Agoregation and Observability in
Microservice Accelerator

Submitted By
Jay Parmar
20MCECO07

i NIRMA

UNIVERSITY

INSTITUTE OF TECHNOLOGY
NAAC ACCREDITED ‘A+ GRADE

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
INSTITUTE OF TECHNOLOGY
NIRMA UNIVERSITY

AHMEDABAD-382481
May 2022



Agoregation and Observability in
Microservice Accelerator

Major Project

Submitted in partial fulfillment of the requirements
for the degree of

Master of Technology in Computer Science and Engineering

Submitted By
Jay Parmar
(20MCEC07)

Guided By
Dr. Pooja Shah

UNIVERSITY

INSTITUTE OF TECHNOLOGY
NAAC ACCREDITED ‘A+ GRADE

ij NIRMA

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
INSTITUTE OF TECHNOLOGY
NIRMA UNIVERSITY
AHMEDABAD-382481

May 2022



Certificate

This is to certify that the Major project entitled “ Aggregation and Observability in
Microservice Accelerator ” submitted by Jay Parmar (20MCECO07), towards the
partial fulfillment of the requirements for the award of degree of Master of Technology
in Computer Science and Engineering of Nirma University, Ahmedabad, is the record of
work carried out by him under my supervision and guidance. In my opinion, the sub-
mitted work has reached a level required for being accepted for examination. The results
embodied in this Major Project, to the best of my knowledge, haven’t been submitted to

any other university or institution for award of any degree or diploma.

Dr. Pooja Shah Dr. Sudeep Tanwar

Internal Guide & Associate Professor Professor & PG Coordinator (M.Tech - CSE)
CSE Department CSE Department

Institute of Technology Institute of Technology

Nirma University, Ahmedabad Nirma University, Ahmedabad

Dr. Madhuri Bhavsar Dr. Rajesh Patel

Head of Dept. Director

CSE Department Institute of Technology

Institute of Technology Nirma University, Ahmedabad

Nirma University, Ahmedabad

il



Statement of Originality

I, Jay Parmar, 20MCECOQ07, give undertaking that the Major Project entitled “Ag-
gregation and Observability in Microservice Accelerator” submitted by me, to-
wards the partial fulfillment of the requirements for the degree of Master of Technology
in Computer Science & Engineering of Institute of Technology, Nirma University,
Ahmedabad, contains no material that has been awarded for any degree or diploma in any
university or school in any territory to the best of my knowledge. It is the original work
carried out by me and I give assurance that no attempt of plagiarism has been made.It
contains no material that is previously published or written, except where reference has
been made. I understand that in the event of any similarity found subsequently with any
published work or any dissertation work elsewhere; it will result in severe disciplinary

action.

A x“"w}@/

Signature of Student
Date:

Place:

Endorsed by
Dr. Pooja Shah
(Signature of Guide)

v



IFIN HR- 2022
27-04-2022

Formal Data:

Student Name:

Institution:

Organization:

CERTIFICATE

To Whom It May Concern

Jay Kishor Parmar
Institute of Technology, Nirma University

Infineon Technologies India Pvt. Ltd.

Project Instructors/ Managers: Anusha Shetty

Evaluation of work:

Jay Kishor Parmar is working as a Student Trainee with us from 05-Jul-2021 till 31-May-2022
and is working on project “Aggregation & Observability in Microservice Accelerator”.

Jay Kishor Parmar is an avid and independent learner, has good analytical & application skills
and has shown exemplary performance during the internship period.

We wish Jay Kishor Parmar a long fruitful career and success in future endeavors.

For Infineon Technologies India Pvt. Ltd.

Thara Aiyanna

HR Manager



Acknowledgements

It gives me great pleasure to express my heartfelt gratitude to Dr. Pooja Shah for her
continuous encouragement during this project. Her gratitude and unwavering guidance

have served as a powerful motivator for me to strive for greater heights.

It gives me an immense pleasure to thank Dr. Madhuri Bhavsar, Hon’ble Head of
Computer Science And Engineering Department, Institute of Technology, Nirma Uni-
versity, Ahmedabad for her kind support and providing basic infrastructure and healthy
research environment.

A special thank you is expressed wholeheartedly to Dr. Rajesh Patel, Hon’ble Director,
Institute of Technology, Nirma University, Ahmedabad for the unmentionable motivation

he has extended throughout course of this work

- Jay Parmar

20MCECO07

vi



Abstract

Various organizations need highly scalable and available architecture in this fast forward-
ing world. However, it is incredibly challenging to scale monolithic architecture based
on user response. That is why numerous prominent tech giants use microservice archi-
tecture. Microservice architecture also comes with various challenges; however, it offers
more. Various design patterns are available to overcome these challenges in a microservice
architecture. In this paper, we are addressing observability design patterns. We can mon-
itor, analyze, and inspect our application much more efficiently using this design pattern.
As microservice architecture is rapidly evolving, various open-source tools are available
in the market. However, there is no such hard-and-fast tool there for all the projects; it
entirely depends on the business requirement of the project. This paper discussed some
of the open-source tools and their advantages and how we can use these tools to achieve

observability design patterns.

vil



Abbreviation

Abbreviation Explanation

APM Application Performance Monitoring
API Application Programming Interface
DOS Denial Of Service

ELK Elasticsearch, Logstash, and Kibana
IDC International Data Corporations

viil




List of Figures

1.1
3.1

4.1
4.2

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22

Microservice Architecture . . . . . . .. ..o 3
Technologies and Working Environment. . . . . . . ... ... ... ... 13
Architecture Diagram. . . . . . . . . .. ... 15
Architecture Diagram. . . . . . . . .. ... 16
Caching mechanism using Redis. . . . . . .. ... ... .. ... .. ... 18
Rate-limiting with TP White/black listing. . . . . . . .. ... ... ... 19
Caching mechanism using Redis. . . . . . . ... ... ... ... .. ... 20
Error Message for user . . . . . . . ... 21
Conceptual view of logging mechanism. . . . . . . . ... .. ... .. .. 21
ConfigMap of Filebeat. . . . . . . . . .. ... ... ... ... 22
DeployementConfig of container. . . . . . . . .. ... ... ... ... .. 23
Kibana Logging Dashboard. . . . . . . . ... ... ... ... ...... 24
ELK Tracing Dashboard . . . . . . . ... ... ... ... ... .. ... 24
Loki Logging Dashboard. . . . . . . . . . ... ... ... ... ..., 25
Jaeger and test application deployment on OpenShift. . . . . . . . . . .. 26
Jaeger homepage view. . . . . . . ... L 27
Jaeger view of single request. . . . .. .. ... oL 27
Distributed Tracing using SigNoz . . . . . . . . . . ... ... ... ... 28
Monitoring Application performance using SigNoz. . . . . . . . ... .. 29
Distributed Tracing using Zipkin. . . . . . . .. .. ... ... 30
Service Monitoring of OpenShift. . . . . . . ... ... ... ... .... 31
Visualizing custom metrics data of application in Service Monitoring. . . 31
Application performance monitoring in Grafana . . . . . . . ... .. .. 32
Alerting configuration . . . . ... ..o 33
Alert on Webex . . . . . ..o 33
Consul dashboard for dynamic configuration . . . . . . ... .. ... .. 34

X



List of Tables

1.1 Comparison between Microservice and Monolithic Architecture. . . . . .



Contents

Certificate

Statement of Originality

Acknowledgements

Abstract

List of Figures

List of Tables

1 Introduction

2

1.1
1.2
1.3
1.4
1.5
1.6

1.7

Introduction . . . . . . . ..
Understanding Microservice Architecture . . . . . . . . . ... ... ...
Microservice vs Monolithic . . . . . . . . ... ... ... ...
Microservice Accelerator . . . . . . .. ...
Challenges with Microservice Architecture [I] . . . . ... ... ... ..
Design Patterns . . . . . . . . . . ...
1.6.1 API Gateway Patterns . . . . . . . ... ... ... ... .. ...
1.6.2  Observability Gateway . . . . . . . . ... ... ... ... ....
Scopeof Work . . . . . . . ...

