rotators used in Hardware, there are two types of 

rotators one is a general rotator and the second type of rotator is a constant rotator. CORDIC 

algorithm uses general rotations and also breaks down rotation angle into a series of k-micro 

rotations which can be represented as 𝛼𝑘 =  ± tan−1 2−𝑘. These angles use only two adders and 

calculate the rotation as  

 

[
𝑋𝐷

𝑌𝐷
] =  [

2𝑘 −𝛿𝑘

𝛿𝑘 2𝑘 ] [
𝑥
𝑦]                        (2.14) 

 

where, C is denoted as 2𝑘 and S as 𝛿𝑘. Here 𝛿𝑘 belongs to set {-1, 1} which is required to determine 

the direction of rotation. There also exists a notion of scaling factor as for C and S which is denoted 

by R and this algorithm calculates scaling for each angle k as 𝑅(𝑘) = √22𝑘 + 1. 

The extended elementary angle set (EEAS) CORDIC algorithm (Meher et al.) is based on 

constant rotators. Constant rotators work on a fixed angle only due to which, this algorithm 

considers the elementary angles only, given by 𝛼𝑘 = tan−1  (𝛿𝑘2−𝑎𝑘 + 𝛾𝑘2−𝑏𝑘).  The values 

𝛿𝑘& 𝛾𝑘 belongs to set {-1, 0, 1} and 𝑎𝑘 & 𝑏𝑘 belongs to N.  The value of 𝑏𝑘 > 𝑎𝑘 and a value 𝑐𝑘 =

𝑏𝑘 − 𝑎𝑘, the rotation which uses four adders can be determined as 

 



[
𝑋𝐷

𝑌𝐷
] =  [

2𝑏𝑘 −(𝛿𝑘2𝑐𝑘 + 𝛾𝑘)

(𝛿𝑘2𝑐𝑘 + 𝛾𝑘) 2𝑏𝑘 ] [
𝑥
𝑦]      (2.15) 

 

 

2.8 Mixed Scaling and Rotation CORDIC (Lin and Wu) 

 

The algorithm uses 2 ∗ (𝐼𝑘 + 𝐽𝑘 + 1) adders per micro rotation and each micro rotation is 

calculated as 

  

[
𝑋𝐷

𝑌𝐷
] =  [

∑ 𝛿𝑘𝑖2𝑎𝑘𝑖
𝐼𝑘−1
𝑖=0 − ∑ 𝛾𝑘𝑗2𝑏𝑘𝑗

𝐽𝑘−1
𝑗=0

∑ 𝛾𝑘𝑗2𝑏𝑘𝑗
𝐽𝑘−1
𝑗=0 ∑ 𝛿𝑘𝑖2𝑎𝑘𝑖

𝐼𝑘−1
𝑖=0

] [
𝑥
𝑦]         (2.16) 

 

The major difference between the conventional CORDIC algorithm and EEAS CORDIC 

& MSR-CORDIC is that the algorithm provide a solution to compensate scaling which depends 

on the rotation angle. 

Other approaches to reduce the number of micro rotation (Meher et al.) suggest selecting 

the subset of micro rotation in CORDIC and approximating the rotation angle to reduce rotation 

error. 

Another approach for designing rotators is based on optimizing the real constant 

multiplication which quantize cos 𝛼 𝑎𝑛𝑑 sin 𝛼 by b number of bits, the rotation is given as, 

 

[
𝑋𝐷

𝑌𝐷
] =  [

⌊2𝑏 𝑐𝑜𝑠 𝛼⌉ −⌊2𝑏 𝑠𝑖𝑛 𝛼⌉

⌊2𝑏 𝑠𝑖𝑛 𝛼⌉ ⌊2𝑏 𝑐𝑜𝑠 𝛼⌉
] [

𝑥
𝑦]             (2.17) 

 



where, ⌊𝐷⌉ represents a rounding operation. Here, the multiplication of ⌊2𝑏 𝑐𝑜𝑠 𝛼⌉ 𝑎𝑛𝑑 ⌊2𝑏 𝑠𝑖𝑛 𝛼⌉ 

with 𝑥 and 𝑦 is implemented by using shift and add operations.  

One of the simple approaches is to use a canonic signed digit (CSD) (Garrido, Grajal, and 

Gustafsson) transform which was described in the above section on multiplierless multiplication. 

This approach provides less number of adders compared to convention binary multiplication. 

There also many other approaches that can further reduce the number of adders in multiplication 

which are known as single constant multiplication (SCM) and Multiple constant multiplication 

(MCM) (Voronenko and Püschel) techniques. 

There exist many other approaches which are based on trigonometric identities (Philipov 

et al.; Arguello et al.; James; Garrido, Qureshi, Takala, et al.). These approaches and algorithms 

restrict the set of coefficients used for the rotation.  

 

2.9 CORDIC II: A New improved Algorithm (Garrido, 

Källström, Kumm, et al.) 

 

Unlike the prior CORDIC algorithms, The CORDIC II algorithm uses new angle sets to reach 

faster convergence. The basic CORDIC uses micro-rotations for the implementations of rotators 

which increases the latency of the algorithm. CORDIC II algorithm uses a combinations of Friend 

angles, Uniform scaled rotations (USR) and Nano rotations to reach to a particular angle. Friend 

angles are those angles ai for which there exists a set of coefficient Pi = Ci + j Si, whose angle is ai, 

such that there magnitudes are same. USR uses the same scaling as the redundant CORDIC. 

 

CORDIC II uses six rotation stages in pipeline that uses the one of the three angle sets.  

Stage 1: This stage takes care of trivial angles + 1800, + 900 and set the left over angles in the 

range from + 450. The Architecture of this takes two negators and four 2:1 multiplexers. 

Stage 2: It uses friend angles and defines their architecture. It consists of five adders and seven 

2:1 multiplexers. 



Stage 3: This uses USR CORDIC. Its architecture consists of two adders and two 2:1 

multiplexers. 

Stage 4 & 5:  These two stages uses conventional CORDIC algorithm for rotations by angles 

1.7900 and 0.8950. 

Stage 6: The sixth stage uses Nano rotations. It uses two adders, two shifters and scaling.  

By using the proposed stages, the CORDIC II algorithm requires minimum number of adders 

than the conventional CORDIC used so far. However, CORDIC II algorithm defines sinusoidal 

rotators only all the six stages takes care for circular rotation matrix. 

  

 

 

2.10 Multiplication by two integers using the minimum 

number of adders (Dempster and Macleod, “Multiplication 

by Two Integers Using the Minimum Number of Adders”) 

 

This method talks about the minimum adder graph algorithm which designs shifters and 

adder circuits that aid multiplication by integers using minimum number of adders. It considers 

the circuit as a graph made up of two input adders. It performs an exhaustive search of all possible 

graph topologies and produces two Tables out of which one contains the number of adders required 

to produce the circuit and other contains the partial products of the adders. Further, it also talks 

about reusing the repeating products which come up while multiplying two numbers. So, if an 

adder block has the same two inputs as before it doesn’t need to calculate that again. Also, it takes 

care of cases in which one or two inputs of the adders are powers of 2. If that is the case, no extra 

adders are required as that can be achieved with shifters alone. Thus, the algorithm proposed claims 

the fewest adders required in a circuit. 

 

2.10.1 Multiplier-less Constant Multiplication Algorithms 

(Voronenko and Püschel) 



There are many existing algorithms provided in the literature where the constant 

multiplication is carried out using a network of binary shifters and adders. Implementation on the 

hardware point of view binary multiplication is very easy and less costly since the hardware cost 

depends on the number of adders or subtractors used for the constant multiplication. Shifts in the 

hardware can be implemented by hardwiring. In literature, there are many algorithms available for 

the multiplierless constant multiplication such as canonic signed digit (CSD), single constant 

multiplication (SCM), multiple constant multiplications (MCM). 

In this approach the binary multiplier can be represented by an equation as below, 

 

                                    𝐶 = ∑ -𝑐𝑖2𝑖𝑛
𝑖 =0         (2.18) 

 

Here in the above equation 𝐶 is the output and 𝑐𝑖  is the coefficient which belongs to set 

{0, 1}. Here, the number of adders required for the multiplication are determined by calculating 

the number of nonzero 𝑐𝑖  in the above equation. Thus, in the signed digit notation, the number of 

adders used for the constant multiplication will be N-1 if there are total N nonzero 𝑐𝑖  in the above 

equation. 

In the concept of a canonic signed digit c belongs to different set which is {-1, 0, 1} and it 

is represented as 1̅ in the binary representation of the number. Thus, by including -1 in the set, the 

number of adders used for the multiplication of constants can be reduced. The method for 

calculating the number of adders is the same as signed digits which are calculating the total number 

of nonzero 𝑐𝑖  in the binary representation and subtract 1 from it which gives the number of adders. 

But before calculations, one needs to reduce every two consecutive 1's in the number with -1 

representation. For instance, if 7 needs to be multiplied with a constant x i.e. required to find 7x. 

