# DEVELOPMENT AND CHARACTERIZATION OF TELMISARTAN IMMEDIATE RELEASE TABLETS

A PROJECT SUBMITTED TO

#### **NIRMA UNIVERSITY**

In partial fulfillment of the requirements for the degree of

# MASTER OF PHARMACY IN PHARMACEUTICS

BY

KHUSHBOO MATHUR (20MPH109), B. Pharm

UNDER THE GUIDANCE OF

**DR. TEJAL MEHTA** Head, Department of Pharmaceutics



NAAC ACCREDITED 'A+' GRADE

INSTITUTE OF PHARMACY NIRMA UNIVERSITY SARKHEJ-GANDHINAGAR HIGHWAY AHMEDABAD-382481 GUJARAT, INDIA MAY 2022

# **CERTIFICATE**

This is to certify that the dissertation work entitled "DEVELOPMENT AND CHARACTERIZATION OF TELMISARTAN IMMEDIATE RELEASE TABLETS" submitted by Ms. Khushboo Mathur with Registration No. (20MPH109) in partial fulfillment for the award of Master of Pharmacy in "Pharmaceutics" is a bonafide research work carried out by the candidate at the Department of pharmaceutics, Institute of Pharmacy, Nirma University under my/our guidance. This work is original and has not been submitted in part or full for any other degree or diploma to this or any other university or institution.

Guide:

Prof. Tejal Mehta

M.Pharm, Ph.D, Head, Department of Pharmaceutics, Institute of Pharmacy, Nirma University Prof. Manjunath Ghate

M.Pharm, Ph.D, Director, Institute of Pharmacy, Nirma university

Date: 3/05/ 2022



## CERTIFICATE OF SIMILARITY OF WORK

This is to undertake that the dissertation work entitled "DEVELOPMENT AND CHARACTERIZATION OF TELMISARTAN IMMEDIATE RELEASE TABLETS" Submitted by Ms. Khushboo Mathur (20MPH109) in partial fulfillment for the award of Master of Pharmacy in "Pharmaceutics" is a bonafide research work carried out by me at the Department Of Pharmaceutics, Institute of Pharmacy, Nirma University under the guidance of "Dr. Tejal Mehta". I am aware about the rules and regulations of Plagiarism policy of Nirma University, Ahmedabad. According to that, this work is original and not reported anywhere as per best of my knowledge.

1 Chushber

Khushboo Mathur (20MPH109), Department of Pharmaceutics, Institute of Pharmacy, Nirma University

Guide

Dr. Tejal Metha

M.Pharm., Ph.D., Head, Department of Pharmaceutics, Institute of Pharmacy, Nirma University

Date: 13/05/ 2022

# DECLARATION

I hereby declare that the dissertation entitled "DEVELOPMENT AND CHARACTERIZATION OF TELMISARTAN IMMEDIATE RELEASE TABLETS is based on the original work carried out by me under the guidance of Dr. Tejal Metha, Head, under the Department of Pharmaceutics, Institute of Pharmacy, Nirma University. I also affirm that this work is original and has not been submitted in part or full for any other degree or diploma to this or any other university or institution.

Chushber

Khushboo Mathur (20MPH109) Department of Pharmaceutics,

Institute of Pharmacy, Nirma University, Sarkhej - Gandhinagar Highway, Ahmedabad-382481, Gujarat, India

Date: 3/05/2022

### ACKNOWLEDGEMENTS

The success and final outcome of this project required a lot of guidance and assistance from many people and I am extremely privileged to have got this all along the completion of my project.

All that I have done is only due to such supervision and assistance and I would not forget to thank them.

I respect and thank to Dr. Tejal A. Mehta, Head of Pharmaceutics at Institute of Pharmacy, Nirma University for providing me an opportunity to do the project work on "Development and Characterization of Telmisartan Immediate release Tablets" and giving me all support and guidance, which made me complete the project duly.

I am very fortunate to be a student of Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat and am thankful to our Director Dr. Manjunath Ghate. I am also thankful to all the faculty members Dr. Shital Butani, Dr. Jigar Shah, Dr. Mohit Shah, Dr. Mayur Patel, Dr, Dhaivat Parikh for their keen interest and valuable support. I am also thankful to the Lab Assistant Mr. Shailesh Patel for helping throughout the course.

In the mean course of time, I have collaborated with a very veteran personality, **Mr. Neeraj Patidar** (Manager, F&D department at ACME Life Tech), **Ms. Priya Patel** (scientist at ACME Life Tech), for whom I have due respect and I hold a warmest thanks.

A special thanks to Ms. Pavni Patel (Director, R&D at ACME Life Tech.). I am thankful to them for providing excellent knowledge and support regarding my project. I am sincerely grateful to INSTITUTE OF PHARMACY, NIRMA UNIVERSITY to providing such world class facilities and academic atmosphere.

Last but not least, my deepest gratitude goes to my parents for their continuous encouragement, support and interest throughout my work. I cannot express in words about their appreciation and moral support means for me.

Once again, I would like to thank all those mentioned here and those who I have unknowingly failed to mention in making this project a worthy endeavor.

Thank you one and all.

1 Chush .

Khushboo Mathur (20MPH109), Department of Pharmaceutics, Institute of Pharmacy, Nirma University

| Sr. No. | Title                                                        | Page No |
|---------|--------------------------------------------------------------|---------|
| 1       | Introduction                                                 | 14      |
| 1.1     | Introduction to Hypertension                                 | 15      |
| 1.2     | Treatment of Hypertension                                    | 17      |
| 1.3     | Angiotensin receptor blockers                                | 18      |
| 1.4     | Introduction to Marketed Tablets and method of manufacturing | 20      |
| 1.5     | Introduction to Telmisartan Hydrochloride<br>Drug profile    | 21      |
| 1.6     | Introduction to Excipients                                   | 24      |
| 2       | Aim and Objective                                            | 39      |
| 3       | Literature Review                                            | 42      |
| 3.1     | Literature review on Disease and Drug                        | 43      |
| 3.2     | Literature review on Dosage Form                             | 44      |
| 3.3     | Literature review on Superdisintigrants                      | 45      |
| 3.4     | Literature review on Alkaliser                               | 46      |
| 3.5     | Literature review on Binder                                  | 47      |
| 4       | Methodology                                                  | 48      |
| 4.1     | List of materials                                            | 49      |
| 4.2     | List of equipments                                           | 49      |
| 4.3     | Pre- formulation studies                                     | 50      |
|         | 4.3.1 Calibration curve of telmisartan in 7.5 pH<br>buffer   | 50      |
|         | 4.3.2 Solubility studies                                     | 51      |
|         | 4.3.3 Pre compression evaluation parameters                  | 52      |
| 4.4     | Formulation of Immediate release tablet                      | 55      |
|         | 4.4.1 Method of preparation                                  | 55      |
|         | 4.4.2 Post compression evaluation parameters                 | 57      |
| 5       | Experimental work                                            | 61      |
| 5.1     | Preliminary trials                                           | 62      |
|         | 5.1.1 Evaluation of reference tablet                         | 62      |

#### TABLE OF CONTENTS

|     | 5.1.2 Binder solubility                               | 62  |
|-----|-------------------------------------------------------|-----|
| 5.2 | Optimization of formulation and process<br>parameters | 63  |
| 5.3 | Comparison of reference and test tablets              | 99  |
| 6   | Conclusion                                            | 100 |
| 7   | References                                            | 103 |
| 8   | Plagiarism report                                     | 106 |

### **LIST OF FIGURES**

| Figure 1: Mechanism of action of $AT_1$ Receptor antagonists               | .19 |
|----------------------------------------------------------------------------|-----|
| Figure 2: Structure of the drug Telmisartan                                | .22 |
| Figure 3: Calibration curve of Telmisartan HCl in 7.5 pH                   | .51 |
| Figure 4: Dissolution of Reference tablet                                  | .62 |
| Figure 5: Dissolution of T/004 tablets                                     | .70 |
| Figure 6: Dissolution of T/005 tablets                                     | .73 |
| Figure 7: Dissolution of T/006 tablets                                     | .75 |
| Figure 8: Dissolution of T/007 Tablets                                     | .78 |
| Figure 9: Dissolution of T/008 Tablets                                     | .81 |
| Figure 10: Dissolution of T/012 Tablets                                    | .89 |
| Figure 11: Dissolution of T/013 Tablets                                    | .91 |
| Figure 12: Dissolution of T/014 Tablets                                    | .94 |
| Figure 13: Dissolution of T/016 Tablets                                    | .98 |
| Figure 14: Comparison of dissolution profiles of Reference and Test tablet | .99 |

# **LIST OF TABLES**

| Table 1: Classification of blood pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 2: Classification of drugs used in treatment of hypertension                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18                                                                                                                                                       |
| Table 3: Properties of the drug Telmisartan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22                                                                                                                                                       |
| Table 4: Excipient profile of Mannitol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24                                                                                                                                                       |
| Table 5: Excipient profile of Avicel pH 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25                                                                                                                                                       |
| Table 6: Excipient profile of Sodium starch glycolate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26                                                                                                                                                       |
| Table 7: Excipient profile of sodium hydroxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27                                                                                                                                                       |
| Table 8: Excipient profile of crosspovidone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28                                                                                                                                                       |
| Table 9: Excipient profile of PVP K-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 29                                                                                                                                                       |
| Table 10: Excipient profile of Sodium ydroxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31                                                                                                                                                       |
| Table 11: Excipient profile of Meglumine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 32                                                                                                                                                       |
| Table 12: Excipient profile of Sodium bicarbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 33                                                                                                                                                       |
| Table 13: Excipient profile of Magnesium stearate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 34                                                                                                                                                       |
| Table 14: Excipient profile of Aerosil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 35                                                                                                                                                       |
| Table 15: Excipient profile of Sodium laureth sulphate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 36                                                                                                                                                       |
| Table 16: Excipient profile of Iso propyl alcohol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37                                                                                                                                                       |
| Table 17: List of materials.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 49                                                                                                                                                       |
| Table 18: List of equipment used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 49                                                                                                                                                       |
| Table 19: Standard curve of Telmisartan in 7.5 pH buffer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50                                                                                                                                                       |
| Table 20: Solubility criteria as per USP and BP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 51                                                                                                                                                       |
| Table 21: Solubility of drug in different solvents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 52                                                                                                                                                       |
| Table 22: Solubility of drug in aqueous media                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 52                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 52                                                                                                                                                       |
| Table 23: Standard table to determine flow property from angle of repose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                          |
| Table 23: Standard table to determine flow property from angle of repose         Table 24: Standard table to determine flow property from Carr's Index and Hausn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 55<br>ner's                                                                                                                                              |
| Table 23: Standard table to determine flow property from angle of repose         Table 24: Standard table to determine flow property from Carr's Index and Hausn         ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 55<br>ner's<br>55                                                                                                                                        |
| Table 23: Standard table to determine flow property from angle of reposeTable 24: Standard table to determine flow property from Carr's Index and HausnratioTable 25: Process steps for preparation of tablets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 55<br>mer's<br>55<br>56                                                                                                                                  |
| Table 23: Standard table to determine flow property from angle of reposeTable 24: Standard table to determine flow property from Carr's Index and HausnratioTable 25: Process steps for preparation of tabletsTable 26: Weight variation criteria as per IP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 55<br>55<br>56<br>58                                                                                                                                     |
| Table 23: Standard table to determine flow property from angle of reposeTable 24: Standard table to determine flow property from Carr's Index and HausnratioTable 25: Process steps for preparation of tabletsTable 26: Weight variation criteria as per IPTable 27: Evaluation of Reference tablets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 55<br>55<br>56<br>58<br>62                                                                                                                               |
| Table 23: Standard table to determine flow property from angle of reposeTable 24: Standard table to determine flow property from Carr's Index and HausnratioTable 25: Process steps for preparation of tabletsTable 26: Weight variation criteria as per IPTable 27: Evaluation of Reference tabletsTable 28: Trials to check solubility of binder in alkaline environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 55<br>55<br>56<br>58<br>62<br>63                                                                                                                         |
| Table 23: Standard table to determine flow property from angle of reposeTable 24: Standard table to determine flow property from Carr's Index and HausnratioTable 25: Process steps for preparation of tabletsTable 26: Weight variation criteria as per IPTable 27: Evaluation of Reference tabletsTable 28: Trials to check solubility of binder in alkaline environmentTable 29: Formula for trial T/001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 55<br>55<br>56<br>58<br>62<br>63<br>63                                                                                                                   |
| Table 23: Standard table to determine flow property from angle of reposeTable 24: Standard table to determine flow property from Carr's Index and HausnratioTable 25: Process steps for preparation of tabletsTable 26: Weight variation criteria as per IPTable 27: Evaluation of Reference tabletsTable 28: Trials to check solubility of binder in alkaline environmentTable 29: Formula for trial T/001Table 30: Formula for trial T/002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 55<br>55<br>56<br>58<br>62<br>63<br>63<br>63<br>65                                                                                                       |
| Table 23: Standard table to determine flow property from angle of reposeTable 24: Standard table to determine flow property from Carr's Index and HausnratioTable 25: Process steps for preparation of tabletsTable 26: Weight variation criteria as per IPTable 27: Evaluation of Reference tabletsTable 28: Trials to check solubility of binder in alkaline environmentTable 29: Formula for trial T/001Table 30: Formula for trial T/003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 55<br>55<br>56<br>58<br>62<br>63<br>63<br>65<br>66                                                                                                       |
| Table 23: Standard table to determine flow property from angle of reposeTable 24: Standard table to determine flow property from Carr's Index and HausnratioTable 25: Process steps for preparation of tabletsTable 26: Weight variation criteria as per IPTable 27: Evaluation of Reference tabletsTable 28: Trials to check solubility of binder in alkaline environmentTable 30: Formula for trial T/001Table 31: Formula for trial T/003Table 32: Formula for trial T/004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 55<br>55<br>56<br>62<br>63<br>63<br>65<br>66<br>68                                                                                                       |
| Table 23: Standard table to determine flow property from angle of reposeTable 24: Standard table to determine flow property from Carr's Index and HausnratioTable 25: Process steps for preparation of tabletsTable 26: Weight variation criteria as per IPTable 27: Evaluation of Reference tabletsTable 28: Trials to check solubility of binder in alkaline environmentTable 29: Formula for trial T/001Table 30: Formula for trial T/002Table 31: Formula for trial T/003Table 32: Formula for trial T/004Table 33: Evaluation of T/004 tablets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 55<br>55<br>56<br>62<br>63<br>63<br>65<br>66<br>68<br>68                                                                                                 |
| Table 23: Standard table to determine flow property from angle of reposeTable 24: Standard table to determine flow property from Carr's Index and HausnratioTable 25: Process steps for preparation of tabletsTable 26: Weight variation criteria as per IPTable 27: Evaluation of Reference tabletsTable 28: Trials to check solubility of binder in alkaline environmentTable 30: Formula for trial T/001Table 31: Formula for trial T/003Table 32: Formula for trial T/004Table 33: Evaluation of T/004 tablets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 55<br>55<br>56<br>62<br>63<br>63<br>63<br>65<br>66<br>68<br>68<br>68                                                                                     |
| Table 23: Standard table to determine flow property from angle of reposeTable 24: Standard table to determine flow property from Carr's Index and HausnratioTable 25: Process steps for preparation of tabletsTable 26: Weight variation criteria as per IPTable 27: Evaluation of Reference tabletsTable 28: Trials to check solubility of binder in alkaline environmentTable 30: Formula for trial T/001Table 31: Formula for trial T/003Table 32: Formula for trial T/004Table 33: Evaluation of T/004 tabletsTable 34: Dissolution of T/004 tabletsTable 35: Formula for trial T/005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 55<br>55<br>56<br>62<br>63<br>63<br>63<br>65<br>66<br>68<br>68<br>68<br>69<br>71                                                                         |
| Table 23: Standard table to determine flow property from angle of reposeTable 24: Standard table to determine flow property from Carr's Index and HausnratioTable 25: Process steps for preparation of tabletsTable 26: Weight variation criteria as per IPTable 27: Evaluation of Reference tabletsTable 28: Trials to check solubility of binder in alkaline environmentTable 29: Formula for trial T/001Table 30: Formula for trial T/002Table 31: Formula for trial T/003Table 32: Formula for trial T/004Table 33: Evaluation of T/004 tabletsTable 34: Dissolution of T/005Table 36: Evaluation of T/005 tablets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 55<br>56<br>56<br>63<br>63<br>63<br>63<br>65<br>66<br>68<br>68<br>68<br>69<br>71<br>71                                                                   |
| Table 23: Standard table to determine flow property from angle of reposeTable 24: Standard table to determine flow property from Carr's Index and HausnratioTable 25: Process steps for preparation of tabletsTable 26: Weight variation criteria as per IPTable 27: Evaluation of Reference tabletsTable 28: Trials to check solubility of binder in alkaline environmentTable 29: Formula for trial T/001Table 30: Formula for trial T/002Table 31: Formula for trial T/003Table 32: Formula for trial T/004Table 33: Evaluation of T/004 tabletsTable 34: Dissolution of T/005 tabletsTable 36: Evaluation of T/005 tablets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 55<br>55<br>56<br>62<br>63<br>63<br>63<br>65<br>66<br>68<br>68<br>68<br>69<br>71<br>71<br>72                                                             |
| Table 23: Standard table to determine flow property from angle of reposeTable 24: Standard table to determine flow property from Carr's Index and HausnratioTable 25: Process steps for preparation of tablets.Table 26: Weight variation criteria as per IPTable 27: Evaluation of Reference tablets.Table 28: Trials to check solubility of binder in alkaline environment.Table 29: Formula for trial T/001Table 30: Formula for trial T/002Table 31: Formula for trial T/003Table 32: Formula for trial T/004Table 33: Evaluation of T/004 tabletsTable 34: Dissolution of T/005 tabletsTable 36: Evaluation of T/005 tabletsTable 37: Dissolution of T/005 tablets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 55<br>55<br>56<br>62<br>63<br>63<br>63<br>65<br>66<br>68<br>68<br>68<br>68<br>67<br>71<br>71<br>72<br>73                                                 |
| Table 23: Standard table to determine flow property from angle of reposeTable 24: Standard table to determine flow property from Carr's Index and HausnratioTable 25: Process steps for preparation of tabletsTable 26: Weight variation criteria as per IPTable 27: Evaluation of Reference tabletsTable 28: Trials to check solubility of binder in alkaline environmentTable 30: Formula for trial T/001Table 31: Formula for trial T/002Table 32: Formula for trial T/004Table 33: Evaluation of T/004 tabletsTable 34: Dissolution of T/005 tabletsTable 35: Formula for trial T/005Table 36: Evaluation of T/005 tabletsTable 37: Dissolution of T/005 tabletsTable 38: Formula for trial T/006Table 39: Evaluation of T/006 Tablets                                                                                                                                                                                                                                                                         | 55<br>56<br>56<br>58<br>62<br>63<br>63<br>63<br>63<br>65<br>66<br>68<br>68<br>69<br>71<br>71<br>72<br>73<br>74                                           |
| Table 23: Standard table to determine flow property from angle of repose         Table 24: Standard table to determine flow property from Carr's Index and Hausn         ratio         Table 25: Process steps for preparation of tablets         Table 26: Weight variation criteria as per IP         Table 27: Evaluation of Reference tablets         Table 28: Trials to check solubility of binder in alkaline environment         Table 29: Formula for trial T/001         Table 30: Formula for trial T/002         Table 31: Formula for trial T/004         Table 32: Formula for trial T/004         Table 33: Evaluation of T/004 tablets         Table 36: Evaluation of T/005 tablets         Table 37: Dissolution of T/005 tablets         Table 38: Formula for trial T/005         Table 39: Evaluation of T/005 tablets         Table 39: Formula for trial T/005         Table 39: Evaluation of T/005 tablets         Table 39: Evaluation of T/005 tablets         Table 39: Evaluation of T/006 Tablets         Table 39: Evaluation of T/006 Tablets                                                                                              | 55<br>55<br>56<br>58<br>62<br>63<br>63<br>63<br>65<br>66<br>68<br>68<br>68<br>69<br>71<br>71<br>72<br>73<br>74<br>75                                     |
| Table 23: Standard table to determine flow property from angle of reposeTable 24: Standard table to determine flow property from Carr's Index and HausnratioTable 25: Process steps for preparation of tabletsTable 26: Weight variation criteria as per IPTable 27: Evaluation of Reference tabletsTable 28: Trials to check solubility of binder in alkaline environmentTable 30: Formula for trial T/001Table 31: Formula for trial T/002Table 32: Formula for trial T/004Table 33: Evaluation of T/004 tabletsTable 34: Dissolution of T/005 tabletsTable 35: Formula for trial T/005Table 36: Evaluation of T/005 tabletsTable 37: Dissolution of T/006 tabletsTable 39: Evaluation of T/006 tablets                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 55<br>55<br>56<br>58<br>62<br>63<br>63<br>63<br>65<br>66<br>68<br>68<br>68<br>68<br>71<br>71<br>71<br>72<br>73<br>74<br>75<br>76                         |
| Table 23: Standard table to determine flow property from angle of reposeTable 24: Standard table to determine flow property from Carr's Index and HausnratioTable 25: Process steps for preparation of tabletsTable 26: Weight variation criteria as per IPTable 27: Evaluation of Reference tabletsTable 28: Trials to check solubility of binder in alkaline environmentTable 30: Formula for trial T/001Table 31: Formula for trial T/002Table 32: Formula for trial T/004Table 33: Evaluation of T/004 tabletsTable 34: Dissolution of T/005 tabletsTable 35: Formula for trial T/005Table 36: Evaluation of T/005 tabletsTable 37: Dissolution of T/006 tabletsTable 39: Evaluation of T/006 tabletsTable 39: Evaluation of T/006 tabletsTable 39: Evaluation of T/006 tablets                                                                                                                                                                                                                                                                                                                                                                                        | 55<br>56<br>56<br>58<br>62<br>63<br>63<br>63<br>63<br>63<br>63<br>63<br>63<br>63<br>64<br>68<br>68<br>71<br>71<br>71<br>72<br>73<br>74<br>75<br>76<br>77 |
| Table 23: Standard table to determine flow property from angle of repose         Table 24: Standard table to determine flow property from Carr's Index and Hausn         ratio         Table 25: Process steps for preparation of tablets.         Table 26: Weight variation criteria as per IP         Table 27: Evaluation of Reference tablets.         Table 28: Trials to check solubility of binder in alkaline environment.         Table 29: Formula for trial T/001         Table 30: Formula for trial T/002         Table 31: Formula for trial T/003         Table 32: Formula for trial T/004         Table 33: Evaluation of T/004 tablets         Table 35: Formula for trial T/005         Table 36: Evaluation of T/005 tablets         Table 37: Dissolution of T/005 tablets         Table 38: Formula for trial T/005         Table 39: Evaluation of T/005 tablets         Table 39: Evaluation of T/005 tablets         Table 39: Evaluation of T/006 Tablets         Table 39: Evaluation of T/006 Tablets         Table 40: Dissolution of T/006 tablets         Table 41: Formula for trial T/007         Table 42: Evaluation of T/007 tablets  | 55<br>55<br>56<br>56<br>62<br>63<br>63<br>63<br>65<br>66<br>68<br>68<br>68<br>71<br>71<br>72<br>73<br>74<br>75<br>76<br>77<br>77                         |
| Table 23: Standard table to determine flow property from angle of repose         Table 24: Standard table to determine flow property from Carr's Index and Hausn         ratio         Table 25: Process steps for preparation of tablets.         Table 26: Weight variation criteria as per IP         Table 27: Evaluation of Reference tablets.         Table 28: Trials to check solubility of binder in alkaline environment.         Table 29: Formula for trial T/001         Table 30: Formula for trial T/002         Table 31: Formula for trial T/003         Table 32: Formula for trial T/004         Table 33: Evaluation of T/004 tablets         Table 35: Formula for trial T/005         Table 36: Evaluation of T/005 tablets         Table 37: Dissolution of T/005 tablets         Table 38: Formula for trial T/006         Table 39: Evaluation of T/006 tablets         Table 39: Evaluation of T/006 tablets         Table 39: Evaluation of T/006 tablets         Table 40: Dissolution of T/006 tablets         Table 41: Formula for trial T/007         Table 42: Evaluation of T/007 tablets         Table 43: Dissolution of T/007 tablets | 55<br>55<br>56<br>58<br>62<br>63<br>63<br>63<br>63<br>65<br>66<br>68<br>68<br>68<br>68<br>71<br>71<br>71<br>72<br>73<br>74<br>75<br>76<br>77<br>77<br>77 |