Literature Survey

2.1

2.2

2.3

Paper I: 7 A Comparative Review of Microservices and Monolithic Archi-
tectures” . . . ... L
2.1.1  Objective . . . . . . .
2.1.2 Methodology . . . . . . . ..
2.1.3 Result and Conclusion . . . . . ... ... ... ... .......
2.1.4  Performance matrix . . . . . . . . . ... ... L.
Paper II: "Microservices: Yesterday, Today, and Tomorrow” . . . . . ..
2.2.1 Objective . . . . . . .
2.2.2 Methodology . . . . . . ..
2.2.3 Result and Conclusion . . . . . .. ... .. ... ... ......
Paper III: " Infrastructure Cost Comparison of Running Web Applications
in the Cloud Using AWS Lambda and Monolithic and Microservice Archi-
tectures” . . . .. L L
2.3.1 Objective . . . . . . ..
2.3.2 Methodology . . . . . ...

X1

iii

v

vi

vil

1x

00 00 GO 00 00 00 —~J —~J —J -3 OO UL UL W N b

o ©



24

2.5

2.6

2.7

2.3.3 Result and Conclusion . . . . . . . . . . ... .

2.3.4 Performance matrix . . . . . .. .. ..o
Paper IV: "Emergent Microservices in Emergent Ecosystems” . . . . . .
2.4.1 Objective . . . . . . .
2.4.2 Methodology . . . . . . . . ..
2.4.3 Result and Conclusion . . . .. .. ... ... ... .. ......

Paper V: ” Automated deployment of a microservice-based monitoring in-
frastructure” . . . . ...

2.5.1 Objective . . . . . . .
2.5.2 Methodology . . . . . . . . ..
2.5.3 Result and Conclusion . . . .. .. ... ... ... ... ...,

Paper VI: ”A dashboard for microservice monitoring and management” .
2.6.1 Objective . . . . . . .
2.6.2 Methodology . . . . .. ..o
2.6.3 Result and Conclusion . . . . ... ... ... ... ... .....
Paper VII: "Demonstration of an observability framework for cloud native
MICroservices” . . . . . . ..o

2.7.1 Objective . . . . . . ..
2.7.2 Methodology . . . . .. ...
2.7.3 Result and Conclusion . . . . . . . . . . .. ... ... ...

Working Environment

Architecture and Flow

Execution and Implementation

5.1

5.2

5.3

5.4

9.9
5.6

Access Control . . . . . . ..
5.1.1 Rate-limiting and IP White/black listing . . . . . .. ... .. ..
5.1.2 Redis Caching . . . . . . . ... ... o
5.1.3 FError Message . . . . . . . . ..
Logging . . . . . . .
52.1 ELK Stack. . . . . . .. ...
5.2.2 Loki . . ..
Tracing . . . . . . .
5.3.1 Jaeger . . . ...
532 SigNoz . . . . . .
5.3.3 ZipKin . . ..o
Metrics . . . . o L Lo
54.1 Prometheus . . . . . . ... ..o
Alerting . . . . . . .
Dynamic Routing . . . . . . . . . . ...

6 Future Work and Conclusion

xii

10
10
10
10

10
10
11
11
11
11
11
11

12
12
12
12

13

15

18
18
18
19
20
21
21
25
26
26
28
29
30
30
32
34

35



Chapter 1

Introduction

This chapter discusses a monolithic application, why we should avoid it for scalable

projects, and the benefit of microservice architecture over monolithic architecture.

1.1 Introduction

Recently due to the improving Information Technology (IT) infrastructure and advancing
technologies, there has been an immense surge in the Internet usage worldwide. Global
internet users have grown by more than 330 million in 2021, reaching a total of more than
4.7 billion at the start of April 2021[2]. Furthermore, it is predicted that data creation
will grow to more than 180 Zetta Bytes (ZB) by the year 2025. Increasing internet usage
causes demand for high-performance applications that can efficiently handle this data.
There was a time when industry centered on solely one type of architecture, i.e., mono-
lithic architecture. The concept of monolithic architecture is excellent in itself. However,
this architecture has some problems regarding scalability and rapid development.

There was a time when industry centered on solely one type of architecture, i.e., mono-
lithic architecture. The concept of monolithic architecture is excellent in itself. However,
this architecture has some problems regarding scalability and rapid development. Mono-
lithic architecture provides tight coupling between all the services, where the dilemma
reaches for scalability. All the services are tightly coupled with each other, which means
that all services are dependent on each other and to scale such application itself is a com-
plex task that directly impacts the performance. Another problem with monolithic is
that if any single service failed it cause a complete system failure. Deploying the mono-

lithic application is also one of the significant concerns for the project; as for a single



service update, we need to redeploy the complete system again. Rapid development and
scalability are the main worries for monolithic architecture; here comes the rescuer we
have, microservices architecture.

N. Dragoni describes Microservice architecture as the development of a series of small
services that work as a single application. It provides loose coupling between services

which eventually helps scalability and rapid delivery.

1.2 Understanding Microservice Architecture

Microservice architecture is creating a boom in the current market. The main reason
is that it is more scalable, faster, reliable, and can quickly adopt new technologies than
monolithic architecture. The International Data Corporation (IDC) indicated that by
the ending of the year 2021, around 80% of cloud based software would be developed
using microservice architecture style [3]. There were several claims about the originator
of microservices. In one of the cloud computing conferences, The word “micro web
services” was first time used by Dr. Peter Rogers in the year 2005 [1]. “Microservices”
themselves premiered at an event for software architects in 2011, where the word was used
to represent a style of architecture that numerous attendees were exploring at the time.
”Microservices” itself was first exhibited at an software design event in 2011, where the
term was used to represent the architectural style that many people were exploring at the
time. Microservice architecture in itself is a magnificent idea for accelerated and scalable
development. We can use this architecture in any of the projects for rapid development.
Here is the representation of microservice architecture.

Figure 1.1 shows the pictorial representation of microservice architecture. It demon-
strating that how a client can reach various microservices using API Gateway. On the
client-side, he/she may not aware of the scenario of microservices. For them, it will be
like a traditional API call but from a developer perspective, it provides more adaptability,
scalability, and rapid development.

Nowadays, many large-cap companies, such as Amazon, Netflix, have moved their
applications and systems to the cloud, because cloud computing allows these organiza-
tions to scale their computing resources as per their usage [5]. And in those companies

microservices are widely used in their applications.



Service A Service
A

N—

)
N

» Service

: B

, | E | API
[ Client Gateway

N—

R
N1

Service

Service C

Figure 1.1: Microservice Architecture

1.3 Microservice vs Monolithic

There are numerous advantages of adopting microservice architecture over monolithic
architecture when it comes to scalable applications. In this section, we will see the

remarkable useful advantages of microservices.

1. Coupling: as monolithic architecture has tight coupling with each service, it is
very challenging to make any changes on the system directly. On other side, mi-
croservice architecture provides loose coupling between services which makes them

independent of each other and extremely useful for rapid development.

2. Scalability: scaling monolithic applications is not an unachievable task but the
plenty of energy and time it needs will undoubtedly be more than the amount

demanded by any microservice application as each service is independent.

3. Testing: testing microservice application is easy as compared to monolithic appli-
cations as in microservice applications each service can be individually tested where

as in monolithic applications it is very complex to test each service separately.

4. Frequent Development: frequent Development is primary concerns with a mono-
lithic application as for single development /changes we need to the redeployed whole

application again on the server. If we confronted this situation with microservice



applications, it outperforms the monolithic application as we can efficiently deploy

individual services as per the demand without harming other services.

. Mix of technologies: it can be obtainable with both the architectures, but when we
have to do it efficiently that we can say that microservice architecture can easily

accomplish mixing of technology.

. Data Isolation: isolating data for a very difficult task for any application. for
monolithic applications, data isolation is a quite challenging task as multiple re-
sources are using the same data across the system and it is pretty obscure to isolate
data for each service wherein microservice architecture we can comfortably spec-

ify a database for each service through which we can efficiently obtain data isolation.

Data described in Table 1.1 are summarized based on analysis of multiple research papers

where we have compared several parameters for sentencing both architectures.

Parameter Monolithic Architecture Microservice Architecture
Reliability Less More

Scalability Less More

Adoptability Challenging Well-to-do

Rapid Development Complex Moderate

Testing Easy Complex

Data Isolation Difficult Simple

Coupling Tight Loose

Table 1.1: Comparison between Microservice and Monolithic Architecture.

1.4 Microservice Accelerator

Microservices Accelerator provides container-ready microservices that involve a project

configuration and a collection of modules that implement common requirements for stan-

dard microservice-based solutions.