The binary representation of 7 can be written as 111, and using shifters and adders x can be 

multiplied as (𝑥 ≪ 2 + 𝑥 ≪ 1 + 𝑥) which shows that 2 adders are required for multiplication of 

constant x with 7. But using canonic signed digit method multiplication can be performed using 

only one adder. hence substituting two consecutive 1's with -1 it can be done as given 11 and can 



be written as 101̅, by substituting in the same way in 7, it can be written as 1001̅ which shows 

that only 1 adder is required for the multiplication of x with 7. This can be represented in the form 

of adders and shifters as ( 𝑥 ≪ 3 − 𝑥 ). 

 

The CSD transform as described above cannot be directly applied to a negative number. 

However, for finding CSD transform of a negative number, first take CSD transform of a positive 

number and then flip the sign of nonzero digits in the binary which gives CSD transform for a 

negative number. Thus using CSD transform number of adders and cost of hardware can be saved, 

however, it is not the optimal solution. 

 

 

2.11  Combined Coefficient Selection and Shift and 

Implementation (CCSSI) (Garrido, Qureshi, and Gustafsson) 

 

This approach uses the combined coefficient selection and shit-and-add implementation 

(CCSI) method and calculates the total number of coefficients obtained for different cases. The 

approach does not set any restriction to C + j S selection it selects the best and efficient coefficient 

which is then used for multiplication with x and y using shift-and-add implementation.  

It can solve two types of rotation problems SCR and MCR. The goal here is to find the 

optimal coefficient and the total number of coefficients with the given input angles based on N 

point DFT , word length i.e. b bits, maximum allowed error 𝑒𝑚𝑎𝑥 and number of allowed adders 

that can be used, which is represented in the block diagram in the Figure-2.1 below. 

 

 

 



 

 

An example to explain this approach is considered with word length to be b = 5, 𝑒𝑚𝑎𝑥 = 0.05, 

angle = 14 & 38 and the number of allowed adders is 4.  

1) Step-1: First complete design space which consists of all possible finite word length values as 

illustrated in Figure-2.2 (a) for our example. For this consider 22𝑏−2 different coefficient 

values for every angle in the provided set of angles.  

 

2) Step-2: Narrow down the set of coefficient based on the angle 𝛿 = sin−1 𝑒𝑚𝑎𝑥 from the angles 

taken into consideration. This is shown in the Figure-2.2 (b). Considering the coefficient in the 

range of  𝑎𝑛𝑔𝑙𝑒𝑠 𝛼 + 𝛿 𝑎𝑛𝑑 𝛼 − 𝛿 , get the coefficient which has the rotation error less than 

the 𝑒𝑚𝑎𝑥. 

 

 

3) Step-3: Under this step, the coefficients are further reduced based on the scaling. In the 

example considered, fixed scaling is used. Here the bound for reducing search space based on 

scaling is taken as 2 ∗ 𝑅𝑓𝑖𝑥𝑒𝑑 ∗ 𝑒𝑚𝑎𝑥  , Figure-2.2 (c) illustrate the same. 
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     Figure 2.1: Block Diagram of the CCSSI based approach 



4) Step-4: The number of adders required to implement each rotation is determined. Before that 

kernels are formed based on the remaining coefficient till Step-3. A kernel is the set of the 

coefficient for M angles. The next step is the number of adders are calculated for the kernel 

and then reduced set of kernel based on the maximum adder bound.  

 

 

5) Step-5: Calculate the number of efficient coefficients obtained at the end. 



 

Figure 2.2: Steps for the proposed approach. (a) Initial design space with the required angles. Here 

are represented angle alpha = 14 & 38. (b) Reduced coefficient based on the delta angle. (c) Further 

reduction of coefficient based on the fixed scaling factor. 

 

 

 

 



 

 

 

 Summary 
 

 
This Chapter discussed various techniques used for the multiplierless algorithms. CORDIC 

based approaches are well known for implementation of multiplierless architectures however, it 

carries certain drawbacks which increases the latency of the architecture and hence various 

versions of CORDIC are discussed. Unified CORDIC approach takes care of three different 

trajectories viz. Linear, Circular and Hyperbolic and hence it reduces the hardware overhead. 

However, the common region of convergence and scaling factor are major issues of it. Mixed 

Scaling Rotations (MSR) CORDIC is an efficient technique to determine the coefficients, 

however, the SQNR can be improved which can improve the performance of the algorithm 

 

 Coefficient Combined Selection and shift and Add implementation (CCSSI) approach 

gives more flexibility compared to the CORDIC based approaches and it also tries to optimize the 

hardware for particular tunable parameters like number of bits, number of adders and maximum 

allowable error. This helps in improving the latency of the architecture by minimizing the hardware 

required for a particular coefficient to be generated. MCR based coefficient selection pose an 

important bottleneck for CCSSI based algorithm as it is difficult to find common radius for the 

given tunable parameters. With CCSSI sinusoidal as well as non-sinusoidal coefficients also can 

be found.   

 

 

 

 



Chapter 3  
 

Proposed Approach Based On Mixed Scaling 

CORDIC 
 

 

 
 

 

Co-ordinate Rotational Digital Computer (CORDIC) is an iterative arithmetic algorithm 

based on the principles of two dimensional geometry. The algorithm offers simple hardware 

implementation consisting of shift and add operations. It is suitable for the computation of 

trigonometric and hyperbolic functions, multiplication and division operations and logarithms. The 

simplicity of implementing these mathematical operations leads to its applications in Digital Signal 

Processing, such as Fast Fourier Transformation (FFT) (Heideman et al.; Ahmed and Rao, “Fast 

Fourier Transform”; James), Eigenvalue Decomposition, Singular Value Decomposition and QR 

factorization (Walther). 

 

The iterative nature of the conventional CORDIC algorithm affects the speed of 

computation. Several algorithms have been proposed in the literature such as Angle Recording 

(AR), Fast CORDIC, Extended Elementary Angle Set (EEAS) , Modified Vector Rotational 

(MVR), Mixed Scaling Rotation (Meher et al.) amongst others to reduce the number of iterations. 

MSR-CORDIC can also be seen as the universal vector rotational CORDIC engine encompassing 

aforementioned algorithms. It significantly reduces the number of iterations thereby improving the 

speed and enhancing the signal-to-quantization-noise-ratio (SQNR) performance. It offers a 

unique feature of allowing intermediate vectors to have values other than unity by controlling the 

amplifying factor. The algorithm can be applied to the applications where the rotation angles are 

usually known beforehand.e.g. The twiddle factor in FFT (Ahmed and Rao, “Fast Fourier 

Transform”). 

 

The main theme of the proposed approach lies in redefining the amplifying factor by 

introducing terms for representing the direction of the rotations. It is based on the principles of 



geometry consisting micro-rotations with scaling and MSR-CORDIC algorithm. With redefined 

amplifying factor, the optimal parameters then can be calculated similar to (Lin and Wu) such that 

norm error and angle error are minimized at the same time. The main contribution lies in the fact 

that it provides higher SQNR performance while preserving the features of MSR-CORDIC.  

 

A strong feature of the proposed algorithm is that it does not require additional hardware 

when compared to the existing MSR-CORDIC implementations. 

 

 

3.1 Mixed Scaling and Rotation (MSR) CORDIC: 

 

 

MSR-CORDIC algorithm is designed such that the rotations and scaling operations are 

performed at the same time. Unlike the conventional CORDIC, the MSR-CORDIC algorithm 

minimizes the errors in both the angle and norm. It also provides the feature of adjusting the range 

of the norm. These unique features of MSR-CORDIC provide better SQNR performance, global 

solution and reduction of round off noise. The algorithm 1 recalls the MSR-CORDIC scheme (Lin 

and Wu).  

 

Various parameters are as follows: n denotes the nth iteration, N denotes the total number 

of iterations, ɳi(n); µj(n) Є {1, 0, 1}; si(n); tj(n) Є {0, 1,.. S}, where S denotes the number of 

maximum shifts; I and J denotes the number of signed-power-of-two (SPT) terms of x(n) and y(n) 

respectively; ɵn is the nth elementary angle; Z(n) is the accumulative angle, and Z(0) is 0; �̅�n 

denotes the product of the amplifying factors in the nth iteration, and �̅�0 is 1. P denotes the scaling 

factor, and Nspt is denoted as the SPT term used which is the sum of I and J.  

 

The design parameters si(n), tj(n), ɳi(n) and µj(n)are selected such that the angle error 

|Z(N) − ɵ| and norm error |1 − 𝑃| are minimized at the same time; where ɵ is the targeted 

angle. 