| Table 45: Evaluation of T/008 tablets                            | .80 |
|------------------------------------------------------------------|-----|
| Table 46: Dissolution of T/008 tablets                           | .80 |
| Table 47: Formula for trial T/009                                | .82 |
| Table 48: Formula for trial T/010                                | .83 |
| Table 49: Evaluation of T/010 tablets                            | .84 |
| Table 50: Formula for T/011                                      | .85 |
| Table 51: Evaluation of T/011 tablets                            | .86 |
| Table 52: Formula for trial T/012                                | .86 |
| Table 53: Evaluation of T/012 tablets                            | .87 |
| Table 54: Dissolution of T/012 tablets                           | .88 |
| Table 55: Formula for trial T/013                                | .89 |
| Table 56: Evaluation of T/013 tablets                            | .90 |
| Table 57: Dissolution of T/013 tablets                           | .91 |
| Table 58: Formula for trial T/015                                | .92 |
| Table 59: Evaluation of T/014 tablets                            | .93 |
| Table 60: Dissolution of T/014 tablets                           | .93 |
| Table 61: Formula for trial T/015                                | .94 |
| Table 62: Evaluation of T/015 tablets                            | .95 |
| Table 63: Formula for trial T/016                                | .96 |
| Table 64: Evaluation of T/016 tablets                            | .97 |
| Table 65: Dissolution of T/016 tablets                           | .98 |
| Table 66: Comparison of parameters of Reference and Test Tablets | .99 |

# **ABSTRACT**

Hypertension is a chronic illness characterized by chronically high arterial blood pressure. It is not a disease in and of itself, but it is a significant risk factor for cardiovascular death and morbidity. Telmisartan is a drug that belongs to the class of  $AT_1$  receptor antagonists, which act on the renin-angiotensin system and lead to the eventual decrease in blood pressure. The candidate is an FDA approved, first line drug in the treatment of hypertension. As the drug is a BCS class II substance, it is practically insoluble in water and shows solubility only in a highly basic media. Thus, the present work aims to prepare immediate release tablets of the drug using wet granulation method, and match all the parameters according to the reference tablets. First of all, the reference tablet was evaluated and the critical processing parameters were identified. The prepared tablets were evaluated for appearance, weight variation, friability, disintegration time and dissolution. Optimization of the formula as well as the processing parameters was also done such a way that it favored similar dissolution, upto 101.5% drug release in 45 minutes, proper disintegration time, 8:30 minute as well as reduction in processing cost. Stability batches were prepared and stability data is being generated according to the ICH guidelines.

Keywords: Hypertension treatment drug,  $AT_1$  Receptor antagonist, Wet granulation using RMG.

# **INTRODUCTION**



### **1.1 Introduction to Hypertension**

- Hypertension is a chronic illness characterised by chronically high arterial blood pressure. (BP). (Dipiro et al., 2017)
- Hypertension is a highly prevalent condition, especially in people who have crossed middle age. It cannot be classified as a disorder in and of itself, although it is a significant risk factor for cardiovascular death or morbidity. (Tripathi, 2013)

| BLOOD      | SYSTOLIC BI  | LOOD | DIASTOLIC  |
|------------|--------------|------|------------|
| PRESSURE   | PRESSURE     |      | BLOOD      |
| CATEGORY   |              |      | PRESSURE   |
| NORMAL     | <120 mmHg    |      | <80 mmHg   |
| ELEVATED   | 120-129 mmHg |      | <80 mmHg   |
| STAGE 1 HT | 130-139 mmHg |      | 80-89 mmHg |
| STAGE 2 HT | ≥140 mmHg    |      | ≥90 mmHg   |

#### Table 1: Classification of blood pressure

(Tripathi, 2013)

- Blood pressure can be is strongly linked to the risk of cardiovascular disease (CVD) and mortality. (Dipiro et al., 2017)
- Increased systolic blood pressure (>115 mmHg) is considered to be blamed for 62% of strokes also 49% of ischemic heart disease cases globally, resulting in more than 7 million deaths per year.(Dipiro et al., 2017)
- Essentially Hypertension is classified into two types:
- <u>Primary/ Essential Hypertension:</u>

- → Essential hypertension is a rise in blood pressure that has no recognised cause and it raises the risk of cerebral, cardiac, or renal problems.
- → Other cardiovascular risk factors including age, obesity, hyperlipidaemia, insulin resistance, and diabetes frequently coexist with essential hypertension.(Tripathi, 2013)
- → More than 90% of instances of hypertension are caused by unknown factors. (Oparil et al., 2003)
- <u>Secondary Hypertension:</u>
- → Secondary hypertension is the increase in blood pressure caused due to an underlying, distinguishable, and frequently, treatable cause. (Grossman & Messerli, 2012)
- → A wide range of medicinal treatments or chemical compounds can cause a momentary or long-term rise in blood pressure, or interfere with antihypertensive medications' blood pressure-lowering actions. (Onusko, 2003)
- → With increased awareness and emphasis on hypertension, modifiable risk factors such as food, physical activity, body weight, and blood glucose have been identified, as well as nonmodifiable perils such as age, ethnicity, genetics, and gender. (Chiong et al., 2008)
- → Renal parenchymal disease, pheochromocytoma, hyperaldosteronism, and renal artery stenosis, are all well-known forms of secondary hypertension. (Grossman & Messerli, 2012)
- The Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC-VI) specifies four aims for evaluating patients with increased blood pressure in its 6<sup>th</sup> report: (Onusko, 2003)
- o Hypertension identification and confirmation; detection of target organ disease
- Determination of other cardiovascular risk factors, such as diabetes mellitus, hyperlipidaemia, and so on.
- Secondary causes of hypertension are identified based on the patient's medical history. (Oparil et al., 2003)
- Pathogenesis:
- Many different pathophysiologic variables have been linked to the development of hypertension. Such as:( et al., 2019)

- Escalation in sympathetic nervous system activity.
- Sodium-binding hormones and vasoconstrictors are produced in excess.
- Leong-term excessive salt consumption and/or potassium and calcium deficiency in the diet.
- Excessive or inappropriate renin secretion, resulting in elevated angiotensin II and aldosterone production
- Vasodilators such prostacyclin, nitric oxide (NO), and natriuretic peptides are insufficient.
  - Changes in the kallikrein-kinin system expression which impacts vascular tone and renal salt handling
  - Resistance vessel irregularities
  - Underlying variables such as genetics, diseases, and the use of blood pressure medications, among others.

#### **1.2 Treatment of Hypertension**

- Reduced blood pressure lowers the risk of strokes, heart attacks, and renal disorders.(B.N.a et al., 2016)
- Antihypertensive drug therapy has been shown in clinical studies to bring down the risk of cardiovascular events and death in persons with high blood pressure. (Dipiro et al., 2017)
- Antihypertensive medicines might reconstitute the barostat to work at an inferior Blood pressure by reducing blood pressure over time. (Dipiro et al., 2017)
- Here are the examples of drugs used in the treatment of hypertension along with their class:

| CLASS                                    |                        | DRUGS                              |  |
|------------------------------------------|------------------------|------------------------------------|--|
| Diuretics                                | Thiazides              | Hydrochlorothiazide,               |  |
|                                          |                        | Chlorthalidone, Indapamide         |  |
|                                          | High- ceiling          | Furosemide                         |  |
|                                          | K <sup>+</sup> Sparing | Spironolactone, Amiloride          |  |
| ACE inhi                                 | bitors                 | Captopril, Enalapril, Lisinopril,  |  |
|                                          |                        | Perindopril, Ramipril, Fosinopril  |  |
| Angiotensin (A7                          | [1 receptor)           | Losartan, Candesartan, Irbesartan, |  |
| blocke                                   | ers                    | Valsartan, Telmisartan             |  |
| Direct renin                             | inhibitor              | Aliskiren                          |  |
| Calcium chann                            | el blockers            | Verapamil, Diltiazem, Nifedipine,  |  |
|                                          |                        | Felodipine, Amlodipine,            |  |
|                                          |                        | Nitrendipine, Lacidipine           |  |
| β Adrenergic blockers                    |                        | Propranolol, Metoprolol, Atenolol  |  |
| β + α Adrenergic blockers                |                        | Labetalol, Carvedilol              |  |
| a Adrenergic blockers                    |                        | Prazosin, Terazosin, Doxazosin     |  |
|                                          |                        | Phentolamine,                      |  |
|                                          |                        | Phenoxybenzamine                   |  |
| Central symp                             | oatholytic             | Clonidine, Methyldopa              |  |
| Vasodila                                 | itors                  | Arteriolar                         |  |
|                                          |                        | Hydralazine, Minoxidil,            |  |
|                                          |                        | Diazoxide                          |  |
|                                          |                        | Arteriolar + venous                |  |
|                                          |                        | Sodium Nitroprusside               |  |
|                                          | Source: (Tr            | ripathi, 2013)                     |  |
| 1.3 Angiotensin Receptor Blockers (ARBs) |                        |                                    |  |

### Table 2: Classification of drugs used in treatment of hypertension

Angiotensin-II (Ang II) is an octapeptide that is produced in the plasma from a precursor plasma 2 globulin and is found to be important for maintaining

### INTRODUCTION

blood volume, electrolyte, and blood pressure equilibrium. (Sekar & Chellan, 2008)

 Although the sympathetic and renin-angiotensin systems (RAS) might be or might not be hyperactive, both of them contribute to blood vessel tone. (Chiong et al., 2008)



Figure 1: Mechanism of action of AT<sub>1</sub> Receptor antagonists

- As an alternative to ACE inhibitors, many nonpeptide orally active AT1 receptor blockers (ARBs) have been explored. Losartan, Olmesartan, Telmisartan, Candesartan, Valsartan, and Irbesartan are some examples.(Tripathi, 2013)
- These drugs directly act on the angiotensin 1 receptor i.e., AT<sub>1</sub> receptor as they show 10,000 times more affinity to AT<sub>1</sub> receptor as compared to AT<sub>2</sub> receptor and inhibit its effects leading to eventual reduction in the blood volume and vasodialation.(Weber, 2010)
- Selective AT2 receptor antagonists, as well as combination AT1 + AT2 antcagonists, have been developed. (Akhrass & McFarlane, 2011)
- They produce a 24-hour drop in blood pressure in hypertensive individuals, although heart rate is stable and cardiovascular reflexes are unaffected. (Tripathi, 2013)
- There was no discernible effect on plasma lipid profile, glucose tolerance, or insulin (Chiong et al., 2008)

- It is currently considered as first-line treatments for hypertension. (Dipiro et al., 2017)
- It is equivalent to ACE inhibitors in terms of effectiveness and advantageous characteristics, along with the added benefit of not causing cough and a decreased risk of angioedema, rashes, also dysgeusia. (Elliott, 2007)

# 1.4 Introduction to the Method of Manufacturing for Marketed preparations

- Telmisartan exhibits low water solubility and dissolving rate, which makes developing tablet formulations difficult. (K, Bhargavi, P, Hima Bindu, Dr. K, 2019)
- Numerous researches have been conducted in effort to increase the bioavailability of poorly soluble medicines by altering their dissolution kinetics.(Zhong et al., 2014)
- Amorphous forms, such as solid dispersions/cocrystals, size reduction, polymeric micelles, inclusion complexation, , including nanonization, selfmicroemulsifying drug delivery systems, solid lipid nanoparticles (SLN)/liposomes, pH-modified form, surfactant/co-solvent systems, and salt forms are used in a variety of pharmaceutical technologies to improve the solubility of insoluble drugs.(Oh et al., 2018)
- The production of a solid dispersion (SD) using a hydrophilic polymer polyvinyl pyrrolidone and other varied carriers is a typical strategy for betterment of the dissolution rate of a poorly water soluble medication. Key processes by which SD improves drug dissolving include changes in the crystallinity of drug to an amorphous state also decreased particle size for greater wettability.(B.N.a et al., 2016)
- In these processes, the granules containing the drug are prepared by using the fluidised bed drying process.(Messerli et al., 2007)
- The rate of dissolution is accelerated in this procedure by depositing the medication in minuscular form on the surface of an adsorbent. The term "minuscular form" refers to a medicine that has been molecularly micronized

and is widely diffused across the vast surface of micro particle adsorbents.(K, Bhargavi, P, Hima Bindu, Dr. K, 2019)