1.5 Challenges with Microservice Architecture [1]

One oftentimes imagines that if we hold this many advantages from the microservice
architecture then why can’t we stop the monolithic application and start using the only
microservice application. This is not the case, there is another side of the coin that
organizations need to pay for using microservice architecture.

There are various challenges we may encounter in using microservice architecture. The

few most common hurdles are listed below.

1. Versioning: we oftentimes update any service for a specific target and as multiple
services possibly are updated at any delivered moment, so without thoughtful de-
sign, we might produce a lot of compatibility issues which may end up in system

malfunction which will be hard to resolve.

2. Data integrity: as each microservice has its data persistence, it is quite complicated

to maintain the integrity of data shared across multiple microservices.

3. Monitoring and observability: for a large-scale project, we may have plenty of
services for our application and if many services are interdependent and any of

them is failed, it is notable difficult to identify, log, and trace the failure.

4. Testing: testing individual services it is usually a simple task to do in microservices
but the problem arrives when more services are connected to each other and testing

such a scenario in microservice is really challenging.

These are a few common challenges we wrote down, apart from these we have many
more difficulties in integrating microservice architecture. So, if the business use case is
small we can go with the monolithic architecture. But for a large-scale application, it is

worthy of going with microservice architecture.

1.6 Design Patterns

As migrating from monolithic to microservice is not a straightforward task. We need
to follow standard patterns to adopt microservice architecture in existing monolithic
application. We are primarily focused on API Gateway Pattern and Observability Pattern
for this project.



1.6.1 API Gateway Patterns

In a microservice architecture, client applications are often required to use more than
one microservices and if we directly provide the endpoint for each required microservices
to the client then it leads to a security threat to our application as well as if we change
anything in endpoints client also need to changes this in their application. The solution
for that is we have an API gateway.

It is a type of link between microservices and client browsers. It is very helpful to
protect the real endpoint of microservices. The Gateway API is the only server access
point in the system. It integrates the internal system configuration and provides an API

designed for each client.

1.6.2 Observability Gateway

This pattern is beneficial for understanding and observing microservice applications ef-
ficiently. There is a typical miss perception that people usually assume that monitoring
and observability are the same. However, there are two different terms. Monitoring will
tell us that there is a problem; however, observability will tell us where the problem
occurred. We cannot monitor our application until we observe it thoroughly. This pat-
tern consists of Log aggregation, Application metrics, Audit logging, Distributed tracing,

Exception tracking, and Health check API.

1.7 Scope of Work

There is numerous functionality we can achieve using microservice architecture such as
logging, tracing, monitoring, security, scalability, rapid development, etc. By the scope of
this project, we are major working on security through API gateway as well as monitoring

and observability of microservice architecture.



Chapter 2

Literature Survey

2.1 Paper I: A Comparative Review of Microser-

vices and Monolithic Architectures”

2.1.1 Objective

In this research paper [6], the authors mainly concentrate on comparing monolithic ar-
chitecture and microservice architecture in terms of performance, to conclude how these
architectures perform in different situations using various experimental setups. The au-
thors decided to further investigate more about the performance of both the application

in more depth as many differences in the literature are available.

2.1.2 Methodology

Authors use the platform “JHipster” for developing and analyzing microservice and mono-
lithic applications. Web applications consist of popular Java framework Spring Boot and
for front-end Angular JS frameworks.
The application that was developed for this particular paper consisted of three services.
First, JHipster Registry is a primary part of the microservices architecture. Second,
the microservice application will produce the backend capabilities by API. Third, the
microservices gateway is the front-end of the entire system which will incorporate all the
APIs of every microservice application in the system.
JMeter was also utilized to test the performance of these applications. They perform

various testing scenarios such as load testing, concurrency testing, endurance testing, and



results are different for different scenarios.

2.1.3 Result and Conclusion

From the result, they have analyzed that for small load monolithic performs well while
load starts increasing microservice outperform monolithic application. Regarding through-
put as they have fixed the number of requests and observe that monolithic application

shows higher throughput as compared to microservices.

2.1.4 Performance matrix

Throughput and response time;

2.2 Paper II: ”Microservices: Yesterday, Today, and

Tomorrow”’

2.2.1 Objective

The foremost objective for this paper is to provide a survey that essentially addresses
comprehensive guidance on microservice to anyone new to this terminology and the pos-

sible concern with this architecture.

2.2.2 Methodology

This paper [7] informs us about three-phase of microservices ’yesterday’, 'today’, and ’to-
morrow’. It mainly illustrated that how popular applications are influencing by microser-
vice architecture over the monolithic architecture. It also explains that how microservices
are powerful to accommodate flexibility, modularity, evolution, independency, and size

reduction in infrastructure.

2.2.3 Result and Conclusion

As a result of this research, the authors provided the reader with references to the lit-
erature and guidance of services and microservices. They also discussed the possible

dilemmas with microservices concerning security, network complexity, and heterogeneity.



2.3 Paper III: ”Infrastructure Cost Comparison of
Running Web Applications in the Cloud Using
AWS Lambda and Monolithic and Microservice

Architectures”

2.3.1 Objective

The main objective of this paper [8] is to presents a cost comparison of web application
development and deployment using three different methods: the first is monolithic archi-
tecture, the second is microservice architecture Managed by the cloud customer, and the
third is microservice architecture Managed by the cloud provider. The goal is to examine

how the infrastructure costs are affected by the development of each architecture.

2.3.2 Methodology

As a purpose method, the authors decided to build a similar application with all three
strategies to examine the cost and scalability of the application. Two services are cre-
ated, first one is to generate the payment plan which includes a set of payments (from 1
to 6 months) and the second service is used to retrieve the existing plan and its corre-
sponding set of payments. They have created these two services for each architecture for

investigating performance for each structure.

2.3.3 Result and Conclusion

From the case study, the authors observed that if an application has a meager number of
users (hundreds or thousands of users) it is eternally more beneficial to go with monolithic
architecture for faster performance. Moreover, they concluded that microservice helps
reduce the infrastructural cost in comparison with a monolithic architecture. They also
discovered that cloud services such as AWS lambda allow companies to reduce their

infrastructure cost up to 77.08%.

2.3.4 Performance matrix

Cost comparison, Response time, Performance test;



2.4 Paper IV: ”Emergent Microservices in Emergent

Ecosystems”

2.4.1 Objective

In this research paper [J], the objective of the author is to propose the fresh concept of
emergent microservices and emergent ecosystems. Basically, idea is to add autonomous
loops in each service and making them able to evolve their behavior to sustain run-time

adaptation.

2.4.2 Methodology

Authors brought this concept to allow the entire microservice ecosystem to shift the
control of management and adaptation processes from human to machine. This comes
to reduce the human efforts for doing administration and all. By this proposed concept

authors are altering the human role from developer to DevOps.

2.4.3 Result and Conclusion

By proposing this concept, the authors concluded that their concept will reduce human
efforts and led the microservice ecosystem to automation. It is a very recent theory that
yet more analysis is required in this concept for achieving load balancing and horizontal
auto-scaling and also evaluating the impact of this idea on the whole microservice-base

system.

2.5 Paper V:” Automated deployment of a microservice-

based monitoring infrastructure”

2.5.1 Objective

The main objective of this research paper [10] is to deployed automatic monitoring in-
frastructure for microservice applications. Specific consideration is given to protect the
distinction between core and custom functionalities, and the on-demand creation of a

cloud service.

10



2.5.2 Methodology

They started by defining an easy model of monitoring infrastructure that gives an interface
among user and cloud management systems. The prototype implemented by the authors
shows the applicability of the abstract control flow. They have used plain Java as the
application programming language (a Ruby version is on the way) and Docker for the

containers.

2.5.3 Result and Conclusion

In the conclusion of this paper, the investigated automated deployment of monitoring
infrastructure in container-based distributed systems and their result determines that

profoundly customizable monitoring infrastructure can be effectively given as a service.

2.6 Paper VI: ” A dashboard for microservice moni-

toring and management”

2.6.1 Objective

Benjamin Mayer and Rainer Weinreich [11] describes the concept of monitoring and
managing microservices. It is an experiment dashboard idea that helps an organisation
collect runtime information of microservices. The dashboard includes a system overview,

runtime info of microservices, service interaction, and comparison of different services.

2.6.2 Methodology

They initially describe basic concepts and present important usage scenarios and views
currently supported in the monitoring dashboard. Authors divided visualization into two
categories: static and dynamic information. Static information includes commits per
developer, the last commit for a service, etc. Dynamic information contains response

time, total request count, failure rate, etc.