 

Algorithm 1 MSR-CORDIC Scheme 



___________________________________________________ 

 
1: for n: =1 to N 

 

2: Perform micro-rotations and scaling 

 

  [
𝑥(𝑛)
𝑦(𝑛)

] =

[
 
 
 
 
 
∑ɳ𝑖(𝑛)2−𝑠𝑖(𝑛)

𝐼

𝑖=1

∑µ𝑗(𝑛)2−𝑡𝑗(𝑛)

𝐽

𝑗=1

              

∑µ𝑗(𝑛)2−𝑡𝑗(𝑛)

𝐽

𝑗=1

∑ɳ𝑖(𝑛)2−𝑠𝑖(𝑛)

𝐼

𝑖=1

 

]
 
 
 
 
 

 [
𝑥(𝑛 − 1)
𝑦(𝑛 − 1)

]  

          (3.1) 

 

3: Calculate elementary angle 

 

𝜃𝑛 = 𝑡𝑎𝑛−1 (

∑ µ𝑗(𝑛)2−𝑡𝑗(𝑛)𝐽
𝑗=1

___________________
∑ ɳ𝑖(𝑛)2−𝑠𝑖(𝑛)𝐼

𝑖=1

)       

          (3.2) 

 

4: Update accumulation angle 

 

Z(n)=Z(n-1) + 𝜃𝑛                                 
                    (3.3) 

 

5: Amplifying factor in the nth rotation 

 

𝑝𝑛 = √(∑ 2−𝑠𝑖(𝑛)

𝐼

𝑖=1

)

2

+ (∑ 2−𝑡𝑗(𝑛)

𝐽

𝑗=1

)

2

        

          (3.4) 

 

 

 

 

 



 
6: Product of the amplifying factor in the nth rotation 

 

𝑝𝑛̅̅ ̅ =  𝑝𝑛−1̅̅ ̅̅ ̅̅  𝑋 𝑝𝑛     
          (3.5) 

 

 

 
7: end 

 

8: Scaling factor  

 

𝑃 = ∏𝑝𝑛

𝑁

𝑛=1

        

          (3.6) 

 

 
|1 − 𝑃| are minimized at the same time; where ɵ is the targeted angle. 

 

 

3.2 The Proposed Enhanced MSR Scheme 
 

 

Given a rotation angle 𝜃 and vector[𝑥 , 𝑦]𝑇, the resultant vector [ 𝑥′, 𝑦′]𝑇 can be 

computed as follows: 

 

[
𝑥′

𝑦′] = [
cos 𝜃   −sin 𝜃
sin 𝜃       cos 𝜃

 ]   [
𝑥
𝑦] 

          (3.7) 
The resultant angle can be decomposed of multiple angles by using the concept of micro-

rotations. Hence, (3.7) gets modified to 

 

[
𝑥′

𝑦′] = (∏ [
cos 𝜃𝑛    −sin 𝜃𝑛

   sin 𝜃𝑛       cos 𝜃𝑛      
 ]𝑁

𝑖=1 )  [
𝑥
 𝑦 ]  

          (3.8) 



 
                           Where,  𝜃 =  ∑ 𝜃𝑛

𝑁
𝑛=1  

 
N is the total number of rotations and 𝜃𝑛 is the nth rotation angle. 

 
The principal theme of the proposed work is to replace (3.8) by scaled products such that 

 

[
𝑥′

𝑦′] = (∏ [
𝑣𝑛 cos 𝜃𝑛    −𝑣𝑛sin 𝜃𝑛

   𝑣𝑛sin𝜃𝑛       𝑣𝑛cos 𝜃𝑛     
 ]𝑁

𝑖=1 )  [
𝑥
 𝑦 ]  

          (3.9) 

 
Where, 𝑣𝑛 is the scaling factor, 

 

 

𝜃 =  ∑ 𝜃𝑛

𝑁

𝑛=1

    

          (3.10) 
And 

 

∏𝑣𝑛 = 1

𝑁

𝑛=1

  

           (3.11) 
 

It can be observed from (3.10) that scaling operation is performed in parallel to the micro-

rotation. It is also important to note that the intermediate vectors may have norms other than unity. 

Though, to retain the norm of the original vector, multiplication of all the scaling factors shall be 

unity. The trivial equality 𝑐𝑜𝑠2𝜃 + 𝑠𝑖𝑛2𝜃 = 1 and (3.12) can be utilized to produce, 

 

∏(√(𝑣𝑛 cos 𝜃𝑛)2 + (𝑣𝑛 sin 𝜃𝑛)2)) =  1   

𝑵

𝒏=𝟏

 

          (3.12) 

 



Further, it can be observed that there is a stark similarity between the structure of MSR-

CORDIC and the method of micro-rotations coupled with scaling as used in (3.10) – (3.12).  

 

The proposed novel MSR-CORDIC algorithm uses this concept in redefining the original 

MSR-CORDIC. Equation (3.1) from MSR-CORDIC is analogous to equation (3.9). Based on 

(3.13) the amplifying and the scaling factors defined in the algorithm 1 are modified as 

 

𝑣𝑛 = √(∑ ɳ
𝑖
(𝑛)2−𝑠𝑖(𝑛)

𝐼

𝑖=1

)

2

+ (∑ 𝜇
𝑗
(𝑛)2−𝑡𝑗(𝑛)

𝐽

𝑗=1

)

2

   

          (3.13) 

 

𝑉 = ∏𝑣𝑛  

𝑁

𝑛=1

  

          (3.14) 

 

The redefined amplifying factor contains additional terms ɳi(n) and µj(n). All the 

remaining equations (3.1) – (3.3) and (3.5) – (3.6) remain the same. The summary of the same is 

given in algorithm 2. 

 

The proposed new MSR-CORDIC preserves all the features provided by the MSR-

CORDIC. It can be adopted for both normal and generalized MSR-CORDIC schemes. Further, it 

is important to note that there is no need of any additional adders or shifters in comparison to the 

conventional MSRCORDIC schemes. The boundary condition in the proposed scheme remains 

the same as of the classical scheme, i.e. 𝑣𝑢𝑝𝑝𝑒𝑟 = 𝑝𝑢𝑝𝑝𝑒𝑟 ,𝑣𝑙𝑜𝑤𝑒𝑟 = 𝑝𝑙𝑜𝑤𝑒𝑟 . With the same 

hardware complexity, the proposed MSR-CORDIC provides greater SQNR performance. 

 

 

 

 



 

 

 

3.3 The Proposed Algorithm 
 

 

 

Algorithm 2 Proposed MSR-CORDIC Scheme with weighted 

amplifying factors 

___________________________________________________ 

 
1: for n: =1 to N 

 

2: Perform micro-rotations and scaling using equation 

 

  [
𝑥(𝑛)
𝑦(𝑛)

] =

[
 
 
 
 
 
∑ɳ𝑖(𝑛)2−𝑠𝑖(𝑛)

𝐼

𝑖=1

∑µ𝑗(𝑛)2−𝑡𝑗(𝑛)

𝐽

𝑗=1

              

∑µ𝑗(𝑛)2−𝑡𝑗(𝑛)

𝐽

𝑗=1

∑ɳ𝑖(𝑛)2−𝑠𝑖(𝑛)

𝐼

𝑖=1

 

]
 
 
 
 
 

 [
𝑥(𝑛 − 1)
𝑦(𝑛 − 1)

] 

            (3.15) 

 
3: Calculate elementary angle using equation  

 

𝜃𝑛 = 𝑡𝑎𝑛−1 (

∑ µ𝑗(𝑛)2−𝑡𝑗(𝑛)𝐽
𝑗=1

___________________
∑ ɳ𝑖(𝑛)2−𝑠𝑖(𝑛)𝐼

𝑖=1

) 

 
                    (3.16) 

 
4: Update accumulation angle using equation 

 

Z(n)=Z(n-1) + 𝜃𝑛   
                    (3.17) 

 

 



 

 

 

 

 

 

 

5: Weighted Amplifying factor in the nth rotation 

 

𝑣𝑛 = √(∑ ɳ
𝑖
(𝑛)2−𝑠𝑖(𝑛)

𝐼

𝑖=1

)

2

+ (∑ 𝜇
𝑗
(𝑛)2−𝑡𝑗(𝑛)

𝐽

𝑗=1

)

2

 

            (3.18)   

 

 
6: Product of the amplifying factor in the nth rotation 

 

𝑣𝑛̅̅ ̅ =  𝑣𝑛−1̅̅ ̅̅ ̅̅  𝑋 𝑣𝑛 
Where 𝑣0 = 1 
             (3.19) 

 
7: end 

 

8: Scaling factor  

 

𝑉 = ∏𝑣𝑛

𝑁

𝑛=1

 

              (3.20) 
 

  



3.4 Results and Discussions 
 

A comparison of the proposed scheme and MSR-CORDIC in terms of the SQNR outcome 

is presented in this section. It is shown that the proposed scheme results in better SQNR 

performance. The constraints are fixed in the same way as outlined in (Lin and Wu) for the purpose 

of simplicity and fairness. An exhaustive search for each type of constraint is carried out to 

generate 512 distinct parameters sets of si(n), tj(n), ɳi(n) and µj(n). 

