
GUI Testing Using AI Automation
Framework

Submitted By

Dipendra K.Dabhi

20MCEC03

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

MAY 2022

GUI Testing Using AI Automation
Framework

Major Project

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology in Computer Science and Engineering

Submitted By

Dipendra K.Dabhi

(20MCEC03)

Guided By

Dr VIJAY UKANI

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

MAY 2022

Certificate

This is to certify that the major project entitled “GUI Testing Using AI Automation

Framework” submitted by Dipendra K.Dabhi (20MCEC03), towards the partial

fulfillment of the requirements for the award of degree of Master of Technology in Com-

puter Science and Engineering of Nirma University, Ahmedabad, is the record of work

carried out by him under my supervision and guidance. In my opinion, the submitted

work has reached a level required for being accepted for examination. The results embod-

ied in this Major Project Part-II, to the best of my knowledge, haven’t been submitted

to any other university or institution for award of any degree or diploma.

Dr Vijay Ukani Dr Sudeep Tanwar

Internal Guide & Associate Professor Professor & PG Coordinator (M.Tech - CSE)

CSE Department CSE Department

Institute of Technology Institute of Technology

Nirma University, Ahmedabad Nirma University, Ahmedabad

Dr Madhuri Bhavsar Dr Rajesh N Patel

Professor & Head Director

CSE Department Institute of Technology

Institute of Technology Nirma University, Ahmedabad

Nirma University, Ahmedabad

iii

Statement of Originality
———————————————————————————————————————

I, Dipendra K.Dabhi, 20MCEC03, give undertaking that the Major Project enti-

tled “GUI Testing Using AI Automation Framework” submitted by me, towards

the partial fulfillment of the requirements for the degree of Master of Technology in

Computer Science & Engineering of Institute of Technology, Nirma University,

Ahmedabad, contains no material that has been awarded for any degree or diploma in

any university or school in any territory to the best of my knowledge. It is the orig-

inal work carried out by me and I give assurance that no attempt of plagiarism has

been made.It contains no material that is previously published or written, except where

reference has been made. I understand that in the event of any similarity found sub-

sequently with any published work or any dissertation work elsewhere; it will result in

severe disciplinary action.

———————–

Signature of Student

Date:

Place:Ahmedabad

Endorsed by

Dr Vijay Ukani

(Signature of Guide)

iv

17/05/2022

Acknowledgements

It gives me immense pleasure in expressing thanks and profound gratitude to Dr Vijay

Ukani, Associate Professor, Computer Science and Engineering Department, Institute

of Technology, Nirma University, Ahmedabad for his valuable guidance and continual

encouragement throughout this work. The appreciation and continual support he has

imparted has been a great motivation to me in reaching a higher goal. His guidance has

triggered and nourished my intellectual maturity that I will benefit from, for a long time

to come.

It gives me an immense pleasure to thank Dr Madhuri Bhavsar, Hon’ble Head

of Computer Science And Engineering Department, Institute of Technology, Nirma Uni-

versity, Ahmedabad for her kind support and providing basic infrastructure and healthy

research environment.

A special thank you is expressed wholeheartedly to Dr Rajesh N Patel, Hon’ble

Director, Institute of Technology, Nirma University, Ahmedabad for the unmentionable

motivation she has extended throughout course of this work.

I would also thank the Institution, all faculty members of Computer Science and

Engineering Department, Nirma University, Ahmedabad for their special attention and

suggestions towards the project work.

- Dipendra K.Dabhi

20MCEC03

v

Abstract

In this research project, I have focused on automation testing, which is done on

the web or mobile applications that are based on the graphical user interface (GUI). In

the current situation, all the testing that is performed on the web application or the

mobile application is done manually. It is very time-consuming and not that accurate

to decide whether all the functionality of the web application or mobile application is

working properly or not. Buttons, drop-down menus, click, and entered text fields that

are necessary are filled properly or not. If the other exceptions that may occur during the

interaction with the application are working properly or not. All possible tests are needed

to check the quality of the web application or mobile application. Automation testing is

a new technique that solves this issue of testing all the functionality of the application

by automating all the tests that check the working of the particular module and giving

results according to the input given, checking with the already available results, and

passing the test case according to this. This will help the organizations to develop the

application faster and test that application automatically so the manual efforts can be

reduced and get better results. It also gives better results for continuous integration,

continuous delivery, and continuous deployment (CICD) approaches.

