
Aggregation and Observability in
Microservice Accelerator

Submitted By

Jay Parmar

20MCEC07

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2022

Aggregation and Observability in
Microservice Accelerator

Major Project

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology in Computer Science and Engineering

Submitted By

Jay Parmar

(20MCEC07)

Guided By

Dr. Pooja Shah

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2022

Certificate

This is to certify that the Major project entitled “ Aggregation and Observability in

Microservice Accelerator ” submitted by Jay Parmar (20MCEC07), towards the

partial fulfillment of the requirements for the award of degree of Master of Technology

in Computer Science and Engineering of Nirma University, Ahmedabad, is the record of

work carried out by him under my supervision and guidance. In my opinion, the sub-

mitted work has reached a level required for being accepted for examination. The results

embodied in this Major Project, to the best of my knowledge, haven’t been submitted to

any other university or institution for award of any degree or diploma.

Dr. Pooja Shah Dr. Sudeep Tanwar

Internal Guide & Associate Professor Professor & PG Coordinator (M.Tech - CSE)

CSE Department CSE Department

Institute of Technology Institute of Technology

Nirma University, Ahmedabad Nirma University, Ahmedabad

Dr. Madhuri Bhavsar Dr. Rajesh Patel

Head of Dept. Director

CSE Department Institute of Technology

Institute of Technology Nirma University, Ahmedabad

Nirma University, Ahmedabad

iii

Statement of Originality
———————————————————————————————————————

I, Jay Parmar, 20MCEC07, give undertaking that the Major Project entitled “Ag-

gregation and Observability in Microservice Accelerator” submitted by me, to-

wards the partial fulfillment of the requirements for the degree of Master of Technology

in Computer Science & Engineering of Institute of Technology, Nirma University,

Ahmedabad, contains no material that has been awarded for any degree or diploma in any

university or school in any territory to the best of my knowledge. It is the original work

carried out by me and I give assurance that no attempt of plagiarism has been made.It

contains no material that is previously published or written, except where reference has

been made. I understand that in the event of any similarity found subsequently with any

published work or any dissertation work elsewhere; it will result in severe disciplinary

action.

———————–

Signature of Student

Date:

Place:

Endorsed by

Dr. Pooja Shah

(Signature of Guide)

iv

Infineon Technologies India Private Limited

Company Registration Number : 22413

Postal Address : 11 Mahatma Gandhi Road, Bengaluru 560 001 Internet www.infineon.com Tel +(91) (80) 3927 1000

IFIN HR- 2022
27-04-2022

CERTIFICATE

To Whom It May Concern

Formal Data:

Student Name: Jay Kishor Parmar

Institution: Institute of Technology, Nirma University

Organization: Infineon Technologies India Pvt. Ltd.

Project Instructors/ Managers: Anusha Shetty

Evaluation of work:

Jay Kishor Parmar is working as a Student Trainee with us from 05-Jul-2021 till 31-May-2022
and is working on project “Aggregation & Observability in Microservice Accelerator”.

Jay Kishor Parmar is an avid and independent learner, has good analytical & application skills
and has shown exemplary performance during the internship period.

We wish Jay Kishor Parmar a long fruitful career and success in future endeavors.

For Infineon Technologies India Pvt. Ltd.

 Thara Aiyanna
 HR Manager

Acknowledgements

It gives me great pleasure to express my heartfelt gratitude to Dr. Pooja Shah for her

continuous encouragement during this project. Her gratitude and unwavering guidance

have served as a powerful motivator for me to strive for greater heights.

It gives me an immense pleasure to thank Dr. Madhuri Bhavsar, Hon’ble Head of

Computer Science And Engineering Department, Institute of Technology, Nirma Uni-

versity, Ahmedabad for her kind support and providing basic infrastructure and healthy

research environment.

A special thank you is expressed wholeheartedly to Dr. Rajesh Patel, Hon’ble Director,

Institute of Technology, Nirma University, Ahmedabad for the unmentionable motivation

he has extended throughout course of this work

- Jay Parmar

20MCEC07

vi

Abstract

Various organizations need highly scalable and available architecture in this fast forward-

ing world. However, it is incredibly challenging to scale monolithic architecture based

on user response. That is why numerous prominent tech giants use microservice archi-

tecture. Microservice architecture also comes with various challenges; however, it offers

more. Various design patterns are available to overcome these challenges in a microservice

architecture. In this paper, we are addressing observability design patterns. We can mon-

itor, analyze, and inspect our application much more efficiently using this design pattern.