 
MSR-CORDIC offers two sets of schemes, namely, Normalized MSR-CORDIC and 

Generalized MSR-CORDIC. A comparison between the proposed scheme and MSR-CORDIC is 

presented in Fig.1 with NSPT = 4. Normalized scheme takes any one set of (I; J) that satisfies I + 

J = 4, i.e. (4; 0), (0; 4), (1; 3), (3; 1) and (2; 2). It is important to note that sets (4; 0) and (0; 4) 

offer only scaling operation and hence they are not considered for the comparison. The SQNR 

performance of (1; 3) and (3; 1) are same. Hence, only unique combinations such as (1; 3) is taken 

into account for the simulations. Unlike the normalized scheme which has the fixed choice of 

combinations for (I; J), Generalized scheme selects the combination which minimizes the angle 

error |Z(N) − ɵ| and norm error |1 − 𝑉| the most at the same time. 

 

The following observations can be made from Figure 3.1:  

 

1) For the proposed method similar to the MSR-CORDIC, the generalized scheme offers the 

better SQNR performance when compared to the Normalized scheme. Furthermore, the 

SQNR performance of (2; 2) is higher when compared to (1; 3). 

2) The plot shows that the proposed scheme offers higher SQNR performance for both the 

schemes when compared with that provided by corresponding MSR CORDIC 

counterparts. 

 
 

 

 



 
Figure.3.1 SQNR Comparison between MSR_CORDIC and the proposed scheme 

 

 

The scaling factor in the conventional CORDIC algorithm is fixed as per the number of 

iterations. Though, with other algorithms such as Angle recoding, MVR and EEAS (Meher et al.), 

the scaling factor changes with every iteration. This leads to higher round-off noise error and hence 

deteriorates SQNR performance. The word length can be defined if range of the scaling factor is 

known a priori. Thus, the round-off noise can be reduced. 

 

MSR-CORDIC allows to determine the range for the scaling factor such that 𝑝𝑢𝑝𝑝𝑒𝑟 <

𝑝𝑛̅̅ ̅ <  𝑝𝑙𝑜𝑤𝑒𝑟   holds true. The parameter 𝑝𝑙𝑜𝑤𝑒𝑟  is fixed as 1 𝑝𝑢𝑝𝑝𝑒𝑟
⁄ as per the boundary 

constraint explained in (Lin and Wu) and the same holds true for 𝑣𝑛̅̅̅̅ . 

 

 

 

 

 



 

 

 

The analysis of SQNR performance with the change in scaling factor is depicted in Figure. 

3.2. The parameters are selected as NSPT = 3, N = 3 and NSPT = 4, N = 2 for Figure. 3.2 (a) and 

Figure. 3.2 (b) respectively. Following can be observed from the plot: 

 

1) Similar to MSR-CORDIC, the proposed scheme saturates when 𝑣𝑢𝑝𝑝𝑒𝑟 is 1.5. 

 

2)  The proposed scheme has better SQNR performance for the same parameters. When 

𝑣𝑢𝑝𝑝𝑒𝑟  value reaches 1.3, the SQNR performance of the proposed scheme is better than 

the saturated SQNR value of MSR-CORDIC. 

 

 

 

 



Figure 3.2 (a) Comparing the relationship between SQNR performances and scaling factor value 

of vupper in generalized scheme of MSR-CORDIC and proposed MSR-CORDIC NSPT = 3 and 

N = 3. 

 
(b) 

Figure 3.2 (b) Comparing the relationship between SQNR performances and scaling factor value 

of 𝑣𝑢𝑝𝑝𝑒𝑟 in generalized scheme of MSR-CORDIC and proposed MSR-CORDIC. NSPT = 4 and N 

= 2. 

 

The analysis of the SQNR performance with different NSPT is shown in Figure 3.3. For a 

comparison of both, conventional and proposed MSR-CORDIC schemes, the parameters are 

selected as NSPT = 3 and NSPT = 4 with N = 2. It can be observed that the performance of the 

higher NSPT term is better in both the schemes. Also, the SQNR performance of the proposed 

scheme is better when compared with the same NSPT term of the other scheme. 

 

A further observation can be made that the hardware complexity of the proposed algorithm 

is the same as MSR CORDIC since scaling and micro-rotation equation for both the algorithm 

remains analogous. Hence, the proposed algorithm enhances the SQNR performance without 

adding hardware complexity. During the extensive and numerous simulations runs in addition to 



those being reported, no instance could be found where the proposed scheme resulted in inferior 

SQNR performance than that afforded by the conventional MSR-CORDIC algorithm. 

 

 
 

 

Figure 3.3 Analysis of MSR-CORDIC and proposed scheme for different combinations of NSPT. 

 

 

Summary 

 

An enhanced MSR-CORDIC algorithm is proposed in this chapter that employs weighted 

amplifying factors. The proposed algorithm can be implemented with both, Generalized and 

Normalized schemes. The algorithm provides better SQNR performance with no added hardware 

complexity. The results are compared with the existing MSR approach and it is found that the 

proposed generalized MSR CORDIC shows 6.6 % improvement for a given value of I + J = 3 and 

N = 2in the SQNR compared to the existing MSR CORDIC algorithm.  

 



Chapter 4  

CCSSI based Proposed Approach 

 

 

4.1 Proposed Approach based on CCSSI 

The proposed approach uses the combined coefficient selection and shift-and-add 

implementation (CCSI) (Garrido, Qureshi, and Gustafsson) technique and calculates the total 

number of coefficient obtained for the different cases. This approach does not set any restriction 

to C+jS selection, it selects the best and efficient coefficient which is then used for multiplication 

with x and y using shift-and-add implementation. This approach is further extended to 64 point 

FFT and variation of the number of coefficient with the bits, Number of points and Number of 

adders is obtained. The design process which is followed for this work is as follow 

Proposed approach can solve two types of rotation problems SCR and MCR. The goal here 

is to find the optimal coefficient and total number of coefficients with the given input angles based 

on N point transform, word length i.e. b bits, maximum allowed error 𝑒𝑚𝑎𝑥 and number of allowed 

adders that can be used, which is represented in the block diagram in the Figure-4.1 below. 

 



 

An example to explain the proposed approach is considered where, word length is taken to 

be b = 5, 𝑒𝑚𝑎𝑥 = 0.05, angle = 14 & 38 and number of allowed adders is 4. 

Step-1: First complete design space which consists of all possible finite word length values as 

illustrated in Figure-4.2 (a). For this, 22𝑏−2 different coefficient are considered for every angle 

in the provided set of angles.  

 

Step-2: Narrow down the set of coefficient based on the angle 𝛿 = sin−1 𝑒𝑚𝑎𝑥  from the angles 

taken into consideration. This is shown in the Figure-4.2 (b). Considering the coefficient in the 

range of  𝑎𝑛𝑔𝑙𝑒𝑠 𝛼 + 𝛿 𝑎𝑛𝑑 𝛼 − 𝛿 , get the coefficient which has the rotation error less than 

the 𝑒𝑚𝑎𝑥. 

 

Step-3: Under this step, the coefficients are further reduced based on the scaling. In the 

example considered, fixed scaling is used. Here the bound for reducing search space based on 

scaling is taken as 2 ∗ 𝑅𝑓𝑖𝑥𝑒𝑑 ∗ 𝑒𝑚𝑎𝑥, Figure-4.2 (c) illustrate the same. 

 

Step-4: The number of adders required to implement each rotation is determined. Before that 

kernels are formed based on the remaining coefficient till Step-3. A kernel is the set of the 

coefficient for M angles. The next step is the number of adders are calculated for the kernel 

and then reduced set of kernel based on the maximum adder bound.  

CCSSI 

N 

b 

e_max 

adde

rs 

Optimal Coefficient 

Total number 

of coefficient 

Figure 4.1: Block Diagram of proposed approach 



 

Step-5: Calculate the number of efficient coefficients obtained at the end.

 

Figure 4.2: Steps for the proposed approach. (a) Initial design space with the required angles. Here 

are represented angle alpha = 14 & 38. (b) Reduced coefficient based on delta angle. (c) Further 

reduction of coefficient based on fixed scaling factor. 

 

 

 



Table 4.1: MCR Remaining Kernel for b = 5 and max.error = 0.05 for two angles 

b = 5, max.error = 0.05 

Angle 1 Angle 2 R Error 

14 10 + 10i 14.0711 0.0050506 

15 11 + 11i 15.2782 0.018207 

15 10 + 10i 14.5711 0.029437 

14 10 + 11i 14.719 0.048849 

14 11 + 10i 14.719 0.048849 

15 11 + 12i 15.8296 0.052408 

 

The Number of kernels is calculated with the algorithm described above for different 

parameters viz. number of bits (b) and maximum error and the observations are indicated in the 

Tables 4.1 to 4.8. 

It is observed from the Table 4.1, that for maximum error bound of 0.05 and number of 

bits of space equals 5, 24 different coefficients are generated which can implement five angles. 