vi

List of Figures

4.1 System Overview . 12
4.2 Workflow . 13
4.3 flow of solution . 13

5.1 The IC-CAP Model . 15
5.2 MODEL OF DATA-VIEWER . 15
5.3 Parallel Execution . 16
5.4 Previous state . 16
5.5 Current state . 16
5.6 CI/CD Jenkins Pipeline . 17

6.1 Results of the Automated Tests . 19
6.2 Win10 Result . 19
6.3 Suse12 Result . 19
6.4 Win10 Result . 19

vii

List of Tables

6.1 Results of the Automated Tests . 18

viii

Contents

Certificate iii

Statement of Originality iv

Acknowledgements v

Abstract vi

Abbreviations vii

List of Figures vii

List of Tables viii

1 Introduction 1
1.1 Problem Summary and Introduction . 1
1.2 Problem Specification . 2

1.2.1 Need Analysis . 2
1.3 Scope of Work . 3

2 Literature Survey 4
2.1 Summary of Related Researches . 4

3 Dataset Description 10
3.1 Characteristics of the dataset . 10

4 Proposed Method 11
4.1 Proposed Research Work . 11

4.1.1 Eggplant DAI . 12
4.1.2 Eggplant Agent . 12
4.1.3 Eggplant Functional . 12
4.1.4 System Under Test . 12

4.2 Workflow . 13

5 Implementation 14
5.1 Flowchart Models . 14

5.1.1 The IC-CAP Model . 15
5.1.2 MODEL OF DATA-VIEWER . 15

5.2 Parallel Execution . 15
5.3 Previous state vs Current state . 16

ix

5.4 The Benefits of CI/CD with Eggplant 17
5.5 CI/CD Jenkins Pipeline . 17

6 Results 18
6.1 Results of the Automated Tests . 18

7 Limitations and Future Work 20
7.1 Future Work . 20

8 Conclusion 21

x

Chapter 1

Introduction

In this chapter, we discuss GUI automation testing’s importance in software develop-

ment and quality assurance. The chapter discusses the reasons why automation testing

plays an important role in the continuous integration and continuous delivery/continuous

deployment (CICD) approach.

1.1 Problem Summary and Introduction

In the current software development life cycle, testing is done at the end of the whole

software development life cycle. If we find any bug in the software, then it needs to

pass through all the previous steps, which is very time-consuming. And in this faster

development, a single bug can also change the major consensus of the application. If

the single functionality of an application is not working, then the user can try the other

application. To engage the user with the application, the developer must fix bugs and

features quickly and provide better quality assurance to the user. To solve this problem,

the continuous integration and continuous delivery/continuous deployment (CICD) ap-

proaches are used to provide faster deployment of the new features of the application,

and continuous testing of the application is done to resolve any bugs found in the new

application. There are two types of testing that can be done.

1) manual testing :- Manual testing refers to the process of manually testing software

for defects. to ensure that the application’s features behave correctly The tester simulates

as end-user and tests the application.

2) automation testing :- Automation testing is carried out by running test cases

through special automation testing software tools. GUI automation testing aims to reduce

1

manual testers’ efforts so that they only need to write manual testing and automation

scripts once.

In CICD, manual testing does not give you better results because it takes time to

test the whole application and continuous testing is not possible manually. So GUI

automation testing using AI will be useful where the GUI of the application will be

tested automatically by the pre-return automation code, which tests the GUI and gives

the application report faster compared to manual testing, which reduces the manual

efforts of the tester. To automate GUI testing using AI, one needs to write code and test

the application multiple times.

1.2 Problem Specification

In traditional software development, life cycle testing of the application is done at the

end of the whole application integration. But after the end of the integration, all the

functionality of the application is developed. Testing the application is difficult because

testing the entire software application takes time. During software application testing,

it is necessary to test all of the GUI elements of the software application, verify the

functionality of the specific module, check all of the settings, and consider any specific

needs of the application. Any single bug in the application could have a significant impact

on the software’s quality. So, manual testing is time-consuming and not that accurate in

terms of testing any big application that has many modules and many functionalities.

There must be accuracy needed at the testing site to test all the GUI elements and the

functionality of the application. GUI Automation Testing will solve this by automating

the test, which is currently being done manually. By creating the automated scripts, the

test gets all the GUI elements tested and provides the results as pass or fail, or any other

error that shows the abnormal behaviour of the particular module and that we can easily

give to the developer to solve that bug.