As microservice architecture is rapidly evolving, various open-source tools are available

in the market. However, there is no such hard-and-fast tool there for all the projects; it

entirely depends on the business requirement of the project. This paper discussed some

of the open-source tools and their advantages and how we can use these tools to achieve

observability design patterns.

vii

Abbreviation

Abbreviation Explanation

APM Application Performance Monitoring

API Application Programming Interface

DOS Denial Of Service

ELK Elasticsearch, Logstash, and Kibana

IDC International Data Corporations

viii

List of Figures

1.1 Microservice Architecture . 3

3.1 Technologies and Working Environment. 13

4.1 Architecture Diagram. 15
4.2 Architecture Diagram. 16

5.1 Caching mechanism using Redis. 18
5.2 Rate-limiting with IP White/black listing. 19
5.3 Caching mechanism using Redis. 20
5.4 Error Message for user . 21
5.5 Conceptual view of logging mechanism. 21
5.6 ConfigMap of Filebeat. 22
5.7 DeployementConfig of container. 23
5.8 Kibana Logging Dashboard. 24
5.9 ELK Tracing Dashboard . 24
5.10 Loki Logging Dashboard. 25
5.11 Jaeger and test application deployment on OpenShift. 26
5.12 Jaeger homepage view. 27
5.13 Jaeger view of single request. 27
5.14 Distributed Tracing using SigNoz . 28
5.15 Monitoring Application performance using SigNoz. 29
5.16 Distributed Tracing using Zipkin. 30
5.17 Service Monitoring of OpenShift. 31
5.18 Visualizing custom metrics data of application in Service Monitoring. . . 31
5.19 Application performance monitoring in Grafana 32
5.20 Alerting configuration . 33
5.21 Alert on Webex . 33
5.22 Consul dashboard for dynamic configuration 34

ix

List of Tables

1.1 Comparison between Microservice and Monolithic Architecture. 4

x

Contents

Certificate iii

Statement of Originality iv

Acknowledgements vi

Abstract vii

List of Figures ix

List of Tables x

1 Introduction 1
1.1 Introduction . 1
1.2 Understanding Microservice Architecture 2
1.3 Microservice vs Monolithic . 3
1.4 Microservice Accelerator . 4
1.5 Challenges with Microservice Architecture [1] 5
1.6 Design Patterns . 5

1.6.1 API Gateway Patterns . 6
1.6.2 Observability Gateway . 6

1.7 Scope of Work . 6

2 Literature Survey 7
2.1 Paper I: ”A Comparative Review of Microservices and Monolithic Archi-

tectures” . 7
2.1.1 Objective . 7
2.1.2 Methodology . 7
2.1.3 Result and Conclusion . 8
2.1.4 Performance matrix . 8

2.2 Paper II: ”Microservices: Yesterday, Today, and Tomorrow” 8
2.2.1 Objective . 8
2.2.2 Methodology . 8
2.2.3 Result and Conclusion . 8

2.3 Paper III: ”Infrastructure Cost Comparison of Running Web Applications
in the Cloud Using AWS Lambda and Monolithic and Microservice Archi-
tectures” . 9
2.3.1 Objective . 9
2.3.2 Methodology . 9

xi

2.3.3 Result and Conclusion . 9
2.3.4 Performance matrix . 9

2.4 Paper IV: ”Emergent Microservices in Emergent Ecosystems” 10
2.4.1 Objective . 10
2.4.2 Methodology . 10
2.4.3 Result and Conclusion . 10

2.5 Paper V: ”Automated deployment of a microservice-based monitoring in-
frastructure” . 10
2.5.1 Objective . 10
2.5.2 Methodology . 11
2.5.3 Result and Conclusion . 11

2.6 Paper VI: ”A dashboard for microservice monitoring and management” . 11
2.6.1 Objective . 11
2.6.2 Methodology . 11
2.6.3 Result and Conclusion . 11

2.7 Paper VII: ”Demonstration of an observability framework for cloud native
microservices” . 12
2.7.1 Objective . 12
2.7.2 Methodology . 12
2.7.3 Result and Conclusion . 12

3 Working Environment 13

4 Architecture and Flow 15

5 Execution and Implementation 18
5.1 Access Control . 18

5.1.1 Rate-limiting and IP White/black listing 18
5.1.2 Redis Caching . 19
5.1.3 Error Message . 20

5.2 Logging . 21
5.2.1 ELK Stack . 21
5.2.2 Loki . 25

5.3 Tracing . 26
5.3.1 Jaeger . 26
5.3.2 SigNoz . 28
5.3.3 ZipKin . 29

5.4 Metrics . 30
5.4.1 Prometheus . 30

5.5 Alerting . 32
5.6 Dynamic Routing . 34

6 Future Work and Conclusion 35

xii

Chapter 1

Introduction

This chapter discusses a monolithic application, why we should avoid it for scalable

projects, and the benefit of microservice architecture over monolithic architecture.

1.1 Introduction

Recently due to the improving Information Technology (IT) infrastructure and advancing

technologies, there has been an immense surge in the Internet usage worldwide. Global

internet users have grown by more than 330 million in 2021, reaching a total of more than

4.7 billion at the start of April 2021[2]. Furthermore, it is predicted that data creation

will grow to more than 180 Zetta Bytes (ZB) by the year 2025. Increasing internet usage

causes demand for high-performance applications that can efficiently handle this data.

There was a time when industry centered on solely one type of architecture, i.e., mono-

lithic architecture. The concept of monolithic architecture is excellent in itself. However,

this architecture has some problems regarding scalability and rapid development.