- The minuscular drug mechanism releases only free, absorbable medication into solution after breakdown. The minuscular drug delivery method may be thought of as a drug in micro particle form that has been molecularly disseminated over a large surface area of the carrier. (Sowers & Sowers, 1999)
- The reduction in particle size and associated increase in surface area contribute to boost the drug's thermodynamic activity in the dispersed form, resulting in a significant rise in the drug's rate of solution.(K, Bhargavi, P, Hima Bindu, Dr. K, 2019)
- A solution of pH above 9 is concocted by the addition of meglumine and NaOH.(Chae et al., 2018)
- ➤ As the drug is soluble in highly alkaline pH, it is dissolved in the solution.
- This solution is then sprayed onto mannitol and disintegrant particles using a fluidized bed dryer. The use of a 40% isopropanol/water mixture as a granulating binder is used. (Patel et al., 2016)
- The prepared granules are then dried and compressed into tablets of desired size and shape and are evaluated for all the different parameters.(Yamashita et al., 2017)

#### 1.5 Telmisartan Hydrochloride Drug profile

- Telmisartan, an AT<sub>1</sub> receptor antagonist is used to treat hypertension (high blood pressure) by inhibiting the hormone angiotensin, which causes blood vessels to relax and expand.(B.N.a et al., 2016)
- It was created by Boehringer Ingelheim and released as Micardis in 1999. (Oh et al., 2018)
- Telmisartan is used to treat hypertension, but its dual mechanism of action may also protect against vascular and kidney impairment caused by diabetes and cardiovascular disease (CVD).(B.N.a et al., 2016)
- Telmisartan shows an aqueous solubility of 0.078 mg/ml in the physiological pH range. (Patel et al., 2016)

- Telmisartan is easily ionizable due to its chemical structure, and so its solubility is pH dependant.(B.N.a et al., 2016)
- Peak activity occurs three hours after an oral dosage, and action lasts for more than 24 hours. (Tripathi, 2013) It reduces dosage administration frequency, avoids nocturnal attacks, and increases patient compliance.(B.N.a et al., 2016)
- It is mostly unaltered in bile and requires dosage lowering in liver illness. (Tripathi, 2013)
- Angiotensin II binding to the AT1 subtype receptor, which is found in vascular smooth muscle and the adrenal gland, is specifically blocked by telmisartan. The antagonism causes vasodilation and inhibits angiotensin II-mediated aldosterone synthesis, resulting in a decrease in salt and water excretion as well as an increase in potassium excretion, lowering blood pressure. (Nagadivya et al., 2012)



*Figure 2: Structure of the drug Telmisartan* Source: (*Telmisartan Drug Profile*, n.d.)

| Table 3: Properties | of | the | drug | Telmisartan |  |
|---------------------|----|-----|------|-------------|--|
|---------------------|----|-----|------|-------------|--|

|     | Name                                | Telmisartan HCl                                                                                                       |         |
|-----|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------|
|     | IUPAC Name                          | 40 -{[4-Methyl-6-(1-methyl-2-<br>benzimidazolyl)-2-propyl-1-<br>benzimidazolyl] methyl}-2-<br>biphenylcarboxylic acid |         |
| INS | TITUTE OF PHARMACY, NIRMA UNIVERSIT | Υ,                                                                                                                    | Page 22 |

# INTRODUCTION

| Structural formula      | C33H30N4O2                              |
|-------------------------|-----------------------------------------|
| Drug Category           | Antihypertensive                        |
| Use                     | Treatment of high blood                 |
| USC                     | pressure                                |
| Appearance              | White colored solid compound            |
| Half life               | 24 hours                                |
| Dose                    | 20,4, 80 mg                             |
| BCS Class               | Ш                                       |
| Distribution            | Highly plasma protein bound             |
| Distribution            | (>99.5%)                                |
|                         | Most of the administered dose           |
|                         | (>97%) gets eliminated                  |
| Metabolism/ Elimination | unchanged in feces through              |
|                         | biliary excretion; only minute          |
|                         | amounts are found in the urine          |
| Clearance               | >800 mL/min                             |
|                         | Sparingly soluble in strong acids       |
| Solubility              | Practically insoluble in water          |
|                         | Freely soluble in strong base           |
| Mechanism of action     | Antagonism of AT <sub>1</sub> receptors |
|                         |                                         |
| Contraindications       | Renal insufficiency, hepatic            |

**Drug details:** Telmisartan is a non-peptide angiotensin II receptor antagonist with antihypertensive properties that is derived from benzimidazole ring in the structure.

### **1.6 Introduction to Excipients**

#### > Diluents:

- Diluents, often known as fillers, are inert chemicals that are used to enhance the tablet's volume.
- They're also employed to improve tablet qualities including cohesion and flow, among other things.
- Two different diluents were tried in the preparation of these tablets: Microcrystalline cellulose and Avicel PH 102.

| Name              | Mannitol                                                          |  |  |  |  |
|-------------------|-------------------------------------------------------------------|--|--|--|--|
| Nonproprietary    | Mannitol                                                          |  |  |  |  |
| Name              |                                                                   |  |  |  |  |
| Synonym           | Pearlitol                                                         |  |  |  |  |
| Chemical Name     | Dextrosemannitol                                                  |  |  |  |  |
| Molecular formula | С6Н14О6                                                           |  |  |  |  |
| and Weight        | 183.18                                                            |  |  |  |  |
| Category          | Diluent, plasticity inducer, sweetener, therapeutic               |  |  |  |  |
|                   | agent, tonicity agent.                                            |  |  |  |  |
| Pharmaceutical    | $\rightarrow$ Use as diluent in tablet.                           |  |  |  |  |
| application       | $\rightarrow$ It also inhibits thickening in aqueous suspensions. |  |  |  |  |
|                   | $\rightarrow$ Use as a plasticity inducer.                        |  |  |  |  |
|                   | $\rightarrow$ Use as carrier in dry powder inhalers.              |  |  |  |  |
|                   | $\rightarrow$ Use as fillers.                                     |  |  |  |  |
|                   | $\rightarrow$ Use as an osmotic diuretic to diagnose kidney       |  |  |  |  |
|                   | function in the management of acute renal failure.                |  |  |  |  |
| Description       | Mannitol is pale whitish, odor less, crystalline powder           |  |  |  |  |
|                   | or granules and easily flowable. Sweetening index of              |  |  |  |  |
|                   | mannitol is similar to the glucose. It gives a cooling            |  |  |  |  |
|                   | feeling in the mouth upon observation in the                      |  |  |  |  |
|                   |                                                                   |  |  |  |  |

#### $\rightarrow$ <u>Mannitol</u>:

 Table 4: Excipient profile of Mannitol

| <b>CHAPTER 1</b> |  |
|------------------|--|
|------------------|--|

# INTRODUCTION

|                          | microscope it shows ortho rhombic needles shape<br>when crystallized from alcohol. Mannitol has various<br>polymorphic forms. |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Typical Properties       | Appearance: White colored, free flowing powder                                                                                |
| Storage and<br>Stability | Stored at cool and dry place in tightly closed container.                                                                     |

#### $\rightarrow$ <u>Avicel PH 102:</u>

### Table 5: Excipient profile of Avicel pH 102 Description

| Name                      | Avicel PH 102                                                  |
|---------------------------|----------------------------------------------------------------|
| Nonproprietary            | Micro crystalline cellulose (MCC)                              |
| Name                      |                                                                |
| Synonym                   | Avicel PH, Cellets, Celphere, crystalline cellulose,           |
|                           | Pharmacel                                                      |
| Chemical Name             | Cellulose                                                      |
| Molecular formula         | $(C_6H_{10}O_5)_{220}$                                         |
| and Weight                | 36000                                                          |
| Category                  | Adsorbent, suspending agent, diluent, disintegrant.            |
| Pharmaceutical            | $\rightarrow$ Use as diluent in tablet and in capsule          |
| application               | $\rightarrow$ Used as disintegrating agent as it has adsorbent |
|                           | property.                                                      |
| Description               |                                                                |
| Description               | MCC is a partiy depolymenzed cellulose. MCC is                 |
|                           | whitish, odor less, taste less and crystalline powder          |
|                           | having of porous particles. There are different grades         |
|                           | available of MCC and they can be differentiated by             |
|                           | particle size and moisture content.                            |
| <b>Typical Properties</b> | → Appearance: white colored free flowing powder                |
|                           | or granules                                                    |
|                           | → Melting point: it burns at 255–265 °C.                       |
|                           | → Solubility: Somewhat in 5% solution of NaOH                  |

# INTRODUCTION

|             | and not soluble in water.                                         |
|-------------|-------------------------------------------------------------------|
|             | $\rightarrow$ <b>pH</b> : 5 – 7.5 True density: 1.5 to 1.6 g/ cm3 |
|             |                                                                   |
| Storage and | It is moisture grasping material so store in air tight            |
| Stability   | vessel and keep it in cool and dry place.                         |

#### Disintegranting agents:

- A disintegrating agent is added to a tablet formulation to cause the cohesive forces between the granules to be disrupted. As a result, the tablet begins to break down.
- It works through three different processes:
  - $\rightarrow$  By swelling by the uptake of water with the help of capillary forces.
  - $\rightarrow$  Liberation of gas to disintegrate the tablet.
  - $\rightarrow$  Enzymatic degradation of binders.
- For the preparation of telmisartan tablets, various different kinds of disintegrating agents, such as Sodium starch glycolate, croscarmellose sodium, crosspovidone is used.

#### → <u>Sodium starch Glycolate:</u>

| Sodium-glycolate-starch         Carboxy methyl starch, Na salt         Sodiumcarboxymethyl starch         5×10 <sup>5</sup> to 1×10 <sup>6</sup> Disintegrating agent         → SSG is utilized as a disintegrant for solid oral |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Carboxy methyl starch, Na salt<br>Sodiumcarboxymethyl starch<br>5×10 <sup>5</sup> to 1×10 <sup>6</sup><br>Disintegrating agent<br>→ SSG is utilized as a disintegrant for solid oral                                             |
| Carboxy methyl starch, Na salt         Sodiumcarboxymethyl starch         5×10 <sup>5</sup> to 1×10 <sup>6</sup> Disintegrating agent         → SSG is utilized as a disintegrant for solid oral                                 |
| Sodiumcarboxymethyl starch         5×10 <sup>5</sup> to 1×10 <sup>6</sup> Disintegrating agent         → SSG is utilized as a disintegrant for solid oral                                                                        |
| <ul> <li>5×10<sup>5</sup> to 1×10<sup>6</sup></li> <li>Disintegrating agent</li> <li>→ SSG is utilized as a disintegrant for solid oral</li> </ul>                                                                               |
| <ul> <li>Disintegrating agent</li> <li>→ SSG is utilized as a disintegrant for solid oral</li> </ul>                                                                                                                             |
| $\rightarrow$ SSG is utilized as a disintegrant for solid oral                                                                                                                                                                   |
|                                                                                                                                                                                                                                  |
| dosage forms                                                                                                                                                                                                                     |
| $\rightarrow$ Also used as a suspending agent.                                                                                                                                                                                   |
| $\rightarrow$ SSG is a whitish easily flowable hygroscopic                                                                                                                                                                       |
| powder.                                                                                                                                                                                                                          |
| $\rightarrow$ SSG is a substituted derivative of potato starch.                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |

#### Table 6: Excipient profile of Sodium starch glycolate

| CHAPTER 1                | INTRODUCTIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ЭN |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Typical Properties       | <ul> <li>→ Upon microscopy it is seen uneven shape of granules.</li> <li>→ It also shows swelling in contact with water</li> <li>→ Appearance: It is a white, free flowing powder</li> <li>→ Melting point: Does not melt, however above 200 8C it chars.</li> <li>→ Solubility: insoluble in water and other organic solvents</li> <li>→ Average particle size: 38mm to 42 mm</li> <li>→ Swelling capacity: 300 times its volume</li> <li>→ pH: 5 to 7.5</li> <li>→ Heavy metals: &lt; 20PPM</li> <li>→ Nacl: &lt; 7 %</li> <li>→ Sodiumglycolate: &lt; 2 %</li> </ul> |    |
| Storage and<br>Stability | <ul> <li>→ It is hygroscopic in nature but it is stable it remains protected for three years if stored in control temperate and humidity.</li> <li>→ SSG is unstable with ascorbic acid.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                     |    |

# → <u>Crosscarmellose Sodium</u>

# Table 7: Excipient profile of sodium hydroxide

| Name            | Crosscarmellose Sodium                          |
|-----------------|-------------------------------------------------|
| Non-Proprietary | Crosscarmellose Sodium                          |
| name            |                                                 |
| Synonym         | Ac-di-sol, crosslinked carboxy methyl cellulose |
| Chemical name   | Cellulose carboxy methyl ether sodium salt      |
| Molecular       | $C_{28}H_{30}Na_8O_{27}$                        |
| formula and     | 982.44                                          |
| weight          |                                                 |
| Category        | Disintegrant                                    |

# INTRODUCTION

| Pharmaceutical     | $\rightarrow$ Used as disintegrating agent in capsule and tablet. |
|--------------------|-------------------------------------------------------------------|
| application        | $\rightarrow$ It enhances bio-availability of the drug by higher  |
|                    | drug dissolution.                                                 |
|                    |                                                                   |
| Description        | CCS is a cross linked polymer of carboxy methyl                   |
|                    | cellulose sodium. It is whitish in color, fibrous in              |
|                    | nature and easily flowable powder.                                |
| Typical properties | → Appearance: grayish-white powder.                               |
|                    | $\rightarrow$ Solubility: Isoluble in water and in other organic  |
|                    | solvents                                                          |
|                    | → Swelling capacity: 4-8 times from its original                  |
|                    | volume                                                            |
|                    | → <b>pH</b> : 5 to 7                                              |
|                    | → Heavy metals: NMT 10ppm                                         |
|                    |                                                                   |
| Storage and        | Store in an air tight container, cool and dry place               |
| stability          |                                                                   |

#### $\rightarrow$ <u>Crosspovidone</u>

| Non-Proprietary<br>nameCrosspovidoneSynonymPolyplasdone<br>PolyvidonumChemical name1-[1,2-bis(phosphanyl)ethyl]22ydroxide22e-2-oneMolecularC <sub>6</sub> H <sub>13</sub> NOP <sub>3</sub> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| nameSynonymPolyplasdone<br>PolyvidonumChemical name1-[1,2-bis(phosphanyl)ethyl]22ydroxide22e-2-oneMolecularC <sub>6</sub> H <sub>13</sub> NOP <sub>3</sub>                                 |
| SynonymPolyplasdone<br>PolyvidonumChemical name1-[1,2-bis(phosphanyl)ethyl]22ydroxide22e-2-oneMolecularC <sub>6</sub> H <sub>13</sub> NOP <sub>3</sub>                                     |
| PolyvidonumChemical name1-[1,2-bis(phosphanyl)ethyl]22ydroxide22e-2-oneMolecularC <sub>6</sub> H <sub>13</sub> NOP <sub>3</sub>                                                            |
| Chemical name1-[1,2-bis(phosphanyl)ethyl]22ydroxide22e-2-oneMolecularC <sub>6</sub> H <sub>13</sub> NOP <sub>3</sub>                                                                       |
| Molecular     C <sub>6</sub> H <sub>13</sub> NOP <sub>3</sub>                                                                                                                              |
| Molecular C <sub>6</sub> H <sub>13</sub> NOP <sub>3</sub>                                                                                                                                  |
|                                                                                                                                                                                            |
| formula and 177.12                                                                                                                                                                         |
| weight                                                                                                                                                                                     |
| Category Disintegrant                                                                                                                                                                      |
| Pharmaceutical $\rightarrow$ It is used as a superdisintegrant in tablet                                                                                                                   |
| application formulations.                                                                                                                                                                  |
| $\rightarrow$ It is used in a very small quantity and hence it                                                                                                                             |

# INTRODUCTION

|                    | does not have much effect on the final                          |
|--------------------|-----------------------------------------------------------------|
|                    | flowability of the tablet blend.                                |
|                    |                                                                 |
| Description        | Crosspovidone is a white-light yellow free-flowing              |
|                    | powder which is inert and insoluble. In typical usage           |
|                    | as a pharmaceutical excipient, crosspovidone is not             |
|                    | frequently linked with toxicity.                                |
| Typical properties | → Appearance: White-light yellow free flowing                   |
|                    | powder.                                                         |
|                    | $\rightarrow$ Solubility: Insoluble in water, ethanol and ether |
|                    | → Swelling capacity: 2-3 times its original volume              |
|                    | → <b>pH</b> : 5 to 8                                            |
|                    |                                                                 |
| Storage and        | Store in an air tight container, cool and dry place             |
| stability          |                                                                 |

#### ➢ Binder:

- They're also known as pharmaceutical glue since they enable powder particles to stick together and form granules.
- They are used to create a cohesive link between granules during the compaction process to make a tablet.
- The binder provides appropriate hardness to the tablet and helps to maintain its integrity even after compression.
- We have used PVP K30 as a binder in dry from as well as, as a binder solution.