1.2.1 Need Analysis

The needs analysis of our study is listed below:

• Demonstrating the technical efficiency of the GUI automation testing approach

to accurate testing of the application other than manual testing.

• In one step, with minimal manual effort, you can create a very simple-to-execute

2

test.

• Examination of the GUI automation testing using an automation framework like

Eggplant to automate the testing of the application.

• To provide quality and bug-free applications, GUI automation testing is a very

advanced step.

1.3 Scope of Work

To overcome the problem, I came up with a solution implemented in the form of GUI

automation testing using AI techniques. To perform this method, eggplant functional,

eggplant dai, and eggplant agent are used. This automated test case results in an output

that whether the application has any bugs or has any functionality that is not working

properly as per the input. During continuous testing

3

Chapter 2

Literature Survey

In this chapter, I’ve included a summary of research papers on testing and automation

testing, as well as how other researchers did it, what approach they took, and the benefits

and drawbacks of those approaches.

2.1 Summary of Related Researches

1) A Metric Framework for the Gamification of Web and Mobile GUI Testing[2, 1]

• Approach :- This paper describes the gameplay suggestions and GUI tests. We

define ”tool and website” as fundamental method concepts, metrics sets, and points.

To enable the e-gamified method, system and visual feedback are required. Finally,

we have discussed the potential implications. I imagine a road test indicator.

• Objective :- The main idea is in our GUI gamification test set. That is a man-

made sequence checker in the GUI, which simulates user interaction with AUT (and

thus, usually, this is done from the home/main screen).

• Methodology :- GUI Gamification metrics based on the test

• Advantages :- Modern domain testing is distinguished by the use of a visual

user interface (i.e., GUI testing), which focuses on visual interaction with tested

applications. The tester should only interact with the system through the user

interface during GUI testing. This allows the tester to see the field from the same

perspective. The final product is being worked on by the end-user. As the product

develops, it is critical to test this functionality. is a website or smartphone app that

4

displays the feature It is still in its early stages, and many people are contacting it.

The GUI is used to create users.

• Future Scope conclution :- We outlined the framework for incorporating gami-

fication concepts into GUI test tools in this paper and created conceptual proofs as

an existing object plugin. Scout created a test tool to apply concepts to web and

mobile applications.

2) How to Create a GUI Map Novel Using a Supported Image Widget detection and

segmentation [9, 7]

• Approach :- Icons are tested in order to achieve a different GUI component, namely

higher accuracy. The Java GUI was used for the majority of previous work. We

identified the widgets used in our work. Image processing

• Objective :- Consistent software testing This is a costly process that can cost up to

50 percent of the cost of software development and even more on the web, making

it critical for security systems. As a result, we will be able to cut costs. Software

testing is carried out by converting an existing system into an automatically running

system, which is then slowed down. Personal blunder System automation can fail

due to errors or omissions, including update failure. Importantly, the automation

system has the ability to leave some ambiguity. Changes in assessment quality due

to differences in individual abilities

• Methodology :- Python accesses various GUI components that use the object-

finding algorithm via OpenCV.

• Advantages :- It proposes a novel approach to detecting deception. PyAutoGUI

automation was used. A wide range of click-through links to a given URL are

supported by the Python mouse control library. When you get the screenshot,

The KNN section can be used to identify new features and GUI divisions using

the OpenCV method. In the event that the outcome is If the screenshot does not

match the original displayed GUI, the GUI may appear to be a link or a button.

An input box can be identified when the cursor image is activated. It can also be

identified as ”Composition Box” if a list of items is displayed on the same page.

5

• Dataset :- The training is perfect. The dataset contains both input and response

values.

• Future Scope and Conclusion :- This allows you to test the accuracy of various

real-time websites. We’ve added features to ten real-time websites. classification

and identification accuracy The most important contribution is to reduce staff in-

vestment so that we can reduce training and testing time without involving humans.

User interaction automation, real-time web application testing, and in-depth user

experience are also discussed in this research. In comparison to previous work, it is

portable, simplified, and improved. In the future, most real-time scenarios will be

used to calculate the accuracy of the GUI acquisition during acquisition, the accu-

racy of the GUI configuration during partitioning, and the probability of including

the test and all analyses.