There was a time when industry centered on solely one type of architecture, i.e., mono-

lithic architecture. The concept of monolithic architecture is excellent in itself. However,

this architecture has some problems regarding scalability and rapid development. Mono-

lithic architecture provides tight coupling between all the services, where the dilemma

reaches for scalability. All the services are tightly coupled with each other, which means

that all services are dependent on each other and to scale such application itself is a com-

plex task that directly impacts the performance. Another problem with monolithic is

that if any single service failed it cause a complete system failure. Deploying the mono-

lithic application is also one of the significant concerns for the project; as for a single

1

service update, we need to redeploy the complete system again. Rapid development and

scalability are the main worries for monolithic architecture; here comes the rescuer we

have, microservices architecture.

N. Dragoni describes Microservice architecture as the development of a series of small

services that work as a single application. It provides loose coupling between services

which eventually helps scalability and rapid delivery.

1.2 Understanding Microservice Architecture

Microservice architecture is creating a boom in the current market. The main reason

is that it is more scalable, faster, reliable, and can quickly adopt new technologies than

monolithic architecture. The International Data Corporation (IDC) indicated that by

the ending of the year 2021, around 80% of cloud based software would be developed

using microservice architecture style [3]. There were several claims about the originator

of microservices. In one of the cloud computing conferences, The word “micro web

services” was first time used by Dr. Peter Rogers in the year 2005 [4]. “Microservices”

themselves premiered at an event for software architects in 2011, where the word was used

to represent a style of architecture that numerous attendees were exploring at the time.

”Microservices” itself was first exhibited at an software design event in 2011, where the

term was used to represent the architectural style that many people were exploring at the

time. Microservice architecture in itself is a magnificent idea for accelerated and scalable

development. We can use this architecture in any of the projects for rapid development.

Here is the representation of microservice architecture.

Figure 1.1 shows the pictorial representation of microservice architecture. It demon-

strating that how a client can reach various microservices using API Gateway. On the

client-side, he/she may not aware of the scenario of microservices. For them, it will be

like a traditional API call but from a developer perspective, it provides more adaptability,

scalability, and rapid development.

Nowadays, many large-cap companies, such as Amazon, Netflix, have moved their

applications and systems to the cloud, because cloud computing allows these organiza-

tions to scale their computing resources as per their usage [5]. And in those companies

microservices are widely used in their applications.

2

Figure 1.1: Microservice Architecture

1.3 Microservice vs Monolithic

There are numerous advantages of adopting microservice architecture over monolithic

architecture when it comes to scalable applications. In this section, we will see the

remarkable useful advantages of microservices.

1. Coupling: as monolithic architecture has tight coupling with each service, it is

very challenging to make any changes on the system directly. On other side, mi-

croservice architecture provides loose coupling between services which makes them

independent of each other and extremely useful for rapid development.

2. Scalability: scaling monolithic applications is not an unachievable task but the

plenty of energy and time it needs will undoubtedly be more than the amount

demanded by any microservice application as each service is independent.

3. Testing: testing microservice application is easy as compared to monolithic appli-

cations as in microservice applications each service can be individually tested where

as in monolithic applications it is very complex to test each service separately.

4. Frequent Development: frequent Development is primary concerns with a mono-

lithic application as for single development/changes we need to the redeployed whole

application again on the server. If we confronted this situation with microservice

3

applications, it outperforms the monolithic application as we can efficiently deploy

individual services as per the demand without harming other services.

5. Mix of technologies: it can be obtainable with both the architectures, but when we

have to do it efficiently that we can say that microservice architecture can easily

accomplish mixing of technology.

6. Data Isolation: isolating data for a very difficult task for any application. for

monolithic applications, data isolation is a quite challenging task as multiple re-

sources are using the same data across the system and it is pretty obscure to isolate

data for each service wherein microservice architecture we can comfortably spec-

ify a database for each service through which we can efficiently obtain data isolation.

Data described in Table 1.1 are summarized based on analysis of multiple research papers

where we have compared several parameters for sentencing both architectures.

Parameter Monolithic Architecture Microservice Architecture

Reliability Less More

Scalability Less More

Adoptability Challenging Well-to-do

Rapid Development Complex Moderate

Testing Easy Complex

Data Isolation Difficult Simple

Coupling Tight Loose

Table 1.1: Comparison between Microservice and Monolithic Architecture.

1.4 Microservice Accelerator

Microservices Accelerator provides container-ready microservices that involve a project

configuration and a collection of modules that implement common requirements for stan-

dard microservice-based solutions.

4

1.5 Challenges with Microservice Architecture [1]

One oftentimes imagines that if we hold this many advantages from the microservice

architecture then why can’t we stop the monolithic application and start using the only

microservice application. This is not the case, there is another side of the coin that

organizations need to pay for using microservice architecture.

There are various challenges we may encounter in using microservice architecture. The

few most common hurdles are listed below.

1. Versioning: we oftentimes update any service for a specific target and as multiple

services possibly are updated at any delivered moment, so without thoughtful de-

sign, we might produce a lot of compatibility issues which may end up in system

malfunction which will be hard to resolve.

2. Data integrity: as each microservice has its data persistence, it is quite complicated

to maintain the integrity of data shared across multiple microservices.

