
 “Vitis – Xilinx Command Line Terminal (XSCT)”

Major Project Report

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master OF TECHNOLOGY

IN

ELECTRONICS AND COMMUNICATION ENGINEERING

Embedded Systems

By

Jethwa Vipul Naranbhai

20MECE09

Department of Electronics and Communication Engineering,

Institute of Technology,

Nirma University,

Ahmedabad 382 481

May 2022

2

Declaration

This is to certify that

a. The thesis comprises my original work towards the degree of Master of Technology in

Embedded Systems at Nirma University and has not been submitted elsewhere for a

degree.

b. Due acknowledgement has been made in the text to all other material used.

Jethwa Vipul Naranbhai

(20MECE09)

3

CERTIFICATE

This is to certify that the Major Project Report entitled “Vitis – Xilinx Command Line Terminal

(XSCT)” submitted by Mr. Jethwa Vipul Naranbhai (20MECE09) towards the partial fulfilment

of the requirements for the award of degree in Master of Technology in the field of Electronics &

Communication Engineering of Nirma University is the record of work carried out by him under

our supervision and guidance. The work submitted has in our opinion reached a level required

for being accepted for examination. The results embodied in this major project work to the best

of our knowledge have not been submitted to any other University or Institution for the award of

any degree or diploma.

Date:

Internal Guide

Dr. Ruchi Gajjar

Assistant Professor

Electronics and Communication Engineering

Department

Institute of Technology, Nirma University

 PG Coordinator

Dr. Nagendra Gajjar

Professor & PG Coordinator

Electronics & Communication

Engineering Department

Institute of Technology, Nirma University

Head of Department

Dr. Dhaval Pujara

Professor and Head

Department of Electronics & Communication

Engineering,

Institute of Technology,

Nirma University,

Ahmedabad 382 481

Director

Dr. Rajesh N Patel

Director (i/c)-Institute of Technology,

Dean(i/c) - Faculty of Technology &

Engineering

Nirma University,

Ahmedabad 382 481

4

CERTIFICATE

This is to certify that the Major Project entitled “Vitis – Xilinx Command Line Terminal

(XSCT)" submitted by Vipul Jethwa (20MECE09), towards the partial fulfilment of the

requirements for the degree of Master of Technology in Embedded Systems, Nirma University,

Ahmedabad is the record of work carried out by him under our supervision and guidance. In our

opinion, the submitted work has reached the level required for being accepted for examination.

Mr. Vidhumouli Hunsigida

Director, Software Development India

DCCG - Software Programmable Acceleration

Hyderabad,,IN,XHD

Mr. Sadanand Mutyala

Staff Software Engineer

DCCG - Software Programmable Acceleration

Hyderabad,,IN,XHD

5

Acknowledgement

A journey is easier when you travel together. Interdependence is certainly more valuable than

independence. This thesis is the result of work whereby I have been accompanied and supported

by many people. It is a pleasant aspect that I have now the opportunity to express my gratitude

for all of them.

With immense pleasure, I express my sincere gratitude, regards and thanks to Dr Ruchi Gajjar

Assistant Professor, EC Department, Institute of Technology, Nirma University for her excellent

guidance, invaluable suggestions and continuous encouragement at all the stages of my research

work. Her interest and confidence in me were the reason for all the success I have made. I have

been fortunate to have her as my guide as she has been a great influence on me, both as a person

and as a professional. I would like to express my gratitude and sincere thanks to Dr Nagendra

Gajjar, PG Coordinator of MTech Embedded Systems, Dr. Dhaval Pujara Professor and Head,

Department of Electronics & Communication for guidance and encouragement during the project

and the entire Department of Electronics & Communication, Nirma University for a great and

memorable learning experience.

It was a pleasure to be associated with Data Center and Communications Group - Software

Programmable Acceleration AMD-Xilinx Inc. Hyderabad and I would like to thank the entire

team. I would like to thank Mr. Sadanand Mutyala for continuous support and guidance

throughout the course of the project. I would also like to thank Mr. Vidhumouli Hunsigida for

mentoring and helping me throughout and your support and advice have helped in shaping my

professional career. Mr. Prashant Malladi for mentoring and helping me with the project work. To

acknowledge help taken from seniors is always a joy. I take this opportunity to convey sincere

thanks to the whole team for their smiles and friendship making the life of Xilinx Inc. enjoyable

and memorable.

The chain of my gratitude would be incomplete if I would forget to thank the first cause of this

chain, using Aristotle's words, The Prime Mover for showering His blessings on me always.

Jethwa Vipul Naranbhai

6

Abstract

The fourth industrial revolution is all about accelerating digital transformation. Organizations of

every type are creating data-driven business models which look to derive maximum value out of

what they now see as their most asset. Data collection and analysis mean more data centres,

which in turn require skilled professionals to run them. Today, data centres are turning to AI to

autonomously manage various tasks, from server optimization to equipment monitoring.

Field-programmable gate arrays (FPGAs) are a class of silicon devices that can be configured by

the end-user to serve a variety of purposes. flexible nature, FPGAs have found applications in

countless industries, including (but not limited to) defence, manufacturing, supercomputing,

telecommunications, and healthcare. More recently, they have been positioned as the answer to

the challenges of running artificial intelligence (AI) at scale. Within the data centre, FPGAs are

particularly suitable for building hardware accelerators.

For all their benefits, one enduring criticism levelled at FPGAs is the complexity of the software

development process, and the company is attempting to solve this with a free developer

environment called Vitis. Using Vitis, users can write software for FPGAs in familiar high-level

languages such as C, C++ and OpenCL. Meanwhile, ACAP devices enable ML inference to be

coded at the framework level – using familiar tools like Caffe, PyTorch, or TensorFlow.

So the work focuses on embedded software development for Vitis unified software by Xilinx Inc.

Major work has been carried out on commands for Xilinx Software Command-Line Tool

(XSCT). Xilinx Software Command-line Tool is an interactive and scriptable command-line

interface to Xilinx SDK. As the outcome, this Internship work carried out at AMD Xilinx Inc.

Contribution has been done for developing commands for the XSCT i.e. Vitis CLI depends on

the customer requirements and company product roadmaps and in the area of Vitis Software

backend tools. Backend tools consist of various embedded development tools like debuggers,

bootable image creators etc.

7

Table of Contents
Table of Figure .. 8

List of Tables ... 8

Abbreviations .. 9

AMD Xilinx - Company Profile .. 10

Group Profile ... 11

Chapter 1. Introduction.. 12

1.1. Motivation .. 12

1.2. Organization of Report ... 12

1.3. Timeline ... 12

Chapter 2. Literature Review .. 15

2.1. Vitis Unified Software Platform ... 15

2.2. Vitis Software Development Workflow ... 15

2.3. Workspace Structure in the Vitis Software Platform ... 16

2.4. Vitis - Software Stack... 18

2.5. Xilinx Software Command-Line Tool (XSCT) .. 19

2.6. Xilinx System Debugger (XSDB) .. 19

Chapter 3. Tools & Technology .. 21

3.1. Target Communication Framework ... 21

3.2. GRADLE .. 22

3.3. JIRA ... 23

3.4. TotalView ... 24

3.5. Perforce P4V .. 25

3.6. C++ ... 26

3.7. TCL .. 27

Chapter 4. Results ... 28

4.1. Story to generate device tree .. 30

4.2. Story to generate linker script from XSA .. 35

4.3. Change Request to add subcommands to program_flash tool .. 43

Chapter 5. Conclusion & Future Scope ... 47

Chapter 6. Trainings & Certification ... 48

References ... 50

8

Table of Figure
Figure 1 Xilinx Hardware Profile .. 10
Figure 2 Team Overview .. 11

Figure 3 Vitis - Software Development Tool .. 15
Figure 4 Vitis Development Tool .. 16
Figure 5 Vitis Design Flow ... 16
Figure 6 Vitis Workspace Structure .. 17
Figure 7 Vitis Software Stack ... 18

Figure 8 Debug Workflow .. 20
Figure 9 TCF Protocol Components ... 21
Figure 10 Gradle Build Execution .. 23
Figure 11 Jira Development Flow ... 24

Figure 12 Perforce P4v Overview .. 25
Figure 13 Agile Software Development methodology .. 28

Figure 14 Agile epic vs. initiative vs. story.. 29
Figure 15 Work data chart .. 29
Figure 16 Contributed Tools .. 29

Figure 17 Device tree Example .. 30
Figure 18 Application Stack ... 31

Figure 19 DTB kernel Interface .. 32
Figure 20 Device Tree Flow ... 33
Figure 21 Build Flow ... 36

Figure 22 Linker script GUI Basic Window .. 37
Figure 23 Linker script GUI Advanced Window ... 37

Figure 24 Program Flash Sequence Diagram ... 43
Figure 25 Linux Embedded Booting Sequence Diagram ... 44