3) Automatically Generating Test Scripts for GUI Testing[8, 10]

• Approach :- We present a standard study aimed at reducing the time it takes to

create test documents. A method known as ”download and play” records screen

actions of user usage and extracts them into text to assist in the development of

test documents. One tool that employs this method is Selenium IDE. By the way,

compared to directly creating test text by programmes, users who do not have

editing skills can create test text using the GUI.

• Objective :- To quickly release applications in a short period of time, it is critical

to use an automated software test, which requires many hours of development.

However, because creating the test documents required for automatic testing takes

a long time, the developed teams are too small to be involved in introducing flexible

testing tools. We propose a method for checking text in application source code

and usable files using direct and flexible analysis in this paper. Experiment results

show that the proposed method can reduce the number of human hours by about

61 percent when compared to the traditional method of creating test manuscripts.

• Methodology :- test script programs because it is possible to create test documents

via GUI.

6

• Advantages :- We were able to reduce the effort by using the method proposed.

Approximately 61 percent faster than the standard (productive) method of exam-

ining documents using Selenium IDE).

• Dataset :- Screen transition

• Future Scope and Conclusion :- We have created an automated testing pro-

duction method. The purpose of the source code and test objectives is to solve a

problem that requires time to create test documents. [14, 3]

4) Perfective Pervasive Computing Software Environment: GUI-Oriented Automated

Test Platform[6, 5]

• Approach :- With comprehensive and continuous applications in computer science

development. Software testing [12, 11] is an important phase within the software

lifecycle. It is shown to be automatic.Because automated testing can only perform

tests, it can save up to 80

• Objective :- Graphical User Interfaces (GUIs) are essential natural components

of the software for full computers and applications. This paper suggests a solution

called GUI Testing Architecture (GUITA) in GUI-focused auto-checking, built on

a platform that combines ATS with Winkunner ”by socket visual.” By default, edit

the file and upload it A successful GUI map can also be manipulated to carry out

a corresponding test automatically. The solution is guaranteed by an effective and

feasible GUI direction method automatic retrieval test, which promotes efficiency

and profitability beyond traditional manual testing.

• Methodology :- Encapsulating WinRunner in the integrated GUITA framework

• Dataset :- The unified framework of GUITA

• Future Scope and Conclusion :- We will strengthen and improve the capacity

of GUITA next time to gear it up for those who are not good at coding with TSL

script. At the same time, due to the incredible WinRunner hole that sees those

unfamiliar parts of the Web interface properly, we are going to improve more app

methods to solve this problem. In other words, GUITA offers an inexpensive and

7

possible way to test the GUI and other applications for the company successfully. In

addition, this test structure is very suitable for auto-detecting test retrieval targeted

at GUIs.

5) Automated GUI Testing for Android News Applications.[4, 13]

• Approach :- We want to see if the provided Android phone can display the news

app as expected if a good news app is provided. A specific Android phone could be a

new type of smartphone, a standard smartphone, a smartphone with new software,

or something else entirely. The accuracy and reuse of test terms are important to us.

We designed and implemented FLAG, a fully automated mobile GUI testing tool,

in this case to perform tests on Oracle reusable without sacrificing test accuracy.

For human use, the world automates the process of creating test scenarios and

simulates user touch and external screen verification. FLAG began by analysing

the GUI structure of a news application and creating test scenarios for all possible

GUI functions.

• Objective :- FLAG (Automatic Mobile GUI Check) introduces a GUI test tool

that aims to make the test oracle reusable without compromising test accuracy.

Furthermore, FLAG generates the entire testing process without any human in-

tervention, including production test conditions, user touch simulation, and veri-

fication results. Not only are news apps popular, but they also strongly support

popular user interactions such as tapping, scrolling, distributing, and sharing. To

test flag performance, we chose Android for five commercial phones and five popular

news apps in our review.

• Methodology :- FLAG overview, test case generator, touch player, The oracle

for testing

• Advantages :- MSN News App test prediction accuracy

• Dataset :- test oracles

• Future Scope Conclusion :- VERIFY that the test oracle can be reused without

jeopardising the test’s accuracy. The procedure begins with a Test Case Generator,

which can automatically generate test cases, followed by a Gesture A Player, which

8

can reproduce all functions in test cases, and finally, a Test Oracle, which can

compare the display from a test device with the image from Oracle to determine

the test result. Our tests revealed that FLAG had an average accuracy of 95.20

percent, which is significantly higher than 52.6 percent of the time and 5.78 percent

for SPAG-C.