3. Monitoring and observability: for a large-scale project, we may have plenty of

services for our application and if many services are interdependent and any of

them is failed, it is notable difficult to identify, log, and trace the failure.

4. Testing: testing individual services it is usually a simple task to do in microservices

but the problem arrives when more services are connected to each other and testing

such a scenario in microservice is really challenging.

These are a few common challenges we wrote down, apart from these we have many

more difficulties in integrating microservice architecture. So, if the business use case is

small we can go with the monolithic architecture. But for a large-scale application, it is

worthy of going with microservice architecture.

1.6 Design Patterns

As migrating from monolithic to microservice is not a straightforward task. We need

to follow standard patterns to adopt microservice architecture in existing monolithic

application. We are primarily focused on API Gateway Pattern and Observability Pattern

for this project.

5

1.6.1 API Gateway Patterns

In a microservice architecture, client applications are often required to use more than

one microservices and if we directly provide the endpoint for each required microservices

to the client then it leads to a security threat to our application as well as if we change

anything in endpoints client also need to changes this in their application. The solution

for that is we have an API gateway.

It is a type of link between microservices and client browsers. It is very helpful to

protect the real endpoint of microservices. The Gateway API is the only server access

point in the system. It integrates the internal system configuration and provides an API

designed for each client.

1.6.2 Observability Gateway

This pattern is beneficial for understanding and observing microservice applications ef-

ficiently. There is a typical miss perception that people usually assume that monitoring

and observability are the same. However, there are two different terms. Monitoring will

tell us that there is a problem; however, observability will tell us where the problem

occurred. We cannot monitor our application until we observe it thoroughly. This pat-

tern consists of Log aggregation, Application metrics, Audit logging, Distributed tracing,

Exception tracking, and Health check API.

1.7 Scope of Work

There is numerous functionality we can achieve using microservice architecture such as

logging, tracing, monitoring, security, scalability, rapid development, etc. By the scope of

this project, we are major working on security through API gateway as well as monitoring

and observability of microservice architecture.

6

Chapter 2

Literature Survey

2.1 Paper I: ”A Comparative Review of Microser-

vices and Monolithic Architectures”

2.1.1 Objective

In this research paper [6], the authors mainly concentrate on comparing monolithic ar-

chitecture and microservice architecture in terms of performance, to conclude how these

architectures perform in different situations using various experimental setups. The au-

thors decided to further investigate more about the performance of both the application

in more depth as many differences in the literature are available.

2.1.2 Methodology

Authors use the platform “JHipster” for developing and analyzing microservice and mono-

lithic applications. Web applications consist of popular Java framework Spring Boot and

for front-end Angular JS frameworks.

The application that was developed for this particular paper consisted of three services.

First, JHipster Registry is a primary part of the microservices architecture. Second,

the microservice application will produce the backend capabilities by API. Third, the

microservices gateway is the front-end of the entire system which will incorporate all the

APIs of every microservice application in the system.

JMeter was also utilized to test the performance of these applications. They perform

various testing scenarios such as load testing, concurrency testing, endurance testing, and

7

results are different for different scenarios.

2.1.3 Result and Conclusion

From the result, they have analyzed that for small load monolithic performs well while

load starts increasing microservice outperform monolithic application. Regarding through-

put as they have fixed the number of requests and observe that monolithic application

shows higher throughput as compared to microservices.

2.1.4 Performance matrix

Throughput and response time;

2.2 Paper II: ”Microservices: Yesterday, Today, and

Tomorrow”

2.2.1 Objective

The foremost objective for this paper is to provide a survey that essentially addresses

comprehensive guidance on microservice to anyone new to this terminology and the pos-

sible concern with this architecture.

2.2.2 Methodology

This paper [7] informs us about three-phase of microservices ’yesterday’, ’today’, and ’to-

morrow’. It mainly illustrated that how popular applications are influencing by microser-

vice architecture over the monolithic architecture. It also explains that how microservices

are powerful to accommodate flexibility, modularity, evolution, independency, and size

reduction in infrastructure.

2.2.3 Result and Conclusion

As a result of this research, the authors provided the reader with references to the lit-

erature and guidance of services and microservices. They also discussed the possible

dilemmas with microservices concerning security, network complexity, and heterogeneity.

8

2.3 Paper III: ”Infrastructure Cost Comparison of

Running Web Applications in the Cloud Using

AWS Lambda and Monolithic and Microservice

Architectures”

2.3.1 Objective

The main objective of this paper [8] is to presents a cost comparison of web application

development and deployment using three different methods: the first is monolithic archi-

tecture, the second is microservice architecture Managed by the cloud customer, and the

third is microservice architecture Managed by the cloud provider. The goal is to examine

how the infrastructure costs are affected by the development of each architecture.

2.3.2 Methodology

As a purpose method, the authors decided to build a similar application with all three

strategies to examine the cost and scalability of the application. Two services are cre-

ated, first one is to generate the payment plan which includes a set of payments (from 1

to 6 months) and the second service is used to retrieve the existing plan and its corre-

sponding set of payments. They have created these two services for each architecture for

investigating performance for each structure.