#### $\rightarrow$ <u>PVP K 30:</u>

#### Table 9: Excipient profile of PVP K-30

| Name                     | РVР К 30                                       |
|--------------------------|------------------------------------------------|
| Non- proprietary<br>name | Copovidone                                     |
| Synonyms                 | Copolyvidone, copovidonum, Kollidon, Plasdone, |
|                          | poryvinyipyirondone-vinyi acetate              |

# INTRODUCTION

| Chemical name      | Acetic acid ethenyl ester, polymer with 1-ethenyl-2-<br>pyrrolidinone |
|--------------------|-----------------------------------------------------------------------|
|                    |                                                                       |
| Molecular weight   | $(C_6H_9NO)n * (C_4H_6O_2)_m$                                         |
| and formula        | 50000                                                                 |
| Category           | Film-forming agent, binder                                            |
| Pharmaceutical     | $\rightarrow$ PVP K 30 use as tablet binder for wet as well as        |
| application        | dry granulation and also, in direct compression.                      |
|                    | $\rightarrow$ Use as a film-forming agent for delayed release         |
|                    | formulations.                                                         |
|                    | $\rightarrow$ It provides good 'adhesiveness, firmness, and           |
|                    | hardness'                                                             |
|                    |                                                                       |
| Description        | It is a yellowish or creamy, odour less and having faint              |
|                    | taste amorphous powder. PVP K 30 is generally                         |
|                    | manufacture by spraying technology to get smaller                     |
|                    | particle size                                                         |
| Typical properties | Appearance: white coloured easily flowable powder                     |
|                    | or granules                                                           |
|                    | Melting point: 140 °C                                                 |
|                    | Solubility: >10% aqueous solubility and other organic                 |
|                    | solvents                                                              |
|                    | Flowability: Relatively easily flowable powder                        |
|                    | Hygroscopicity: At 50% relative humidity, it grasp                    |
|                    | $\leq 10\%$ weight.                                                   |
|                    | Clarity in 10% water: Clear                                           |
|                    | <b>pH:</b> 3-5 in 5% water                                            |
| Storage and        | Stored in air tight vessel and keep it in cool & dry place            |
| stability          |                                                                       |
|                    |                                                                       |

### > Alkalizer:

- Alkalizers were added to the formulation to increase the pH of the environment during the granulation process as the drug is soluble only in highly alkaline pH, i.e., above 9.
- This leads to the uniform distribution of the drug and proper granules to be formed.
- We added combinations of three different alkalizers such as sodium hydroxide, meglumine and sodium bicarbonate to maintain the alkaline pH during processing.
- Sodium Hydroxide:

| Name                            | Sodium hydroxide                                             |  |  |  |  |
|---------------------------------|--------------------------------------------------------------|--|--|--|--|
| Non- proprietary<br>name        | Sodium hydroxide                                             |  |  |  |  |
| Chemical name                   | Sodium hydroxide                                             |  |  |  |  |
| Molecular weight<br>and formula | NaOH<br>30.007                                               |  |  |  |  |
| Category                        | Alkalizer                                                    |  |  |  |  |
|                                 |                                                              |  |  |  |  |
| Pharmaceutical                  | $\rightarrow$ Added to certain pharmaceutical formulation to |  |  |  |  |
| application                     | increase the pH of the surrounding environment.              |  |  |  |  |
|                                 | $\rightarrow$ It helps in enhancing the dissolution.         |  |  |  |  |
| Description                     | Pellets, flakes, sticks, fused masses, and various shapes    |  |  |  |  |
|                                 | in white or virtually white. When exposed to the air,        |  |  |  |  |
|                                 | solutions maybe clear or slightly turbid, or colourless      |  |  |  |  |
|                                 | or faintly tinted, extremely caustic, and hygroscopic,       |  |  |  |  |
|                                 | absorbing carbon dioxide and producing sodium                |  |  |  |  |
|                                 | carbonate.                                                   |  |  |  |  |
| Typical properties              | → Appearance: White or nearly white pellets and              |  |  |  |  |
|                                 | flakes                                                       |  |  |  |  |
|                                 | → Melting point: 318 <sup>0</sup> C                          |  |  |  |  |

#### Table 10: Excipient profile of Sodium 31ydroxide

# INTRODUCTION

|             | → Solubility: Very soluble in water, freely soluble in ethanol. |
|-------------|-----------------------------------------------------------------|
|             | $\rightarrow$ <b>pH:</b> 0.1N solution give 13 pH               |
| Storage and | Containers must be tightly closed to prevent conversion         |
| stability   | to sodium bicarbonate by carbon di oxide off air.               |

### $\rightarrow$ <u>Meglumine</u>:

### Table 11: Excipient profile of Meglumine

| Name                            | Meglumine                                                                                                                                                              |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Non- proprietary<br>name        | Meglumine                                                                                                                                                              |
| Chemical name                   | N-Methyl-D-glucamine                                                                                                                                                   |
| Molecular weight<br>and formula | C7H17NO5<br>195.21                                                                                                                                                     |
| Category                        | Alkalizer                                                                                                                                                              |
| Pharmaceutical<br>application   | <ul> <li>→ Added to certain pharmaceutical formulation to increase the pH of the surrounding environment.</li> <li>→ It helps in enhancing the dissolution.</li> </ul> |
| Description                     | It is a white coloured powder, which is soluble in<br>water, which immediately increases the pH of the<br>solution and helps in creating an alkaline environment.      |
| Typical properties              | <ul> <li>→ Appearance: white coloured powder.</li> <li>→ Melting point:128.5°C</li> <li>→ Solubility: Soluble in water</li> <li>→ pH: 10-11</li> </ul>                 |
| Storage and                     | Stored in air tight vessel and keep it in cool & dry                                                                                                                   |

| HAPTER 1           | INTRODUCTIO                                                                                            |  |  |  |
|--------------------|--------------------------------------------------------------------------------------------------------|--|--|--|
| stability          | place.                                                                                                 |  |  |  |
| Sodium Bicarbona   | .te:                                                                                                   |  |  |  |
|                    |                                                                                                        |  |  |  |
| Table              | 12: Excipient profile of Sodium bicarbonate                                                            |  |  |  |
| Name               | Sodium Bicarbonate                                                                                     |  |  |  |
| Chemical name      | Sodium Bicarbonate                                                                                     |  |  |  |
| Synonyms           | Baking soda                                                                                            |  |  |  |
| Molecular weight   | NaHCO <sub>3</sub>                                                                                     |  |  |  |
| and formula        |                                                                                                        |  |  |  |
|                    | 84.007                                                                                                 |  |  |  |
| Category           | Alkalizer                                                                                              |  |  |  |
| Pharmaceutical     | $\rightarrow$ Added to certain pharmaceutical formulation to                                           |  |  |  |
| application        | increase the pH of the surrounding environment.<br>$\rightarrow$ It helps in enhancing the dissolution |  |  |  |
|                    | $\rightarrow$ It helps in enhancing the dissolution.                                                   |  |  |  |
| Description        | Sodium bicarbonate, the monosodium salt of carbonic                                                    |  |  |  |
|                    | replacement properties. The sodium and bicarbonate                                                     |  |  |  |
|                    | ions separate from sodium bicarbonate. By raising                                                      |  |  |  |
|                    | plasma bicarbonate and buffering excess hydrogen ion                                                   |  |  |  |
|                    | concentration, ion production elevates blood pri.                                                      |  |  |  |
| Typical properties | → Appearance: white in colour, crystalline powder<br>→ Melting point: $50^{\circ}$ C                   |  |  |  |
|                    | $\rightarrow $ Solubility: Soluble in water.                                                           |  |  |  |
|                    | → pH: 8-9                                                                                              |  |  |  |
| Storage and        | Stored in air tight vessel and keep it in cool & dry                                                   |  |  |  |
| stability          | place.                                                                                                 |  |  |  |

# INTRODUCTION

#### > Lubricant:

- They assists in reducing the friction amongst the granules and the tablet press die wall when added to the tablet formulation. Hence, they are also called as anti- frictional agents.
- > They are required during tablet compression and ejection.
- > Magnesium stearate was used as a lubricating agent for this formulation.

#### → <u>Magnesium stearate</u>:

| Name                     | Magnesium Stearate                                               |  |  |  |  |
|--------------------------|------------------------------------------------------------------|--|--|--|--|
| Non- proprietary<br>name | Magnesium Stearate                                               |  |  |  |  |
| Synonym                  | Dibasic magnesium salt                                           |  |  |  |  |
| Chemical name            | Octadecanoic acid magnesium salt                                 |  |  |  |  |
| Molecular weight         | C <sub>38</sub> H <sub>72</sub> MgO <sub>4</sub>                 |  |  |  |  |
| and formula              | 592.26                                                           |  |  |  |  |
| Category                 | Lubricating agent                                                |  |  |  |  |
| Pharmaceutical           | $\rightarrow$ It is used in formulation on of tablet and capsule |  |  |  |  |
| application              | as lubricant.                                                    |  |  |  |  |
|                          | $\rightarrow$ Also used in creams.                               |  |  |  |  |
| Description              | Magnesium Stearate consists of Mg and stearic acid,              |  |  |  |  |
|                          | and different quantities of Mg. Stearate and Mg.                 |  |  |  |  |
|                          | Palmitate. Magnesium stearate is finest buff whitish             |  |  |  |  |
|                          | powder having mild smell of stearic acid. It has low             |  |  |  |  |
|                          | bulk density. The powder is slippery to the touch and            |  |  |  |  |
|                          | have adhesive property to the skin.                              |  |  |  |  |
| Typical properties       | → Appearance: Buff white powdery material                        |  |  |  |  |
|                          | $\rightarrow$ Melting point: 117 to 155 °C                       |  |  |  |  |
|                          | $\rightarrow$ True density: 1.092 g/cm3                          |  |  |  |  |

#### Table 13: Excipient profile of Magnesium stearate

# INTRODUCTION

|             | $\rightarrow$ Solubility: Not soluble                      |  |  |
|-------------|------------------------------------------------------------|--|--|
|             | $\rightarrow$ Flowability: poorly flowable and cohesive in |  |  |
|             | nature                                                     |  |  |
|             |                                                            |  |  |
| Storage and | Pack it in an air tight vessel and keep it in a cool and   |  |  |
| stability   | dry place.                                                 |  |  |
|             |                                                            |  |  |

#### > Glidant:

- These ingredients which are incorporated in the tablet formulations to facilitate granule flow.
- These compounds have the ability to increase granule flow properties from the hopper to the die cavity.
- In this project, we've used aerosol as a glidant.

#### $\rightarrow$ <u>Aerosil</u>:

| Name             | Aerosil                                                        |
|------------------|----------------------------------------------------------------|
| Non- proprietary | Colloidal Silicon Dioxide                                      |
| name             |                                                                |
| Synonyms         | Colloidalsilica, silicondioxide                                |
| Chemical name    | Silica                                                         |
| Molecular weight | SiO <sub>2</sub>                                               |
| and formula      | 61.0                                                           |
| Category         | Glidant, suspending agent, Disintegrating agent                |
| Pharmaceutical   | $\rightarrow$ Used as glidant in tablet manufacturing process. |
| application      | $\rightarrow$ Used as a stabilizer in emulsions                |
|                  | $\rightarrow$ Used as a suspending agent in semisolid          |
|                  | formulation.                                                   |
|                  | $\rightarrow$ In aerosols as a suspending agent to promote     |
|                  | particulate suspension                                         |
|                  |                                                                |

#### Table 14: Excipient profile of Aerosil

| CHAPTER 1                 | HAPTER 1 INTRODUCTION                                                |  |
|---------------------------|----------------------------------------------------------------------|--|
|                           |                                                                      |  |
| Description               | Aerosil is a micron sized fumed silica having particle               |  |
|                           | size of about 15 nm. It is least dense, free, bluish white           |  |
|                           | coloured, odourless, tasteless powder having low bulk                |  |
|                           | density. It is prepared by the flame hydrolysis of SiCl <sub>4</sub> |  |
|                           | at 1800 °C temperature using a flame. Quick cooling                  |  |
|                           | of the melted mass during manufacturing leads to                     |  |
|                           | amorphous form of powder.                                            |  |
|                           |                                                                      |  |
| <b>Typical properties</b> | $\rightarrow$ Appearance: bluish white coloured powder               |  |
|                           | → Melting point: 1600 °C                                             |  |
|                           | → Solubility: 150 mg in 1L water at 25 °C                            |  |
|                           |                                                                      |  |
| Storage and               | In an air tight vessel                                               |  |
| stability                 |                                                                      |  |

### > Solublizer:

- The solubilizing agents include surfactants, which are incorporated into the tablet formulations to improve the dissolution for poorly soluble substances.
- Sodium lauryl sulphate was used for the same purpose.

#### $\rightarrow$ Sodium laureth sulphate:

| Table 15: | Excipient | profile | of Sodium | laureth sulphate |
|-----------|-----------|---------|-----------|------------------|
|-----------|-----------|---------|-----------|------------------|

| Name             | Sodium Laureth sulphate                                |  |  |
|------------------|--------------------------------------------------------|--|--|
| Non- proprietary | Sodium lauryl sulphate                                 |  |  |
| name             |                                                        |  |  |
| Chemical name    | Sodium 2-(dodecyloxy)ethyl sulphate                    |  |  |
| Molecular weight | $C_{14}H_{29}NaO_5S$                                   |  |  |
| and formula      | 332.43                                                 |  |  |
| Category         | Surfactant                                             |  |  |
| Pharmaceutical   | $\rightarrow$ SLS is utilized as an emulsifying agent, |  |  |
| application      | penetration enhancer and solubilizing agent for        |  |  |
| CHAPTER 1             | INTRODUCTIO                                                                                                                                                                                                                                                                       | ON |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Description           | <ul> <li>pharmaceutical formulations.</li> <li>→ It can also used as a lubricant for some tablet and capsule formulations.</li> </ul>                                                                                                                                             |    |
| Description           | <ul> <li>→ SLS is a natural anionic surfactant acquired from coconut and/or palm kernel oil.</li> <li>→ SLS decreases the surface tension of aqueous solutions and is used in cosmetics, medicines, and toothpastes as a fat emulsifier, wetting agent, and detergent.</li> </ul> |    |
| Typical properties    | <ul> <li>→ Appearance: White coloured solid compound.</li> <li>→ Melting point: 206<sup>0</sup> C</li> <li>→ Solubility: Soluble in water</li> </ul>                                                                                                                              |    |
| Storage and stability | In an air tight vessel                                                                                                                                                                                                                                                            |    |

## > Solvent:

(

- Iso propyl alcohol was used as a solvent to dissolve the binder PVP K30 and prepare a binder solution for the granulation process.
- As it is an inorganic solvent, the granules formed were also light and soft that proved to be beneficial for further processing parameters.

## $\rightarrow$ Iso propyl alcohol

## Table 16: Excipient profile of Iso propyl alcohol

| Name             | Iso propyl alcohol                                    |
|------------------|-------------------------------------------------------|
| Chemical name    | Iso propyl alcohol                                    |
| Molecular weight | C <sub>3</sub> H <sub>8</sub> O                       |
| and formula      |                                                       |
|                  | 60.10                                                 |
| Synonyms         | Isopropanol, isopropyl alcohol, 2-Propanol, Propan-2- |

INSTITUTE OF PHARMACY, NIRMA UNIVERSITY,

# CHAPTER 1

## INTRODUCTION

|                    | 2-ol                                                            |  |
|--------------------|-----------------------------------------------------------------|--|
| Category           | Solvent                                                         |  |
| Pharmaceutical     | $\rightarrow$ It is majorly used as a solvent in pharmaceutical |  |
| application        | industries.                                                     |  |
|                    | $\rightarrow$ Also used as a disinfectant liquid.               |  |
| Description        | Isopropyl alcohol is a flammable liquid that smells like        |  |
|                    | a combination of ethanol and acetone.                           |  |
| Typical properties | → Appearance: colourless, volatile liquid                       |  |
|                    | → Boiling point: 83 <sup>0</sup> C                              |  |
|                    | → Relative density: 0.79                                        |  |
|                    | → LogP: 0.05                                                    |  |
| Storage and        | To be stored in a tightly closed container in a cool, dry       |  |
| stability          | and well-ventilated area.                                       |  |



## AIM:

- The aim for this research was to "To develop and evaluate an Immediate Release tablets of Telmisartan Hydrocholride to achieve therapy for patients with Hypertension."
- The tablets were developed to match the reference brand. Hence the evaluation of reference brand was carried out first.
- Various process parameters which eventually greatly influence the quality of the dosage form were also identified.
- Dosage forms were evaluated Appearance, Disintegration time and Dissolution etc..

## PLAN:

- Preparation of immediate release tablets by:
  - → Screening of suitable Alkalizing agent
  - $\rightarrow$  Screening of suitable excipients for Immediate release tablet.
- > In vitro studies for the developed formulation.
- Perform stability studies for the optimized formulation as per the ICH guidelines.

## **RATIONALE:**

- Rationale for selection of Immediate release as dosage form:
- Easy and fast delivery of the drug by self-medication.
- Tablet dosage forms are unit dosage forms and show high dose precision and very high patient compliance.
- Rationale for selection of Telmisartan Hydrochloride:
- The drug is already approved by the FDA was an anti-hypertensive agent.

- It is now a 1<sup>st</sup> line drugs in treatment of hypertension.
- Peak activity occurs 3 hours after an oral dosage, and action lasts > 24 hours.
- > <u>Rationale for the method for preparation of granules:</u>
- Marketed formulations use the fluidized bed process in the preparation of tablets. However, in the present study, focus was to develop a formula and process to prepare granules using the wet granulation method.
- Less expensive method, more feasible for small scale pharmaceutical industries.