List of Tables

Table 1 Abbreviations Table .. 9

Table 2 Project Timeline .. 13
Table 3 List of CRs & Stories .. 14

file:///C:/Users/vipulj/Desktop/Vipul%20Jethwa_/Internship%20Work%20College%20Related/SEM%204/vipulj/MTech_Project_Report_Vipulj_16MAY22.docx%23_Toc103606554
file:///C:/Users/vipulj/Desktop/Vipul%20Jethwa_/Internship%20Work%20College%20Related/SEM%204/vipulj/MTech_Project_Report_Vipulj_16MAY22.docx%23_Toc103606555
file:///C:/Users/vipulj/Desktop/Vipul%20Jethwa_/Internship%20Work%20College%20Related/SEM%204/vipulj/MTech_Project_Report_Vipulj_16MAY22.docx%23_Toc103606556
file:///C:/Users/vipulj/Desktop/Vipul%20Jethwa_/Internship%20Work%20College%20Related/SEM%204/vipulj/MTech_Project_Report_Vipulj_16MAY22.docx%23_Toc103606557
file:///C:/Users/vipulj/Desktop/Vipul%20Jethwa_/Internship%20Work%20College%20Related/SEM%204/vipulj/MTech_Project_Report_Vipulj_16MAY22.docx%23_Toc103606558
file:///C:/Users/vipulj/Desktop/Vipul%20Jethwa_/Internship%20Work%20College%20Related/SEM%204/vipulj/MTech_Project_Report_Vipulj_16MAY22.docx%23_Toc103606559
file:///C:/Users/vipulj/Desktop/Vipul%20Jethwa_/Internship%20Work%20College%20Related/SEM%204/vipulj/MTech_Project_Report_Vipulj_16MAY22.docx%23_Toc103606561
file:///C:/Users/vipulj/Desktop/Vipul%20Jethwa_/Internship%20Work%20College%20Related/SEM%204/vipulj/MTech_Project_Report_Vipulj_16MAY22.docx%23_Toc103606562
file:///C:/Users/vipulj/Desktop/Vipul%20Jethwa_/Internship%20Work%20College%20Related/SEM%204/vipulj/MTech_Project_Report_Vipulj_16MAY22.docx%23_Toc103606563
file:///C:/Users/vipulj/Desktop/Vipul%20Jethwa_/Internship%20Work%20College%20Related/SEM%204/vipulj/MTech_Project_Report_Vipulj_16MAY22.docx%23_Toc103606565
file:///C:/Users/vipulj/Desktop/Vipul%20Jethwa_/Internship%20Work%20College%20Related/SEM%204/vipulj/MTech_Project_Report_Vipulj_16MAY22.docx%23_Toc103606574
file:///C:/Users/vipulj/Desktop/Vipul%20Jethwa_/Internship%20Work%20College%20Related/SEM%204/vipulj/MTech_Project_Report_Vipulj_16MAY22.docx%23_Toc103606580

9

Abbreviations

Table 1 Abbreviations Table

Abbreviation Description

ACAP
Adaptive Compute Acceleration

Platform

AIE AI Engine

BSP Board Support Package

ELF Executable And Linkable Format

FPGA Field Programmable Gate Arrays

FSBL First Stage Bootloader

GDB Gnu Project Debugger

IDE Integrated Development Environment

JSON Javascript Object Notation

JTAG Joint Test Action Group

QEMU Quick Emulator

SDK Software Development Kit

SoC System On A Chip

TCF Target Communication Framework

WDB Waveform Database

XSA Xilinx Shell Archive

10

AMD Xilinx - Company Profile

Xilinx is the inventor of the FPGA, programmable SoCs, and now, the ACAP. Our highly

flexible programmable silicon, enabled by a suite of advanced software and tools, drives rapid

innovation across a wide span of industries and technologies - from consumers to cars to the

cloud. Xilinx delivers the most dynamic processing technology in the industry, enabling rapid

innovation with its adaptable, intelligent computing. Ross Freeman, Bernard Vonderschmitt, and

James V Barnett II co-founded the company in 1984. Xilinx is located in San Jose, California,

and was founded in Silicon Valley.

Xilinx created the first FPGA in 1984, spawning a new industry, enabling custom solutions for

any variety of applications and has got a track record of innovative products over years. In the

hardware space, Xilinx moved beyond the FPGA to deliver a new set of adaptive processors with

Versal in 2019 as the First Adaptive Compute Acceleration Platform. Our software suite drives

rapid innovation across a wide span of industries and technologies. Xilinx provides a range of

development tools to enable a programming environment for every developer.

Domains where Xilinx Products are used widely are:

 Aerospace & Defense

 ProAV & Broadcast

 Automotive

 Data Center

 Industrial & Vision

 Healthcare & Sciences

 Test & Measurement, and Emulation

FPGAs SoCs ACAPs

Figure 1 Xilinx Hardware Profile [1]

11

Group Profile

Xilinx Inc has many groups and is at many locations like San Jose, USA, with additional offices

in Longmont, USA; Dublin, Ireland; Singapore; Hyderabad, India; Beijing, China; Shanghai,

China; Brisbane, Australia and Tokyo, Japan.

Data Center and Communications Group - Software Programmable Acceleration

Software Programmable Acceleration works on VITIS IDE, Backend tools like Bootgen, prep

target, Traditional compilers for ARM and MB, integration to IDE, and All the works related to

AIE Cardano toolchains.

Data levels are growing exponentially, not just in the data centre but at the edge and various

endpoints. As we enter the fourth industrial revolution, advances in technology are changing the

way we live, work, and relate to each other. For businesses, automation of traditional

manufacturing and industrial practices means more data produced and consumed; and the secret

to success often lies in squeezing the maximum value out of the oceans of data at their disposal.

The so-called fourth industrial revolution is all about accelerating digital transformation.

Organizations of every type are creating data-driven business models which look to derive

maximum value out of what they now see as their most valuable asset. Data collection and

analysis mean more data centres, which in turn require skilled professionals to run them. Today,

data centres are turning to AI to autonomously manage various tasks, from server optimization to

equipment monitoring. Figure 2 Team Overview shows team hierarchy under the data centre

group.

Figure 2 Team Overview

12

Chapter 1. Introduction

1.1. Motivation

Data centres are evolving rapidly due to exploration in AI, increasingly complex loads, and the

explosive growth of random data. The Xilinx platform drives this revolution with an adaptive

acceleration of computing, storage and networking. Accelerate your entire application – Use a

domain-specific architecture to accelerate inference for AI, processing, and other critical

workloads. For low-latency AI inference, Xilinx provides the high data throughput with the

lowest latency across a wide range of networks and data types. FPGA-based adaptive computing

has often proven to be an efficient and cheap solution for running complex AI workloads. The

Vitis is a development kit for seamlessly building accelerated applications. A full set of graphical

and CLI, including compilers, analyzers, and debuggers for creating, analyzing, and debugging

performance bottlenecks, acceleration algorithms developed in C, C ++, or OpenCL. Use these

features in your IDE or use the standalone Vitis IDE.

1.2. Organization of Report

This report covers Company and Group Information as of the preface to the report. Chapter 1

describes the basic introduction and timeline of the tasks performed and the table of the tasks

assigned during the course work of the internship. Chapter 2 covers the details of the literature

survey about the Vitis Unified software. Vitis CLI ie. XSCT and the Xilinx system debugger on

which the team works. Chapter 3 deals with the tools used by Xilinx Inc. and the technologies

used during this internship course work for the software development work. Later Chapter 4

explains the development work contains majorly the Stories that have been submitted to the

2022.1 release for Vitis unified software and the contribution. concluding statements are shown

in Chapter 5. Chapter 6 shows the extra learning and certification carried out along with the

internship coursework.

1.3. Timeline

Table 2 Project Timeline shows the project timeline which started on 7 June 2022 and will end on

7 June 2022. The timeline has been divided into mainly 3 sections as per the software release

cycle of Xilinx Inc. with 2 release per year so major contribution for 2021.2, 2022.1 and 2022.2

has been added to a timeline for detailed work please refer to Table 3 List of CRs & Stories

which has details of Change Requests and stories assigned.

13

X
ili

n
x

_X
S
C

T_
v

ip
u

lj

6
1

3
2

0
2

7
3

1
0

1
7

2
4

2
9

1
6

2
3

3
0

6
1

3
2

0
2

7
4

1
1

1
8

2
5

1
8

1
5

2
2

2
9

6
1

3
2

0
2

7
3

1
0

1
7

2
4

3
1

7
1

4
2

1
2

8
5

1
2

1
9

2
6

2
9

1
6

2
3

3
0

7

P
R

O
JE

C
T

W
E
E
K

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
2

6
2

7
2

8
2

9
3

0
3

1
3

2
3

3
3

4
3

5
3

6
3

7
3

8
3

9
4

0
4

1
4

2
4

3
4

4
4

5
4

6
4

7
4

8
4

9
5

0
5

1
5

2
5

3
5

4
5

5
5

6

P
H

A
SE

 O
N

E

P
H

A
SE

 T
W

O

P
H

A
S
E
 T

H
R

E
E

P
H

A
S
E
 F

O
U

R

P
H

A
SE

 F
IV

E

JU
N

E
JU

LY
A

U
G

U
S
T

S
E
P
TE

M
B

E
R

O
C

TO
B

E
R

M
A

Y
M

A
R

C
H

A
P
R

IL
N

O
V

E
M

B
E
R

D
E
C

E
M

B
E
R

JA
N

U
A

R
Y

FE
B

R
U

A
R

Y

E
n

te
r

th
e

 d
a

te

o
f

th
e

 f
ir
st

M
o

n
d

a
y
 o

f
e

a
c

h

m
o

n
th

 -
--

->

O
n

b
o

a
rd

in
g

2
0

2
1

.2

2
0

2
2

.1

2
0

2
2

.2

P R O J E C T E N D

O
n

b
o

a
rd

in
g

Jo
in

in
g

Ta
sk

s

In
d

u
c

ti
o

n
&

Te
a

m

in
tr

o
d

u
c

ti
o

n

2
0

2
1

.1
 C

R
s

M
e

m
o

ry
 t
ili

za
ti

o
n

 C
LI

Li
n

ke
rg

e
n

 S
u

p
p

o
rt

Li
st

C
LI

 C
o

m
m

a
n

d
s

D
e

v
ic

e
 T

re
e

 G
e

n
e

ra
to

r

Li
n

ke
r
sc

rip
t

g
e

n
e

ra
to

r

P
la

tf
o

rm
 P

ro
p

e
rt

ie
s

2
0

2
2

.1

ST

O
R

IE
S

&
 C

R
s

2
0

2
2

.2
 S

TO
R

IE
S

&
 C

R
s

N
e

xt
 G

e
n

e
ra

ti
o

n
 V

e
rs

a
l D

e
v

ic
e

 s
ip

p
o

rt

P
ro

g
ra

m
 F

la
sh

 T
o

o
l

P
la

tf
o

rm
 P

ro
p

e
rt

ie
s

m
e

c
h

a
n

is
m

D
o

c
u

m
e

n
ta

tio
n

U
n

d
e

rs
ta

n
d

in
g

V

it
is

,X
SC

T,
B

o
a

rd
fa

rm

FF

FF

Table 2 Project Timeline

14

Table 3 List of CRs & Stories

CR
/S

to
ry

 N
o.