2.3.3 Result and Conclusion

From the case study, the authors observed that if an application has a meager number of

users (hundreds or thousands of users) it is eternally more beneficial to go with monolithic

architecture for faster performance. Moreover, they concluded that microservice helps

reduce the infrastructural cost in comparison with a monolithic architecture. They also

discovered that cloud services such as AWS lambda allow companies to reduce their

infrastructure cost up to 77.08%.

2.3.4 Performance matrix

Cost comparison, Response time, Performance test;

9

2.4 Paper IV: ”Emergent Microservices in Emergent

Ecosystems”

2.4.1 Objective

In this research paper [9], the objective of the author is to propose the fresh concept of

emergent microservices and emergent ecosystems. Basically, idea is to add autonomous

loops in each service and making them able to evolve their behavior to sustain run-time

adaptation.

2.4.2 Methodology

Authors brought this concept to allow the entire microservice ecosystem to shift the

control of management and adaptation processes from human to machine. This comes

to reduce the human efforts for doing administration and all. By this proposed concept

authors are altering the human role from developer to DevOps.

2.4.3 Result and Conclusion

By proposing this concept, the authors concluded that their concept will reduce human

efforts and led the microservice ecosystem to automation. It is a very recent theory that

yet more analysis is required in this concept for achieving load balancing and horizontal

auto-scaling and also evaluating the impact of this idea on the whole microservice-base

system.

2.5 Paper V: ”Automated deployment of a microservice-

based monitoring infrastructure”

2.5.1 Objective

The main objective of this research paper [10] is to deployed automatic monitoring in-

frastructure for microservice applications. Specific consideration is given to protect the

distinction between core and custom functionalities, and the on-demand creation of a

cloud service.

10

2.5.2 Methodology

They started by defining an easy model of monitoring infrastructure that gives an interface

among user and cloud management systems. The prototype implemented by the authors

shows the applicability of the abstract control flow. They have used plain Java as the

application programming language (a Ruby version is on the way) and Docker for the

containers.

2.5.3 Result and Conclusion

In the conclusion of this paper, the investigated automated deployment of monitoring

infrastructure in container-based distributed systems and their result determines that

profoundly customizable monitoring infrastructure can be effectively given as a service.

2.6 Paper VI: ”A dashboard for microservice moni-

toring and management”

2.6.1 Objective

Benjamin Mayer and Rainer Weinreich [11] describes the concept of monitoring and

managing microservices. It is an experiment dashboard idea that helps an organisation

collect runtime information of microservices. The dashboard includes a system overview,

runtime info of microservices, service interaction, and comparison of different services.

2.6.2 Methodology

They initially describe basic concepts and present important usage scenarios and views

currently supported in the monitoring dashboard. Authors divided visualization into two

categories: static and dynamic information. Static information includes commits per

developer, the last commit for a service, etc. Dynamic information contains response

time, total request count, failure rate, etc.

2.6.3 Result and Conclusion

In the conclusion of this paper, the authors have created an experimental dashboard that

can combine information from various sources. They were still working on full fledge at

the time paper was written.

11

2.7 Paper VII: ”Demonstration of an observability

framework for cloud native microservices”

2.7.1 Objective

As cloud-native microservices gains popularity, it also comes along with their challenges.

Marie-Magdelaine et al. [12] demonstrate an observability framework for cloud-native

microservices.

2.7.2 Methodology

Their proposed approach defines four logic layers for four different tasks, namely collec-

tion & retrieval of data, raw data storage, processing & correlation, and visualization &

alerting. They also explain that the observability framework can effectively analyze the

internal behaviour of microservice.

2.7.3 Result and Conclusion

This paper provides some understanding of the concepts, features and prototypes of

observability and cloud-native applications. It also proposed the observability framework,

which can be used to understand the monitor complex distributed systems.

12

Chapter 3

Working Environment

Following are the technologies that we explored and implemented for this project and we

have used .NET core as base programming language.

Figure 3.1: Technologies and Working Environment.

• Ocelot: is an open-source library provided by Three-Mammals for integrating API

gateway in .NET. It also provides various features such as Routing, Request Aggre-

13

gation, Service Discovery with Consul Eureka, Authentication and Authorization,

Rate Limiting, Caching, Load Balancing, and many more.

• Redis: Redis is an open-source in-memory database that can be used for cache and

message brokers. It can handle millions of pieces of data within a short duration of

time. It also provides supports for multiple languages.

• Kafka: provides messaging service in publisher/subscriber fashion. We will use it

to set up inter-communication between microservice.

• OpenShift: is provides a platform where we can deploy our application as a container

image. We can also manage this container-based application on openshift. It is

widely used at the enterprise level.

• Jaeger: is an open-source distributed tracing tool. It will help us to identify the

execution flow of requests. It has various filters available to filter request and debug

it in a more efficient fashion.

• OpenTelemetry: is an open-source observability framework. It collects the teleme-

try data from the application and forwards its respective exports(ex. Prometheus

or Jaeger).

• ELK Stack: combines three different tools, namely Elastic, Logstash, and Kibana.