# **CHAPTER 3**

# LITERATURE SURVEY



# **3.1 Literature review of Disease and drug:**

| Sr. | Name of book/article                   | Description                               |
|-----|----------------------------------------|-------------------------------------------|
| no. |                                        |                                           |
| 1   | Essentials of medical                  |                                           |
|     | pharmacology. 7 <sup>th</sup> edition. |                                           |
|     |                                        |                                           |
|     | Tripathi KD                            | Information about the mechanism of        |
| 2   | Pharmacotherapy: A                     | action of the class of drug and the       |
|     | pathophysiologic approach.             | pharmacokinetic parameters of the         |
|     |                                        | drug.                                     |
|     | Dipiro, J. T., Talbert, G. C, Yee,     |                                           |
|     | G. R, Matzke, B. G, & Wells,           |                                           |
|     | L. M. P.                               |                                           |
|     |                                        |                                           |
| 3   | Hypertension and Vascular              | This article describes the basic types of |
|     | Disease.                               | hypertensions and its epidemiology and    |
|     | Austin E. Doyle                        | the types in brief.                       |
|     |                                        |                                           |
| 4   | Systemic Hypertension                  | This article mentions the different       |
|     |                                        | definitions of hypertension, the          |
|     | Elliott, W. J                          | parameters that can be measured, the      |
|     |                                        | disease markers and risk factors.         |
| 5   | Telmisartan and cardioprotection       |                                           |
|     |                                        |                                           |
|     | Philippe R Akhrass Samy,               | The role of telmisartan in reliving the   |
|     | McFarlane                              | increase in blood pressure and its use in |
| 6   | Telmisartan in High-Risk               | high-risk patients.                       |
|     | Cardiovascular Patients                |                                           |
|     |                                        |                                           |
|     | Michael A. Weber, MD                   |                                           |
| 7   | Hypertension and Vascular              |                                           |
|     | Disease                                | Information about the vascular increase   |
|     |                                        |                                           |

|   |                              | in blood pressure.                       |
|---|------------------------------|------------------------------------------|
|   | Austin E. Doyle              |                                          |
| 8 | Pathogenesis of Hypertension |                                          |
|   |                              | Pathogenesis, also various factors which |
|   | Suzanne Oparil, MD; M. Amin  | might lead to the progress of            |
|   | Zaman, MD; and David A.      | hypertension have been described.        |
|   | Calhoun, MD                  |                                          |

## **3.2 Literature review on Dosage form:**

| Sr. | Name of article and author       | Description                             |
|-----|----------------------------------|-----------------------------------------|
| no  |                                  |                                         |
| •   |                                  |                                         |
| 1   | Immediate Release Tablets of     | The formulation, evaluation of IR       |
|     | Telmisartan Using                | tablets of telmisartan also 6 months    |
|     | Superdisintegrant Formulation,   | stability studies have been carried out |
|     | Evaluation and Stability Studies | and the results are mentioned.          |
|     |                                  |                                         |
|     | Vasanthakumar Sekar, Vijaya      |                                         |
|     | Raghavan Chellan                 |                                         |
| 2   | Quality-by-design approach for   | A quality-by-design approach was        |
| -   | development of telmisartan       | adopted to develop telmisartan          |
|     | potassium tablats                | potassium (TP) toblets, which were      |
|     | potassium tablets                | potassium (TP) tablets, which were      |
|     |                                  | bioequivalent with the commercially     |
|     | Ga-hui Oh, Jin-Hyun Park, Hye-   | available Micardis                      |
|     | Won Shin, Joo-Eun Kim &          |                                         |
|     | Young-Joon Park                  |                                         |
| 3   | Formulation and evaluation of    |                                         |
|     | telmisartan tablets employing    |                                         |
|     | solvent deposited systems.       |                                         |
|     |                                  |                                         |
|     | K. Bhargavi, P. Hima Bindu and   |                                         |
|     | Dr. K. Ravi Shankar              | The formulation and methodology for     |
|     |                                  |                                         |

| 4 | Formulation, optimization and<br>evaluation of immediate release<br>tablet of <i>telmisartan</i> . | the preparation of telmisartan tablets<br>using the fluidized bed process has<br>been described. |
|---|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
|   | B.N Parikn, D.N. Patel, C.N.<br>Patel J.B. Dave                                                    |                                                                                                  |
|   | rater, J.D. Dave                                                                                   |                                                                                                  |

## **3.3 Literature review on Superdisintegrants**

| Sr. | Name of article and author                                                                                                                                            | Description                                                                                                                                                                |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| no  |                                                                                                                                                                       |                                                                                                                                                                            |
| •   |                                                                                                                                                                       |                                                                                                                                                                            |
| 1   | Superdisintegrants – A review<br>Anup Megotia*, Meenu Nagpal,<br>Upendra K Jain, Varun                                                                                | Basic information provided about the<br>mechanism of action of disintegrants,<br>the various factors affecting and a few<br>examples and details of<br>superdisintegrants. |
| 2   | Superdisintegrants: A recent<br>invsestigation and current<br>approach.<br>Deshmkh Himanshu,<br>Chandrashekhara S.*, Nagesh C.,<br>Murade Amol, Usgaunkar<br>Shridhar | Comparative study for various<br>disintegrants, to understand which<br>disintegrant gives the better result.                                                               |
| 3   | An Overview of Factors Affecting<br>Superdisintegrants<br>Functionalities.<br>Jemal Dilebo, Tesfaye Gabriel                                                           | Different superdisintegrants are given<br>and the various factors which may<br>affect the disintegration process of the<br>agents are listed and explained.                |

| Sr. | Name of article and author        | Description                              |
|-----|-----------------------------------|------------------------------------------|
| no  |                                   |                                          |
| •   |                                   |                                          |
| 1   | Design of supersaturable          |                                          |
|     | formulation of telmisartan        |                                          |
|     | with pH modifier: in vitro study  |                                          |
|     | on dissolution and precipitation  | Telmisartan granules are prepared using  |
|     |                                   | different concentrations of meglumine    |
|     | Shinji Yamashita,                 | and the effect is evaluated by in vitro  |
|     | Arima Fukunishi,                  | dissolution.                             |
|     | Haruki Higashino,                 |                                          |
|     | Makoto Kataoka, Koichi Wada.      |                                          |
| 2   | Tablet Formulation of a Polymeric |                                          |
|     | Solid Dispersion Containing       |                                          |
|     | Amorphous Alkalinized             | Solid dispersion of the drug is prepared |
|     | Telmisartan                       | for enhancement of its solubility and    |
|     |                                   | sodium hydroxide is added as an          |
|     | Jun Soo Chae, Bo Ram Chae,        | alkalizing agent to increase the pH of   |
|     | Dong Jun Shin, Yoon Tae Goo,      | the solution to above 9.                 |
|     | Eun Seok Lee, Ho Yub Yoon,        |                                          |
|     | Chang Hyun Kim, and Young         |                                          |
|     | Wook Choi                         |                                          |
| 3   | Influence of alkalizers on        |                                          |
|     | dissolution properties of         | Five different alkalizers are studied in |
|     | telmisartan in solid dispersions  | the present research to check the effect |
|     | prepared by cogrinding.           | of alkalizers on the dissolution         |
|     |                                   | properties of the drug.                  |
|     | Lin Zhong, Xyngyi Zhu, Bo Yu,     |                                          |
|     | weike Su                          |                                          |

## **3.4 Literature review on Alkalizer**

## **3.5 Literature review on Binder**

| Sr. | Name of article and author       | Description                           |
|-----|----------------------------------|---------------------------------------|
| no. |                                  |                                       |
| 1   | Effect of various binding agents |                                       |
|     | on tablet hardness and release   |                                       |
|     | rate profiles of diclofenac      |                                       |
|     | sodium tablets.                  |                                       |
|     |                                  |                                       |
|     | P. Nagadivya, R. Ramakrishna,    |                                       |
|     | G. Shridhar, R. Bhanushashank    |                                       |
| 2   | Effect of binders on 500mg       | Different binding agents we evaluated |
|     | metformin hydrochloride tablets  | for the formation of granules and the |
|     | produced by wet granulation.     | granules were then evaluated for      |
|     |                                  | various parameters such as flow, bluk |
|     | Block, L.C., Schmeling, L.O.,    | density, compressibility, etc.        |
|     | Couto, A.G., Silva, M.A.S.,      |                                       |
|     | Tagliari, M.P., Bresolin, T.M.B, |                                       |
|     | Mourão, S.C.                     |                                       |

# **CHAPTER 4**

# **METHODOLOGY**



## **4.1 List of Materials**

The active substance along with the various excipients used in the tablet formulation have been mentioned in table 17:

| Ingredients                | Category             | Company          |
|----------------------------|----------------------|------------------|
| Telmisartan                | API                  | Verdant          |
| PVP K-30                   | Binder               | Boainky pharma   |
| Sodium Starch Glycolate    | Disintegrating agent | Rosswell indust  |
| Crosscarmellose Sodium     | Disintegrating agent | Prachin          |
| Crosspovidone              | Disintegrating agent | Jhnanhang        |
| Sodium Hydroxide           | Alkaliser            | Lobachem         |
| Meglumine                  | Alkaliser            | Suzhoutianma     |
| Microcrystalline Cellulose | Diluent              | NB enterpreneurs |
| Mannitol                   | Diluent              | supreme          |
| Aerosil                    | Lubricant            | Cabot            |
| Mg. stearate               | Lubricant            | Sunshine         |
| Iso-propyl Alcohol         | Solvent              |                  |
| Purified Water             | Solvent              |                  |

## Table 17: List of materials

## **4.2 List of Equipment**

The equipments used along with the manufacturer have been mentioned in table 18: *Table 18: List of equipment used* 

| Name of Equipment        | Make             |
|--------------------------|------------------|
| Weighing Balance         | Shimadzu, Japan  |
| Vibratory sifter         | Hugopharm, India |
| Octagonal mixer          | Hugopharm, India |
| Rapid mixer granulator   | Hugopharm, India |
| Unimill                  | Hugopharm, India |
| Fluidized bed dryer      | Hugopharm, India |
| LOD                      | Shimadzu, Japan  |
| Compression Machine      | Fluidpack, India |
| Disintegrating Apparatus | Veego, India     |

| Hardness tester       | Electrolab, India |
|-----------------------|-------------------|
| Vernier Calliper      | Mitutoyo, India   |
| Friablity tester      | Veego, India      |
| Dissolution Apparatus | Electrolab, India |
| UV spectrophotometer  | Shimadzu, Japan   |

## **4.3 Pre- formulation studies**

## 4.3.1 Calibration curve of telmisartan in 7.5 pH buffer:

## Preparation of 7.5 pH phosphate buffer:

The buffer solution was prepared according to IP. .Two solutions are prepared: **Solution I:** 119.31 g of disodium hydrogen phosphate is dissolved in sufficient water to produce 1000ml. And **solution II:** 45.36 g of potassium dihydrogen phosphate is dissolved in sufficient water to product 1000ml. Mix 85ml of <u>solution I to 15ml of</u> <u>solution II and adjust the pH if necessary</u>.

## **Preparation of stock solution:**

100mg of drug is taken in a 100ml volumetric flask and 15ml methanol is added to it. The flask is then kept on a sonicator until the drug completely dissolves. Then the volume of the solution is made up to the mark by addition of the buffer solution. 2.5 ml of the above solution is taken in a 25ml volumetric flask and buffer is added up to the mark. From this solution, solutions of varying strengths are prepared and absorbance is checked using a UV spectrophotometer. An absorbance v/s concentration graph is prepared.

| Concentration | Absorbance | Wavelength |
|---------------|------------|------------|
| 10 μg/ml      | 0.145      | 253 nm     |
| 20 μg/ml      | 0.260      | 252.8 nm   |
| 30 µg/ml      | 0.381      | 252.8 nm   |
| 40 µg/ml      | 0.505      | 253nm      |
| 50 μg/ml      | 0.631      | 252.8 nm   |

## Table 19: Standard curve of Telmisartan in 7.5 pH buffer



Figure 3: Calibration curve of Telmisartan HCl in 7.5 pH

## 4.3.2 Solubility studies

- Because to its weak dissolving properties, it has inconsistent absorption and bioavailability. (Patel et al., 2016)
- Drug solubility in various solvents and aqueous solubility in various pH buffers.
- > The solubility criteria for API as per USP and BP is given in table

| Type of solubility    | Part of solvent required per part of solute |
|-----------------------|---------------------------------------------|
| Very soluble          | Less than 1                                 |
| Freely soluble        | From 1 to 10                                |
| Soluble               | From 10 to 30                               |
| Sparingly soluble     | From 30 to 100                              |
| Slightly soluble      | From 100 to 1000                            |
| Very slightly soluble | From 1000 to 10,000                         |
| Practically insoluble | <b>10,000 and over</b>                      |

#### Table 20: Solubility criteria as per USP and BP

| Table 21: Solubility of drug in different solvents |                       |  |
|----------------------------------------------------|-----------------------|--|
| Solvent                                            | Solubility            |  |
| Methanol                                           | Slightly soluble      |  |
| Ethanol                                            | Practically insoluble |  |
| 2 – propanol                                       | Practically insoluble |  |
| Acetonitrile                                       | Practically insoluble |  |

## Table 22: Solubility of drug in aqueous media

| Aqueous buffer solution | Inference             |
|-------------------------|-----------------------|
| water                   | Practically insoluble |
| 1.2 pH buffer           | Sparingly soluble     |
| 2.0 pH buffer           | Sparingly soluble     |
| 3.0 pH buffer           | Sparingly soluble     |
| 4.0 pH buffer           | Slightly soluble      |
| 4.5 pH buffer           | Slightly soluble      |
| 5.0 pH buffer           | Slightly soluble      |
| 6.0 pH buffer           | Very slightly soluble |
| 6.8 pH buffer           | Practically insoluble |
| 7.0 pH buffer           | Practically insoluble |
| 9.0 pH buffer           | Freely soluble        |
| 11.0 pH buffer          | Freely soluble        |

## **4.3.3 Pre-** Compression evaluation parameters

Before compression of tablets, the tablet blend is subjected to the following test to determine its flow.

## 4.3.3.1 Angle of repose

It is the greatest angle formed by a pile of powder's surface and the horizontal plane.

It's commonly determined using a fixed funnel approach and a measurement of powder/granule flowability.

 $\Phi = \tan^{-1}(\mathbf{h}/\mathbf{r})$ 

Where,

h = height of heap of pile

r = radius of base

The powder flow can be determined by:

| Angle of repose | Flow Property  |
|-----------------|----------------|
| 25-30           | Excellent      |
| 31-35           | Good           |
| 36-40           | Fair           |
| 41-45           | Passable       |
| 46-55           | Poor           |
| 56-65           | Very poor      |
| >66             | Very very poor |

Table 23: Standard table to determine flow property from angle of repose

## 4.3.3.2 Bulk density

- The notion of powder packed in space without tapping is conveyed by bulk density. Every powder has various particle properties; a few particles pack loosely in space, resulting in a powder with a soft, light density.
- Bulk density is helpful for determining the capacity of instruments such as granulators and blenders used in subsequent processes.
- The height is measured after a weighed quantity of powder is put into a 100 ml measuring cylinder.

It can be calculated by:

Bulk density= M/Vb

Where,

M= weight of sample (gm)

Vb= Volume of powder (ml)

## 4.3.3.3 Tapped density

- It's a blend-to-tapped-volume ratio in which a certain amount of blend is weighed and poured into a cylinder, and the height is measured. That cylinder was physically tapped and put on a bulk density instrument.
- Blend is tapped for 500 times for the first time, and volume was recorded; following that, the apparatus tapped for 750 and 1500 times, and the final tapped volume was tallied and the Tapped density was calculated.

Tapped density= M/Vt

Where,

M= weight of sample (gm)

Vt= Volume of powder (ml)

## 4.3.3.4 Carr's index

Compressibility can be described as the capacity of the powder to decrease in volume under pressure. It is a measure obtained from density determinations.

% Compressibility = [(Tapped density- Bulk density)/ Tapped density] \* 100

## 4.3.3.5 Hausner's ratio

It is also parameter measured to understand the flow of the powder or granules. It is also determined after the calculation of bulk density and tapped density.

Hausner's ratio= <u>Tapped density</u> Bulk density

| Flow property  | Carr's Index | Hausner's ratio |
|----------------|--------------|-----------------|
| Excellent      | <10          | 1.00-1.11       |
| Good           | 11-15        | 1.12-1.18       |
| Fair           | 16-20        | 1.19-1.25       |
| Passable       | 21-25        | 1.26-1.34       |
| Poor           | 26-31        | 1.35-1.45       |
| Very poor      | 32-37        | 1.46-1.59       |
| Very very poor | >38          | >1.60           |

# Table 24: Standard table to determine flow property from Carr's Index andHausner's ratio

## 4.4 Formulation of Immediate release tablets

## 4.4.1 Method of preparation

- Wet granulation method was employed for the preparation of granules. In this method, addition of granulating fluid is used in this approach to prepare the mix.
- PH manipulation in dosage forms has been highlighted as an encouraging technique to change the release rate of numerous pH-dependent and ionizable drugs. The incorporation of water soluble or insoluble pH modifying chemicals into micro tablets, for example, was discovered that retainss high pH values within the tablets, resulting in better release.(B.N.a et al., 2016)
- By lowering the microenvironmental pH, the incorporation of weak acids as pH modifiers in hydrophilic matrix tablets also improves the release rate of weakly basic medicines (pHM). The pHM, which is defined as the pH of the saturated solution in the immediate proximity of the drug particles, has been utilised to control the predictable dissolution of ionizable pharmaceuticals from pharmaceutical formulations.(B.N.a et al., 2016)
- The low solubilization capacity of the SD technique and pHM modulation, especially with a high drug-loaded system, is one downside. Moreover, little effort has also been made to fully comprehend the modifying mechanisms of pH modifiers in solid dispersion systems, and how these putative changes in drug crystallinity and pHM control are linked to improved dissolution of poorly water-soluble medicines. (B.N.a et al., 2016)

- NaOH is a strong base in this formulation, which can aid in the dissolution of the medication because it is soluble in strong bases. Meglumine is a basic ingredient that aids in the dissolution of the medicine, allowing the formulation to attain the appropriate solubility.(B.N.a et al., 2016)
- The liberation of the drug substance from the drug product/dosage form determines the bioavailability/rate of dissolution of a poorly soluble medication from a solid oral dosage form i.e., Disintegration of the solid oral dosage form, which increases the surface area of the drug particles and hence increases wettability.
- This emphasises the necessity of selecting the right disintegrant/superdisintegrant and ensuring its consistency of performance in order to maximise the rate of dissolution and thereby bioavailability. (Sekar & Chellan, 2008)

| Sr. | Process     | s step     | Process                                      |
|-----|-------------|------------|----------------------------------------------|
| 1   | C:f4:       | na         | The drug is sifted through sigue 20#         |
| 1   | 5111        | ng         | The drug is sined through sieve 20#          |
|     |             |            | MCC PH101 and Crosspovidone are co-sifted    |
|     |             |            | through sieve 40#                            |
| 2   | Dry m       | ixing      | Carried out in Rapid mixer granulator for 20 |
|     |             |            | minutes.                                     |
|     |             |            | Impeller speed: 70 RPM                       |
|     |             |            | Chopper: off                                 |
|     |             |            | LOD of the dry mix is checked after mixing.  |
| 3   | Granulation | Binder     | Binder addition time: 8 minutes              |
|     |             | solution 1 | Impeller: 70 rpm                             |
|     |             |            | Chopper: off                                 |
|     |             |            | After the complete addition of solution-     |
|     |             |            | Kneading time: 1 minute                      |
|     |             |            | Impeller: 140 rpm                            |
|     |             |            | Chopper: 1200 rpm                            |
|     |             | Binder     | Binder addition time: 2:30 minute            |
|     |             |            |                                              |

#### Table 25: Process steps for preparation of tablets

|   |         | solution 2 | Impeller: 70                                            |
|---|---------|------------|---------------------------------------------------------|
|   |         |            | Chopper: off                                            |
|   |         |            | After the complete addition of solution-                |
|   |         |            | Kneading time: 30 seconds                               |
|   |         |            | Impeller: 150 rpm                                       |
|   |         |            | Chopper: 1200 rpm                                       |
| 4 | Wet m   | illing     | Milling is done through screen 4.00 mm at 2000          |
|   |         |            | rpm for 10 mins                                         |
| 5 | Dryi    | ng         | Air drying is carried out of the screened               |
|   |         |            | granules for 20 minutes.                                |
|   |         |            | Then, semi-drying is done at $60^{\circ}$ C for 7       |
|   |         |            | minutes.                                                |
| 6 | Milli   | ng         | The semi-dried granules are milled through              |
|   |         |            | screen 2.0mm at 2000 rpm for 10 minutes.                |
| 7 | Dryi    | ng         | Drying of the milled granules is done at $60^{\circ}$ C |
|   |         |            | for 40 minutes till the desired LOD of the              |
|   |         |            | granules is achieved.                                   |
| 8 | Blendin | g and      | Remaining crosspovidone is shifted through              |
|   | Lubric  | ation      | sieve 40#.                                              |
|   |         |            | Blending is done using an octagonal blender for         |
|   |         |            | 20 minutes at 16 rpm.                                   |
|   |         |            | Magnesium stearate is sifted through sieve 60#.         |
|   |         |            | Lubrication is again carried out in an octagonal        |
|   |         |            | blender for 5 minutes at 16 rpm.                        |
| 9 | Compre  | ession     | Tablets are compressed using a rotary                   |
|   |         |            | compression machine using 10.5mm FFBE                   |
|   |         |            | punch and the prepared tablets are then                 |
|   |         |            | submitted for evaluation.                               |

## **4.4.2 Post compression evaluation parameters:**

## 4.4.2.1 Weight variation:

20 tablets are weighed individually, selected at random form each batch and then the

average weight is calculated. Individual tablet weight is compared with average weight. Criteria is met if not more than 2 tablets are outside percentage limit.