D
es

cr
ip

tio
n

St
at

us

ht
tp

s:
//

jir
a.

xi
lin

x.
co

m
/b

ro
w

se
/C

R-
11

06
38

5
N

ee
d

 U
ID

 in
fo

rm
at

io
n

 in
 D

TG
 f

o
r

D
FX

Re
so

lv
ed

ht
tp

s:
//

jir
a.

xi
lin

x.
co

m
/b

ro
w

se
/C

R-
10

95
32

6
V

it
is

 X
SC

T
"d

o
m

ai
n

 li
st

"
co

m
m

an
d

 d
o

es
 n

o
t

re
tu

rn
 p

ro
p

er
 li

st
Re

so
lv

ed

lin
ke

r s
cr

ip
 -

lin
ke

rg
en

 s
up

po
rt

Re
so

lv
ed

ht
tp

s:
//

jir
a.

xi
lin

x.
co

m
/b

ro
w

se
/C

R-
11

07
12

6
In

co
rr

ec
t

V
er

sa
l p

ro
ce

ss
o

r
n

am
e

in
 li

n
u

x
d

o
m

ai
n

 C
re

at
e

er
ro

r
m

es
sa

g
e.

Re
so

lv
ed

ht
tp

s:
//

jir
a.

xi
lin

x.
co

m
/b

ro
w

se
/C

R-
10

84
47

8
D

is
p

la
yP

o
rt

 1
.4

 R
X

 S
u

b
sy

st
em

 v
2.

1
-

C
u

st
o

m
er

 is
 r

eq
u

es
ti

n
g

 X
ili

n
x

p
ro

vi
d

e
B

R
A

M
 r

eq
u

ir
em

en
t

n
u

m
b

er
 f

o
r

ap
p

lic
at

io
n

 s
ta

ck
 s

iz
e

Re
so

lv
ed

ht
tp

:/
/j

ira
.x

ili
nx

.c
om

/b
ro

w
se

/C
R-

10
88

94
6

XS
CT

 s
cr

ip
t m

od
e

do
es

 n
ot

 e
va

lu
at

e
co

m
m

on
::v

er
si

on
Re

so
lv

ed

ht
tp

s:
//

jir
a.

xi
lin

x.
co

m
/b

ro
w

se
/C

R-
10

66
87

8
re

po
 -a

pp
s

co
m

m
an

d
is

 n
ot

 li
st

in
g

th
e

ai
en

gi
ne

 te
m

pl
at

es
.

Re
so

lv
ed

ht
tp

s:
//

jir
a.

xi
lin

x.
co

m
/b

ro
w

se
/C

R-
10

77
85

1
"m

ak
e:

 *
**

 N
o

ru
le

 to
 m

ak
e

ta
rg

et
 `.

./
sr

c/
ls

cr
ip

t.l
d'

 "
 e

rr
or

 o
bs

er
ve

d
w

he
n

bu
ild

in
g

th
e

M
em

or
y

Te
st

s
ap

pl
ic

at
io

n
fo

r Z
CU

10
2+

M
B

de
si

gn
Re

so
lv

ed

ht
tp

s:
//

jir
a.

xi
lin

x.
co

m
/b

ro
w

se
/C

R-
11

12
61

1
Pl

ea
se

 a
dd

 "
Em

pt
y

Ap
pl

ic
at

io
n"

 te
m

pl
at

e
ba

ck
 fo

r c
om

pa
tib

ili
ty

 w
ith

 p
re

vi
ou

s
ve

rs
io

n
Re

so
lv

ed

ht
tp

s:
//

jir
a.

xi
lin

x.
co

m
/b

ro
w

se
/C

R-
11

12
39

2
Sy

sm
on

 p
ol

le
d

ex
am

pl
e

fa
ils

 to
 ru

n
du

e
to

 s
ta

ck
 a

nd
 h

ea
p

si
ze

 c
ha

ng
es

 fo
r A

72
Re

so
lv

ed

ht
tp

s:
//

jir
a.

xi
lin

x.
co

m
/b

ro
w

se
/V

IT
IS

-1
15

7

ad
di

ng
 p

ro
pe

rt
ie

s
to

 th
e

pl
at

fo
rm

 d
ur

in
g

pl
at

fo
rm

 c
re

at
e

co
m

m
an

d
w

hi
ch

 w
ill

 h
el

p
to

 o
th

er
 te

am
s

to
 fe

tc
h

th
e

ne
ce

ss
ar

y
ID

 n
um

be
rs

 fo
rm

th
e

pl
at

fo
rm

 o
r x

sa
 u

se
d

fo
r t

he
 p

la
tf

or
m

 c
re

at
io

n
pr

oc
es

s
Re

so
lv

ed

ht
tp

s:
//

jir
a.

xi
lin

x.
co

m
/b

ro
w

se
/V

IT
IS

-3
92

1
XS

CT
 a

dd
 h

ig
h

le
ve

l f
un

ct
io

n/
co

m
m

an
d

to
 g

en
er

at
e

de
vi

ce
 tr

ee
 fr

om
 x

sa
Re

so
lv

ed

ht
tp

s:
//

jir
a.

xi
lin

x.
co

m
/b

ro
w

se
/V

IT
IS

-3
41

9
Ad

d
XS

CT
 c

om
m

an
d

to
 g

en
er

at
e

lin
ke

r s
cr

ip
t f

ro
m

 X
SA

Re
so

lv
ed

ht
tp

s:
//

jir
a.

xi
lin

x.
co

m
/b

ro
w

se
/C

R-
11

19
41

1
pr

og
ra

m
 F

la
sh

 fa
ilu

re
 in

 V
er

sa
l V

P1
50

2
ES

-1
 s

ili
co

n
:::

 -s
ki

p_
re

se
t o

pt
io

n
ad

de
d

to
 p

ro
gr

am
_f

la
sh

 c
om

m
an

d
Re

so
lv

ed

ht
tp

s:
//

jir
a.

xi
lin

x.
co

m
/b

ro
w

se
/C

R-
11

27
20

3
 re

ve
rt

ed
 _

da
ta

 in
 M

B
lin

ke
rs

cr
ip

t
Re

so
lv

ed

ht
tp

s:
//

jir
a.

xi
lin

x.
co

m
/b

ro
w

se
/C

R-
11

06
19

9
Li

nk
er

 g
en

er
at

io
n

en
ha

nc
em

en
t t

o
su

pp
or

t M
ic

ro
bl

az
e

+
BR

AM
 b

as
ed

 re
st

ar
t d

es
ig

n
RE

VE
RT

ED

ht
tp

s:
//

jir
a.

xi
lin

x.
co

m
/b

ro
w

se
/C

R-
11

25
09

8
Li

nk
er

 s
cr

ip
t:

 R
eq

ue
st

 to
 a

dd
 s

ec
tio

n
ty

pe
 n

am
e

(i.
e.