However it is important to note that all the different kernels generated are accumulated around the 

radius of 14 and 15 approximately which indicates that the CCSSI is suitable of generating the 

common radius used in the algorithms like Fast Fourier transform and other sinusoidal transforms. 

To observe the effect of number of bits on the total number of coefficients generated and 

the error bound, The number of bits are from varied b=5 till b=8. Table 4.2, 4.3 and 4.4 depicts the 

results. As the number of bits or the word length increases, the number of coefficient increases as 

well in the given space and hence more coefficients are included. 

 

 

 



 

Table 4.2: MCR Remaining Kernel for b = 6 and max.error = 0.05 for two angles 

b = 6, max.error = 0.05 

Angle 1 Angle 2 R Error 

14 10 + 10i 14.0711 0.005051 

16 11 + 11i 15.7782 0.014059 

15 11 + 11i 15.2782 0.018207 

15 10 + 10i 14.5711 0.029437 

14 10 + 11i 14.719 0.048849 

14 11 + 10i 14.719 0.048849 

 

Table 4.3: MCR Remaining Kernel for b = 7 and max.error = 0.05 for two angles 

b = 7, max.error = 0.05 

Angle 1 Angle 2 R Error 

14 10 + 10i 14.0711 0.005051 

16 11 + 11i 15.7782 0.014059 

15 11 + 11i 15.2782 0.018207 

15 10 + 10i 14.5711 0.029437 

14 10 + 11i 14.719 0.048849 

14 11 + 10i 14.719 0.048849 

 

 



Table 4.4: MCR Remaining Kernel for b = 8 and max.error = 0.05 for two angles 

b = 8, max.error = 0.05 

Angle 1 Angle 2 R Error 

14 10 + 10i 14.0711 0.005051 

16 11 + 11i 15.7782 0.014059 

15 11 + 11i 15.2782 0.018207 

15 10 + 10i 14.5711 0.029437 

14 10 + 11i 14.719 0.048849 

14 11 + 10i 14.719 0.048849 

 

The results were extended for three, four and five different angles as well and Tables 4.5, 

4.6, 4.7 and 4.8 shows the different coefficients found for five angles for radius equal to 15. 

Increasing the number of angles i.e. N, also be termed as number of points in transforms like FFT, 

the number of unique coefficients found for an error bound of 0.05 are closer to the radius of 15. 

For the Table 4.5 below the Coefficient combined and shift and add implementation algorithm is 

able to generate four angles closer to the radius and only Angle-5 needs to be taken outside of the 

error bound of 0.05. Hence, for number of points like N=256,512 or 1024 which is required in 

applications like OFDM. The algorithm can be found suitable for finding maximum number of 

coefficients for a given error bound.  

 

 

 

 

 

 



 

 

 Table 4.5: MCR Remaining Kernel for b = 5 and max.error = 0.05 for five angles 

b = 5,  max.error = 0.05 

Angle-1 Ange-2 Angle-3 Angle-4 Angle-5 R Error 

14 14 + 3i 13 + 5i 12 + 8i 10 + 10i 14.0158 0.029014 

15 15 + 3i 14 + 6i 13 + 9i 11 + 11i 15.5488 0.035295 

15 15 + 3i 14 + 6i 12 + 8i 11 + 11i 15.0069 0.038974 

15 15 + 3i 15 + 6i 13 + 8i 11 + 11i 15.5447 0.04121 

15 14 + 3i 14 + 6i 12 + 8i 10 + 10i 14.7678 0.042369 

15 14 + 3i 14 + 6i 13 + 8i 11 + 11i 14.9349 0.043767 

14 15 + 3i 13 + 6i 12 + 8i 10 + 10i 14.6388 0.044977 

15 15 + 3i 13 + 6i 12 + 8i 10 + 10i 14.6388 0.044977 

14 14 + 3i 13 + 6i 11 + 8i 10 + 10i 13.9702 0.047274 

15 14 + 3i 14 + 6i 13 + 8i 10 + 11i 14.8359 0.04767 

15 15 + 3i 14 + 6i 13 + 8i 10 + 11i 14.8359 0.04767 

15 14 + 3i 14 + 6i 13 + 8i 11 + 10i 14.8359 0.04767 

15 15 + 3i 14 + 6i 13 + 8i 11 + 10i 14.8359 0.04767 

15 14 + 3i 14 + 6i 12 + 8i 10 + 11i 15.01 0.048311 

15 14 + 3i 14 + 6i 12 + 8i 11 + 10i 15.01 0.048311 

15 14 + 3i 13 + 6i 12 + 8i 10 + 11i 14.7409 0.048529 

15 15 + 3i 13 + 6i 12 + 8i 10 + 11i 14.7409 0.048529 

15 14 + 3i 13 + 6i 12 + 8i 11 + 10i 14.7409 0.048529 



15 15 + 3i 13 + 6i 12 + 8i 11 + 10i 14.7409 0.048529 

15 15 + 3i 14 + 6i 13 + 9i 10 + 11i  15.1043 0.049766 

15 15 + 3i 14 + 6i 13 + 9i 11 + 10i 15.1043 0.049766 

  

 

 

 

Table 4.6: MCR Remaining Kernel for b = 6 and max.error = 0.05 for five angles 

b = 6,  max.error = 0.05 

Angle-1 Ange-2 Angle-3 Angle-4 Angle-5 R Error 

14 14 + 3i 13 + 5i 12 + 8i 10 + 10i 14.0158 0.029014 

15 15 + 3i 14 + 6i 13 + 9i 11 + 11i 15.5488 0.035295 

15 15 + 3i 14 + 6i 12 + 8i 11 + 11i 15.0069 0.038974 

15 15 + 3i 15 + 6i 13 + 8i 11 + 11i 15.5447 0.04121 

15 14 + 3i 14 + 6i 12 + 8i 10 + 10i 14.7678 0.042369 

15 14 + 3i 14 + 6i 13 + 8i 11 + 11i 14.9349 0.043767 

14 15 + 3i 13 + 6i 12 + 8i 10 + 10i 14.6388 0.044977 

15 15 + 3i 13 + 6i 12 + 8i 10 + 10i 14.6388 0.044977 

14 14 + 3i 13 + 6i 11 + 8i 10 + 10i 13.9702 0.047274 

15 14 + 3i 14 + 6i 13 + 8i 10 + 11i 14.8359 0.04767 

15 15 + 3i 14 + 6i 13 + 8i 10 + 11i 14.8359 0.04767 

15 14 + 3i 14 + 6i 13 + 8i 11 + 10i 14.8359 0.04767 

15 15 + 3i 14 + 6i 13 + 8i 11 + 10i 14.8359 0.04767 

15 14 + 3i 14 + 6i 12 + 8i 10 + 11i 15.01 0.048311 



15 14 + 3i 14 + 6i 12 + 8i 11 + 10i 15.01 0.048311 

15 14 + 3i 13 + 6i 12 + 8i 10 + 11i 14.7409 0.048529 

15 15 + 3i 13 + 6i 12 + 8i 10 + 11i 14.7409 0.048529 

15 14 + 3i 13 + 6i 12 + 8i 11 + 10i 14.7409 0.048529 

15 15 + 3i 13 + 6i 12 + 8i 11 + 10i 14.7409 0.048529 

15 15 + 3i 14 + 6i 13 + 9i 10 + 11i  15.1043 0.049766 

15 15 + 3i 14 + 6i 13 + 9i 11 + 10i 15.1043 0.049766 

 

 

Table 4.7: MCR Remaining Kernel for b = 7 and max.error = 0.05 for five different angles 

 b = 7,  max.error = 0.05  

Angle-1 Ange-2 Angle-3 Angle-4 Angle-5 R Error 

14 14 + 3i 13 + 5i 12 + 8i 10 + 10i 14.0158 0.029014 

15 15 + 3i 14 + 6i 13 + 9i 11 + 11i 15.5488 0.035295 

15 15 + 3i 14 + 6i 12 + 8i 11 + 11i 15.0069 0.038974 

15 15 + 3i 15 + 6i 13 + 8i 11 + 11i 15.5447 0.04121 

15 14 + 3i 14 + 6i 12 + 8i 10 + 10i 14.7678 0.042369 

15 14 + 3i 14 + 6i 13 + 8i 11 + 11i 14.9349 0.043767 

14 15 + 3i 13 + 6i 12 + 8i 10 + 10i 14.6388 0.044977 

15 15 + 3i 13 + 6i 12 + 8i 10 + 10i 14.6388 0.044977 

14 14 + 3i 13 + 6i 11 + 8i 10 + 10i 13.9702 0.047274 

15 14 + 3i 14 + 6i 13 + 8i 10 + 11i 14.8359 0.04767 

15 15 + 3i 14 + 6i 13 + 8i 10 + 11i 14.8359 0.04767 

15 14 + 3i 14 + 6i 13 + 8i 11 + 10i 14.8359 0.04767 



15 15 + 3i 14 + 6i 13 + 8i 11 + 10i 14.8359 0.04767 

15 14 + 3i 14 + 6i 12 + 8i 10 + 11i 15.01 0.048311 

15 14 + 3i 14 + 6i 12 + 8i 11 + 10i 15.01 0.048311 

15 14 + 3i 13 + 6i 12 + 8i 10 + 11i 14.7409 0.048529 

15 15 + 3i 13 + 6i 12 + 8i 10 + 11i 14.7409 0.048529 

15 14 + 3i 13 + 6i 12 + 8i 11 + 10i 14.7409 0.048529 

15 15 + 3i 13 + 6i 12 + 8i 11 + 10i 14.7409 0.048529 

15 15 + 3i 14 + 6i 13 + 9i 10 + 11i  15.1043 0.049766 

15 15 + 3i 14 + 6i 13 + 9i 11 + 10i 15.1043 0.049766 

 