2.6.3 Result and Conclusion

In the conclusion of this paper, the authors have created an experimental dashboard that
can combine information from various sources. They were still working on full fledge at

the time paper was written.

11



2.7 Paper VII: "Demonstration of an observability

framework for cloud native microservices”

2.7.1 Objective

As cloud-native microservices gains popularity, it also comes along with their challenges.
Marie-Magdelaine et al. [12] demonstrate an observability framework for cloud-native

microservices.

2.7.2 Methodology

Their proposed approach defines four logic layers for four different tasks, namely collec-
tion & retrieval of data, raw data storage, processing & correlation, and visualization &
alerting. They also explain that the observability framework can effectively analyze the

internal behaviour of microservice.

2.7.3 Result and Conclusion

This paper provides some understanding of the concepts, features and prototypes of
observability and cloud-native applications. It also proposed the observability framework,

which can be used to understand the monitor complex distributed systems.

12



Chapter 3

Working Environment

Following are the technologies that we explored and implemented for this project and we

have used .NET core as base programming language.

RED HAT
OPENSHIFT

§g kafka

U )
é Telemetry

Prometheus

é redis

& . JAE G ER
ELK Stack A
r& Grafana ' w ‘ ZIPKIN

Figure 3.1: Technologies and Working Environment.

e Ocelot: is an open-source library provided by Three-Mammals for integrating API

gateway in .NET. It also provides various features such as Routing, Request Aggre-

13



gation, Service Discovery with Consul Eureka, Authentication and Authorization,

Rate Limiting, Caching, Load Balancing, and many more.

Redis: Redis is an open-source in-memory database that can be used for cache and
message brokers. It can handle millions of pieces of data within a short duration of

time. It also provides supports for multiple languages.

Kafka: provides messaging service in publisher/subscriber fashion. We will use it

to set up inter-communication between microservice.

OpenShift: is provides a platform where we can deploy our application as a container
image. We can also manage this container-based application on openshift. It is

widely used at the enterprise level.

Jaeger: is an open-source distributed tracing tool. It will help us to identify the
execution flow of requests. It has various filters available to filter request and debug

it in a more efficient fashion.

OpenTelemetry: is an open-source observability framework. It collects the teleme-
try data from the application and forwards its respective exports(ex. Prometheus

or Jaeger).

ELK Stack: combines three different tools, namely Elastic, Logstash, and Kibana.
It is a log aggregation tool, but it does more than that; we can also visualize those

logs with the help of Kibana.

SigNoz: is an open-source tool for metric and tracing data visualization. It was

founded in 2020 to deliver better observability corresponded to existing tools.

ZipKin: is an open-source distributed tracing system to collect trace information.
Zipkin assists us to locate precisely where a request to the application has failed or

spent a long time.

Prometheus Grafana: Prometheus is an open-source monitoring system that scraps

application metrics data. Grafana is a great data visualization tool.

14



Chapter 4

Architecture and Flow

Microservice architecture is creating a boom in the current market. The main reason
is that it is more scalable, faster, reliable, and can quickly adopt new technologies than
monolithic architecture. Migrating from monolithic to microservice architecture is not
straight forward task. We need to follow specific tools and standard patterns to achieve
it. So we used the concept of a microservice accelerator. This concept emphasizes Rapid
application development. We intend to enhance the development activities by provid-
ing standard patterns and code templates. This project will reduce the time and effort
required to implement common microservice functionalities. It also enables rapid inte-

gration with CI/CD activities.

Web API -
Access control Micro
Service 1

v
Client API gateway

Service

Web API -
discovery L Micro “
Service n

Monitoring service Visualization

Messaging System

p ¢ 4
A

Alert
manager

Figure 4.1: Architecture Diagram.

Figure 4.1 is an architecture diagram of this project where the primary pinpoint of

15



focus is API Gateway with Access control and Monitoring service. As you can see in
the figure, API Gateway is the only entry point in the application, making it vulnerable.
So we must have a restriction for requests at the gateway level. This problem can be
resolved using the API Gateway pattern. We are using an access control layer over the
top of the API Gateway. This project’s second module resolves a debugging problem in
microservices using the Observability pattern. This pattern will include logging, tracing,
metrics, and standard visualization.

We have placed access control on top of API Gateway, and it will provide functional-
ities such as Rate-limiting, IP whitelisting/blacklisting, and caching. On the other hand,
in the observability pattern (monitoring service), we will have a log aggregator that will
aggregate the logs and forward them to the log visualization tool. Similarly, it will process

traces and metrics.

Infra/Host/\VM/Pod/Container

Application
Logging Tracing Metrics
! Libraries Libraries Libraries !
System App Traces App Infra
Logs Logs i Melt'rics Melrics
Log Collector Agent Tracing Agent E gﬂeéréz}:gzgéus
(E.g. FluentBit) (E.g. Jaeger Agent) Agent)
A 4 A 4 \ 4

Metric Backend
(E.g. Prometheus,
SigNoz)

Loggin Backend Tracing Backend
(E.g. ELK, Loki) (E.g. Jaeger, SigNoz)

Figure 4.2: Architecture Diagram.

Observability in microservices is an extension of monitoring that provides an internal

16



understanding system [12]. Tt includes logging, tracing, and metrics alerting that are
helpful for better understanding of the system. Additionally, this data can also be bene-
ficial in debugging applications efficiently. The observability design pattern is beneficial
for understanding and scanning microservice applications efficiently. This pattern con-
sists of log aggregation, application metrics, audit logging, distributed tracing, exception
tracking, and health check API.

Figure 4.2 is a complete overview of the observability goal we want to achieve in
this project. With the help of the instrumentation libraries, we have sent application
information to various backend. The objective is to accomplish efficient observability
and correlate logs, metrics, and tracing data. By achieving this, we can observe our
microservice effectively. Figure 4.2 also demonstrates various open-source tools which we

have used as backend.
e Logging - The tools used for logging are ELK stack and Loki.
e Tracing - Jaeger, Elastic APM, ZipKin, and SigNoz are used for tracing.

e Metrics - For monitoring application’s metric data we have used Prometheus with

Grafana and SigNoz for better visualization.

17



Chapter 5

Execution and Implementation

5.1 Access Control

Access control will provide functionalities such as Rate-limiting, IP whitelisting/blacklisting,
and caching. It will ensure that income requests have some restrictions, which will help
us to protect our system from potential vulnerability. Figure 5.1 is a demonstration of
the access control layer. We have used .NET core for implementing these feature and
we used Ocelot [13] package for implementing APT Gateway. These functionalities are

discussed in detail below subsections.

[? Generate Hash Key using

a Yes :
Request —» glﬂball_.l L_(i:a_cal \g’lh'til —_— Aulhjnllcate — Authentication information
B Listig e (HMACSHA256)
Nol Is Key
stored No Authorized
Reject Request in Redis User?
if not acceptable Cache
Yes 1 Yesl ,"‘ b J
Mins,

Yes

Invoke Next event <— Sl e vl

using same Hash Key

Figure 5.1: Caching mechanism using Redis.

5.1.1 Rate-limiting and IP White/black listing

When any request arrives at the API gateway, we are checking for the maximum limit
allowed for that service; for example, if we have set five as the maximum limit, then

more than five requests for a single user it not allowed for a particular duration. And

18



even if so any user tries to gain access to that service, our rate-limiting feature will show
a configurable message that "You are not allowed to request more than five times in 1
second’. Rate-limiting give us an advantage by making our resources available to users,

and it also prevents the Denial Of Service (DOS) attack.

Yes
e o
No

Figure 5.2: Rate-limiting with TP White/black listing.

We have implemented two types of rate-limiting. One is global, and the second one
is local. We can use the global rate-limiting configuration to provide the same rate
limit to all the endpoints present in microservices. On the other hand, we can use local
rate-limiting if want different rate limit for different endpoints.

Figure 5.2 is a workflow diagram of how rate limiting works with IP white/black
listing. Once the request passes through rate limiting, we check whether the coming
IP address can access microservices. So in the first case, let say the IP address that is
requesting resources is not in whitelisting IP’s then the application will reject its request.
To allow any IP to access resources, we need to add that IP in the configuration variable

to access microservices. Once it is done, the given IP can consume the microservices.