,c
od

e/
da

ta
 s

ec
tio

n)
 u

si
ng

 x
sc

t c
om

m
an

ds
Re

so
lv

ed

ht
tp

s:
//

jir
a.

xi
lin

x.
co

m
/b

ro
w

se
/C

R-
11

25
05

2
Li

nk
er

 S
cr

ip
t:

 d
up

lic
at

ed
 s

ec
tio

n
na

m
e'

s
ad

de
d

us
in

g
xs

ct
 c

om
m

an
d

Re
so

lv
ed

ht
tp

s:
//

jir
a.

xi
lin

x.
co

m
/b

ro
w

se
/C

R-
11

27
59

3
Li

nk
er

 s
cr

ip
t [

XS
CT

]:
ls

cr
ip

t s
ec

tio
n

co
m

m
an

d
is

 re
tu

rn
in

g
ca

n'
t r

ea
d

"a
dd

ed
_s

ec
tio

ns
":

 n
o

su
ch

 v
ar

ia
bl

e
Re

so
lv

ed

ht
tp

s:
//

jir
a.

xi
lin

x.
co

m
/b

ro
w

se
/C

R-
11

20
33

6
Ad

d
"a

dd
re

ss
_r

an
ge

"
op

tio
n

w
ith

 m
ul

ti
im

ag
e

fe
at

ur
e

U
nd

er
 p

ro
gr

es
s

ht
tp

s:
//

jir
a.

xi
lin

x.
co

m
/b

ro
w

se
/C

R-
11

23
30

6
Cr

ea
te

dt
s

co
m

m
an

d
do

 n
ot

 c
re

at
e

ZO
CL

 n
od

e
Re

so
lv

ed

ht
tp

s:
//

jir
a.

xi
lin

x.
co

m
/b

ro
w

se
/C

R-
11

21
75

1
Cr

ea
te

dt
s

co
m

m
an

ds
 fa

ils
 o

n
ev

en
 it

er
at

io
n

Re
so

lv
ed

ht
tp

s:
//

jir
a.

xi
lin

x.
co

m
/b

ro
w

se
/C

R-
11

23
44

2
p

la
tf

o
rm

 g
en

er
at

e
co

m
m

an
d

 f
ai

lin
g

 a
ft

er
 a

d
d

in
g

 Z
O

C
L

p
ro

p
er

ty
 t

o
 h

si
::g

et
_o

s
Re

so
lv

ed

ht
tp

s:
//

jir
a.

xi
lin

x.
co

m
/b

ro
w

se
/C

R-
11

23
60

8
cr

ea
te

_d
ts

 c
om

m
an

d
w

ith
 -z

oc
l s

w
itc

h
is

 n
ot

 c
re

at
in

g
en

tr
y

fo
r z

oc
l n

od
e

in
 d

ts
Re

so
lv

ed

ht
tp

s:
//

jir
a.

xi
lin

x.
co

m
/b

ro
w

se
/C

R-
11

26
60

9
H

SI
 p

ro
pe

rt
ie

s
is

 n
ot

 li
st

in
g

U
nd

er
 p

ro
gr

es
s

ht
tp

s:
//

jir
a.

xi
lin

x.
co

m
/b

ro
w

se
/V

IT
IS

-5
21

6
Ve

rs
al

 N
ex

t g
en

er
at

io
n

W
iz

ar
d

- V
iti

s_
XS

CT
U

nd
er

 p
ro

gr
es

s

ht
tp

s:
//

jir
a.

xi
lin

x.
co

m
/b

ro
w

se
/V

IT
IS

-4
79

2
Pr

ov
id

e
xs

ct
 o

pt
io

ns
 to

 a
dd

 D
TS

I a
nd

 S
he

ll.
js

on
 fi

le
s

to
 s

w
 s

ec
tio

n
of

 p
la

tf
or

m
20

23
.1

ht
tp

s:
//

jir
a.

xi
lin

x.
co

m
/b

ro
w

se
/V

IT
IS

-5
37

9
Im

pr
ov

e
th

e
m

ec
ha

ni
sm

 fo
r a

dd
in

g
pl

at
fo

rm
 d

at
a

to
 H

SI
 o

bj
ec

ts
Pe

nd
in

g

ht
tp

s:
//

jir
a.

xi
lin

x.
co

m
/b

ro
w

se
/V

IT
IS

-5
73

0
20

22
.2

 P
ro

vi
de

 p
ar

t-
sp

ec
ifi

c
AI

E
ha

rd
w

ar
e

m
et

ad
at

a
in

 X
SA

Pe
nd

in
g

20
21

.2

20
22

.1

20
22

.2

15

Chapter 2. Literature Review

2.1. Vitis Unified Software Platform

The Vitis0is a new0tool that integrates all0aspects of0software development for Xilinx hardware

into an integrated environment. The Vitis0software is an embedded software development

process suitable for users who want to migrate to the next-generation technology Xilinx Software

Development Kit (SDK) and an acceleration development process suitable for software

developers using the latest Xilinx. Supports. Faster FPGA software.

Figure 3 Vitis - Software Development Tool shows the overview of the Vitis Development tool

that is used for Xilinx hardware to make applications leveraging C, C++, and Python

environments to use higher-level frameworks [2].

2.2. Vitis Software Development Workflow

Figure 4 Vitis Development Tool Shows the Vitis software can be used to develop applications

above Heterogeneous Compute, Cloud to AI deployment & AI Enablement over Hardware

profile.

The following figure shows the workflow for developing a software application for the Vitis.

• A hardware engineer designs the logic and exports the information needed for development

from0the Vivado0Design Suite to an xsa0file.

• Developers import0XSA to the0Vitis by creating a platform. This platform is frequently used

in projects. To integrate the Vitis0workspace architecture0for in all types of applications,

software0development projects are currently migrating to platform0and application

architectures. The platform contains hardware specifications and software preferences.

• Software0preferences are called0domains and are part of the platform.

Figure 3 Vitis - Software Development Tool [1]

16

• Software developers create applications based on platform and domain.

• Applications0can be0debugged.

• In complex systems, multiple applications can run simultaneously and communicate with

each0other. Therefore, system0level validation should also be performed.

• When everything0is ready, the0IDE will help you create a boot image that initializes your

system and launches your application [3].

Figure 5 Vitis Design Flow shows the pictorial representation of the flow explained above.

2.3. Workspace Structure in the Vitis Software Platform
Figure 6 Vitis Workspace Structure shows the workspace structure of the application

development

There are two types of projects in the Vitis workspace.

Figure 4 Vitis Development Tool [1]

Figure 5 Vitis Design Flow [3]

17

Platform Project: The platform0project provides0information regarding hardware and a

software0runtime environment.

System project: Combination of applications running concurrently on a device.

Workspace: After opening the Vitis, create a workspace. The workspace is the location that the

Vitis uses to store project data and metadata. You must specify the initial workspace when

launching the Vitis.

Platform: A target0platform or platform0is a combination of hardware0components (XSA) and

software0components (such as domain / BSP, boot components such as FSBL).

Platform project: You can customize the platform project to add domains & change domain

settings. Projects can be0created by importing0XSA or by importing an existing0platform. You

cannot edit the platform in the repository. Only the platforms in the workspace are called

platform projects. You can edit the platform project to create more domains. You can create

multiple system0projects on0the same platform0project to share hardware0and software

preferences.

System project: A system0project is a combination of applications running concurrently on a

device. You cannot put two standalone apps for the processor that are similar together in

a0system project. You can combine two Linux0applications into one system project. A

workspace0can contain0multiple system0projects.

Application: A project can have many applications. Each0software project requires a respective

domain.

XSA: XSA is exported0from the Vivado0Design Suite. It includes hardware0specifications such

as processor0configuration, peripheral connections, mapping address, and0initialization of the

device. You need to provide the0XSA when you create the platform0project.

Domain: The domain is a BSP0or OS. Use a collection0of software0drivers to0build your

application. The software0image created contains only part of the Xilinx0library used by the

embedded theme. You can create multiple0applications that run in your domain. A domain0is

associated with a single0processor or a group of isomorphic0processors on the platform (such as

A53_0 or A53).

Flow: In the0Vitis integrated software0platform, software0development workflows and

application0acceleration share a major part, but there are still subtle differences. The Vitis

platform has0different configurations to support different use cases.

Figure 6 Vitis Workspace Structure [3]

18

Embedded: This platform0supports software development0for embedded Arm processors. And

MicroBlaze processor.

Embedded Acceleration: In addition to embedded SD, application for the accelerated use case is

also supported by the platform. This platform provides a clock, bus interface, and an interrupt

controller for using the acceleration0kernel.

Data Center Acceleration: Acceleration0kernels and x860host applications can be0developed

on this platform. The kernel is controlled via the PCIe bus.

2.4. Vitis - Software Stack

Figure 7 Vitis Software Stack [1]

Figure 7 Vitis Software Stack shows the software stack for the Vitis Unified software, Xilinx

Runtime Server runs above the hardware which communicates between the processor cores and

FGPA fabric.

The Vitis0platform is based on a stack-based0architecture and can be seamlessly inserted into

development systems and standard open-source build0environments, but most0importantly, it

contains a stylish set of standard0libraries. rich. The base0layer is the target0platform of Vitis,

consisting of a board0and pre-programmed I/O. The second layer is called Vitis0Core SDK and

contains the open0source Xilinx0runtime library to manage the0movement of data between

different0domains, including0subsystems, artificial intelligence engine in0Versal Upcoming

ACAP and servers. outside. This class also includes basic development tools such as a compiler,

19

an analyzer, and a debugger. Offers a design0environment, the tools are0designed to0seamlessly

work with industry requirements development environments and builds [3].

There are around 400 or more open source applications that are optimized in 8 Vitis libraries on

the third layer. These include the Vitis0Basic Linear Algebra Subroutine0Library (BLAS), the

Vitis0Solver Library, the Vitis0Security Library, and the Vitis Vision0Library, the Vitis0Data

Compression Library, the Vitis0Quantitative Finance Library, Vitis DB0Library and Vitis0AI

Library These allow developers to use accelerated functionality before standard0API calls [2][3

].

2.5. Xilinx Software Command-Line Tool (XSCT)

GUI development0tools, such as0the Vitis unified software, can help you get up to speed on new

processor architecture development. It aids in abstracting and grouping the majority of the

information.