9

Chapter 3

Dataset Description

Manually collected GUI images of the application have been used for GUI automation

of the IC-CAP. This dataset has a total of 3000 png images of the GUI elements. These

3000 images are GUI elements of IC-CAP like buttons, menus, icons, and plots, and those

images are taken from both the SUT (System Under Test) Windows system and the Linux

system. Because the GUI of the application can be changed according to the SUT, the

automation scripts for the application dataset are needed to be created according to the

test and which GUI elements are required to be tested. The total size of the dataset can

go up to 100–500 MB.

3.1 Characteristics of the dataset

• The dataset includes almost all the png images of IC-CAP elements that are needed

to test.

• This data set has all the images labeled with their respective elements and in a

proper hierarchy, making it easy to code and detect the elements from the screen

and test those elements.

10

Chapter 4

Proposed Method

In this chapter, we discuss which methods I proposed and which automation framework

is used to automate the tests for which applications. How can this be implemented and

what are the things to be done in which way the proposed work is going to be performed?

4.1 Proposed Research Work

• In the testing for a particular application that is a web-based application or mobile-

based, the features of the application must work properly.

• If any functionality of the software or the mobile application is not working prop-

erly, then the company can lose a valuable customer. Because the quality of the

software application is important for the longevity of the software application, fre-

quent testing is necessary. If the software application has not been tested in recent

times, then there is a possibility of getting some bugs. If those bugs are not fixed

as soon as possible, the quality of the software application will be compromised.

• So to solve this issue, companies are moving towards the Continuous Integration and

Continuous Delivery/Continuous Deployment (CICD) approach, which is different

from traditional software development, where the software application is ready to

be released at any time during development. Manual testing is not useful for this

approach because it is difficult to test frequently with manual testing because it

takes time. Automation testing is required to solve this problem. Eggplant is the

automation testing framework. It is useful to create an automation test, which was

done manually before. Eggplant employs the SenseTalk Language.

11

• Eggplant components are used in IC-CAP GUI Automation.

1) Eggplant DAI

2) Eggplant Agent

3) Eggplant Functional

4) System Under Test

4.1.1 Eggplant DAI

• Eggplant Digital Automation Intelligence (DAI) uses a model-based approach to

combine automated exploratory testing with directed test automation. The Egg-

plant AI model is flowchart-based, which shifts focus from coding to the overall user

experience.

4.1.2 Eggplant Agent

• The Eggplant Agent creates and connects the Eggplant Function and the Eggplant

DAI web application.

4.1.3 Eggplant Functional

• Eggplant Functional is a test automation tool that connects to the system under

test (SUT), runs scripts, and enables scripting. Eggplant Functional

4.1.4 System Under Test

• The System which your testing is called System Under Test

Figure 4.1: System Overview

12

4.2 Workflow

• First, create a manual test case for the system.

• Capture the required GUI images for the test case.

• Write the automation scripts that use the GUI images to automate the test case.

• Then create the model for this test case for better visualization.

• Then attach the script to the model and run it, so every time you need to test

this system, there is no need to do it manually. It will be done by this model

automatically.

Figure 4.2: Workflow

Figure 4.3: flow of solution

13

Chapter 5

Implementation

In this chapter, we discuss the IC-CAP application we are testing on and how much

implantation has been done and what the results are of those automated tests.

The industry standard Device Modeling (IC-CAP) software is used for device modelling

on the industry standard DC and RF semiconductors. The Analysis Program and Inte-

grated Circuit Characterization (IC-CAP) high speed/digitalis used by extracting accu-

rate compact models, power RF applications, and analogue signals.

5.1 Flowchart Models

• From the current flowchart, we can see that the green dot shows that this feature

of the IC-CAP Application is automated and the other is remaining. Then all

the actions shown in the flowchart are used in different test cases which test the

functionality of that GUI element and check its working.

• We try to replicate the exact look of IC-CAP GUI elements in the Eggplant DAI

and add scripts based on their features. The actions are attached to automation

scripts.

• All menus, such as the file menu, edit menu, and so on, are linked with their

respective menu icons and toolbar icons and are also automated in accordance with

the IC-CAP’s GUI.