It is a log aggregation tool, but it does more than that; we can also visualize those

logs with the help of Kibana.

• SigNoz: is an open-source tool for metric and tracing data visualization. It was

founded in 2020 to deliver better observability corresponded to existing tools.

• ZipKin: is an open-source distributed tracing system to collect trace information.

Zipkin assists us to locate precisely where a request to the application has failed or

spent a long time.

• Prometheus Grafana: Prometheus is an open-source monitoring system that scraps

application metrics data. Grafana is a great data visualization tool.

14

Chapter 4

Architecture and Flow

Microservice architecture is creating a boom in the current market. The main reason

is that it is more scalable, faster, reliable, and can quickly adopt new technologies than

monolithic architecture. Migrating from monolithic to microservice architecture is not

straight forward task. We need to follow specific tools and standard patterns to achieve

it. So we used the concept of a microservice accelerator. This concept emphasizes Rapid

application development. We intend to enhance the development activities by provid-

ing standard patterns and code templates. This project will reduce the time and effort

required to implement common microservice functionalities. It also enables rapid inte-

gration with CI/CD activities.

Figure 4.1: Architecture Diagram.

Figure 4.1 is an architecture diagram of this project where the primary pinpoint of

15

focus is API Gateway with Access control and Monitoring service. As you can see in

the figure, API Gateway is the only entry point in the application, making it vulnerable.

So we must have a restriction for requests at the gateway level. This problem can be

resolved using the API Gateway pattern. We are using an access control layer over the

top of the API Gateway. This project’s second module resolves a debugging problem in

microservices using the Observability pattern. This pattern will include logging, tracing,

metrics, and standard visualization.

We have placed access control on top of API Gateway, and it will provide functional-

ities such as Rate-limiting, IP whitelisting/blacklisting, and caching. On the other hand,

in the observability pattern (monitoring service), we will have a log aggregator that will

aggregate the logs and forward them to the log visualization tool. Similarly, it will process

traces and metrics.

Figure 4.2: Architecture Diagram.

Observability in microservices is an extension of monitoring that provides an internal

16

understanding system [12]. It includes logging, tracing, and metrics alerting that are

helpful for better understanding of the system. Additionally, this data can also be bene-

ficial in debugging applications efficiently. The observability design pattern is beneficial

for understanding and scanning microservice applications efficiently. This pattern con-

sists of log aggregation, application metrics, audit logging, distributed tracing, exception

tracking, and health check API.

Figure 4.2 is a complete overview of the observability goal we want to achieve in

this project. With the help of the instrumentation libraries, we have sent application

information to various backend. The objective is to accomplish efficient observability

and correlate logs, metrics, and tracing data. By achieving this, we can observe our

microservice effectively. Figure 4.2 also demonstrates various open-source tools which we

have used as backend.

• Logging - The tools used for logging are ELK stack and Loki.

• Tracing - Jaeger, Elastic APM, ZipKin, and SigNoz are used for tracing.

• Metrics - For monitoring application’s metric data we have used Prometheus with

Grafana and SigNoz for better visualization.

17

Chapter 5

Execution and Implementation

5.1 Access Control

Access control will provide functionalities such as Rate-limiting, IP whitelisting/blacklisting,

and caching. It will ensure that income requests have some restrictions, which will help

us to protect our system from potential vulnerability. Figure 5.1 is a demonstration of

the access control layer. We have used .NET core for implementing these feature and

we used Ocelot [13] package for implementing API Gateway. These functionalities are

discussed in detail below subsections.

Figure 5.1: Caching mechanism using Redis.

5.1.1 Rate-limiting and IP White/black listing

When any request arrives at the API gateway, we are checking for the maximum limit

allowed for that service; for example, if we have set five as the maximum limit, then

more than five requests for a single user it not allowed for a particular duration. And

18

even if so any user tries to gain access to that service, our rate-limiting feature will show

a configurable message that ’You are not allowed to request more than five times in 1

second’. Rate-limiting give us an advantage by making our resources available to users,

and it also prevents the Denial Of Service (DOS) attack.

Figure 5.2: Rate-limiting with IP White/black listing.

We have implemented two types of rate-limiting. One is global, and the second one

is local. We can use the global rate-limiting configuration to provide the same rate

limit to all the endpoints present in microservices. On the other hand, we can use local

rate-limiting if want different rate limit for different endpoints.

Figure 5.2 is a workflow diagram of how rate limiting works with IP white/black

listing. Once the request passes through rate limiting, we check whether the coming

IP address can access microservices. So in the first case, let say the IP address that is

requesting resources is not in whitelisting IP’s then the application will reject its request.

To allow any IP to access resources, we need to add that IP in the configuration variable

to access microservices. Once it is done, the given IP can consume the microservices.

5.1.2 Redis Caching

Figure 5.3 is a workflow diagram of how caching works in the application. We have

used Redis[14] for storing and processing cache. Once the user is authenticated, we will

generate a hash key using the HMACSHA256 algorithm based on this authentication

information. After that, we check whether this hash key is already available in cache or

19

not. In the first scenario, let’s say the key is present, then we will forward the request

to the next event. And in oppose to this scenario, if the key is not present in the cache,

we will check for authorization of the user. If the user is authorized, we will store the

cache value in the Redis server using the same hash key that we generated earlier. We

Figure 5.3: Caching mechanism using Redis.

have also implemented the functionality of deleting the cache so that after a particular

duration, cache will automatically be deleted from the Redis.