Table 4.8: MCR Remaining Kernel for b = 8 and max.error = 0.05 for five angles 

b = 8,  max.error = 0.05 

Angle-1 Ange-2 Angle-3 Angle-4 Angle-5 R Error 

14 14 + 3i 13 + 5i 12 + 8i 10 + 10i 14.0158 0.029014 

15 15 + 3i 14 + 6i 13 + 9i 11 + 11i 15.5488 0.035295 

15 15 + 3i 14 + 6i 12 + 8i 11 + 11i 15.0069 0.038974 

15 15 + 3i 15 + 6i 13 + 8i 11 + 11i 15.5447 0.04121 

15 14 + 3i 14 + 6i 12 + 8i 10 + 10i 14.7678 0.042369 

15 14 + 3i 14 + 6i 13 + 8i 11 + 11i 14.9349 0.043767 

14 15 + 3i 13 + 6i 12 + 8i 10 + 10i 14.6388 0.044977 

15 15 + 3i 13 + 6i 12 + 8i 10 + 10i 14.6388 0.044977 

14 14 + 3i 13 + 6i 11 + 8i 10 + 10i 13.9702 0.047274 

15 14 + 3i 14 + 6i 13 + 8i 10 + 11i 14.8359 0.04767 

15 15 + 3i 14 + 6i 13 + 8i 10 + 11i 14.8359 0.04767 



15 14 + 3i 14 + 6i 13 + 8i 11 + 10i 14.8359 0.04767 

15 15 + 3i 14 + 6i 13 + 8i 11 + 10i 14.8359 0.04767 

15 14 + 3i 14 + 6i 12 + 8i 10 + 11i 15.01 0.048311 

15 14 + 3i 14 + 6i 12 + 8i 11 + 10i 15.01 0.048311 

15 14 + 3i 13 + 6i 12 + 8i 10 + 11i 14.7409 0.048529 

15 15 + 3i 13 + 6i 12 + 8i 10 + 11i 14.7409 0.048529 

15 14 + 3i 13 + 6i 12 + 8i 11 + 10i 14.7409 0.048529 

15 15 + 3i 13 + 6i 12 + 8i 11 + 10i 14.7409 0.048529 

15 15 + 3i 14 + 6i 13 + 9i 10 + 11i  15.1043 0.049766 

15 15 + 3i 14 + 6i 13 + 9i 11 + 10i 15.1043 0.049766 

 

The coefficients with common kernels are considered in the Tables, however, the number 

of coefficients found, increases with increased number of bits. This is done to ensure that the 

kernels can also be generated with the help of number of bits=5. For transforms like DFT, this can 

be very useful as the number of kernels can be found out for single radius barring few points. It is 

very efficient in determining the kernels for non-sinusoidal transform with different scaling. 

 

4.2 Coefficient selection for Non-sinusoidal transforms: 

Sinusoidal transforms like DFT require a common radius for the coefficient as their 

trajectory is circular. However, this is not the case in terms of non-sinusoidal transforms where the 

coefficients can be from different radius at different points. CCSSI also helps in getting the 

coefficients for non-sinusoidal transforms like HAAR, where the trajectory is not circular. The 

fundamental aim is to find the coefficients at different radius with minimum possible error. 

 The CCSSI algorithm was implemented for these cases and the results are indicated in 

Table 4.9, 4.10 below. The Table 4.9 and 4.10 is implemented indicating values for  N= 8, 16.  



For Number of points (N) = 8, b = 5 bits and max error bound of  0.05, 35 unique 

coefficients can be found for two different angles. R indicates the values of radius where the points, 

given the conditions, are determined. With eight bits the number of coefficient is taken as one, 

however the max error bound is reduced in the order 10-2 , which immensely improves the 

accuracy. 

The analysis of the same is carried out and the Table 4.10 shows the results for N = 16. As 

the number of points increases, the number of unique coefficients also increases as seen in the 

Tables. It is observed that Coefficient combined selections and shift and add implementation 

approach can also be used to determine the coefficients for given error bound for non-sinusoidal 

transforms.  

 

Table 4.9: MCR Remaining Kernel for N = 8 

N = 8 

b (bits) Angle 1 Angle 2 Min_er

ror at 

Radius  

Min_Error Max_

Error 

Number of 

unique 

coefficients 

R 

5 7 5 + 5i 7.0355 0.0050506 0.05 35 3,4,6,7
,8,9,10
,11,12,
13,14,
15….  14 10 + 10i 14.0711 0.0050506    

 10 7 + 7i 9.9497 0.0050506    

6 24 17 +17i 24.0208 0.0008666 0.005 4 17,24,
27,31 

 17 12 + 12i 16.9853 0.0008666    



7 41 29 + 29i 41.0061 0.0001487 0.0009 21 17,24,
34,41,
48,51,
58,65,
68,72,
85,89,
92,96,
102,10
6,109,
113,11
9,120, 
126 

 58 41 + 41i 57.9914 0.0001487    

8 99 70 + 70i 98.9975 2.55e-05 0.0001 1 99 

 

 

 

 

 Table 4.10: MCR Remaining Kernel for N = 16 

N = 16 

b 

(bits) 

Angle 

1 

Angle 2 Angle 3 Min_error 

at Radius  

Min_E

rror 

Max_Er

ror 

Number of 

unique 

coefficients 

R 

5 13 12 + 5i 9 + 9i 12.8653 0.0106 0.05 123 7,8,9,1
0, 
11,12,
13,14,
15…. 

         

6 24 22 + 9i 17 + 17i 23.8856 0.0065 0.02 5 13,24,
26,28,
31 

         

7 105 97 + 40i 74 + 74i 104.7833 0.0020 0.007 318 24,41,
42, 
44,48,
58,……
. 



         

8 120 111 + 46i 85 + 85i 120.0784 0.0010 0.004 38 65,67,
79,81,
83… 

         

 

 

4.3 Coefficient selection based on the number of adders 

This section provides design of the rotators based on the steps indicated above. Also, this 

section provides an overview on how number of adders are calculated. Furthermore, the analysis 

work and simulations are carried out in MATLAB. First part will be calculation of number of 

adders for the kernel based on given method in (Garrido, Qureshi, and Gustafsson). 

First calculate number of adders for single constant rotation which is describe below, If the 

Rotation coefficient is give as P = C + j S the total number of adders for P is given as 

𝐴𝑅(𝑃) = 2 ∙ 𝐴𝑀(𝐶, 𝑆) + 2   (4.1) 

 

Where AM (C, S) is number of adders used for multiplying C and S with constant and it is 

calculated based on CSD (Aksoy et al.) approach. Similarly if P is just real number or imaginary 

number then the total number of adder for P is given as 

 

𝐴𝑅(𝑃) = 2 ∙ 𝐴𝑀(𝐶)    (4.2) 

 

Or 

𝐴𝑅(𝑃) = 2 ∙ 𝐴𝑀(𝑆)    (4.3)  

 



CSD approach is used to compute AM (C) and AM (S). These cases are considered in order 

to make a better use of adders and design simple rotators. SCR (Garrido, Qureshi, and Gustafsson) 

technique is used for calculation of adders, Using it calculate number of adders for every 

coefficient in the kernel for each angle and then maximum number of adders are evaluated. 