5.1.2 Redis Caching

Figure 5.3 is a workflow diagram of how caching works in the application. We have
used Redis[11] for storing and processing cache. Once the user is authenticated, we will
generate a hash key using the HMACSHA256 algorithm based on this authentication

information. After that, we check whether this hash key is already available in cache or

19



not. In the first scenario, let’s say the key is present, then we will forward the request
to the next event. And in oppose to this scenario, if the key is not present in the cache,
we will check for authorization of the user. If the user is authorized, we will store the

cache value in the Redis server using the same hash key that we generated earlier. We

Figure 5.3: Caching mechanism using Redis.

have also implemented the functionality of deleting the cache so that after a particular

duration, cache will automatically be deleted from the Redis.

5.1.3 Error Message

We have implemented custom middleware for authentication and authorization at the API
gateway level. The primary role of this middleware is to re-route requests according to the
check that we have implemented. Figure5.22 shows the custom error message generated
when an unauthenticated user tries to access the application. We have generated these

error messages for both authentication and authorization.

20



« cC o @ /contactor rt B ‘ H

This page isn't working

If the problem continues, contact the site owner.

HTTP ERROR 401

Figure 5.4: Error Message for user

5.2 Logging

Logging plays a crucial role in any application. It will tell you that there is something
wrong happened in the system. Generating logs in the console for microservice will not
be an efficient solution. We need some visualization tool that can help us visualize this

logging data. For this project, we choose ELK for log aggregation and visualization.

5.2.1 ELK Stack

In Figure 5.5, we have conceptual flow of the logging mechanism. We have used Filebeat|15]
as a slipper to forward application log data to the ELK cluster. So, once the application
generates logs files, our Filebeat container will fetch those logs and deliver them to the

ELK cluster.

Log File _— ELK Cluster

B - = v

beats logstash elasticsearch  kibana

Figure 5.5: Conceptual view of logging mechanism.

21




ELK [16] combines three technologies: Logstash, Elastic search, and Kibana. Logstash
will fetch the data from the outside world, and then it will forward it to Elasticsearch,
and FElasticsearch will store this data into it. And then, with the help of the kibana

dashboard, we can visualize our logs data.

Path from where you
want to collect logs

Secret to connect
Filebeat to Logstash

Logstash URL with index

Figure 5.6: ConfigMap of Filebeat.

To fetch the application data using Filebeat, we have done configuration there. We
are starting with setting up the ConfigMap for Filebeat. Figure 5.6 is the ConfigMap file
of Filebeat, where we have to define various information to connect our Filebeat container
to the ELK cluster. "Paths’ is a field where we have to specify which path our application
is storing logs. ’secret’ is inside ’field” where we have to define the password/secret to
connect our Filebeat container to Logstash. And last important thing is the "URL’ of
the Logstask instance with its port number and 'index’ name by which we can filter our
application logs. Once this ConfigMap setup is done, we can configure the Deployment-
Config file. This Filebeat container can be added to the application as a sidecar container
to fetch application data with less latency.

Figure 5.7 is DeploymentConfig, we also need to add configuration such as volumeM-
ount information to provide persistence volume in the openshift environment and add
that ConfigMap configuration to the Filebeat container. Once this configuration is done

successfully, we can open the kibana dashboard and visualize our logs there, as shown in

22



Figure 5.7: DeployementConfig of container.

Figure 5.8. We can observe various information available regarding logs such as times-
tamp, message, index, and location from where we are fetching logs. There is various
other helpful information that we can filter as per our requirement.

ELK stack also provides the feature of APM [17]. This APM is capable enough
to fetch and visualize trace information, as shown in Figure 5.9. In addition, APM also
provides metrics information related to those traces, including parameters such as latency,
throughput, time spent on the span, and total error. We can also correlate our logs and
trace data in APM. Having logs, metrics, traces, and alerts in the same places makes
ELK stack a great observability tool.

Some of the features of the ELK stack are: 1) It provides a centralized log aggregation
mechanism. 2) It is an open-source tool. 3) Real-time data analysis and visualization
is possible in ELK. 4) It supports various shippers for shipping log data to ELK. 5)
Massive amount of data can be process in short interval. Along with the above-mentioned
advantages, ELK has certain areas where it might be improved. Some of which are
mentioned as follows: 1) Configuring self-hosted ELK is complex. 2) ELK utilizes high

computing resources for easy operations.

23



@ elastic

= @ oscowr

B v Search

®  +Addfilter

Q Ssearch field names

Filter by type O

~ Selected

t message

¢ ifx_icp_container_name

' Available fields

Popular
t id

¢ _index

t hostname

¢ ifiicp_cluster

¢ ifx_icp_cluster_purpose
¢ ifi_icp_cluster_region

¢ ifx_icp_container_image

¢ ifx_icp_parent_project

*:log-app-ocp-microservice...

Options New Open Share Inspect [ save
KoL [ v Apri17,2022 @17:49:02.2 - May 16, 2022 @ 00:00:00.00
oo <= 8,985,650 hits ) Chart options
2 ) - - 24 0 T [ - -
Apr 17, 2022 @ 17:49:02.231 - May 16, 2022 @ 00:00:00.000
Iterbuilder [(1ADpL1CATIONBULLOET DULLCET)
> May 13, 2022 @ 13:34:12.960  at Microsoft.AspNetCore.HostFilteringStartupFilter.<>c__DisplayClass_.<Configure>b__8(IApplicationBuilder app) test-application
23
> May 13, 2022 @ 13:34:12.960  at Microsoft.AspNetCore.Hosting.GenericHebHostService. StartAsync(CancellationToken cancellationToken) test-application
> May 13, 2022 @ 13:34:12.968  at Microsoft.Extensions.Hosting. Internal.Host.StartAsync(CancellationToken cancellationToken) test-application
> May 13, 2022 @ 13:34:12.968  at Microsoft.Extensions.Hosting. HostingAbstractionsHostExtensions.RunAsync(IHost host, CancellationToken token) test-application
> May 13, 2022 @ 13:34:12.968 at Microsoft.Extensions.Hosting.HostingAbstractionsHostExtensions.RunAsync(IHost host, CancellationToken token) test-application
> May 13, 2022 @ 13:34:12.968  at Microsoft.Extensions.Hosting.HostingAbstractionsHostExtensions.Run(IHost host) test-application
> May 13, 2022 @ 13:34:12.968  at Infineon.BHNC.APIGateway.Program.Main(String[] args) in /opt/app-root/src/Program.cs:line 18 test-application
> May 13, 2022 @ 13:34:12.959 Unhandled exception. StackExchange.Redis.RedisConnectionException: It was not possible to connect to the redis server(s). E test-application
rror connentinn richt now To allow this miltinlexer tn continie refrvina until it's ahle o connect use ahortConnect=fals

Figure 5.8: Kibana Logging Dashboard.

= . Observability.

dl  Observability

Overview
Alerts

Cases

Logs
Stream
Anomalies

Categories

Metrics
Inventory

Metrics Explorer

APM
Services
Traces
Dependencies

Service Map

Uptime

Monitors

APM

Services MyApp Transactions GET WeatherForecast/Get Settings Anomaly detection  Alertsand rules »  [@ Add data

Trace samples  Latency correlations  Failed transaction correlations

Latency distribution © Click and drag to select a range

95p

Transactions

Current sample
Latency
® Alltransactions @ Failed transactions
Trace sample 10of 73 > )l Investigate v

5hoursago 2.0 ms (100% of trace)  GET https://localho:

001/weatherForecast [EXTYSd Chrome (99.0.4844.74)

Timeline Metadata Logs

Type @ MyApp

=< oms 02ms 0.4ms 06ms 08ms 10ms 12ms 14ms 16 ms 18 ms 2.0ms

% HTTP 2xx GET WeatherForecast/Get 2.0 ms

Figure 5.9: ELK Tracing Dashboard

24



5.2.2 Loki

Loki is a log aggregation system similar to Elasticsearch but it is more effortless to set
up and work with more promising functionalities. Loki was initially started by Grafana
Labs in 2018 [1&8]. Tt is motivated by Prometheus for log aggregation and is highly cost-
effective and effortless to operate. Loki sets labels on each log stream instead of indexing
logs. Visualization Loki logs can be done using the Grafana dashboard.