Weight variation tolerances for uncoated, film coated and other than film coated tablets:

## As per Indian Pharmacopoeia:

| Table 26         | : Weight | variation      | criteria  | as | per IP |  |
|------------------|----------|----------------|-----------|----|--------|--|
| <i>L uoi 2 0</i> |          | <i>rununun</i> | ci nci na | ub |        |  |

| Avg wt of tablet (mg) | Maximum % variation allowed |
|-----------------------|-----------------------------|
| 80                    | 10                          |
| 80-250                | 7.5                         |
| >250                  | 5                           |

## 4.4.2.2 Hardness:

- It can be defined as the force necessary to break the tablet in a compression test. It is also known as the tablet crushing strength.
- ➤ It can be measured in the units: Kilogram(kg), Newton(N), Pound(lb)

## Method-

- > The standard method used for tablet hardness testing is compression testing.
- > The tablet is placed between two jaws that crush the tablet.
- > The machine measures the force applied to the tablet and detects when it fractures.
- Various devices used to test hardness are: Monsanto tester, Pfizer ester, Strong– Cobb tester, Erweka tester, Schleuniger tester.

## 4.4.2.3 Friability:

- > It is another measure for the tablet's strength.
- > Roche friablilator as used for measurement.

## Method-

- Number of tablets equivalent to the weight 6.5 gm are taken and placed it o the drum of the assembly.
- > The drum is rotated at the speed of  $25\pm1$  rpm.
- > Upto 100 rotations are done and then the tablets are removed and weighed again.
- > Percentage friability is calculated from the formula:

## %Friability = <u>Initial weight of tablets- Final weight of tablets</u> \* 100 Initial weight of tablets

> Loss in weight of tablets should not be more than 1%.

#### 4.4.2.4 Thickness:

- > It can be measured by the use of a vernier caliper.
- > The tablet thickness should be limited within  $\pm 5\%$  variation of a standard value.

## 4.4.2.5 Disintegration:

- This test provides the information, whether the tablets disintegrate within a prescribed time when place in a liquid medium at experimental conditions.
- Basket rack assembly is used for the test.
- Two beakers of 1000ml capacity contain a basket each, with a 10# (2mm) screen at the bottom of the basket. 6 open ended tubes are present in the basket.
- The assembly has an attached standard motor drive device to move the basket at the frequency of 28-32 cycles/min through the distance of 53-57mm.
- Volume of fluid contained in the beaker is such that at the highest point of upward stoke wire mesh remains at least 25mm from the bottom of the vessel on downward stroke.
- Thermostatic arrangements are also present in the assembly for heating liquid and maintaining temperature at 35±2°C.
- For uncoated tablets, the medium taken is water and the maximum time for the tablet to get completely disintegrated is 15 minutes.

## 4.4.2.6 Dissolution:

- > The dissolution test is performed according to B.P.
- ➢ 6 tablets from each batch were submitted for dissolution testing.
- > A U.S.P type II, paddle apparatus was used for the testing.
- The test was carried out in 900ml, 7.5 pH phosphate buffer. The speed was maintained at 75 rpm.
- Sampling was done at time points 5,10,15,20, 30 and 45 minutes.

The samples were then evaluated by UV spectroscopy and the percentage drug release at each time point was calculated.



## **5.1 Preliminary Trials**

#### 5.1.1 Evaluation of reference tablet

The reference brand tablets were evaluated for various criteria, and the results are as such:

| Parameter                    | Value                                     |  |
|------------------------------|-------------------------------------------|--|
| Type of tablet               | Immediate release tablet without coating. |  |
| Breakline                    | Yes                                       |  |
| Average weight               | 335mg                                     |  |
| Hardness                     | 130-150N                                  |  |
| Thickness                    | 3.63 mm                                   |  |
| Diameter                     | 10.18 mm                                  |  |
| <b>Disintigration time</b>   | 6.45 mins                                 |  |
| % Drug release in 45 minutes | 101%                                      |  |

Table 27: Evaluation of Reference tablets



Figure 4: Dissolution of Reference tablet

**5.1.2 Binder Solubility** 

- Preliminary trials were taken to determine the solubility of the binder in the highly basic solution which is to be used as the binder solution for the granules formulation.
- Several different trials were taken with varying amounts of sodium hydroxide and meglumine in water along with PVP K30, and it solubility was to be determined.

| Excipient           | Trial | Trial | Trial | Trial | Trial |
|---------------------|-------|-------|-------|-------|-------|
|                     | 1     | 2     | 3     | 4     | 5     |
| Sodium<br>Hydroxide | -     | 3.35g | 3.35g | 4g    | 2g    |
| Meglumine           | 12    | -     | 12g   | 10g   | 14g   |
| PVP K-30            | 5 g   | 5g    | 5g    | 5g    | 5g    |
| Water               | 20ml  | 20ml  | 20ml  | 20ml  | 20ml  |

 Table 28: Trials to check solubility of binder in alkaline environment

- The observations of these trials exhibited that PVP K30 will precipitate when added in the same solution as sodium hydroxide and meglumine.
- So, it was decided that PVP K30 needs to be added separately into the formulation.

## 5.2 Optimization of formulation and process parameters

## **Trial No.: T/001**

#### Formulation:

Optimization of Binder.

In this trial, manual granulation of the drug was carried out.

## Table 29: Formula for trial T/001

| Ingredient | Quantity | ⁰∕₀₩/₩ |
|------------|----------|--------|
|            |          |        |
|            |          |        |

|                           | INTRAGRANULAR |        |  |  |
|---------------------------|---------------|--------|--|--|
| Telmisartan               | 80            | 23.880 |  |  |
| MCC PH 102                | 122.55        | 36.581 |  |  |
| Mannitol                  | 90            | 26.865 |  |  |
| Sodium starch gycolate    | 3             | 0.895  |  |  |
| Crosscarmellose sodium    | 3             | 0.895  |  |  |
| BINDER                    |               |        |  |  |
| NaOH                      | 7             | 2.089  |  |  |
| PVP K30                   | 16.75         | 5.000  |  |  |
| Purified water            | q.s.          |        |  |  |
|                           | EXTRAGRANULAR |        |  |  |
| Sodium starch glycolate   | 3             | 0.895  |  |  |
| Croscarmellose sodium     | 3             | 0.895  |  |  |
| Colloidal silicon dioxide | 3.35          | 1.000  |  |  |
| Mg. stearate              | 3.35          | 1.000  |  |  |

The drug was sifted through mesh #20 and the diluents through mesh #40. The binder solution was prepared in aqueous media. Granulation was carried out and the extra granular excipients were then added.

#### **Results:**

## **Observation:**

Granules were not formed and hence they could not be subjected to check the IPQC parameters, and compression was also not done.

## **Discussion:**

The binder solution is needed to be optimized, and the quantity of alkalizing agent needs to be optimized. Trial to be taken by using meglumine as an alkalizing agent in addition to NaOH.

## **Trial No.: T/002**

#### Formulation:

Optimization of Binder.

For this trial, half quantity of the drug was added to the binder solution containing alkalizing agents, as the drug is soluble in highly alkaline environments.

| Ingredient              | Quantity      | %w/w   |  |  |
|-------------------------|---------------|--------|--|--|
|                         | INTRAGRANULAR |        |  |  |
| Telmisartan             | 40            | 11.940 |  |  |
| MCC PH 102              | 130.59        | 38.982 |  |  |
| Mannitol                | 90            | 26.865 |  |  |
| Sodium starch gycolate  | 3             | 0.895  |  |  |
| Crosscarmellose sodium  | 3             | 0.895  |  |  |
| BINDER                  |               |        |  |  |
| Telmisartan             | 40            | 11.940 |  |  |
| Meglumine               | 8.71          | 2.600  |  |  |
| NaOH                    | 7             | 2.089  |  |  |
| Purified water          | q.s.          |        |  |  |
| EXTRAGRANULAR           |               |        |  |  |
| Sodium starch glycolate | 3             | 0.895  |  |  |
| Croscarmellose sodium   | 3             | 0.895  |  |  |
|                         |               | I]     |  |  |

 Table 30: Formula for trial T/002

| Colloidal silicon dioxide | 3.35 | 1.000 |
|---------------------------|------|-------|
| Mg. stearate              | 3.35 | 1.000 |

The drug was sifted through mesh #20 and the diluents through mesh #40. Manual granulation was to be carried out.

#### **Results:**

## **Observation:**

The drug started precipitating upon standing. Proper binder solution could not be prepared. Hence granulation not carried out.

#### **Discussion:**

It was concluded that the drug needed to be added in the dry mix and wet granulation to be done.

## Trial No.: T/003

## Formulation:

Optimization of Binder.

In this trial the water-soluble diluent, Mannitol was only used. Along with that only one disintegrating agent, i.e., crosscramellose sodium was added, completely extragranularly. The binder used was added to the dry mix and an aqueous solution of the alkalizers was prepared.

## Table 31: Formula for trial T/003

| Ingredient  | Quantity      | %w/w   |
|-------------|---------------|--------|
|             | INTRAGRANULAR |        |
| Telmisartan | 80            | 23.880 |
| Mannitol    | 190           | 56.716 |
| PVP K-30    | 21.50         | 6.417  |
|             |               |        |

|                       | BINDER        |       |
|-----------------------|---------------|-------|
| Meglumine             | 24.00         | 7.164 |
| NaOH                  | 6.70          | 2.000 |
| Purified water        | q.s.          |       |
|                       | EXTRAGRANULAR |       |
| Croscarmellose sodium | 12.00         | 3.582 |
| Mg. stearate          | 3.35          | 0.238 |

The drug was sifted through mesh #20 and the diluents through mesh #40. Manual granulation was carried out.

## **Results:**

## **Observation:**

The granules formed were very hard and incompressible. Hence tablets were not compressed.

#### **Discussion:**

It was observed that by addition of the binder, i.e., PVP K-30, to the dry mix, the granules become incompressible. Hence next trial was to be taken without PVP as a binder.

## Trial No.: T/004

## Formulation:

Optimization of Binder, Disintegrating agent and Alkalizer.

For this trial, PVP K30 was not added in the dry mix as well as in the binder solution. The binder solution was an aqueous solution of the alkalizers and the disintegrating agent used was crosspovidone and it was completely added extragranularly along with the lubricating agent.

| Ingredient     | Quantity      | %w/w   |  |
|----------------|---------------|--------|--|
|                | INTRAGRANULAR |        |  |
| Telmisartan    | 80            | 23.880 |  |
| Mannitol       | 211.50        | 63.134 |  |
|                | BINDER        |        |  |
| Meglumine      | 24.00         | 7.164  |  |
| NaOH           | 6.70          | 2.000  |  |
| Purified water | q.s.          |        |  |
|                | EXTRAGRANULAR |        |  |
| Crosspovidone  | 12.00         | 3.582  |  |
| Mg. stearate   | 0.80          | 0.238  |  |

Again, the drug was sifted through mesh #20 and the diluents through mesh #40 and after preparation of the binder solution, manual granulation was carried out. Then the extra granular excipients were added to the prepared granules and tablets were compressed.

## **Result:**

## **Observation:**

The granules obtained exhibited a waxy appearance. Upon compression, sticking was observed.

## **Evaluation of tablets:**

| Parameter | Value  |  |  |
|-----------|--------|--|--|
| Thickness | 4.01mm |  |  |
|           |        |  |  |

## Table 33: Evaluation of T/004 tablets

| Diameter            | 10.18mm    |
|---------------------|------------|
| Hardness            | 120-130N   |
| Friability          | 0.1%       |
| Disintegrating time | 03:40 mins |

## **Dissolution-**

Dissolution was carried out in 900ml 7.5 pH phosphate buffer using USP paddle II apparatus.

| Table . | 34: i | Dissol | ution | of | T/ | 004 | tablets | š |
|---------|-------|--------|-------|----|----|-----|---------|---|
|---------|-------|--------|-------|----|----|-----|---------|---|

| Time | % Cumulative<br>Drug release |
|------|------------------------------|
| 0    | 0                            |
| 5    | 46.7                         |
| 10   | 55.4                         |
| 15   | 70.7                         |
| 20   | 71.7                         |
| 30   | 75.4                         |
| 45   | 77.4                         |



Figure 5: Dissolution of T/004 tablets

#### **Discussion:**

Optimal disintegrating time was observed for this trial and hence crosspovidone was confirmed to be used as the disintegrating agent. However, the dissolution showed less than 80% drug release, therefore it was decided to check the effect of increase in the quantity of alkalyzing agent on the drug release. Also addition of another alkalizer, i.e., sodium bicarbonate and of a surfactant such as sodium lauryl sulphate to be done toh help with dissolution.

#### Trial No.: T/005

#### Formulation:

In this trial, the quantity of alkalizing agent, meglumine was increased and was added as both, in the intragranular dry mix as well as in the binder solution. Also, to help with dissolution sodium bicarbonate, another alkalizer, and sodium lauryl sulphate, a surfactant were added extra granularly, to help with the drug release process and the drug is soluble in highly alkaline media and the surfactant will help in maintain the sink conditions for the dissolution media. The diluent was also divided intra and extragranularly.

| IN                            |                 |        |
|-------------------------------|-----------------|--------|
|                               | TRAGRANULAR     |        |
|                               |                 |        |
| Telmisartan                   | 80              | 23.880 |
| Mannitol                      | 149.26          | 44.555 |
| Meglumine                     | 6.00            | 1.791  |
|                               | BINDER          |        |
| Meglumine                     | 24.00           | 7.164  |
| NaOH                          | 6.20            | 1.850  |
| Purified water                | q.s.            |        |
| EX                            | TRAGRANULAR     |        |
| Mannitol                      | 50.00           | 14.925 |
| NaHCO <sub>3</sub>            | 3.35            | 1.000  |
| SLS                           | 0.34            | 0.100  |
| Crosspovidone                 | 12.00           | 3.582  |
| Mg. stearate                  | 3.35            | 1.000  |
|                               |                 |        |
|                               | <b>Results:</b> |        |
| servation:                    |                 |        |
| king was again observed durin | g compression.  |        |
| luation of tablats.           |                 |        |

Table 36: Evaluation of T/005 tablets

| Table 30: Evaluation of 1/005 tablets |       |  |
|---------------------------------------|-------|--|
| Parameter                             | Value |  |
|                                       |       |  |
|                                       |       |  |
|                                       |       |  |
|                                       |       |  |
|                                       |       |  |

| Thickness           | 4.04mm     |
|---------------------|------------|
| Diameter            | 10.18mm    |
| Hardness            | 120-130N   |
| Friability          | 0.2%       |
| Disintegrating time | 05:30 mins |

## **Dissolution-**

Dissolution was carried out in 900ml 7.5 pH phosphate buffer using USP paddle II apparatus.

| Time | % Cumulative |
|------|--------------|
|      | Drug release |
| 0    | 0            |
| 5    | 37.8         |
| 10   | 49.0         |
| 15   | 69.6         |
| 20   | 70.3         |
| 30   | 71.9         |
| 45   | 73.9         |

Table 37: Dissolution of T/005 tablets


Figure 6: Dissolution of T/005 tablets

#### **Disscussion:**

Dissolution observed was still less than 80% drug release in 45 minutes. So to improve dissolution, it was planned to check the effect of increase in the concentration of sodium hydroxide.

#### **Trial No.: T/006**

#### Formulation:

The diluent, which is Mannitol was again divided and 30% was added extragranularly while rest was added in the dry mix. Batch similar to the one before was taken, the only difference being the increase in quantity of sodium hydroxide, which might affect the drug release.

| Ingredient  | Quantity      | % w/w  |
|-------------|---------------|--------|
|             | INTRAGRANULAR |        |
| Telmisartan | 80            | 23.880 |
| Mannitol    | 155.26        | 46.346 |
|             |               |        |

Table 38: Formula for trial T/006

| 4.00          | 1.194                                                                                               |
|---------------|-----------------------------------------------------------------------------------------------------|
| BINDER        |                                                                                                     |
| 20.00         | 5.970                                                                                               |
| 6.700         | 2.00                                                                                                |
| q.s.          |                                                                                                     |
| EXTRAGRANULAR |                                                                                                     |
| 50.00         | 14.925                                                                                              |
| 3.35          | 1.000                                                                                               |
| 0.34          | 0.100                                                                                               |
| 12.00         | 3.582                                                                                               |
| 3.35          | 1.000                                                                                               |
|               | 4.00<br>BINDER<br>20.00<br>6.700<br>q.s.<br>EXTRAGRANULAR<br>50.00<br>3.35<br>0.34<br>12.00<br>3.35 |

#### **Observation:**

Sticking defect was not resolved with this batch also.