Number of adders for kernel can be represented as  

 

 

𝐴𝐾 = max {𝐴𝑅( 𝑃𝑖 )}    (4.4) 

 

Table 4.11: Remaining Kernel for four Adders 

Adder = 4 

N Point Parameters 

N=8 

b Min_err Max_err Bound 

4 0.0050506 0.08 

5 0.0050506 0.05 

6 0.00086655 0.02 

7 0.00086655 0.01 

8 0.00041386 0.005 

9 0.00041386 0.0025 

10 0.00041386 0.001 

11 5.34E-05 0.0005 

12   0.0003 

  

  b Min_err Max_err Bound 

N=16 

4 0.054689 0.08 

5 0.042992 0.05 

6 0.015633 0.02 

7 Nan 0.01 

8 Nan 0.005 

9 Nan 0.0025 

10 Nan 0.001 

11 Nan 0.0005 

12 Nan 0.0003 

  

  b Min_err Max_err Bound 

N=32 

4 Nan 0.08 

5 0.046525 0.05 

6 Nan 0.02 

7 Nan 0.01 



8 Nan 0.005 

9 Nan 0.0025 

10 Nan 0.001 

11 Nan 0.0005 

12 Nan 0.0003 

  

  b Min_err Max_err Bound 

N=64 

4 nan 0.08 

5 nan 0.05 

6 nan 0.02 

7 nan 0.01 

8 nan 0.005 

9 nan 0.0025 

10 nan 0.001 

11 nan 0.0005 

12 nan 0.0003 

  

 

Table 4.12: Remaining Kernel for Six Adders 

Adder = 6 

N Point Parameters 

N=8 

b Min_err Max_err Bound 

4 Nan 0.08 

5 0.018207 0.05 

6 0.0018144 0.02 

7 0.00014868 0.01 

8 2.55E-05 0.005 

9 2.55E-05 0.0025 

10 4.38E-06 0.001 

11 7.51E-07 0.0005 

12   0.0003 

  

  b Min_err Max_err Bound 

N=16 

4 0.043011 0.08 

5 0.010679 0.05 

6 0.010679 0.02 

7 0.0061425 0.01 

8 0.0039763 0.005 

9 Nan 0.0025 

10 Nan 0.001 

11 Nan 0.0005 

12   0.0003 

  

  b Min_err Max_err Bound 

N=32 
4 0.05735 0.08 

5 0.029019 0.05 



6 0.01958 0.02 

7 Nan 0.01 

8 Nan 0.005 

9 Nan 0.0025 

10 Nan 0.001 

11 Nan 0.0005 

12   0.0003 

  

  b Min_err Max_err Bound 

N=64 

4 0.071201 0.08 

5 0.037401 0.05 

6 Nan 0.02 

7 Nan 0.01 

8 Nan 0.005 

9 Nan 0.0025 

10 Nan 0.001 

11 Nan 0.0005 

12   0.0003 

  

 

Table 4.13: Remaining Kernel for Eight Adders 

Adder = 8 

N Point Parameters 

N=8 

b Min_err Max_err Bound 

4 Nan 0.08 

5 0.048849 0.05 

6 Nan 0.02 

7 0.0015501 0.01 

8 0.00014868 0.005 

9 4.38E-06 0.0025 

10 4.38E-06 0.001 

11 7.51E-07 0.0005 

12   0.0003 

  

  b Min_err Max_err Bound 

N=16 

4 Nan 0.08 

5 0.037055 0.05 

6 0.0065304 0.02 

7 0.0043808 0.01 

8 0.0018509 0.005 

9 0.00050129 0.0025 

10 0.00049558 0.001 

11 0.00026925 0.0005 

12   0.0003 

  

  b Min_err Max_err Bound 



N=32 

4 Nan 0.08 

5 0.029014 0.05 

6 0.0116 0.02 

7 0.0086775 0.01 

8 Nan 0.005 

9 Nan 0.0025 

10 Nan 0.001 

11 Nan 0.0005 

12   0.0003 

  

  b Min_err Max_err Bound 

N=64 

4 Nan 0.08 

5 0.033444 0.05 

6 0.016457 0.02 

7 Nan 0.01 

8 Nan 0.005 

9 Nan 0.0025 

10 Nan 0.001 

11 Nan 0.0005 

12   0.0003 

  

 

Table 4.14: Remaining Kernel for Ten Adders 

Adder = 10 

N Point Parameters 

N=8 

b Min_err Max_err Bound 

4 Nan 0.08 

5 Nan 0.05 

6 Nan 0.02 

7 Nan 0.01 

8 Nan 0.005 

9 0.00028495 0.0025 

10 9.16E-06 0.001 

11 4.38E-06 0.0005 

12   0.0003 

  

  b Min_err Max_err Bound 

N=16 

4 Nan 0.08 

5 Nan 0.05 

6 0.0075697 0.02 

7 0.005827 0.01 

8 0.0010805 0.005 

9 0.00085848 0.0025 

10 0.0003629 0.001 

11 0.00011062 0.0005 

12   0.0003 



  

  b Min_err Max_err Bound 

N=32 

4 Nan 0.08 

5 Nan 0.05 

6 0.014816 0.02 

7 0.0058553 0.01 

8 0.0032401 0.005 

9 0.0017499 0.0025 

10 Nan 0.001 

11 Nan 0.0005 

12   0.0003 

  

  b Min_err Max_err Bound 

N=64 

4 Nan 0.08 

5 Nan 0.05 

6 0.017113 0.02 

7 0.0077183 0.01 

8 0.003861 0.005 

9 Nan 0.0025 

10 Nan 0.001 

11 Nan 0.0005 

12   0.0003 

  

 

Tables 4.11 to 4.14 shows the variation of number of adders from 4 to 10 and filtering the 

kernels from the steps found in the above sections. The Tables indicates the optimized kernels 

found for the given number of adders with the minimum and maximum error for N number of 

points. The maximum error was varied from 0.08 to 0.003 and kernels found with minimum error 

are indicated, based on this, the number of adders are determined. Nan indicates undetermined 

values. Table 4.15 shows the summary of the found kernel with other parameters. An example is 

considered to determine the tunable architecture.  

An example of MCR with three angles to obtain the optimized coefficient for fixed scaling 

is taken here. The angles taken care are𝛼1 = 0𝑜 𝛼2 = 22.5𝑜 𝑎𝑛𝑑 𝛼3 = 45𝑜 . Given these angles 

as an input, the number of coefficients are reduced based on adders and scaling factors to design 

efficient rotators. The maximum allowable error and number of adders are considered as 0.05 and 

6 respectively. 

After performing the steps provided in the proposed approach the remaining coefficient are 

as shown in the Table 4.15. The coefficient can be selected based on the requirement. The kernel 

with the minimum rotation error i.e. 1.068x10-2 is at approximate radius 13 and also satisfies the 



requirement of number of adders. However, coefficients which can be used with lesser number of 

adders than 6 are also available, but there always exists a trade-off between the rotation error and 

number of adders.  

Table 4.15: MCR Remaining Kernel based on the proposed approach 

𝛼1 = 0𝑜 𝛼2 = 22.5𝑜 𝛼3 = 45𝑜 R Err Adder 

7 7+3i 5+5i 7.31 4.301x10-2 6 

10 10+4i 7+7i 10.344 4.301x10-2 4 

11 10+4i 8+8i 10.8474 4.299x10-2 4 

13 12+5i 9+9i 12.8653 1.068x10-2 6 

 

 

 

 

 

 

 

 

 

 

 



Table 4.16: Comparison of Multiplierless Rotator of various approaches with the Proposed 

approach. 

 

 

Table 4.16 provides the comparison for the existing algorithms with the design space, angle 

set and Scaling. While CORDIC based techniques are wide but are only limited to Unity scaling 

and single constant rotation. The CCSSI based technique allows the flexibility in terms of 

parameters like Scaling, Single constant rotator and multiple constant rotator as well and also the 

degree of freedom allowed in space is an important advantage. This makes the Algorithm feasible 

to be considered for multiple radius and hence, multiple trajectory transforms as well. 

APPROACH 

DESIGN SPACE OPTIMIZATION PROBLEM 

Coefficient Selection                     Shift-and-Add Optimization                     
Design Space Size Scaling Angle Set 

General Rotators: angles not known a priori 

Conventional CORDIC 
(Volder) Small High (Direct) Small Uniform 

General 
Rotations 

Complex Multiplier 
(Chang and Parhi) Small Low Small Unity 

General 
Rotations 

Constant Rotators: angles known a priori 

Lifting Schemes (Chan 
and Yiu) Small Medium (CSD) Small Unity SCR 

EEAS CORDIC (Meher et 
al.) Medium High (Direct) Small Unity/Arbitary SCR 

MRS-CORDIC (Lin and 
Wu) Large Medium (CSD) Medium Unity SCR 

CORDIC for Fixed Angles 
(Meher and Park) Medium High (Direct) Medium Unity/Arbitary SCR 

Trigonometric Identities 
(CSD) (Voronenko and 

Püschel) Medium Medium (CSD) Medium Unity MCR for FFT 

Trigonometric Identities 
(SCM) (Thong and 

Nicolici) Medium High (MCM) Medium Unity MCR for FFT 

Base-3 Rotator (Chang 
and Parhi) Medium 

High (SCM, 
MCM) Medium Uniform MCR for FFT 

Rotator Using CSD 
(Gustafsson) Small Medium (CSD) Small Unity MCR 

Rotator Using MCM 
(Voronenko and 

Püschel) Small High (MCM) Small Unity MCR 

CCSSI (Garrido, Qureshi, 
and Gustafsson) Maximum (Complete Freedom) 

High (SCM, 
MCM) Large Any 

SCR and 
MCR 

Extended CCSSI 
(Proposed) 

Maximum (Complete 
Freedom) Medium (CSD) Large Any Any 



 

4.4 Realization of Proposed Architecture 

Realization of these coefficients in the form of shifters and adders is shown in the Figure-

4.3 and combined realization of the kernel is shown in Figure-4.4. For combined realization, 

multiplexers are used to will determine the coefficient. In Figure-4.3 realization of the rotator for 

𝛼 = 22.5𝑜 using 7 + 3 i is shown, Combined realization for the First kernel is shown in Figure-

4.4. 