Loki has three components — Promtail, Loki, and Grafana. The promtail agent is
responsible for locating the target, adding the labels to the incoming log streams, and
pushing it to the Loki instance. After connecting Loki with Grafana, we can start vi-
sualizing those logs on the dashboard. Figure 5.10 shows deployment of Loki on the
Grafana dashboard with sample microservice application data. It shows how logs can be
visualized with the help of Grafana. We can also enable real-time log collection to get

metrics and log correlation in the dashboard.

Querytype  Range

+ Add query

Wrap lines ®  Pretity JSON ® Dedup

Figure 5.10: Loki Logging Dashboard.

Some of the features of the Loki are: 1) It is very cost-effective. 2) It provides higher
scalability. 3) It is easy to plug with popular tools like Kubernetes and Grafana. However,
Loki has certain areas where it might be imporved, which are as follows: 1) It is not easy
to perform complex queries on Loki. 2) It does not provide a rich dashboard as same as

ELK provides.

25



5.3 Tracing

Having tracing in the application provides you added advantage because logging will tell
you that there is an error. Still, we need a tracing mechanism to understand where the

problem occurred in the microservice.

5.3.1 Jaeger

Jaeger[19] is one of the great tracing tools with numerous functionalities. Jaeger will help
us to understand the execution of requests in the system. In Figure 5.11, we have deployed

Jaeger on the OpenShift cluster and tested it with a sample microservice application.

€« CcC O ] croservice-accelerator-staging ?view=graph&selectld=da1333bf-fa80-482d-8225-d570bd8b04d6 aQ % » &= H
° o I
v Application: all applications  + @ View shortcuts =
L]
Topology €D jaeger
Menitoring eta Menitorine
&
&) Pods
@ iseger-1-ktivk £ Running
Services

test-application Rolites
@D ia=ger-output

Figure 5.11: Jaeger and test application deployment on OpenShift.

For implementing Jaeger with the OpenShift environment, we have used Docker im-
ages of Jaeger. Jaeger Architecture includes Jaeger-Client, Jaeger-Agent, and Jaeger-
Collector, Jaeger-Query, Jaeger-Console. Jaeger-Client includes language-specific imple-
mentations of the OpenTracing API for distributed tracing. Jaeger-Agent is a network
daemon that listens for spans sent over User Datagram Protocol. Jaeger-Collector re-
ceives spans and places them in a queue for processing. Jaeger-Query is a service that
retrieves traces from storage and hosts a Ul to display them. Finally, Jaeger-Console is
a user interface that visualization of distributed tracing data.

In Figure 5.12, we can see the homepage of the Jaeger tool. On the left side, we have

various filters available. We can filter our traces, such as operation filter by which we can

26



<« cC o a 17end=16383424815260008&limit=208&lookback=Th&maxDuration& ¥

JAEGER UI Search Compare chitecture About laeger v
Search SON File
Service
Ocelot-Client
v .
Operation 20500 pr 21320 pm 22140 pm 23000 pm
all
15 Traces Sort  Most Recent Deep Dependency Graph
Tags
Compare traces by selecting result items
Lookback
ast Hou
Ocelot-Client: /swagger/docsiv1/info 715635 1865
Max Duration Min Duration B e 2 celol-Serv Today
Limit Results Ocelot-Client: /swagger/index.him| 2d=cdb Ops
Bl et crent odey 12
Ocelot-Client: /swagger/docs/v1/info 62c7a55 12415
-

Figure 5.12: Jaeger homepage view.

filter specific operations for which we have created traces and other Tags by which we
can filter particular status_code or error. We can also filter the traces by time. On the

right side, we have a listing of requests requested by the client.

&« C o g ‘trace/1 a %+ » 8
JAEGER UI Search Compare rchitecture
¢~ Ocelot-Client: /test 28 | Trace Timeline ~
December 1 2021, 12:27:12 211s > ; 4 L
c 202 1 1
Service & Operation > > Os 528.25ms 1.08s 1.585 211s

« | Ocelot Cliant
~ | Ocelot-Client CustomiiddiewarsCallac

CustomMiddlewareCalled Ocelot-Client 2.1s 5 B8Bps

Tags: intemal.span.fomat =proto  olel it

Process: service instance id = 14b4c701-d26a.

> Logs (4)

Ocelot-Client w ET 238ms

HTTP GET Ocelot Client 233ms 80dps.

> Tags: http hos

0 http.ur ermal span format = proto  otel library. name = Open

Process: sorvice instance.id - 14b4cT

| Ocslot-Ciient = Emm—
| Ocelot-Client 11777 627 [=———
Ocelot-Server apiest

Figure 5.13: Jaeger view of single request.

And once we click on any of the requests, it will expand the view and will us more
valuable and detailed information execution flow of that request. In Figure5.13, we can
see the entire execution flow of the ’/test’ request. It contains information such as when
this trace is created, how many services it requested, what depth it is called, and how

long it takes to complete the request. And also, information on each span is available

27



in sequence view. This tracing tool will be beneficial for microservice architecture as
hundreds and thousands of services communicate with each other, so if a single service
failed, we can find it with the help of Jaeger in a much more efficient way. Jaeger also
provides Directed Acyclic Graph(DAG)is to visualize how services are communicating.

Some of the features of Jaeger: 1) The Jaeger backend has no single point of failure
and scales with the business needs. 2) It can handle billions of spans in a day. 3) Jaeger
has instrumentation libraries designed to support the OpenTracing standard. 4) Jaeger
supports open-source NoSQL databases as trace storage backends, Cassandra 3.4+ and
Elasticsearch 5.x+.

Scope of improvement in Jaeger: 1) Jaeger can have a unified Ul for metrics and
Traces for more good observability. 2) There are no alert options available as of now in
Jaeger. 3) There is no role-based access control available for better team management.
4) Filtering components are limited in Jaeger like we cannot run aggregates filtered on

traces.

5.3.2 SigNoz

es / 0000000000000000512d3665bbd63765

Trace Details Details for selected Span

Figure 5.14: Distributed Tracing using SigNoz

SigNoz is an open-source tool for metric and tracing data visualization [20]. It was
founded in 2020 to deliver better observability corresponded to existing tools. In Figure
5.14, we have a diagram of trace visualization in SigNoz, and this image illustrates how
convenient it is to understand request execution using SigNoz. Furthermore, as SigNoz

also provides metrics visualization, we can monitor application performance, as seen in

28



Figure 5.15. One of the great features of SigNoz is that it allows for a correlation between

metrics and tracing data.

Top Endpoints

Name P50 (in ms) P95 (in ms) P99 (in ms) Number of Calls

1
@ Error Percentage

Figure 5.15: Monitoring Application performance using SigNoz.

SigNoz architecture includes OpenTelemetry Collector, ClickHouse, Query Service,
and Frontend. OpenTelemetry Collector will receive multiple format data input from
various applications and forward it to ClickHouse for storage. Query service fetches
data from ClickHouse and processes it before passing it to the front end. And the last
component is the frontend, which provides a unified UI for logging and metrics data,
including service-map and alert functionality.

Some of the features of SigNoz: 1) Provide correlation between metrics and tracing
data. 2) Advance filtering option available for data filtering. 3) It also includes a feature
of alerting and service mapping. Scope of improvement in SigNoz: 1) Tool is very young
in the industry. 2) It does not provide support of logs as of now (it is there in their future

road map)

5.3.3 ZipKin

Zipkin is an open-source distributed tracing system to collect trace information [21].
Zipkin assists us to locate precisely where a request to the application has failed or spent
a long time. We can instrument our application tracing using the Zipkin client library.
Figure 5.16 shows various request information on the homepage of the Zipkin tool.

Zipkin architecture includes collector, storage, query-service, and web UI. The col-

29



Zipkin Q, Findatrace " O ! Fa ENGLISH v X Search by trace ID

ExecuteRequest | X m v

10 Results EXPAND ALL COLLAPSE ALL Service filters -

Root Start Time Spans \ Duration

~ demo-client: executerequest a few seconds ago (03/08 14:19:09:010 3 1.080s SHOW
0a58203cbc3c92ed51

Trace ID: b
demo-client (2) J| demo-server (1)

~ demo-client: execut a few seconds ago 08 14:19:04:402 3 950.893ms SHOW

Trace ID: aff24a140aa072722ce919f5b88a07e

oo

~ demo-server: /hello a few seconds ago (03/08 14:19:12:110 1 642 277ms SHOW

Trace ID: 06e1486b6db8850655801169b6432ad8

demo-server (1)

v demo-client: executerequest a few seconds ago (03/08 14:19:07 368 3 640 660ms SHOW

Figure 5.16: Distributed Tracing using Zipkin.

lector is used for validating, storing and indexing incoming trace data. As storage, it
supports Cassandra, ElasticSearch, and MySQL. Query-service provides API for finding
and retrieving traces to web Ul. And using web Ul, we can visualize our trace on the
frontend

Some of the features of Zipkin: 1) Zipkin supports multiple storage backends. 2) It
has large community support 3) Zipkin provide service mapping functionality 4) It is a
mature project. Scope of improvement in Zipkin: 1) It lacks support for some client

libraries.