• IC-CAP GUI Automation Model on Eggplant DAI

1) The IC-CAP Model

14

2) MODEL OF DATA-VIEWER

5.1.1 The IC-CAP Model

Figure 5.1: The IC-CAP Model

5.1.2 MODEL OF DATA-VIEWER

Figure 5.2: MODEL OF DATA-VIEWER

5.2 Parallel Execution

• To test the automation scripts on the 3 different SUTs at the same time, we required

3 agents, and all of them had different port numbers. In Drive Mode, Eggplant

Functional All SUTs are linked to their own DAI agents.

15

Figure 5.3: Parallel Execution

5.3 Previous state vs Current state

• In the previous state, version control and the build product were automated, while

the manual testing and manual updating of tests under Zephyr were done manually.

• In its current state, all processes have been automated: first, the version control,

then the build product, then the GUI testing using the automation framework

eggplant, then the results will be reported to XML/HTML reporting, and finally,

the file updating tests under the zephyr will show the results of all tests.

Figure 5.4: Previous state

Figure 5.5: Current state

16

5.4 The Benefits of CI/CD with Eggplant

• The ability to run parallel tests on multiple platforms at the same time.

• Earlier detection of defects.

• More Accurate Tests and Eliminating Human Errors

• Early Access and minor update releases

• Better Utilization of Manpower and Reduced Business Costs.

• A shorter software development cycle and more frequent releases.

5.5 CI/CD Jenkins Pipeline

In the CI/CD Jenkins Pipeline, the execution starts with the GIT checkout, taking the

latest code, and installing the latest build. Then the eggplant will run the automation

script and the end result will be passed to Zephyr.

Figure 5.6: CI/CD Jenkins Pipeline

17

Chapter 6

Results

For IC-CAP, the total manual testing hours required is 460 hours (all platforms), and 170

hours can be automated using Eggplant. We are automating the 170 hours of manual

testing into automation testing by implementing automation testing with the AI automa-

tion framework Eggplant. After automating the test, we now require only 8 hours. which

required 170 hours previously. So it’s almost 20x–21x faster than manual testing. We are

testing IC-CAP on three systems: one is Windows, and the other two systems are Linux

systems (Rhel7 and Suse12).

6.1 Results of the Automated Tests

Type of Testing Hours
Complete Manual Testing 460

Manual Testing(which can be Automated using Eggplant) 170
Eggplant Automation Testing 8

Table 6.1: Results of the Automated Tests

18

Figure 6.1: Results of the Automated Tests

Figure 6.2: Win10 Result

Figure 6.3: Suse12 Result

Figure 6.4: Win10 Result

19

Chapter 7

Limitations and Future Work

The eggplant tool is best suited for faster GUI tests or test operations. Eggplant DAI

”expects” to hear from the agent periodically. If it hasn’t gotten any data from the agent

for 2 minutes, it assumes an issue and times out. Waiting time is not recommended for

eggplant.

Due to the time-out limitation of Eggplant, the squads need to use a creative approach

by creating GUI test cases that don’t involve idle times (simulation, optimization, etc.)

of more than 2 min. Focus on GUI usage, not time-consuming simulations.

IC-CAP includes a lot of tests that are performed manually and cannot be automated,

like instrument testing, antivirus, surveys, fresh machines, remote display, etc. Some

long-running tests are better suited for application-level automation.

7.1 Future Work

• Automate all possible tests that can be automated in IC-CAP GUI Testing.

• Eggplant Integration with Jenkins

Running Eggplant tests from Jenkins and reporting results

• Zephyr for JIRA.

Zephyr allows you to create, manage, execute, and report tests.

• Zephyr Integration

Reporting eggplant results to Zephyr

20

Chapter 8

Conclusion

In this report, I talked about a GUI automation testing framework based on Eggplant

to address the issue of manual testing in Agile Models. It takes time to test the soft-

ware application. Meanwhile, to solve that issue, I implemented this GUI Automation

Testing and verified the effectiveness and robustness of the automation testing. Fur-

thermore, the one-click solution for testing the software application fully automates the

process. With the comparative study of the automation framework, my final outcome is

test results that are 20x–21x faster than manual testing.

21

Bibliography

[1] Young-Min Baek and Doo-Hwan Bae. Automated model-based android gui testing

using multi-level gui comparison criteria. In 2016 31st IEEE/ACM International

Conference on Automated Software Engineering (ASE), pages 238–249, 2016.