5.1.3 Error Message

We have implemented custom middleware for authentication and authorization at the API

gateway level. The primary role of this middleware is to re-route requests according to the

check that we have implemented. Figure5.22 shows the custom error message generated

when an unauthenticated user tries to access the application. We have generated these

error messages for both authentication and authorization.

20

Figure 5.4: Error Message for user

5.2 Logging

Logging plays a crucial role in any application. It will tell you that there is something

wrong happened in the system. Generating logs in the console for microservice will not

be an efficient solution. We need some visualization tool that can help us visualize this

logging data. For this project, we choose ELK for log aggregation and visualization.

5.2.1 ELK Stack

In Figure 5.5, we have conceptual flow of the logging mechanism. We have used Filebeat[15]

as a slipper to forward application log data to the ELK cluster. So, once the application

generates logs files, our Filebeat container will fetch those logs and deliver them to the

ELK cluster.

Figure 5.5: Conceptual view of logging mechanism.

21

ELK [16] combines three technologies: Logstash, Elastic search, and Kibana. Logstash

will fetch the data from the outside world, and then it will forward it to Elasticsearch,

and Elasticsearch will store this data into it. And then, with the help of the kibana

dashboard, we can visualize our logs data.

Figure 5.6: ConfigMap of Filebeat.

To fetch the application data using Filebeat, we have done configuration there. We

are starting with setting up the ConfigMap for Filebeat. Figure 5.6 is the ConfigMap file

of Filebeat, where we have to define various information to connect our Filebeat container

to the ELK cluster. ’Paths’ is a field where we have to specify which path our application

is storing logs. ’secret’ is inside ’field’ where we have to define the password/secret to

connect our Filebeat container to Logstash. And last important thing is the ’URL’ of

the Logstask instance with its port number and ’index’ name by which we can filter our

application logs. Once this ConfigMap setup is done, we can configure the Deployment-

Config file. This Filebeat container can be added to the application as a sidecar container

to fetch application data with less latency.

Figure 5.7 is DeploymentConfig, we also need to add configuration such as volumeM-

ount information to provide persistence volume in the openshift environment and add

that ConfigMap configuration to the Filebeat container. Once this configuration is done

successfully, we can open the kibana dashboard and visualize our logs there, as shown in

22

Figure 5.7: DeployementConfig of container.

Figure 5.8. We can observe various information available regarding logs such as times-

tamp, message, index, and location from where we are fetching logs. There is various

other helpful information that we can filter as per our requirement.

ELK stack also provides the feature of APM [17]. This APM is capable enough

to fetch and visualize trace information, as shown in Figure 5.9. In addition, APM also

provides metrics information related to those traces, including parameters such as latency,

throughput, time spent on the span, and total error. We can also correlate our logs and

trace data in APM. Having logs, metrics, traces, and alerts in the same places makes

ELK stack a great observability tool.

Some of the features of the ELK stack are: 1) It provides a centralized log aggregation

mechanism. 2) It is an open-source tool. 3) Real-time data analysis and visualization

is possible in ELK. 4) It supports various shippers for shipping log data to ELK. 5)

Massive amount of data can be process in short interval. Along with the above-mentioned

advantages, ELK has certain areas where it might be improved. Some of which are

mentioned as follows: 1) Configuring self-hosted ELK is complex. 2) ELK utilizes high

computing resources for easy operations.

23

Figure 5.8: Kibana Logging Dashboard.

Figure 5.9: ELK Tracing Dashboard

24

5.2.2 Loki

Loki is a log aggregation system similar to Elasticsearch but it is more effortless to set

up and work with more promising functionalities. Loki was initially started by Grafana

Labs in 2018 [18]. It is motivated by Prometheus for log aggregation and is highly cost-

effective and effortless to operate. Loki sets labels on each log stream instead of indexing

logs. Visualization Loki logs can be done using the Grafana dashboard.

Loki has three components – Promtail, Loki, and Grafana. The promtail agent is

responsible for locating the target, adding the labels to the incoming log streams, and

pushing it to the Loki instance. After connecting Loki with Grafana, we can start vi-

sualizing those logs on the dashboard. Figure 5.10 shows deployment of Loki on the

Grafana dashboard with sample microservice application data. It shows how logs can be

visualized with the help of Grafana. We can also enable real-time log collection to get

metrics and log correlation in the dashboard.

Figure 5.10: Loki Logging Dashboard.

Some of the features of the Loki are: 1) It is very cost-effective. 2) It provides higher

scalability. 3) It is easy to plug with popular tools like Kubernetes and Grafana. However,

Loki has certain areas where it might be imporved, which are as follows: 1) It is not easy

to perform complex queries on Loki. 2) It does not provide a rich dashboard as same as

ELK provides.