5.4 Metrics

Metrics play a crucial role in tracking application performance. It will give us helpful
application insight such as CPU usage, Services rate, and many more. We can utilize

these insights to set up a better infrastructure for our application.

5.4.1 Prometheus

Prometheus is an open-source tool that is used to view metrics information. As a part of
this project, we have used service-monitoring [22] of the OpenShift environment, which
is based on the Prometheus rule only. Service monitoring provides a very interactive
UI design where we can visualize metrics information and events of the application.

Figure5.17 shows metrics information related to Pod CPU usage.

30



<> Developer

s Monitoring
Topology Dashboard ~ Metrics  Alerts  Events
Monitoring
CPUusage - Show PromGl
Search
T = Stacked
Builds ” PEsEh o
Pipelines ——
=i} ) —) =
_Cr’:f“ N & = =2
Environments S e = — — ===
15 = { A - =\=§= S
\ B - = —— 1 — =
Helm — el =
Project
ConfigMaps 25 AM 130 AM 354M 145 AM 150 A
Secrets
pod Value
]

Figure 5.17: Service Monitoring of OpenShift.

Service monitoring also provides feature for visualization custom metrics data. Insight
metrics tab, we have a field for searching our custom metrics information. In Figureb.18,

we can see the custom metrics that we have created for this project with visualization.

</ Developer

Monitoring
+Add

Topology Dashboard Alerts  Events

Monitoring
Custom query - Hide Pr

Search

Builds

= Stacked
Pipelines

Environments 40

Helm

Project

ConfigMaps

e !
E 2:00 PM 300PM 6:00 PM 9:00 PM 1200 A 3:00 AM 6:00 AM

Name container endpoint instance job namespace pod prometheus service Value

& 8080-tcp openshift- ac

monitoring/ks

Figure 5.18: Visualizing custom metrics data of application in Service Monitoring.

Grafana [23] is a great data visualization tool. Having grafana with prometheus is
similar to having ice on the cake. Figure 5.19 demonstrates application metrics visualiza-
tion in the grafana dashboard. The reason why we want grafana along with prometheus
is that prometheus provides very limited visualization capability; that’s why we need
grafana for out of the box visualization.

Grafana, on the other hand, has various other integration options for logging, metrics,

and trace data. We can use grafana for better observability in the system.

31




88 General / Prometheus 2.0 Stats Copy v <3
(D GrafanaDocs (D) Prometheus Docs

Error rate Memory Profile Request Received

{
,,(- 0.000560 ( (1]

api-gateway-4

12:00

Samples Appended Scrape Duration

api-gateway-git argocd-metrics argocd-repo-server  argocd-server-metrics

Compaction Activity Reload Count WAL Corruptions

Figure 5.19: Application performance monitoring in Grafana

Some of the features of Prometheus and Grafana: 1) Prometheus have effective query
language for fetching and analyzing metrics data. 2) Grafana supports various integration
options. 3) Grafana provide excellent data visualization feature. 4) We can use grafana
for alerting on fly application failure information. 5) Grafana supports data grouping for
more useful data visualization.

Scope of improvement in Prometheus and Grafana: 1) Prometheus is lacking in pro-
viding good visualization UI. 2) Prometheus doesn’t have a long term storage option. 3)

Grafana does not store data. 4) Visualization libraries are limited in grafana.

5.5 Alerting

Alerts play a crucial role in the application. Using alerts, we can get on-fly information
regarding system failure. Openshift will trigger alerts when any metrics information hits
a certain threshold. We have the option to configure to get messages via Webex or mail.

Figure 5.20 is alerting configuration where we can configure our alerts. We have
options to configure multiple alerts into single groups and multiple groups as per our
requirements. Inside the ’'rules’ field, we can define our rule by which Openshift can
trigger an alert. We have the option to configure the severity, what message we want to
see, the expression on which the alert used to be triggered, and the alert name. Here in the
example Figure 5.20, we define an expression where if the rate of sampleapp_ticks_total
increases more than 0.0002 in less than a minute, it will generate an alert. We can

customize this expression based on our requirements.

32



: monitoring.coreos
: PrometheusRule

sailor-alerts

. My-namespace

sailor-alerts

: TooManyFailedRequests
rate(sampleapp_ticks_total[im]) > ©.e002

critical

Figure 5.20: Alerting configuration

Figure 5.21 is the message that we have received on the Webex group, which includes
various useful information such as site name, cluster name, project name, the current
status of the alert, severity, what time it is generated, and what is a type of error. These
information will be very useful to debug application in much faster way. We have done

these setup for our project in Openshift environment.

ICP TooManyFailedRequests

Figure 5.21: Alert on Webex

33



5.6 Dynamic Routing

In the ocelot package, we have the option to add service information. Still, it is tightly
coupled with the configuration file because if we update single information, we need
to re-deploy the configuration again. For that reason, we need dynamic routing in a
microservice architecture. One of the challenging things in a microservice architecture
is to enable dynamic routing so that the application self-register as and when it is up
and automatically de-register if it is down. For this purpose, we have used Consul [21]
developed by HashiCrop for enabling dynamic routing. Consul provides distributed key-
value storage for application configuration, and it provides service mesh for secured service

segmentation in any cloud environment. [25].

< All Services

Services

consul

Nodes

Key/Value

Intentions Search Across v Health Status v 5 Unhealthy to Healthy v

Figure 5.22: Consul dashboard for dynamic configuration

Figure 5.22 is the home page of the Consul, where we will have the lists of various
services in the application. As we increase the instance count, it will dynamically bind
that service to the Consul. It will automatically de-register services if they are not up
and re-register as and when they are up. Another reason why service discovery (Consul)
plays an important role is because we can have multiple instances of a single application
running into the same cluster in cloud applications. It will work as a load balancer in
the architecture. The health check is also provided by Consul so that we don’t need any
external monitoring servers for a health check. Consul is a very crucial tool in cloud-based

applications.

34



Chapter 6

Future Work and Conclusion

As data increases, we need to increase resources as per needs, and typical monolithic
architecture cannot handle scalability at this enormous scale. The main disadvantage of
monolithic is that we cannot achieve rapid application development at a gigantic scale.
In this paper, we have discussed microservice architecture and challenges within ar-
chitecture. We worked on an observability design pattern that addressed issues related
to observability in microservices. We have investigated and implemented various open-
source tools such as Prometheus, Grafana, SigNoz, Jaeger, Zipkin, Loki, and ELK stack.
Our study will help others to understand the capabilities of these tools. So in this
project, we have the functionality of API Gateway extension (Rate-Limiting, Caching,
and IP whitelisting/blacklisting), Monitoring and Observability (Logging, Tracing, Met-
rics, Notification Alert, and Standard Visualization) as a part of infrastructure as a code.
Here we want to conclude that there would never be a scenario where we can have
one fixed tool for observability in a microservice architecture. Many tools come and can
replace existing tools based on market performance. So we should always look for an

updated tool in a microservice architecture.

35



Bibliography

1]

M. Fazio, A. Celesti, R. Ranjan, C. Liu, L. Chen, and M. Villari, “Open issues
in scheduling microservices in the cloud,” IEEE Cloud Computing, vol. 3, no. 5,

pp. 81-88, 2016.

“Digital 2021 april global statshot report, https://datareportal.com/reports/digital-
2021-april-global-statshot,” 2022.

A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices architecture enables
devops: Migration to a cloud-native architecture,” Ieece Software, vol. 33, no. 3,

pp. 42-52, 2016.

P. Rodgers, “Service-oriented development on netkernel-patterns processes & prod-
ucts to reduce system complexity web services edge 2005 east: Cs-3”7,” CloudCom-

putingEzpo, 2005.