The common functions have been transformed into logical wizards that can be used by even the

most inexperienced user. However, a tool's scriptability is also critical for allowing users to

expand what they can accomplish with it. It's very beneficial when writing nightly regression

tests or when running commands that the developer uses frequently. XSCT is a command-line

interface to the Vitis IDE that is interactive and scriptable. The programming language for XSCT,

like those of other Xilinx tools, is based on the Tcl. XSCT commands can be run in an interactive

way or as programs for automation [4]. The following are supported by XSCT:

 Creating0domains, platform0projects, system0projects, and application0projects

 Managing0repositories

 Changing toolchain0preferences

 Configuring0and building domains/BSPs and0applications

 Downloading and0running applications on0hardware targets

 Using the0Bootgen and program0flash tools to0create and flash0boot images

2.6. Xilinx System Debugger (XSDB)

System Debugger uses hw0server as the basic debugging tool. The SDK converts each UI action

into several TCF0commands. It makes the system debugger output show the part of the code

being debugged. It makes communication with the hardware0using hw0server. Figure 8 Debug

Workflow shows the XSDB working with the hardware server [4].

20

The workflow contains the following components:

 Executable ELF file: To0debug an application, you0must debug it using a0compiled

Executable0and Linkable0Format (ELF) file. The Debug0ELF file contains0additional

debugging information that allows the debugger0to create a direct link between0the

source0code and the0binaries built from this source. See Build Configuration for0more

information.

 Debug Configuration: To start a debug0session, you need to create0a debug

configuration0in the SDK. This configuration0captures the options needed to start a

debug0session, including0the0name of the0executable file, the CPU target to0debug, and

other0information. For more information, see Performing Configuration.

 SDK Debug Perspective: The Debug0Perspective allows you to manage0the debugging

of or the execution of programs in the0workbench. You0can control program execution

by setting0breakpoints, pausing a running program, stepping0through your0code, and

examining0the contents of0variables.

Figure 8 Debug Workflow [4]

21

Chapter 3. Tools & Technology

3.1. Target Communication Framework

TCF is a vendor-independent, lightweight, extensible network protocol primarily used to

communicate with embedded systems (targets). The most notable feature is that TCF aims to

seamlessly connect value servers between tools and targets. However, even without added value,

the protocol has the potential to integrate many of today's independent communication links, save

resources, and be easier to install and configure than currently integrated development scenarios.

Specific transmissions such as TCP / IP, serial lines, SSH tunnels, etc. Third-party providers are

ready to use all services from standard TCP / IP channels to custom channels (JTAG (Joint Test

Action Group) or proprietary hardware connectivity), adapting new transports and adding value

right away. [5].

For OSI (Open Systems Interconnection) models, TCF supports layers 5-7. It is currently

assumed that the underlying bearer's reliable end-to-end transport is available. TCF handles (5)

session-layer host-to-host communication. (6) JSON-based presentation layer data representation

and encryption. (7) The TCF service in the application layer can be regarded as an application [5

]. The tool communication model is shown in Figure 9 TCF Protocol Components.

Figure 9 TCF Protocol Components [5]

22

3.2. GRADLE

Gradle is an Associate in open supply build automation tool that's versatile enough to make

virtually any sort of code. Below could be a general summary of a number of the foremost vital

options [6].

[1] High performance

Gradle avoids gratuitous work by doing solely what must be done as a result of the input or

output has modified. you'll be able to conjointly use the build cache to employ task output from

previous runs or from different systems (using a shared build cache). There area unit several

different optimizations that Gradle makes, and therefore the development team is consistently

operating to boost Gradle's performance.

[2] JVM Foundation

Gradle runs on prime of the JVM and needs the Java Development Kit (JDK) to be put into use it.

this is often a bonus for users at home with the Java platform, because it permits you to use

customary Java Apis in your build logic, like custom action sorts and plugins. It conjointly makes

it easier to run Gradle on all platforms.

[3] Conventions

Gradle area unit is taken from the mavin book and implements rules to form it easier to form

common styles of comes as Java comes. With the correct plugin applied, you'll be able to simply

get lightweight build scripts for several comes. However, these rules don't limit you. Gradle

permits you to override rules, add your actions, and build several different rule-based changes to

your build.

[4] Extensibility

you'll be able to conjointly simply extend Gradle to produce your drawback sorts or to form

templates. See automaton build support samples. It adds several new construction ideas like

flavours and builds designs.

[5] IDE support

you'll be able to import and work with Gradle builds exploitation many major days like

automaton Studio, IntelliJ plan, Eclipse and NetBeans. Gradle conjointly supports generating the

answer files required to load the project in Visual Studio.

[6] Insight

Build scans give in-depth info regarding build execution that you just will use to spot build

issues. This area unit is particularly sensible at distinguishing build performance problems. you'll

be able to conjointly share the build scan with different users. this is often particularly helpful if

you wish for recommendations on coping with construction problems.

3.2.1. Build phases

A Gradle build has three distinct phases:

23

[1] Initialization

Gradle supports single project builds and multi-project builds. During the initialization phase,

Gradle decides which projects will participate in the build process and creates a project instance

for each of those projects.

[2] Settings

In this phase, project objects are configured. The build script for all projects that are part of the

build will be executed.

[3] Running

Gradle defines a subset of the tasks created and configured during the configuration phase. The

subset is determined by the task name arguments passed to the Gradle command and the current

directory. Gradle then performs each of the selected tasks.

Figure 10 Gradle Build Execution shows the build execution snippet.

3.3. JIRA

From concept development to client work, Jira is a set of flexible work management solutions

that empower all teams to work together to do the best work of their lives. Jira offers several

products and deployment options designed specifically for software developers, IT, business,

operations, and more. Jira enables teams to plan, allocate, track, report and manage tasks and

connect teams to deliver and support clients to startups and enterprises in agile software

development [7].

Figure 10 Gradle Build Execution [6]

24

Plan

Create user0stories and issues, plan0sprints, and distribute0tasks across the team.

Track

Prioritize and0discuss work in0full context.

Release

Release to customers with0confidence when the software is up0to date.

Report

Improve team0performance based0on real-time, visual0data that your0team can put0to use.

Figure 11 Jira Development Flow shows the development cycle for the change request on the

JIRA platform.

Figure 11 Jira Development Flow [7]

3.4. TotalView

TotalView is a software debugger for complex C, C++ and Fortran applications running hundreds

to thousands of parallel processes. Intuitively diagnose and understand complex code so you can

troubleshoot bugs, memory issues, and runtime crashes faster [11][12][8].

Reverse debugging:

Work backwards from failure and eliminate the need to repeatedly restart the application.

Multi-language applications debugging:

Easily analyze and debug apps written in both Python and C/C++.

Simultaneous debugging:

Get complete control over program execution within a single thread or within groups of processes

or threads.

Pinpointing and fixing bugs:

Troubleshoot difficult problems that occur in concurrent programs that take advantage of threads

such as OpenMP, MPI, GPUs, or coprocessors.

25

Designed specifically for multi-core and parallel computing, TotalView provides a set of tools

that provide unprecedented control over process and thread execution, as well as deep visibility

into program and data state.

3.5. Perforce P4V

The Helix Visual Client, P4V, is a cross-platform graphical user interface for Helix core servers,

also known as Helix servers. Helix Core Server is an employer model controller that you can use

to work with delivery documents and other documents that contain multiple revisions of manuals,

web pages, or work machine management documents. Documents managed using Helix Core

Server can be found in the depot. To paint a document, open the document and edit it in the

workspace. When you're done, use the changelist to file the modified document to the depot. The

depot continues the songs of all the latest and previous revisions of the record [11].

Customers of Helix Core Server combine the use of consumer software such as P4V with a

shared dataset repository. P4V connects your PC to Helix Server, allowing you to exchange

documents between your Helix Server depot and your workspace.

Workspace: A folder or directory on your workstation that works with revisions of files

managed by Helix Core Server.

Helix Core App: P4V (or another Helix Core application such as a command-line client or

P4VS, Helix plugin for Visual Studio) running on your workstation makes requests from the

Helix Core server and makes requests for these requests. Deliver the results (file, status).

Information etc.) to you.

Helix Server: A program that responds to requests from Helix Core applications, maintains vault

files, and tracks workspace status.

Depot: File repository hosted by Helix server. Contains all existing versions of all files submitted

so far. The Helix server can host multiple depots, but the examples in this guide show a single

depot.

Figure 12 Perforce P4v Overview presents the tool overview and the space for the deport and

workspace in P4V software.

Figure 12 Perforce P4v Overview [11]

26

3.6. C++

The C++ programming language was created by Bjarne Stroustrup and his team at Bell

Laboratories (AT&T, USA) to implement modeling projects in an object-oriented and efficient

way. An early version, originally called "C with Classes," dates back to 1980. As the name C++

suggests, C++ was a derivative of the C programming language. ++ is the increment operator in

C. In 1989, the American National Standards Institute (ANSI) was established to standardize the

C++ programming language. The goal was to get as many compiler vendors and software

developers as possible to agree on a single language description to avoid confusion due to

multiple dialects. In 1998, the International Organization for Standardization (ISO) approved the

standard for C++ (ISO/IEC 14882)[9].

C++ is not a purely object-oriented language but a hybrid that contains the functionality of the C

programming language. This means that you have all the features that are available in C:

 universally usable modular programs

 efficient, close to the machine programming

 portable programs for various platforms.

The large quantities of existing C source code can also be used in C++ programs. C++ supports

the concepts of object-oriented which are:

 data abstraction, that is, the creation of classes to describe objects

 data encapsulation for controlled access to object data

 inheritance by creating derived classes (including multiple derived classes)

 polymorphism (Greek for multiform), that is, the implementation of instructions that can

have varying effects during program execution.