[2] Filippo Cacciotto, Tommaso Fulcini, Riccardo Coppola, and Luca Ardito. A metric

framework for the gamification of web and mobile gui testing. In 2021 IEEE In-

ternational Conference on Software Testing, Verification and Validation Workshops

(ICSTW), pages 126–129, 2021.

[3] Jin Chen, Mengxiang Lin, Kai Yu, and Bing Shao. When a gui regression test failed,

what should be blamed? In 2012 IEEE Fifth International Conference on Software

Testing, Verification and Validation, pages 467–470, 2012.

[4] Wontae Choi, Koushik Sen, George Necul, and WenyuWang. Detreduce: Minimizing

android gui test suites for regression testing. In 2018 IEEE/ACM 40th International

Conference on Software Engineering (ICSE), pages 445–455, 2018.

[5] Edward T.-H. Chu and Jun-Yan Lin. Automated gui testing for android news ap-

plications. In 2018 International Symposium on Computer, Consumer and Control

(IS3C), pages 14–17, 2018.

[6] Riccardo Coppola, Maurizio Morisio, and Marco Torchiano. Maintenance of an-

droid widget-based gui testing: A taxonomy of test case modification causes. In

2018 IEEE International Conference on Software Testing, Verification and Valida-

tion Workshops (ICSTW), pages 151–158, 2018.

[7] Gennaro Imparato. A combined technique of gui ripping and input perturbation

testing for android apps. In 2015 IEEE/ACM 37th IEEE International Conference

on Software Engineering, volume 2, pages 760–762, 2015.

22

[8] Muneyoshi Iyama, Hiroyuki Kirinuki, Haruto Tanno, and Toshiyuki Kurabayashi.

Automatically generating test scripts for gui testing. In 2018 IEEE International

Conference on Software Testing, Verification and Validation Workshops (ICSTW),

pages 146–150, 2018.

[9] K. Jaganeshwari and S. Djodilatchoumy. A novel approach of gui mapping with im-

age based widget detection and classification. In 2021 2nd International Conference

on Intelligent Engineering and Management (ICIEM), pages 342–346, 2021.

[10] Ying-Dar Lin, Edward T.-H. Chu, Shang-Che Yu, and Yuan-Cheng Lai. Improv-

ing the accuracy of automated gui testing for embedded systems. IEEE Software,

31(1):39–45, 2014.

[11] Scott McMaster and Atif M. Memon. An extensible heuristic-based framework for

gui test case maintenance. In 2009 International Conference on Software Testing,

Verification, and Validation Workshops, pages 251–254, 2009.

[12] Tiago Monteiro and Ana C.R. Paiva. Pattern based gui testing modeling environ-

ment. In 2013 IEEE Sixth International Conference on Software Testing, Verification

and Validation Workshops, pages 140–143, 2013.

[13] Abdul Rauf and Mohammad N. Alanazi. Using artificial intelligence to automatically

test gui. In 2014 9th International Conference on Computer Science Education, pages

3–5, 2014.

[14] Yepeng Yao and Xuren Wang. A distributed, cross-platform automation testing

framework for gui-driven applications. In Proceedings of 2012 2nd International

Conference on Computer Science and Network Technology, pages 723–726, 2012.

Appendix A

Eggplant functional Learning

https://www.eggplantsoftware.com/eggplant-functional-expert

https://www.eggplantsoftware.com/eggplant-functional-level-2-genius

https://www.eggplantsoftware.com/eggplant-ai-training-and-certification Egg-

plant Functional Documentation

https://docs.eggplantsoftware.com/ePF/eggplant-functional-documentation-home.html

23

	Acknowledgements
	Abstract
	Abbreviations
	List of Figures
	List of Tables
	Introduction
	Problem Summary and Introduction
	Problem Specification
	Need Analysis

	Scope of Work

	Literature Survey
	Summary of Related Researches

	Dataset Description
	Characteristics of the dataset

	Proposed Method
	Proposed Research Work
	Eggplant DAI
	Eggplant Agent
	Eggplant Functional
	System Under Test

	Workflow

	Implementation
	Flowchart Models
	The IC-CAP Model
	MODEL OF DATA-VIEWER

	Parallel Execution
	Previous state vs Current state
	The Benefits of CI/CD with Eggplant
	CI/CD Jenkins Pipeline

	Results
	Results of the Automated Tests

	Limitations and Future Work
	Future Work

	Conclusion