# **Evaluation of tablets:**

# Table 39: Evaluation of T/006 Tablets

| Parameter           | Value      |
|---------------------|------------|
| Thickness           | 4.00mm     |
| Diameter            | 10.18mm    |
| Hardness            | 120-130N   |
| Friability          | 0.1%       |
| Disintegrating time | 05:30 mins |
|                     |            |

#### **Dissolution-**

Dissolution was carried out in 900ml 7.5 pH phosphate buffer using USP paddle II apparatus.

| Time | % Cumulative |
|------|--------------|
|      | Drug release |
| 0    | 0            |
| 5    | 35.6         |
| 10   | 47.8         |
| 15   | 68.3         |
| 20   | 69.9         |
| 30   | 71.7         |
| 45   | 72.5         |



Figure 7: Dissolution of T/006 tablets

**Discussion:** 

Dissolution observed was still less than 80% drug release in 45 minutes. So to improve dissolution, it was planned to evaluate the outcome of increase in the concentration of Meglumine. And it was concluded that, to resolve sticking, we need to add a binder into the formulation.

## <u>Trial No.: T/007</u>

#### Formulation:

The diluent, which is Mannitol was now completely added intra-granularly. Also, PVP K-30 was to be used as a binder. As the preliminary trials showed that PVP starts precipitating when added to an alkaline environment, it was incorporated into the dry mix. The concentration of Meglumine was also increased intra-granularly as well as in the binder solution. To improve the flow of the blend, glidant was also added, and to resolve sticking, the quantity of lubricant was doubled.

| Ingredient     | Quantity      | %w/w   |  |
|----------------|---------------|--------|--|
|                | INTRAGRANULAR |        |  |
| Telmisartan    | 80.00         | 23.880 |  |
| Mannitol       | 188.00        | 56.119 |  |
| Meglumine      | 6.00          | 1.791  |  |
| PVP K-30       | 10.00         | 2.985  |  |
|                | BINDER        |        |  |
| Meglumine      | 24.00         | 7.164  |  |
| NaOH           | 6.700         | 2.00   |  |
| Purified water | q.s.          |        |  |
|                | EXTRAGRANULAR |        |  |
| Crosspovidone  | 12.00         | 3.582  |  |
|                |               |        |  |
|                |               |        |  |

#### Table 41: Formula for trial T/007

| Collodial Silicon Dioxide                                                           | 1.0          | 50 | 0.477    |
|-------------------------------------------------------------------------------------|--------------|----|----------|
| Mg. stearate                                                                        | 6.7          | 70 | 2.000    |
| Results:                                                                            |              |    |          |
| Observation:                                                                        | Observation: |    |          |
| Sticking was yet observed. The granules formed were hard and difficult to compress. |              |    |          |
| Evaluation of tablets:                                                              |              |    |          |
| Table 42: Evaluation of T/007 tablets                                               |              |    |          |
| Parameter                                                                           |              |    | Value    |
| Thickness                                                                           |              |    | 4.08mm   |
| Diameter                                                                            |              |    | 10.18mm  |
| Hardness                                                                            |              |    | 120-130N |
| Friability                                                                          |              |    | 0.1%     |
| Disintegrating tin                                                                  | ne           |    | >15 mins |

#### **Dissolution-**

Dissolution was carried out in 900ml 7.5 pH phosphate buffer using USP paddle II apparatus.

# Table 43: Dissolution of T/007 tablets

| Time | % Cumulative<br>Drug release |
|------|------------------------------|
| 0    | 0                            |
| 5    | 34.9                         |

| 10 | 43.2 |
|----|------|
| 15 | 58.8 |
| 20 | 61.3 |
| 30 | 62.6 |
| 45 | 63.8 |



Figure 8: Dissolution of T/007 Tablets

#### **Discussion:**

Very little drug release was achieved at 45minutes. So to improve dissolution, it was planned to check the effect of further increase in the concentration of Meglumine and the addition of sodium bicarbonate. The disintergration time was observed to be more than 15 minutes. Hence to settle that it was discussed to increase the concentration of disintegrating agent.

#### **Trial No.: T/008**

Formulation:

Concentration of the disintegrating agent was increased for this formulation, and 30% of it was added along with the extra-granular excipients, while remaining was blended into the intra-granular dry mix. Meglumine concentration was also increased and sodium bicarbonate was added to the dry mix to aid in dissolution. Surfactant was again added along with the extra-granular excipients and the quantity of lubricant was reduced.

| Ingredient                | Quantity | %w/w   |  |
|---------------------------|----------|--------|--|
| INTRAGRANULAR             |          |        |  |
| Telmisartan               | 80.00    | 23.880 |  |
| Mannitol                  | 135.27   | 40.379 |  |
| Crosspovidone             | 11.90    | 3.552  |  |
| Meglumine                 | 10.00    | 2.985  |  |
| NaHCO <sub>3</sub>        | 10.00    | 2.985  |  |
| PVP K-30                  | 6.70     | 2.000  |  |
| BINDER                    |          |        |  |
| Meglumine                 | 30.00    | 8.955  |  |
| NaOH                      | 5.00     | 1.492  |  |
| Purified water            | q.s.     |        |  |
| EXTRAGRANULAR             |          |        |  |
| Crosspovidone             | 5.10     | 1.522  |  |
| SLS                       | 1.67     | 0.498  |  |
| Collodial Silicon Dioxide | 1.67     | 0.498  |  |
| Mg. stearate              | 5.03     | 1.500  |  |
|                           |          | ]      |  |

Table 44: Formula for trial T/008

## **Observation:**

Sticking was yet observed. The granules formed were very hard and compression was difficult.

#### **Evaluation of tablets:**

## Table 45: Evaluation of T/008 tablets

| Parameter           | Value      |
|---------------------|------------|
| Thickness           | 4.05mm     |
| Diameter            | 10.18mm    |
| Hardness            | 100-130N   |
| Friability          | 0.1%       |
| Disintegrating time | 07:22 mins |

#### **Dissolution-**

Dissolution was carried out in 900ml 7.5 pH phosphate buffer using USP paddle II apparatus.

# Table 46: Dissolution of T/008 tablets

| Time | % Cumulative<br>Drug release |
|------|------------------------------|
| 0    | 0                            |
| 5    | 33.3                         |
| 10   | 41.2                         |
| 15   | 49.6                         |
| 20   | 52.2                         |



Figure 9: Dissolution of T/008 Tablets

#### **Discussion:**

Close to half of the drug was only released at 45minutes. It was observed that due to the resistant nature of the granules, compression as well as drug release were greatly affected. So to form lighter and softer granules was the first priority. After literature review it was decided that the use of water soluble diluent might be the cause of it. Hence for the next trial, a water insoluble diluent was to be taken in place of mannitol. Also, optimization of the binder solution was of great improtance. As PVP could not be added to the solution containing the alkalizers, two different binder solutions were decided to be prepared.

#### Trial No.: T/009

#### Formulation:

For this trial, mannitol was replaced with Microcrystalline cellulose, a water insoluble diluent. The drug along with the diluent and 33% of the disintegrating agent were

added to the intra-granular dry mix. And most importantly, in this trial, two different binder solutions were prepared:

Binder solution 1: Meglumine+ NaOH+ water

This solution served to provide an alkaline environment to the drug during the granulation process.

Binder solution 2: PVP K-30+ water

As adding PVP directly into the dry mix led to higher disintegration time, here and aqueous solution was prepared and added to the formulation. This formed a coating around the dissolved drug particles and helped to form granules.

Extra-granular excipients just included rest of the disintegrating agent and the lubricant.

| Quantity      | ∽oW/W                                                                                                                                        |  |  |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| INTRAGRANULAR |                                                                                                                                              |  |  |
| 80.00         | 23.880                                                                                                                                       |  |  |
| 184.27        | 55.006                                                                                                                                       |  |  |
| 4.00          | 1.194                                                                                                                                        |  |  |
| BINDER        |                                                                                                                                              |  |  |
| 40.00         | 11.940                                                                                                                                       |  |  |
| 7.00          | 2.089                                                                                                                                        |  |  |
| 10.05         | 3.000                                                                                                                                        |  |  |
| q.s.          |                                                                                                                                              |  |  |
| RAGRANULAR    |                                                                                                                                              |  |  |
| 8.00          | 2.388                                                                                                                                        |  |  |
|               | RAGRANULAR         80.00         184.27         4.00         BINDER         40.00         7.00         10.05         q.s.         RAGRANULAR |  |  |

#### Table 47: Formula for trial T/009

| Mg. stearate | 1.68 | 0.507 |
|--------------|------|-------|

## **Observation:**

The granules formed were hard, but not as rigid as with mannitol. Tablets were not compressed.

# **Discussion:**

For the next trial it was planed to prepare the inder solution 2 using Iso-propyl alcohol instead of water, which might further help in making of lighter, easily compressible granules.

# **Trial No.: T/010**

## Formulation:

A batch similar to the former one was taken with the only difference being in the binder solution 2. Here water was replaced with an inorganic solvent, which is Iso-propyl alcohol and the granulation was done.

#### Table 48: Formula for trial T/010

| Ingredient    | Quantity      | %w/w   |  |  |
|---------------|---------------|--------|--|--|
|               | INTRAGRANULAR |        |  |  |
| Telmisartan   | 80.00         | 23.880 |  |  |
| MCC PH 101    | 184.27        | 55.006 |  |  |
| Crosspovidone | 4.00          | 1.194  |  |  |
| BINDER        |               |        |  |  |
| Meglumine     | 40.00         | 11.940 |  |  |
| NaOH          | 6.50          | 1.940  |  |  |
|               |               |        |  |  |
|               |               |        |  |  |

| PVP K-30       | 10.06 | 3.002 |
|----------------|-------|-------|
| IPA            | q.s.  |       |
| Purified water | q.s.  |       |
| EXTRAGRANULAR  |       |       |
| Crosspovidone  | 8.00  | 2.388 |
| Mg. stearate   | 1.68  | 0.507 |

#### **Observation:**

Sticking issue was completely resolved. The granules formed were very soft and light and easily compressible.

## **Evaluation of tablets:**

## Table 49: Evaluation of T/010 tablets

| Parameter           | Value    |
|---------------------|----------|
| Thickness           | 4.05mm   |
| Diameter            | 10.18mm  |
| Hardness            | 100-130N |
| Friability          | 0.1%     |
| Disintegrating time | >30 mins |

Dissolution studies were not done for this particular batch as the disintegration time was more than 30 minutes.

**Discussion:** 

As the disintegration time was high, it was planned to increase the concentration of disintegrating agent in the next batch.

# **Trial No.: T/011**

#### Formulation:

The quantity of disintegrating agent was increased, essentially doubled for this trial both intra and extra granularly to reduce the disintegration time.

| Ingredient     | Quantity      | %w/w   |  |  |  |
|----------------|---------------|--------|--|--|--|
|                | INTRAGRANULAR |        |  |  |  |
| Telmisartan    | 80.00         | 23.880 |  |  |  |
| MCC PH 101     | 163.27        | 48.737 |  |  |  |
| Crosspovidone  | 16.75         | 5.000  |  |  |  |
|                | BINDER        |        |  |  |  |
| Meglumine      | 40.00         | 11.940 |  |  |  |
| NaOH           | 6.50          | 1.940  |  |  |  |
| PVP K-30       | 10.05         | 3.000  |  |  |  |
| IPA            | q.s.          |        |  |  |  |
| Purified water | q.s.          |        |  |  |  |
| EXTRAGRANULAR  |               |        |  |  |  |
| Crosspovidone  | 16.75         | 5.000  |  |  |  |
| Mg. stearate   | 1.68          | 0.507  |  |  |  |
|                |               |        |  |  |  |
| Results:       |               |        |  |  |  |
| Observation:   |               |        |  |  |  |
|                |               |        |  |  |  |

## Table 50: Formula for T/011

Soft, light and porous granules formed. Compression was done without the presence of any defects.

#### **Evaluation of tablets:**

#### Table 51: Evaluation of T/011 tablets

| Parameter           | Value    |
|---------------------|----------|
| Thickness           | 4.01mm   |
| Diameter            | 10.18mm  |
| Hardness            | 100-120N |
| Friability          | 0.1%     |
| Disintegrating time | >15 mins |

Tablets were again not submitted to dissolution testing as the disintegration time was more than 15 minutes.

#### **Discussion:**

For next batch, the disintegrating agent concentration was to be further increased to achieve disintegration time within limit.

#### Trial No.: T/012

#### Formulation:

The quantity of disintegrating agent was increased, doubled again, both intra and extra granularly to and check if the disintegration time is within limits.

#### Table 52: Formula for trial T/012

| Ingredient    | Quantity | %w/w   |  |
|---------------|----------|--------|--|
| INTRAGRANULAR |          |        |  |
| Telmisartan   | 80.00    | 23.880 |  |
|               |          |        |  |
|               |          |        |  |

| 129.77        | 38.737                                                                                                                                        |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 33.50         | 10.000                                                                                                                                        |
| BINDER        |                                                                                                                                               |
| 40.00         | 11.940                                                                                                                                        |
| 6.50          | 1.940                                                                                                                                         |
| 10.05         | 3.000                                                                                                                                         |
| q.s.          |                                                                                                                                               |
| q.s.          |                                                                                                                                               |
| EXTRAGRANULAR |                                                                                                                                               |
| 33.50         | 10.000                                                                                                                                        |
| 1.68          | 0.507                                                                                                                                         |
|               | 129.77         33.50         BINDER         40.00         6.50         0.05         q.s.         q.s.         Q.s.         33.50         1.68 |

#### **Observation:**

Soft, light and porous granules formed. Compression was done without the presence of any defects.

# **Evaluation of tablets:**

## Table 53: Evaluation of T/012 tablets

| Parameter  | Value    |
|------------|----------|
| Thickness  | 3.97mm   |
| Diameter   | 10.18mm  |
| Hardness   | 130-140N |
| Friability | 0.1%     |
|            |          |

Disintegrating time 08:00 mins

# **Dissolution-**

Dissolution was carried out in 900ml 7.5 pH phosphate buffer using USP paddle II apparatus.

|      | % Cumulative |
|------|--------------|
| Time | Drug release |
| 0    | 0            |
| 5    | 46.9         |
| 10   | 76.2         |
| 15   | 89.8         |
| 20   | 90.5         |
| 30   | 90.6         |
| 45   | 90.7         |

# Table 54: Dissolution of T/012 tablets



Figure 10: Dissolution of T/012 Tablets

#### **Discussion:**

The current batch showed very promising results with all the parameters within limit. The drug release was also found to be 90.7% at the 45 minute mark. So for the next batch, the quantity of disintegrating agent was decided to be reduced a little bit to make the formulation more cost effective.

#### Trial No.: T/013

#### Formulation:

In this trial, the concentration of crosspovidone was reduced in the dry mix, and rest of the formula was same as the previous trial and the disintegration time was evaluated.

| Ingredient  | Quantity      | %w/w   |
|-------------|---------------|--------|
|             | INTRAGRANULAR |        |
| Telmisartan | 80.00         | 23.880 |
| MCC PH 101  | 146.52        | 43.737 |
|             |               |        |
|             |               |        |

#### Table 55: Formula for trial T/013

| Crosspovidone                  | 16.           | 75           | 5.000                           |
|--------------------------------|---------------|--------------|---------------------------------|
|                                | BINI          | DER          |                                 |
| Meglumine                      | 40.0          | 00           | 11.940                          |
| NaOH                           | 6.5           | 0            | 1.940                           |
| PVP K-30                       | 10.0          | 05           | 3.000                           |
| IPA                            | q.s           | 8.           |                                 |
| Purified water                 | q.s           | 8.           |                                 |
|                                | EXTRAGR       | ANULAR       |                                 |
| Crosspovidone                  | 33.:          | 50           | 10.000                          |
| Mg. stearate                   | 1.6           | 68           | 0.507                           |
|                                |               |              |                                 |
|                                | Res           | ults:        |                                 |
| Observation:                   |               |              |                                 |
| Soft, light and porous granule | es formed. Co | mpression wa | as done without the presence of |
| any defects.                   |               |              |                                 |
| Evaluation of tablets:         |               |              |                                 |
| Tabl                           | e 56: Evaluat | ion of T/013 | tablets                         |
| Parameter                      |               |              | Value                           |
| Thickness                      |               |              | 3 97mm                          |
| T mexiless                     |               |              | 5.7711111                       |
| Diameter                       |               |              | 10.18mm                         |
| Hardness                       |               |              | 120-130N                        |
| Friability                     |               |              | 0.1%                            |

Disintegrating time

10:30 mins

#### **Dissolution-**

Dissolution was carried out in 900ml 7.5 pH phosphate buffer using USP paddle II apparatus.

| Time | % Cumulative<br>Drug release |
|------|------------------------------|
| 0    | 0                            |
| 5    | 67.8                         |
| 10   | 85.7                         |
| 15   | 97.7                         |
| 20   | 97.7                         |
| 30   | 97.8                         |
| 45   | 97.8                         |

Table 57: Dissolution of T/013 tablets



Figure 11: Dissolution of T/013 Tablets

**Discussion:** 

Satisfactory disintegration time as well as dissolution was observed. So to make the formulatiom even more cost effective, further trial was to be taken with a reduced concentration of meglumine.

#### **Trial No.: T/014**

#### Formulation:

In this trial, the concentration of Meglumine was reduced in binder solution 1, and rest of the formula was same as the previous trial, with a slight change that the extragranular crosspovidone was increased a little bit to aid in formation of smaller particles. And percentage drug release was evaluated.

| Ingredient     | Quantity      | %w/w   |
|----------------|---------------|--------|
|                | INTRAGRANULAR |        |
| Telmisartan    | 80.00         | 23.880 |
| MCC PH 101     | 149.82        | 44.722 |
| Crosspovidone  | 16.75         | 5.000  |
|                | BINDER        |        |
| Meglumine      | 30.00         | 8.955  |
| NaOH           | 6.50          | 1.940  |
| PVP K-30       | 10.05         | 3.000  |
| IPA            | q.s.          |        |
| Purified water | q.s.          |        |
|                | EXTRAGRANULAR |        |
| Crosspovidone  | 40.20         | 12.000 |
| Mg. stearate   | 1.68          | 0.507  |
|                |               |        |

#### Table 58: Formula for trial T/015

## **Observation:**

Soft, light and porous granules formed. Compression was done without the presence of any defects.

## **Evaluation of tablets:**

## Table 59: Evaluation of T/014 tablets

| Parameter           | Value      |
|---------------------|------------|
| Thickness           | 3.7mm      |
| Diameter            | 10.18mm    |
| Hardness            | 120-130N   |
| Friability          | 0.1%       |
| Disintegrating time | 10:30 mins |

#### **Dissolution-**

Dissolution was carried out in 900ml 7.5 pH phosphate buffer using USP paddle II apparatus.