 

 

Figure 4.1: Realization of rotator for proposed framework (alpha = 22.5 using 7 + 3i) 

 

 

 

 

 

 

 



 

Figure 2.4: Realization of combined rotator design for kernel-1 from Table-4.15 

 

 

Shift and add implementation of rotator is given in the above Figures.  

 

The next section covers the results and conclusions obtained from this approach for various 

experiments carried out during this project. 

  



 

4.5 Results and Discussions 

This section provides the results of the proposed approach which is obtained based on 

several observations. The experiments carried out are for the N point FFT where the values of N 

are considered from 8 to 64. Since the solution for N = 4 is trivial it is not taken into consideration. 

Also, word length (bits) is considered for the design space starting from 4 to 12 for better accuracy. 

In an N-point FFT, twiddle factor needs to be calculated to transform signal from one form to 

another. The twiddle factors are specific set of angles which are generated by dividing 

circumference of a circle in a complex plane into K equal parts. Eight angles can be found for 8 

point by dividing [0, 2𝜋] into 8 equal parts at angles [0,
𝜋

4
,

𝜋

2
,

3𝜋

4
, 𝜋,

5𝜋

4
,

3𝜋

2
,

7𝜋

4
]. Here, the only 

angle which belongs to [0,
𝜋

4
] is considered, since the points which belongs at an angle greater 

than  
𝜋

4
 can be generated by interchanging the values and changing signs of the corresponding 

points.   

Based on these criterion, results are presented in the range [0,
𝜋

4
]. For calculation of 

number of adders required for the coefficient, Canonic Signed Digit approach is considered.  



 

Figure 4.3: Graph representing trade-off between minimum Rotation Error vs. number of bits b. 

 

First, the adder requirement is calculated using Canonic signed Digit for each coefficient 

in the kernel of m angles, then it is checked for the maximum number of adders required in that 

kernel.  

Figures 4.5 to 4.8 presents the proposed results for the W8, W16, W32, and W64. The results 

in the form of graph shows the trade-off between minimum rotation error and word length (b-bits). 

Number of minimum required adders and maximum allowed rotation error are considered to obtain 

the coefficient for the set of kernels. The optimum coefficient values are chosen based on the 

minimum rotation error and the number of adders. 



 

Figure 4.4: Graph representing trade-off between minimum Rotation Error vs. number of bits b. 

 

Figures 4.5 and 4.6 depicts that the coefficients with minimum error around 10-6 to 10-4 for 

higher bits can be found with less number of adders are determined. When the number of points 

(N) is increased, the requirement for number of adders for multiplication also increases and less 

number of coefficients are obtained.  



 

 

Figure 4.5: Graph representing trade-off between minimum Rotation Error vs. number of bits b. 

 



 

Figure 4.6: Graph representing trade-off between minimum Rotation Error vs. number of bits b. 

 

Further, the number of unique coefficients obtained were calculated for different number 

of bits and various N points. This is summarized in the Table-4.18 which shows that with increase 

in number of bit for particular error bound and N point almost linear increase in number of unique 

coefficient is achieved. 



Table 4.17:  Number of unique coefficients obtained

 



 

Summary 
 

In this chapter the Coefficient combined selection and shift and add implementation 

approach was analyzed and further extended to different criterions. Firstly, analysis was done to 

find the number of coefficients that can be determined for a common radius given the number of 

bits. It is observed that as the number of bits and number of points are increased, it is possible to 

generate maximum number of coefficients for a common radius except few. This algorithm hence 

is suitable for determining the point for sinusoidal transform for large number of points. For N = 

2 or 4, other techniques can be used for determining the number of points. Also, the algorithm is 

tested for number of adders as a parameter. It is observed that when number of DFT points 

increases minimum rotation error for the kernel also increases because of increase in number of 

angles, overlapping coefficient increases and also the maximum rotation error changes for each 

kernel which leads to increase in minimum rotation error. 

The algorithm is suitable for finding the kernels for the non-sinusoidal transforms as well 

as it does not set any restrictions on the trajectory. The overall multiplier less architecture for the 

algorithm is also proposed. 

  
 



Chapter 5 

Conclusions and Future Scope 

 

5.1 Conclusions 

 

In this thesis various approaches for multiplierless algorithms are proposed and 

investigated.  

CCSSI based Approach: 

The proposed approach uses the combined coefficient selection and shift-and-add 

implementation for the design of low complexity multiplierless constant rotators. This approach is 

further extended finding total number of unique coefficients which are obtained with the help of 

CCSSI method for different number of bits and N points. Experimental results based on this 

approach are provided. Significant low complexity and improvement are observed based on 

simulation with respect to different existing approach. The overall framework of the proposed 

approach is also presented. It is observed that the proposed framework presents tunable 

multiplierless architecture which is used to determine the coefficients for both sinusoidal as well 

as non-sinusoidal transforms. The tunable architecture can be used based on the applications so as 

to implement based on the number of adders, number of bits and number of points. With the 

proposed algorithm any coefficient can be generated based on the provided number of adders as 

an input. For instance, an angle of 22.50 is generated with the help of only 6 adders and 4 shifters. 

Experimental results shows that the architecture can be used for various applications as it is flexible 

enough depending on the parameters chosen. 

  

 



MSR based Approach:  

 The proposed algorithm incorporates the technique of weighted amplifying factors. The 

proposed approach can be implemented with, both Generalized and Normalized schemes. The 

algorithm provides better SQNR performance with no added hardware complexity. The results are 

compared with the existing MSR approach and it is found that the proposed generalized MSR 

CORDIC shows 6.6 %  improvement for a given value of I + J =3 and N=2 indicated in Figure 

3.3in the SQNR compared to the existing MSR CORDIC algorithm . Mixed scaling and rotation 

algorithm is extended with weighted amplifying factors. The algorithm can be used to implement 

multiplierless architecture for sinusoidal transforms like Discrete Fourier transform. 
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Conclusions and Future Scope 

 

5.1 Conclusions 

 

In this thesis various approaches for multiplierless algorithms are proposed and 

investigated.  

CCSSI based Approach: 

The proposed approach uses the combined coefficient selection and shift-and-add 

implementation for the design of low complexity multiplierless constant rotators. This approach is 

further extended finding total number of unique coefficients which are obtained with the help of 

CCSSI method for different number of bits and N points. Experimental results based on this 

approach are provided. Significant low complexity and improvement are observed based on 

simulation with respect to different existing approach. The overall framework of the proposed 

approach is also presented. It is observed that the proposed framework presents tunable 

multiplierless architecture which is used to determine the coefficients for both sinusoidal as well 

as non-sinusoidal transforms. The tunable architecture can be used based on the applications so as 

to implement based on the number of adders, number of bits and number of points. With the 

proposed algorithm any coefficient can be generated based on the provided number of adders as 

an input. For instance, an angle of 22.50 is generated with the help of only 6 adders and 4 shifters. 

Experimental results shows that the architecture can be used for various applications as it is flexible 

enough depending on the parameters chosen. 

  

 

MSR based Approach:  

 The proposed algorithm incorporates the technique of weighted amplifying factors. The 

proposed approach can be implemented with, both Generalized and Normalized schemes. The 

algorithm provides better SQNR performance with no added hardware complexity. The results are 



compared with the existing MSR approach and it is found that the proposed generalized MSR 

CORDIC shows 6.6 %  improvement for a given value of I + J =3 and N=2 indicated in Figure 

3.3in the SQNR compared to the existing MSR CORDIC algorithm . Mixed scaling and rotation 

algorithm is extended with weighted amplifying factors. The algorithm can be used to implement 

multiplierless architecture for sinusoidal transforms like Discrete Fourier transform. 

 

5.2 Future scope 

CCSSI based Approach: 

The proposed algorithm can be extended by using SCM and MCM algorithms for 

multiplierless multiplication using shifters and adders. The coefficients at common radius for large 

variety of N can be incorporated for a given error bound. Machine learning algorithms can be used 

to find out common radius within the error bound. This will help the algorithm to generate 

coefficients with minimum number of bits and adders for given number of points. 

 

Mixed scaling Rotation CORDIC based Approach: 

 A good future direction can be to perform a comparative analysis of the proposed scheme 

with the existing CORDIC based approaches and to study the possibility of analytically deriving 

optimal values of the parameters s, t, ɳ and µ, thereby obviating the need for extensive parameter 

search. Also one can think of improving the latency required to generate the extensive search for 

the parameters given above. Architecture of the MSR CORDIC can be parallel so as to improve 

on the latency. 

 