Object-oriented programming offers several major advantages to software development:

 reduced susceptibility to errors: an object controls access to its own data. More

specifically, an object can reject erroneous access attempts

 easy re-use: objects maintain themselves and can therefore be used as building blocks for

other programs

 low maintenance requirement: an object type can modify its own internal data

representation without requiring changes to the application.

27

3.7. TCL

Tcl stands for Tools Command Language. This name reflects the strengths of Tcl as a scripting

language for merging other applications into new applications. Tcl was developed by Dr. John

Ousterhout while at UC Berkeley. He and his group developed a modeling package that required

a macro language to manage. After creating several only languages that are suitable for one

application and not suitable for another, I decided to create an interpreter library that could be

combined with other projects. This provided a common parsing package that could be used with a

common base language for all projects and applications [10].

Tcl is a multifaceted language. You can use Tcl as a command-scripting language, a powerful

multi-platform interpretation language, a rapid prototyping platform, or an interpreter call library

for other projects. Tcl's simple syntax makes it quick and easy to write one-time scripts [to

replace repetitive sets of commands or graphical user interface (GUI) clicks]. Tcl's modularity

and encapsulation capabilities help you develop large projects (more than 100,000 lines of code).

Tcl's extensibility makes it easy to use Tcl as the default language for a wide range of projects,

from machine control to database applications, electronic design applications, network test

devices, and more. Tcl is a free software and commercially supported package. The core Tcl

language is maintained by a group of volunteers around the world, and support is available for

purchase from Active State, Noumena Corporation, Cygnus, Proc Place, and more. The current

central site for information on Tcl/Tk is www.tcl.tk. The source code repository and some binary

snapshots are at http://sourceforge.net/projects/tcl/ [10].

http://sourceforge.net/projects/tcl/

28

Chapter 4. Results

AMD Xilinx Inc. follows agile model of Software development for Vitis Software. This approach

is based on iterative0model. Agile methods divide0the task into0smaller iterations. The part does

not require direct long-term0planning. The0scope of the project are defined0at the beginning0of

the development0process. The plan for0the number of0iterations, the duration and extent of each

iteration0is well defined0depicted in Figure 13 Agile Software Development methodology [7].

Figure 13 Agile Software Development methodology [14]

 In Jira as shown in Figure 14 Agile epic vs. initiative vs. story A story, also known as a

"user story," is a short0requirement or requirement created0from the0end-user's

perspective [7].

 An epic is a large unit of work that can be divided into a series of small tasks (called

stories).

 Initiatives are a collection of epics working towards a common goal.

29

Figure 14 Agile epic vs. initiative vs. story [7]

Figure 15 Work data chart and Figure 16 Contributed Tools shows the amount of work carried

out and the backed tools contributed during the course work of the Internship for Vitis Software.

Figure 15 Work data chart

Figure 16 Contributed Tools

0

3 3

10

11

3

0

2

4

6

8

10

12

14

16

2021.1 2022.1 2022.2

Internship Development Work Data

Stories Change Requests

XSCT

Linkergen
Tool

Program
Flash Tool

Vitis

30

4.1. Story to generate device tree

4.1.1. Introduction

Using XSCT to generate device tree is a common task in Vitis platform creation. For now, it

needs to use a set of XSCT commands by downloading dtg, creating platform, setting OS, etc.

This story will contribute to develop a command to generate Vitis acceleration required dts, dtsi,

dtb and dtbo. Figure 17 Device tree Example is a example of how a device tree looks like the

Node is the core the peripherals are the leaves and the branches are the data paths.

Figure 17 Device tree Example

/ {

 SOC {

 i2c0controller {

 i2c0peripheral-1 {

 };

 i2c0peripheral-2 {

 };

 i2c0peripheral-3 {

 };

 };

 };

};

A device driver is a software that tells the OS and other software running on the hardware how to

make communicate with hardware and making things work.

31

Figure 18 Application Stack

Figure 18 Application Stack shows that device driver communicates with the hardware, but the

Linux kernel is same for all the driver. So Only the device tree changes which helps device driver

to communicate between hardware and the OS kernel. Device0tree is a data0structure that tells

abouth the hardware0on which the software is running. This description readable0by an OS like

Linux_OS so that it does not need to hard0code details of the machine when the hardware

changes.

Linux0uses the DT0basically for platform identification, run-time0configuration like

bootargs0and the0device node population.

32

Figure 19 DTB kernel Interface [12]

Figure 19 DTB kernel Interface shows that a device tree is compiled into a device0tree blob by

the device0tree compiler & which is added to the memory of the hardware, with help of this

device tree blob the OS kernel talks with the hardware using the device driver.

Each0driver or a module in the device0tree is defined by the node and0all its properties0are

defined under0that node. Based on0the driver it can have child nodes or0parent node.

Under the root node typically consists of

1) CPUs0node details

2) Memory0details

3) Have0information data like the kernel parameters0and the location of an image

4) Aliases

5) Nodes that define the buses details

Figure 20 Device Tree Flows shows the device tree flow sequence diagram with Xilinx specific

flow from Vivado design suite to the Linux kernel operating on the Xilinx hardware.

33

Figure 20 Device Tree Flow

4.1.2. CLI Commands developed

createdts

NAME

 createdts - creates device tree.

SYNOPSIS

 createdts [options]

 Create a device tree for the hardware definition file.

OPTIONS

 -platform-name <software-platform name>

 Name of0the software0platform to be generated.

 -board <board name>

 Board name for device tree to be generated.

 Board names available at <DTG Repo>/device_tree/data/kernel_dtsi.

 -hw <handoff-file>

 Hardware0description file to be0used to create the device0tree.

 -out <output-directory>

34

 The directory0where the software0platform needs to0be created.

 Workspace will be default directory, if this option is not specified.

 -local-repo <directory location>

 Location of the directory were bsp for git repo is available.

 Device-tree repo will be cloned from git,

 if this option is not specified.

 -git-url <Git URL>

 Git URL of the dtg repo to be cloned.

 Default repo is https://github.com/Xilinx/device-tree-xlnx.git.

 -git-branch <Git0Branch>

 Git branch to be checked out. Master branch selected default.

 -zocl

 Set zocl flag to enable zocl driver support, default set to False.

 zocl should only be used when the designs are PL enabled.

 Only master and xlnx_rel_v2021.2 branch supports zocl property.

 -overlay

 Set overlay flag to enable device-tree overlay support,

 default set to False.

 -compile

 Specify this option to compile the generated dts to create dtb.

 If this option is not specified, users can manually use dts

 to compile dtb.

 For example,

 dtc -I dts -O dtb -o <file_name>.dtb <file_name>.dts

 Compile0dts(device tree source) or

 dtsi(device tree0source include) files.

 dtc -I dts -O dtb -f <file_name>.dts -o <file_name>.dtb

 Convert dts(device0tree source) to dtb(device tree0blob).

 dtc -I dtb -O dts -f <file_name>.dtb -o <file_name>.dts

 Convert dtb(device tree0blob) to dts(device0tree source).

 -update

 Set update flag to enable existing device tree platform

 to update with new xsa.

NOTE

 This command is a shortcut of creating a device tree domain and

 generate the device tree. It clones device-tree repo, creates a

 platform with device_tree as OS, configure and generate the

 platform to create dts.

 -zocl should only be used when the designs are PL enabled.

 Only master and xlnx_rel_v2021.2 branch supports zocl property.

35

EXAMPLE

 createdts -hw zcu102.xsa -platform-name my_devicetree

 Create a device tree for the handoff-file with

 Default repo as "https://github.com/Xilinx/device-tree-xlnx.git"

 and deault branch as "master".

 createdts -hw zcu102.xsa -platform-name my_devicetree -git-url <Git URL>

 -git-branch <Git Branch>

 Create a device tree for the handoff-file with

 user repo as repo mentioned in <Git URL>

 and user branch as <Git Branch>.

 createdts -hw zc702.xsa -platform-name my_devicetree

 -local-repo /my_local_git_repo

 Create a device tree for the handoff-file and use the local repo.

 createdts -hw vck190.xsa -platform-name my_devicetree

 -out /device-tree_output_directory

 Create a device tree at the out directory specified

 by device-tre output directory.

 createdts -hw zcu102.xsa -platform-name my_devicetree -overlay

 -zocl -compile

 Create device tree for the handoff-file with overlay and zocl node.

 Compile flag compiles the Devicetree Blob file from the DTS.

 createdts -hw zcu102.xsa -platform-name my_devicetree -board <Board Name>

 Creates a device tree adding board value to the library,

 Board names available at <DTG Repo>/device_tree/data/kernel_dtsi.

 createdts -update -hw newdesign.xsa

 Updates existing device tree platform with new xsa.

RETURNS

 None.

4.2. Story to generate linker script from XSA

4.2.1. Introduction:

Vitis IDE has the feature to generate linker script for BareMetal applications. Similarly, we must

add the same feature to XSCT which will enable it generate linker script.

A linker script is a text file consisting of a set of linker directives that tells the linker where to use

memory and how to use it. Therefore, it accurately reflects the memory resources and memory

map of the target device. A linker script controls each link. Such scripts are written in0the linker

command0language. The main purpose0of the linker0script is to explain how to map sections0of

https://confluence.xilinx.com/pages/viewpage.action?pageId=412541547

36

the input file to the output0file and to makes decision about the layout of memory. The0linker

combines the input0files into0a single0output file. The output0file and each input0file have a

special0data format called the object0file format. Each0file is0called an object0file. Output files

are often referred to as executable files. Each0object file specifically has a list of0sections. The

section of the input0file is sometimes called the input0section. Similarly, the section of the output

file is the output0section.