R. Chen, S. Li, and Z. Li, “From monolith to microservices: A dataflow-driven
approach,” in 2017 24th Asia-Pacific Software Engineering Conference (APSEC),
pp. 466-475, IEEE, 2017.

O. Al-Debagy and P. Martinek, “A comparative review of microservices and mono-

)

lithic architectures,” in 2018 IEEFE 18th International Symposium on Computational

Intelligence and Informatics (CINTI), pp. 000149-000154, IEEE, 2018.

N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi, R. Mustafin,
and L. Safina, “Microservices: yesterday, today, and tomorrow,” Present and ulterior

software engineering, pp. 195-216, 2017.

M. Villamizar, O. Garces, L. Ochoa, H. Castro, L. Salamanca, M. Verano, R. Casal-

las, S. Gil, C. Valencia, A. Zambrano, et al., “Infrastructure cost comparison of run-

36



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

ning web applications in the cloud using aws lambda and monolithic and microservice
architectures,” in 2016 16th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGrid), pp. 179-182, IEEE, 2016.

M. P. de S4, “Emergent microservices in emergent ecosystems,” in 2020 IEEE/ACM
13th International Conference on Utility and Cloud Computing (UCC), pp. 449-450,
IEEE, 2020.

A. Ciuffoletti, “Automated deployment of a microservice-based monitoring infras-

tructure,” Procedia Computer Science, vol. 68, pp. 163172, 2015.

B. Mayer and R. Weinreich, “A dashboard for microservice monitoring and manage-
ment,” in 2017 IEEE International Conference on Software Architecture Workshops
(ICSAW), pp. 66-69, IEEE, 2017.

N. Marie-Magdelaine, T. Ahmed, and G. Astruc-Amato, “Demonstration of an ob-
servability framework for cloud native microservices,” in 2019 IFIP/IEEE Sympo-
sium on Integrated Network and Service Management (IM), pp. 722-724, IEEE,
2019.

“Ocelot, https://ocelot.readthedocs.io/en/latest /introduction/gettingstarted.html,”
2022.

“Redis, https://redis.io/,” 2022.

“Filebeat overview, https://www.elastic.co/guide/en/beats/filebeat /current /filebeat-

overview.html,” 2022.
“Elastic stack: Elasticsearch, kibana, beats &; logstash,” 2022.

“Elastic  apm, https://www.elastic.co/observability /application-performance-

monitoring,” 2022.
“Grafana loki, https://grafana.com/oss/loki,” 2022.

“Open source, end-to-end distributed tracing by jaeger,

https://www.jaegertracing.io/,” 2022.
“Signoz, "https://signoz.io/’,” 2022.

37



[21]

[22]

“Zipkin, https://zipkin.io/,” 2022.

“Service  monitoring, prometheus, https://docs.openshift.com /container-

platform /4.7 /monitoring/managing-metrics.html,” 2022.
“Grafana, https://grafana.com/,” 2022.
“Consul, service discovery, https://www.consul.io/,” 2022.

“Consul, wiki, https://en.wikipedia.org/wiki/consul(so ftware),” 2022.

38



https

Appendix A

://docs.microsoft.com/en-us/azure/architecture/guide/

architecture-styles/microservices

https:

https

https:

https:

https:

https:

https:

//docs.openshift.com/

://redis.io/
//www.jaegertracing.io/
//prometheus.io/
//www.elastic.co/what-is/elk-stack
//www.elastic.co/beats/filebeat

//medium.com/swlh/

building-net-core-api-gateway-with-ocelot-6302c2b3ffcb

https

https

https

https

https

://ocelot.readthedocs.io/en/latest/features/configuration.html
://redis.io/topics/config
://www.geeksforgeeks.org/difference-between-iaas-paas-and-saas/
://www.blogofpi.com/restrict-ip-address-asp-net-core-web-api/

://cloud.netapp.com/blog/

cvo-blg-5-red-hat-openshift-benefits-you-didnt-know-about

https

https

://logz.io/blog/filebeat-vs-logstash/

://docs.openshift.com/container-platform/4.6/virt/logging_

events_monitoring/virt-openshift-cluster-monitoring.html

https

://medium.com/opentelemetry/

deploying-the-opentelemetry-collector-on-kubernetes-2256eca569c9

39


https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/microservices
https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/microservices
https://docs.openshift.com/
https://redis.io/
https://www.jaegertracing.io/
https://prometheus.io/
https://www.elastic.co/what-is/elk-stack
https://www.elastic.co/beats/filebeat
https://medium.com/swlh/building-net-core-api-gateway-with-ocelot-6302c2b3ffc5
https://medium.com/swlh/building-net-core-api-gateway-with-ocelot-6302c2b3ffc5
https://ocelot.readthedocs.io/en/latest/features/configuration.html
https://redis.io/topics/config
https://www.geeksforgeeks.org/difference-between-iaas-paas-and-saas/
https://www.blogofpi.com/restrict-ip-address-asp-net-core-web-api/
https://cloud.netapp.com/blog/cvo-blg-5-red-hat-openshift-benefits-you-didnt-know-about
https://cloud.netapp.com/blog/cvo-blg-5-red-hat-openshift-benefits-you-didnt-know-about
https://logz.io/blog/filebeat-vs-logstash/
https://docs.openshift.com/container-platform/4.6/virt/logging_events_monitoring/virt-openshift-cluster-monitoring.html
https://docs.openshift.com/container-platform/4.6/virt/logging_events_monitoring/virt-openshift-cluster-monitoring.html
https://medium.com/opentelemetry/deploying-the-opentelemetry-collector-on-kubernetes-2256eca569c9
https://medium.com/opentelemetry/deploying-the-opentelemetry-collector-on-kubernetes-2256eca569c9

Jay - Aggregation and Observability in Microservice Accelerator

ORIGINALITY REPORT

S 6o 5e, To

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS

PRIMARY SOURCES

1 s3-eu-west-1.amazonaws.com 1
Internet Source 96

export.arxiv.org 1
Internet Source 96

dzone.com 1
Internet Source 96

Muhammad Waseem, Peng Liang, Mojtaba <'] y
Shahin, Amleto Di Salle, Gastén Marquez. ’
"Design, monitoring, and testing of

microservices systems: The practitioners’

perspective", Journal of Systems and

Software, 2021

Publication

-~

Nebrass Lamouchi. "Chapter 14 Flying All <1 y
Over the Sky with Quarkus and Kubernetes", ’
Springer Science and Business Media LLC,

2021

Publication

H slides.com <1
Internet Source 96




Submitted to Napier Universit

Student Paper p y <1 %
WWW.jaegertracing.io

n InternetSJourceg g <1 %
www.economyinformatics.ase.ro

n Internet Source y <1 %
thenextweb.com

Internet Source <1 %
ieeexplore.ieee.or

InternetSFczurce g <1 %
dokumen.pub

Internet Source p <1 %

Submltted to Colorado State University Fort <1 o
Collins
Student Paper

Submitted to Free University of Bolzano <
Student Paper %
Submitted to Macquarie Universit v

Student Paper q y < %
scholarsbank.uoregon.edu

Internet Source g <1 %
aaltodoc.aalto.fi

Internet Source <1 %

—
0¢}

ns2.thinkmind.org



Internet Source

<1%

—
O

tel.archives-ouvertes.fr

Internet Source

<1%

"Monitoring High Throughput Distributed
System using Statistical Data Analysis",
International Journal of Recent Technology
and Engineering, 2020

Publication

<1%

Mario Villamizar, Oscar Garces, Lina Ochoa,
Harold Castro et al. "Infrastructure Cost
Comparison of Running Web Applications in
the Cloud Using AWS Lambda and Monolithic
and Microservice Architectures”, 2016 16th
IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid),
2016

Publication

<1%

helda.helsinki.fi

Internet Source

<1%

N
B

Www.elastic.co

Internet Source

<1%

"Cloud Computing and Services Science",
Springer Science and Business Media LLC,
2020

Publication

<1%




Omar Al-Debagy, Peter Martinek. "A <1 o
Comparative Review of Microservices and ’
Monolithic Architectures", 2018 IEEE 18th
International Symposium on Computational
Intelligence and Informatics (CINTI), 2018

Publication

Shuaiyu Wang, Yinsheng Li. "A Creditworthy <1 o
Resources Sharing Platform Based on
Microservicel", 5th International Conference
on Crowd Science and Engineering, 2021

Publication

Exclude quotes On Exclude matches Off

Exclude bibliography On