# Table 60: Dissolution of T/014 tablets

| Time | % Cumulative<br>Drug release |
|------|------------------------------|
| 0    | 0                            |
| 5    | 45.5                         |
| 10   | 74.9                         |
| 15   | 92.4                         |



Figure 12: Dissolution of T/014 Tablets

# **Discussion:**

Satisfactory disintegration time as well as dissolution was observed. Now trial to be taken in Rapid Mixer Granulator.

# <u>Trial No.: T/015</u>

# Formulation:

Same formula as above was taken, but this time, instead of manual granulation, the batch was taken in the Rapid mixer granulator.

 Table 61: Formula for trial T/015

| Ingredient | Quantity | ⁰∕₀₩/₩ |
|------------|----------|--------|
|            |          |        |

|                | INTRAGRANULAR |        |
|----------------|---------------|--------|
| Telmisartan    | 80.00         | 23.880 |
| MCC PH 101     | 149.82        | 44.722 |
| Crosspovidone  | 16.75         | 5.000  |
|                | BINDER        |        |
| Meglumine      | 30.00         | 8.955  |
| NaOH           | 6.50          | 1.940  |
| PVP K-30       | 10.05         | 3.000  |
| IPA            | q.s.          |        |
| Purified water | q.s.          |        |
|                | EXTRAGRANULAR |        |
| Crosspovidone  | 40.20         | 12.000 |
| Mg. stearate   | 1.68          | 0.507  |
|                |               |        |

# **Observation:**

Soft, light and porous granules formed. Compression was done without the presence of any defects.

## **Evaluation of tablets:**

# Table 62: Evaluation of T/015 tablets

| Parameter | Value    |
|-----------|----------|
| Thickness | 3.7mm    |
| Diameter  | 10.18mm  |
| Hardness  | 120-130N |
|           |          |

| Friability          | 0.1%       |
|---------------------|------------|
| Disintegrating time | 13:30 mins |

A spike was observed in the disintegration time and the prepared tablets were not submitted for dissolution studies.

#### **Discussion:**

To increase the concentration of disintegrating agent to achieve better disintegration. Aalong with that the kneading time was optimized to achive better granulation.

#### Trial No.: T/016

#### Formulation:

A formula similar to the one in the former trial was taken with a slight difference in the concentration of the disintegrating agent. It was increased in the intra-granular dry mix.

#### Table 63: Formula for trial T/016

| Quantity      | %w/w                                                                                                                                              |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| INTRAGRANULAR |                                                                                                                                                   |
| 80.00         | 23.880                                                                                                                                            |
| 129.55        | 38.671                                                                                                                                            |
| 33.50         | 10.000                                                                                                                                            |
| BINDER        |                                                                                                                                                   |
| 40.00         | 11.940                                                                                                                                            |
| 6.70          | 2.000                                                                                                                                             |
| 10.05         | 3.000                                                                                                                                             |
|               | Quantity           INTRAGRANULAR           80.00           129.55           33.50           BINDER           40.00           6.70           10.05 |

| IPA            | q.s.  |        |
|----------------|-------|--------|
| Purified water | q.s.  |        |
| EXTRAGRANULAR  |       |        |
| Crosspovidone  | 33.50 | 10.000 |
|                |       |        |

# **Observation:**

Soft, light and porous granules formed. Compression was done without the presence of any defects.

# **Evaluation of tablets:**

# Table 64: Evaluation of T/016 tablets

| Parameter           | Value      |
|---------------------|------------|
| Thickness           | 3.7mm      |
| Diameter            | 10.18mm    |
| Hardness            | 120-130N   |
| Friability          | 0.1%       |
| Disintegrating time | 08:30 mins |

## **Dissolution-**

Dissolution was carried out in 900ml 7.5 pH phosphate buffer using USP paddle II apparatus.

| Time | % Cumulative<br>Drug release |
|------|------------------------------|
| 0    | 0                            |
| 5    | 46.7                         |
| 10   | 86.7                         |
| 15   | 98.9                         |
| 20   | 99.7                         |
| 30   | 101.5                        |
| 45   | 101.5                        |

# Table 65: Dissolution of T/016 tablets



Figure 13: Dissolution of T/016 Tablets

#### **Discussion:**

Tablets with parameters matching the reference tablets were obtained. This formula and process was reproduced and finally stability batches were taken for the same.

# **5.3 Comparison of Reference and Test Tablets**

The formula for the optimized batch i.e., T/016 was reproduced and tablets were prepared. The prepared tablets were then compared with the reference tablets for various parameters. The comparison is described in table 66:

| Parameter                  | <b>Reference product</b> | Prepared tablets          |
|----------------------------|--------------------------|---------------------------|
| Type of tablet             | IR tablet without        | IR tablet without coating |
|                            | coating                  |                           |
| Break line                 | Present                  | Present                   |
| Average weight             | 335mg                    | 335mg                     |
| Hardness                   | 130-150 N                | 120-130 N                 |
| Thickness                  | 3.63 mm                  | 3.7 mm                    |
| Diameter                   | 10.18 mm                 | 10.18 mm                  |
| <b>Disintegration Time</b> | 6:45 mins                | 8:30 mins                 |
| % Drug release in          | 101 %                    | 101.5 %                   |
| 45 minutes                 |                          |                           |

Table 66: Comparison of parameters of Reference and Test Tablets

The dissolution profiles for both the tablets are as follows:



Figure 14: Comparison of dissolution profiles of Reference and Test tablet



Almost half of the population for a country like India suffers from high blood pressure. Hence the requirement for a less expensive and highly patient compliant medication is in high demand. Telmisartan is a drug that shows poor solubility and a very long halflife. Hence it is possible to be formulated as an immediate release tablet, as the immediate release tablet formulation, though conventional, shows very high patient compliance, cost effectiveness and is mechanically strong and therefore very compatible for shipment. Hence the requirement for such a product is very high.

Here the project was carried out to formulate immediate release tablets of the drug Telmisartan using simple wet granulation method and compare all the parameters with the reference product. As the drug is a BCS class II drug, formulation proved to be challenge because it is practically insoluble in water, sparingly soluble in strong acids and freely soluble only in alkaline environments. Hence an alkaline microenvironment was mandatory to be maintained for the drug during the granulation process to obtain soft, light and easily compressible granules and even during the drug release trials such that the drug can dissolve easily into the surrounding environment, the physiological solution.

Total 16 trials were taken to finally obtain the optimum formula containing appropriate quantities of the alkalizer, disintegrating agent, binder, lubricant etc. Samples from each batch were taken and subjected to evaluation parameters such as weight variation,\_hardness, thickness, friability, disintegration time and dissolution and the results were compared with the values obtained from the evaluation of the reference product.

A paired T-test for two sample means was carried out using Microsoft excel software and the values were found to be:

t Stat = 2.380 t Critical = 2.570

Hence, form the test it can be concluded that no significant variance is observed in the two dissolution profiles and it can be said that the two formulations are Bioequivalent.

The final formula was reproduced. Then stability batches were taken for the same and stability studies are being carried out according to the ICH guidelines.

At the end it can be summarized that formulation Telmisartan tablets by wet granulation method using alkalizers and superdisintegrants prove to be less expensive, and more feasible method for the small-scale industries. The prepare tablets are also highly patient compliant and can be widely used in the treatment of Hypertension.



- Akhrass, P. R., & McFarlane, S. I. (2011). Telmisartan and cardioprotection. Vascular Health and Risk Management, 7(1), 677–683. https://doi.org/10.2147/VHRM.S9447
- B.N.a, P., \* P. D. M. ., C.N.a, P., J.B.a, D., G.D.a, G., & Patel T.D.a. (2016). FORMULATION, OPTIMIZATION AND EVALUATION OF IMMEDIATE RELEASE TABLET OF TELMISARTAN. *Journal of Global Pharma Technology, February 2010.*
- Chae, J. S., Chae, B. R., Shin, D. J., Goo, Y. T., Lee, E. S., Yoon, H. Y., Kim, C. H., & Choi, Y. W. (2018). Tablet Formulation of a Polymeric Solid Dispersion Containing Amorphous Alkalinized Telmisartan. *AAPS PharmSciTech*, 19(7), 2990–2999. https://doi.org/10.1208/s12249-018-1124-y
- Chiong, J. R., Aronow, W. S., Khan, I. A., Nair, C. K., Vijayaraghavan, K., Dart, R. A., Behrenbeck, T. R., & Geraci, S. A. (2008). Secondary hypertension: Current diagnosis and treatment. *International Journal of Cardiology*, *124*(1), 6–21. https://doi.org/10.1016/j.ijcard.2007.01.119
- Dilebo, J., & Gabriel, T. (2019). An Overview of Factors Affecting Superdisintegrants Functionalities. *International Journal of Pharmaceutical Sciences and Nanotechnology*, *12*(1), 4355–4361. https://doi.org/10.37285/ijpsn.2019.12.1.1
- Dipiro, J. T., Talbert, G. C. ., Yee, G. R. ., Matzke, B. G. ., & Wells, L. M. P. (2017). Pharmacotherapy: A Pathophysiology Approach, 10th Edition. *Mc-Graw Hill Medical*, 6007–6048.
- Elliott, W. J. (2007). Systemic Hypertension. *Current Problems in Cardiology*, 32(4), 201–259. https://doi.org/10.1016/j.cpcardiol.2007.01.002
- Grossman, E., & Messerli, F. H. (2012). Drug-induced hypertension: An unappreciated cause of secondary hypertension. *American Journal of Medicine*, 125(1), 14–22. https://doi.org/10.1016/j.amjmed.2011.05.024
- K, Bhargavi, P, Hima Bindu, Dr. K, R. (2019). FORMULATION AND EVALUATION OF TELMISARTAN TABLETS EMPLOYING SOLVENT DEPOSITED SYSTEMS. World Journal of Pharmaceutical Research, 8(12), 1397–1405. https://doi.org/10.20959/wjpr201912-16132
- 10. Messerli, F. H., Williams, B., & Ritz, E. (2007). Essential hypertension. 370.
- 11. Nagadivya, P., Ramakrishna, R., Sridhar, G., & Bhanushashank, R. (2012). Effect of various binding agents on tablet hardness and release rate profiles of diclofenac

sodium tablets. *International Journal of Research in Pharmaceutical Sciences*, *3*(1), 12–16.

- 12. Oh, G. H., Park, J. H., Shin, H. W., Kim, J. E., & Park, Y. J. (2018). Quality-bydesign approach for the development of telmisartan potassium tablets. In *Drug Development and Industrial Pharmacy* (Vol. 44, Issue 5). Taylor & Francis. https://doi.org/10.1080/03639045.2017.1414233
- Onusko, E. (2003). Diagnosing secondary hypertension. *American Family Physician*, 67(1), 67–74.
- Oparil, S., Amin Zaman, ; M, & Calhoun, D. A. (2003). Pathogenesis of Hypertension Clinical Principles Physiologic Principles. *Ann Intern Med*, 139, 761–776. www.annals.org
- Patel, H., Patel, H., Gohel, M., & Tiwari, S. (2016). Dissolution rate improvement of telmisartan through modified MCC pellets using 32 full factorial design. *Saudi Pharmaceutical Journal*, 24(5), 579–587. https://doi.org/10.1016/j.jsps.2015.03.007
- Sekar, V., & Chellan, V. R. (2008). Immediate release tablets of telmisartan using superdisintegrant- formulation, evaluation and stability studies. *Chemical and Pharmaceutical Bulletin*, 56(4), 575–577. https://doi.org/10.1248/cpb.56.575
- Sowers, K. M. R., & Sowers, J. R. (1999). Obesity, hypertension, and vascular disease. *Current Hypertension Reports*, 1(2), 140–144. https://doi.org/10.1007/s11906-999-0009-6
- Telmisartan Drug profile. (n.d.). Retrieved March 26, 2022, from https://pubchem.ncbi.nlm.nih.gov/compound/Telmisartan#section=2D-Structure
- Tripathi, K. (2013). *Essentials of Medical Pharmacology* (7th ed.). Jaypee Medical Publishers.
- 20. Weber, M. A. (2010). Telmisartan in High-Risk Cardiovascular Patients. American Journal of Cardiology, 105(1 SUPPL.), 36A-43A. https://doi.org/10.1016/j.amjcard.2009.10.008
- Yamashita, S., Fukunishi, A., Higashino, H., Kataoka, M., & Wada, K. (2017). Design of supersaturable formulation of telmisartan with pH modifier: in vitro study on dissolution and precipitation. *Journal of Pharmaceutical Investigation*, 47(2), 163–171. https://doi.org/10.1007/s40005-017-0310-3
- Zhong, L., Zhu, X., Yu, B., & Su, W. (2014). Influence of alkalizers on dissolution properties of telmisartan in solid dispersions prepared by cogrinding. *Drug Development and Industrial Pharmacy*, 40(12), 1660–1669. https://doi.org/10.3109/03639045.2013.841188





| aper<br>apper<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthymag.co<br>ayhealthym | com<br>ir.org<br>nternational |                            | <1»<br><1»<br><1»<br><1»<br><1» |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------|---------------------------------|
| ayhealthymag.co<br>ource<br>semanticschola<br>ource<br>ayer.net<br>ource<br>itted to SVKM I<br>aper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | om<br>r.org<br>nternational   |                            | <19<br><19<br><19<br><19        |
| ayhealthymag.o<br>ource<br>semanticschola<br>ource<br>ayer.net<br>ource<br>itted to SVKM I<br>aper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | r.org                         |                            | <19<br><19<br><19               |
| semanticschola<br><sup>ource</sup><br>ayer.net<br><sup>ource</sup><br>itted to SVKM I<br><sup>aper</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nternational                  |                            | <19<br><19                      |
| ayer.net<br>ource<br>itted to SVKM I<br>aper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nternational                  |                            | <1,                             |
| itted to SVKM I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nternational                  |                            |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               | School                     | <1%                             |
| itted to Jawaha<br>rsity<br><sup>aper</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rlal Nehru To                 | echnological               | <1,                             |
| itted to Univers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | siti Teknolog                 | i MARA                     | <1,                             |
| neu.edu.tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |                            | <1%                             |
| itted to RK Univ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /ersity                       |                            | <1%                             |
| nline.org                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                            | <1%                             |
| k cc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                            |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ine.org                       | ine.org<br><sup>urce</sup> | ine.org<br><sup>urce</sup>      |
|    | Internet Source                                                                                                                  | <1% |
|----|----------------------------------------------------------------------------------------------------------------------------------|-----|
| 28 | www.ncbi.nlm.nih.gov<br>Internet Source                                                                                          | <1% |
| 29 | www.oalib.com<br>Internet Source                                                                                                 | <1% |
| 30 | www.pharmanest.net                                                                                                               | <1% |
| 31 | www.preprints.org                                                                                                                | <1% |
| 32 | www.ijpsnonline.com                                                                                                              | <1% |
| 33 | www.pharmatutor.org                                                                                                              | <1% |
| 34 | xrmoimeme.clsc.cn                                                                                                                | <1% |
| 35 | Weber, M.A "Telmisartan in High-Risk<br>Cardiovascular Patients", The American<br>Journal of Cardiology, 20100104<br>Publication | <1% |
| 36 | www.um.edu.mt<br>Internet Source                                                                                                 | <1% |
| 37 | Bezawada Brahmaiah, Ranajee. "Factors<br>Influencing Profitability of Banks in India",<br>Theoretical Economics Letters, 2018    | <1% |
|    |                                                                                                                                  |     |
|    |                                                                                                                                  |     |
|    |                                                                                                                                  |     |

| 38 | Submitted to West Coast University<br>Student Paper                                                                                                                                                                               | <1% |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 39 | www.ukessays.com                                                                                                                                                                                                                  | <1% |
| 40 | Shaban A. Khaled, Jonathan C. Burley, Morgan<br>R. Alexander, Clive J. Roberts. "Desktop 3D<br>printing of controlled release pharmaceutical<br>bilayer tablets", International Journal of<br>Pharmaceutics, 2014<br>Publication  | <1% |
| 41 | innovareacademics.in                                                                                                                                                                                                              | <1% |
| 42 | www.journaljpri.com                                                                                                                                                                                                               | <1% |
| 43 | www.slideshare.net                                                                                                                                                                                                                | <1% |
| 44 | Lin Zhong, Xingyi Zhu, Bo Yu, Weike Su.<br>"Influence of alkalizers on dissolution<br>properties of telmisartan in solid dispersions<br>prepared by cogrinding", Drug Development<br>and Industrial Pharmacy, 2013<br>Publication | <1% |
|    | www.iosrjournals.org                                                                                                                                                                                                              | <1% |

46

Ahmed Almotairy, Mashan Almutairi, Abdulmajeed Althobaiti, Mohammed Alyahya et al. "Effect of pH modifiers on the solubility, dissolution rate, and stability of telmisartan solid dispersions produced by hot-melt extrusion technology", Journal of Drug Delivery Science and Technology, 2021 Publication

Exclude quotes On Exclude bibliography On Exclude matches Off

<1%

## ABSTRACT

## Development and Characterization of Telmisartan Immediate Release Tablets.

Khushboo Mathur Guide: Dr. Tejal Mehta Industrial guide: Neeraj Patidar Industry: ACME Lifetech LLP Institute of Pharmacy, Nirma University 20mph109@nirmauni.ac.in

## ABSTRACT

Hypertension is a chronic illness characterized by chronically high arterial blood pressure. It is not a disease in and of itself, but it is a significant risk factor for cardiovascular death and morbidity. Telmisartan is a drug that belongs to the class of AT<sub>1</sub> receptor antagonists, which act on the renin-angiotensin system and lead to the eventual decrease in blood pressure. It is an FDA approved, first line drug in the treatment of hypertension. As the drug is a BCS class II drug, it is practically insoluble in water and shows soluble behavior only in a highly basic media. Thus, in the present study immediate release tablets of telmisartan were prepared using wet granulation. The objective of the study was to prepare the tablets such that they match all the parameters with the reference tablet. First of all, the reference tablets were evaluated and the critical processing parameters were identified. The prepared tablets were evaluated for appearance, weight variation, friability, disintegration time and dissolution. Optimization of the formula as well as the processing parameters was also done such that it favoured better dissolution, reduced disintegration time and reduction of processing cost. Stability batches were prepared and stability data is being generated according to the ICH guidelines. IN conclusion, the final formula obtained showed all the parameters equivalent to the reference formulation.