Each0section of the object0file has a name0and size. Most0sections also have0a block of data

associated with them, called section content. Sections can be marked as0loadable. That is, the

content must be loaded into0memory when0the output file is0run. Sections with no content may

be assignable. That is, the area in memory0should be reserved, but0nothing should be

loaded0there (in some cases, this memory should be zero). Sections that are neither loadable nor

assignable usually contain some kind of debug information.

Each loadable or assignable output0section has two0addresses. The first is the VMA0or virtual

memory0address. This is the address that the0section has when the output0file is executed. The

second0is the loadable memory address or load0memory address. This is the0address where the

section0will be loaded. In most0cases the two addresses0will be the same. An0example of when

they0might be different0is when a data0section is loaded into Read0Only Memory, and then

copied into Random0Access Memory when the program0starts up (this0technique is often0used

to initialize0global variables in a Read Only Memory based system). In0this case0the Read Only

Memory address0would be the Loadable Memory Address, and the Random Access Memory

address0would be the virtual memory address.

4.2.2. Commands Developed:

Figure 21 Build Flow shows the build flow for xilinx devices Figure 22 Linker script GUI Basic

Window available under Xilinx > option in the toolbar of the Vitis Unified software shows the

available GUI tool to create and edit a linker script which has the memory map view of the

memory available in the .xsa design option to change memory of the section and stack & heap

size. Figure 23 Linker script GUI Advanced Window is the advance window for the advance user

to change the subsection of the linker script to specific size and memory.

Figure 21 Build Flow

37

Figure 22 Linker script GUI Basic Window

Figure 23 Linker script GUI Advanced Window

lscript

NAME

 lscript - create linkerscript.

38

SYNOPSIS

 lscript <sub-command> [options]

 Create0a Linkerscript, or perform0various other operations0on

 the linkerscript, based0on <sub-command> specified.

 Following sub-commands are supported.

 memory - List of the memories supported by the active domain.

 section - Lists and edit the sections available.

 def-mem - Returns default memory for the section type.

 generate - Generate a linkerscript.

 Type "help" followed by "lscript sub-command", or "lscript sub-

command" followed

 by "-help" for more details.

OPTIONS

 Depends on the sub-command. Please refer to sub-command help for details.

EXAMPLE

 Please refer to sub-command help for details.

RETURNS

 Depends on the sub-command. Please refer to sub-command help for details.

lscript memory

NAME

 lscript memory - List supported memory.

SYNOPSIS

 lscript memory [options]

 List of the memories supported by the active domain.

OPTIONS

 -supported-mem

 Returns supported memory regions for each section.

EXAMPLE

 lscript memory

 This command returns the list of memories available in the active

domain.

 lscript memory -supported-mem

 Returns the section wise supported memories.

RETURNS

 List of the memories supported by the active domain in tabular format.

lscript section

39

NAME

 lscript section - List the sections available.

SYNOPSIS

 lscript section [options]

 List, add, edit the sections available in the active domain.

OPTIONS

 -name <section-name>

 Name of the section to be edited.

 -mem <memory-region>

 Name of the memory region to be used for the section.

 -size <section-size>

 Size of the section.

 -add

 Add a new section.

 -type

 Type of new section to be added.

 Supported types are CODE, DATA, STACK, HEAP.

EXAMPLE

 lscript section

 List of the sections available in the active domain along with the

type,

 size and assigned memory.

 lscript section -name <section-name> -mem <memory-region> -size <section-

size>

 Edit the section-name with memory and size.

 lscript section -mem <memory-region> -size <section-size>

 Edit all the sections with memory and size.

 lscript section -add -name <section-name> -mem <memory-region> -size

<section-size>

 -type <section-type>

 Add a new section with section-name, memory and size.

RETURNS

 List of the sections with corresponding memory and size in tabular format,

 when no options or args are specified.

 Nothing, if a section sucessfully edited or added.

 Error if the section cannot be edited or added.

lscript def-mem

40

NAME

 lscript def-mem - Returns the default memory region for the section type.

SYNOPSIS

 lscript def-mem <memory-type>

 Return the default memory-region of the section type.

OPTIONS

 -code

 Return default code memory.

 -data

 Return default data memory.

 -stack

 Return default stack & heap memory.

EXAMPLE

 lscript def-mem -stack

 Return default stack & heap memory-region.

RETURNS

 Return the default memory-region of the section type.

lscript generate

NAME

 lscript generate - Generate a linkerscript.

SYNOPSIS

 lscript generate [options]

 Generate a linkerscript.

OPTIONS

 -name <linkerscript name>

 Name of the linkerscript file.

 Default linkerscript will be "newlscript.ld" if -name not provided.

 -path <path>

 The directory where the linkerscript needs to be created,

 Default path will be pwd if -path not provided.

EXAMPLE

 lscript generate -name <linkerscript name> -path <path>

 This command generate a linkerscript with the changes at path

provided,

 Otherwise generate default linkerscript with name "newlscript.ld".

RETURNS

 Nothing.

41

xsct% lscript memory

===

NAME BASE_ADDR SIZE

===

psu_ddr_0_MEM_0 0x0 0x7FF00000

psu_ddr_1_MEM_0 0x800000000 0x80000000

psu_ocm_ram_0_MEM_0 0xFFFC0000 0x40000

psu_qspi_linear_0_MEM_0 0xC0000000 0x20000000

xsct% lscript memory -supported-mem

===

TYPE SUPPORTED MEMORY

===

code_sections psu_ddr_0_MEM_0

 psu_ddr_1_MEM_0

 psu_ocm_ram_0_MEM_0

 psu_qspi_linear_0_MEM_0

data_sections psu_ddr_0_MEM_0

 psu_ddr_1_MEM_0

 psu_ocm_ram_0_MEM_0

stack_section psu_ddr_0_MEM_0

 psu_ddr_1_MEM_0

 psu_ocm_ram_0_MEM_0

heap_section psu_ddr_0_MEM_0

 psu_ddr_1_MEM_0

 psu_ocm_ram_0_MEM_0

xsct% lscript section

==

TYPE NAME SIZE ASSIGNED MEMORY

==

CODE text 0x0 default

DATA rodata 0x0 default

DATA rodata1 0x0 default

DATA sdata2 0x0 default

DATA sbss2 0x0 default

DATA data 0x0 default

DATA data1 0x0 default

DATA fixup 0x0 default

DATA sdata 0x0 default

DATA sbss 0x0 default

DATA bss 0x0 default

STACK stack 0x2000 default

42

HEAP heap 0x2000 default

xsct% lscript section -name text -size 15 -mem psu_ocm_ram_0_MEM_0

xsct% lscript section

===

TYPE NAME SIZE ASSIGNED MEMORY

===

CODE text 0xF psu_ocm_ram_0_MEM_0

DATA rodata 0x0 default

DATA rodata1 0x0 default

DATA sdata2 0x0 default

DATA sbss2 0x0 default

DATA data 0x0 default

DATA data1 0x0 default

DATA fixup 0x0 default

DATA sdata 0x0 default

DATA sbss 0x0 default

DATA bss 0x0 default

STACK stack 0x2000 default

HEAP heap 0x2000 default

xsct% lscript section -add -name nirma_university -size 15 -mem

psu_ddr_1_MEM_0

xsct% lscript section

===

TYPE NAME SIZE ASSIGNED MEMORY

===

CODE text 0xF psu_ocm_ram_0_MEM_0

CODE nirma_university 0xF psu_ddr_1_MEM_0

DATA rodata 0x0 default

DATA rodata1 0x0 default

DATA sdata2 0x0 default

DATA sbss2 0x0 default

DATA data 0x0 default

DATA data1 0x0 default

DATA fixup 0x0 default

DATA sdata 0x0 default

DATA sbss 0x0 default

DATA bss 0x0 default

STACK stack 0x2000 default

HEAP heap 0x2000 default

xsct% lscript section -size 14 -mem psu_ddr_1_MEM_0

xsct% lscript section

==

TYPE NAME SIZE ASSIGNED MEMORY

==

CODE text 0xE psu_ddr_1_MEM_0

CODE nirma_university 0xE psu_ddr_1_MEM_0

DATA rodata 0xE psu_ddr_1_MEM_0

43

DATA rodata1 0xE psu_ddr_1_MEM_0

DATA sdata2 0xE psu_ddr_1_MEM_0

DATA sbss2 0xE psu_ddr_1_MEM_0

DATA data 0xE psu_ddr_1_MEM_0

DATA data1 0xE psu_ddr_1_MEM_0

DATA fixup 0xE psu_ddr_1_MEM_0

DATA sdata 0xE psu_ddr_1_MEM_0

DATA sbss 0xE psu_ddr_1_MEM_0

DATA bss 0xE psu_ddr_1_MEM_0

STACK stack 0xE psu_ddr_1_MEM_0

HEAP heap 0xE psu_ddr_1_MEM_0

xsct% lscript generate -name newlscript -path /home/vipulj/VipulJethwa_

4.3. Change Request to add subcommands to program_flash tool

Program0Flash is a SDK0tool used to program0the flash memories0available in the hardware.

Many types of0flash are supported by SDK0for programming.

For Non Zynq0devices – Parallel0Flash (BPI) and Serial0Flash (SPI) from various0makes such

as Micron, Spansion.

For Zynq0Devices – QSPI,0NAND & NOR. QSPI0can used in different0configurations such as

QSPI0SINGLE, QSPI0DUAL PARALLEL, QSPI DUAL0STACKED.

Figure 24 Program Flash Sequence Diagram shows the sequence diagram of the tools to flash the

application to the memory using Xilinx toolchain Figure 25 Linux Embedded Booting Sequence

Diagram is the booting process after the user application is flashed to the memory. The booting

happens with power on with FSBL copying the SSBL and handing over the hardware resource to

the OS.

Figure 24 Program Flash Sequence Diagram

44

Figure 25 Linux Embedded Booting Sequence Diagram

Work is being carried out regarding adding subcommands for the program flash tool.

With multiple image/image component programming support the recommended flow is as

follows:

1) Erase entire cfgmem

2) Program multiple image/image components at random offsets

Currently, program_flash only supports "use_file" address range. A user can use erase_offset and

erase_size options along with "use_file" range to tell the xicom engine which parts of flash

should be erased before programming the multiple files.It is also possible for user to not specify

any erase_offset/size with "use_file" range and in this case xicom engine will calculate nearest

erase offset and size required to program files at given programming offsets.

This CR is to add an address_range option to program flash so that user can follow the

recommended flow (of using "entire" cfgmem).Basically, user should have an option to erase

entire cfgmem and not worry about providing erase_offset/size list or rely on auto-calculated

erase offset-size ranges.

****** Xilinx Program Flash

****** Program Flash v2022.2.0 (64-bit)

 **** SW Build 3536266 on 2022-05-04-02:34:44

 ** Copyright 1986-2022 Xilinx, Inc. All Rights Reserved.

45

Usage: program_flash <FLASH OPTIONS> <CABLE & DEVICE OPTIONS>

 [FLASH OPTIONS]:

 -f <image file>

 Image to be written onto the flash memory

 -offset <address>

 Offset within the flash memory at which the image should be written

 -no_erase

 Do not erase the flash memory before programming

 -no_program

 Skip programming the flash. Can be used to verify the flash content

with image file

 -erase_only

 Only erases the flash as per size of the image file

 -blank_check

 Check if the flash memory is erased

 -verify

 Check if the flash memory is programmed correctly

 -fsbl <fsbl file>

 Specify fsbl file (Zynq & ZynqMP only)

 -pdi <pdi file>

 Image to initialise versal devices(Versal only)

 -erase_sector <size>

 For flashes whose erase sector is other than 64KB (size in bytes)

 -frequency <frequency in Hz>

 Jtag Cable frequency in Hz

 -flash_type <type>

 Supported flash memory type

 -emmc_partition_size <32|128|1024|2048>

 Size of the emmc partition

 32 ('small' - size upto 32MB)

 128 ('large' - size upto 128MB)

 1024

 2048

 -partition_type <fat32|raw-boot-1|raw-boot-2|raw-user>

 Type of emmc partition

 -partlist <bpi|spi> <micron|spansion|macronix|winbond|ISSI>

 List all the flash parts for Non-Zynq devices

 - program_flash -partlistList all flashes

 - program_flash -partlist bpi micron List Micron BPI flashes

 - program_flash -partlist spi spansion List Spansion SPI

flashes

 -jtagtargets <cable type>

 Returns the available targets on the Jtag chain

 target information is displayed in the below format

 " Target ID Target Name (device_name idcode) "

 -target_name <Target Name>

 Use "program_flash -jtagtargets -url <>" command to list all the

available target_names

46

 -target_id <Target ID>

 Use "program_flash -jtagtargets -url <>" command to list all the

available target_ids

 -url <URL of the TCF agent>

 -multi_image

 Program multiple images at offsets provided by -offsets list

 (only supported for QSPI flash)

 -offsets

 List of offsets for files being programmed with -multi_image flow

 -erase_offsets

 List of erase offsets for -multi_image programming flow

 -erase_sizes

 List of erase sizes for -multi_image programming flow

 EXAMPLE:

 1. Zynq (QSPI)

 program_flash -f BOOT.bin -fsbl fsbl.elf -flash_type qspi-x4-single

 -blank_check -verify -target_name jsn-DLC10-0000153f74cd01-4ba00477-0 -url

tcp:localhost:3121

 2. Non-Zynq (BPI)

 program_flash -f hello.mcs -flash_type 28f00ap30t-bpi-x16 -blank_check

 -verify -target_id 2 -url tcp:localhost:3121

3. Zynq MP (QSPI Dual Parallel)

 program_flash -f BOOT.bin -fsbl fsbl.elf -flash_type qspi-x8-dual_parallel

 -blank_check -verify -target_name jsn-JTAG-SMT2NC-210308A3B4B7-5ba00477-0

-url tcp:localhost:3121

4. Zynq MP (emmc)

program_flash -f BOOT.bin -fsbl fsbl.elf -flash_type emmc -

emmc_partition_size large -blank_check -verify -target_id 3 -url

tcp:localhost:3121

5. Versal (OSPI)

program_flash -f BOOT.pdi -pdi init.pdi -flash_type ospi-x8-single

-blank_check -verify -target_id 2 -url tcp:localhost:3121

6. Versal (QSPI) multiple image at random offsets

program_flash -f BOOT.bin image.ub boot.scr -offsets 200 1515120 3030240

-erase_offsets 0 1515120 3014656 -erase_sizes 1572864 1515120 1515120 -

pdi init.pdi -flash_type qspi-x4-single -blank_check -verify -target_id

2 -url tcp:localhost:3121

47

Chapter 5. Conclusion & Future Scope

This Internship aimed to develop embedded software for the Vitis0Unified software by Xilinx

Inc. Work focuses on commands for Xilinx0Software Command-Line0Tool (XSCT). XSCT is an

scriptable CLI to Xilinx Vitis.

The work that have been done in the software has given me a better understanding about the

components of the Vitis Unified Software and products and technologies that Xilinx has been

working. There are many customers who are using the Xilinx devices to develop their

applications and now Xilinx has moved from a FPGA company to a Solution company that has

created many opportunities and paths that can be explored. The product profile of Xilinx has a

solutions as per the needs of the customers. With Increase in the demands and users there are

future scope and many features can be added to Vitis that can improve its functionality.

Contribution has been done for developing commands for the XSCT ie. Vitis CLI depending on

the customer requirements and company product roadmaps and in area of Vitis Software backend

tools. Backend tools consist of various embedded development tools like debuggers , bootable

image creators etc.

As Future scope I will be working for the remaining period of the internship to support Xilinx

next generation Versal device which will be launching in future. Along with adding a mechanism

to platform create command to add properties to the platform that can be used by the internal

team. For 2022.2 release work will be carried out on to provide part-specific AIE hardware

metadata in XSA - Vitis_XSCT.

48

Chapter 6. Trainings & Certification

Along with Internship following courses were taken for extra learning efforts. Following are the

certifications from the internal training team regarding the courses carried out.

49

50

References

[1] Xilinx. 2022. Xilinx - Adaptable. Intelligent.. [online] Available at:

<https://www.xilinx.com/> [Accessed 12 March 2022].

[2] "Xilinx Developer Forum (XDF) 2019 Silicon Valley", 2019 [Online]. Available:

https://www.xilinx.com/content/dam/xilinx/imgs/press/media-kits/vitis-pr-release.pdf.

[Accessed: 05- Aug- 2021]

[3] "Vitis Unified Software Platform Documentation", Xilinx.com, 2021. [Online]. Available:

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug1393-vitis-

application-acceleration.pdf. [Accessed: 05- Aug- 2021]

[4] "Xilinx Software Command-Line Tool (XSCT) Reference Guide UG1208 (v2018.2) June 6,

2018", Xilinx.com, 2018. [Online]. Available:

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug1208-xsct-

reference-guide.pdf. [Accessed: 05- Aug- 2021]

[5] "TCF - Eclipsepedia", Wiki.eclipse.org, 2021. [Online]. Available:

https://wiki.eclipse.org/TCF. [Accessed: 05- Dec- 2021]

[6] "Gradle Build Tool", Gradle, 2021. [Online]. Available: https://gradle.org/. [Accessed: 05-

Dec- 2021]

[7] "Jira | Issue & Project Tracking Software | Atlassian", Atlassian, 2021. [Online]. Available:

https://www.atlassian.com/software/jira. [Accessed: 05- Dec- 2021]

[8] "QEMU documentation - QEMU", Qemu.org, 2021. [Online]. Available:

https://www.qemu.org/documentation/. [Accessed: 05- Aug- 2021]

[9] D.Schmidt and S. Huston, C++ network programming. Boston: Addison-Wesley, 2002.

[10] "Tcl Developer Site", Tcl.tk, 2021. [Online]. Available: https://www.tcl.tk/. [Accessed: 05-

Dec- 2021]

[11] "Helix Visual Client (P4V) | Perforce", Perforce.com, 2021. [Online]. Available:

https://www.perforce.com/downloads/helix-visual-client-p4v. [Accessed: 05- Dec- 2021]

[12] "The Most Advanced Debugger for HPC Computing | TotalView by Perforce", Totalview.io,

2021. [Online]. Available: https://totalview.io/. [Accessed: 05- Dec- 2021]

[13] Android Open Source Project. 2022. Device Tree Overlays | Android Open Source Project.

[online] Available at: https://source.android.com/devices/architecture/dto [Accessed 13 May

2022]

[14] "Agile Advantages for Software Development and Your Business", devcom.com, 2022.

[Online]. Available: https://devcom.com/tech-blog/agile-advantages-for-business/. [Accessed:

13- May- 2022]