25

5.3 Tracing

Having tracing in the application provides you added advantage because logging will tell

you that there is an error. Still, we need a tracing mechanism to understand where the

problem occurred in the microservice.

5.3.1 Jaeger

Jaeger[19] is one of the great tracing tools with numerous functionalities. Jaeger will help

us to understand the execution of requests in the system. In Figure 5.11, we have deployed

Jaeger on the OpenShift cluster and tested it with a sample microservice application.

Figure 5.11: Jaeger and test application deployment on OpenShift.

For implementing Jaeger with the OpenShift environment, we have used Docker im-

ages of Jaeger. Jaeger Architecture includes Jaeger-Client, Jaeger-Agent, and Jaeger-

Collector, Jaeger-Query, Jaeger-Console. Jaeger-Client includes language-specific imple-

mentations of the OpenTracing API for distributed tracing. Jaeger-Agent is a network

daemon that listens for spans sent over User Datagram Protocol. Jaeger-Collector re-

ceives spans and places them in a queue for processing. Jaeger-Query is a service that

retrieves traces from storage and hosts a UI to display them. Finally, Jaeger-Console is

a user interface that visualization of distributed tracing data.

In Figure 5.12, we can see the homepage of the Jaeger tool. On the left side, we have

various filters available. We can filter our traces, such as operation filter by which we can

26

Figure 5.12: Jaeger homepage view.

filter specific operations for which we have created traces and other Tags by which we

can filter particular status code or error. We can also filter the traces by time. On the

right side, we have a listing of requests requested by the client.

Figure 5.13: Jaeger view of single request.

And once we click on any of the requests, it will expand the view and will us more

valuable and detailed information execution flow of that request. In Figure5.13, we can

see the entire execution flow of the ’/test’ request. It contains information such as when

this trace is created, how many services it requested, what depth it is called, and how

long it takes to complete the request. And also, information on each span is available

27

in sequence view. This tracing tool will be beneficial for microservice architecture as

hundreds and thousands of services communicate with each other, so if a single service

failed, we can find it with the help of Jaeger in a much more efficient way. Jaeger also

provides Directed Acyclic Graph(DAG)is to visualize how services are communicating.

Some of the features of Jaeger: 1) The Jaeger backend has no single point of failure

and scales with the business needs. 2) It can handle billions of spans in a day. 3) Jaeger

has instrumentation libraries designed to support the OpenTracing standard. 4) Jaeger

supports open-source NoSQL databases as trace storage backends, Cassandra 3.4+ and

Elasticsearch 5.x+.

Scope of improvement in Jaeger: 1) Jaeger can have a unified UI for metrics and

Traces for more good observability. 2) There are no alert options available as of now in

Jaeger. 3) There is no role-based access control available for better team management.

4) Filtering components are limited in Jaeger like we cannot run aggregates filtered on

traces.

5.3.2 SigNoz

Figure 5.14: Distributed Tracing using SigNoz

SigNoz is an open-source tool for metric and tracing data visualization [20]. It was

founded in 2020 to deliver better observability corresponded to existing tools. In Figure

5.14, we have a diagram of trace visualization in SigNoz, and this image illustrates how

convenient it is to understand request execution using SigNoz. Furthermore, as SigNoz

also provides metrics visualization, we can monitor application performance, as seen in

28

Figure 5.15. One of the great features of SigNoz is that it allows for a correlation between

metrics and tracing data.

Figure 5.15: Monitoring Application performance using SigNoz.

SigNoz architecture includes OpenTelemetry Collector, ClickHouse, Query Service,

and Frontend. OpenTelemetry Collector will receive multiple format data input from

various applications and forward it to ClickHouse for storage. Query service fetches

data from ClickHouse and processes it before passing it to the front end. And the last

component is the frontend, which provides a unified UI for logging and metrics data,

including service-map and alert functionality.

Some of the features of SigNoz: 1) Provide correlation between metrics and tracing

data. 2) Advance filtering option available for data filtering. 3) It also includes a feature

of alerting and service mapping. Scope of improvement in SigNoz: 1) Tool is very young

in the industry. 2) It does not provide support of logs as of now (it is there in their future

road map)

5.3.3 ZipKin

Zipkin is an open-source distributed tracing system to collect trace information [21].

Zipkin assists us to locate precisely where a request to the application has failed or spent

a long time. We can instrument our application tracing using the Zipkin client library.

Figure 5.16 shows various request information on the homepage of the Zipkin tool.

Zipkin architecture includes collector, storage, query-service, and web UI. The col-

29

Figure 5.16: Distributed Tracing using Zipkin.

lector is used for validating, storing and indexing incoming trace data. As storage, it

supports Cassandra, ElasticSearch, and MySQL. Query-service provides API for finding

and retrieving traces to web UI. And using web UI, we can visualize our trace on the

frontend

Some of the features of Zipkin: 1) Zipkin supports multiple storage backends. 2) It

has large community support 3) Zipkin provide service mapping functionality 4) It is a

mature project. Scope of improvement in Zipkin: 1) It lacks support for some client

libraries.

5.4 Metrics

Metrics play a crucial role in tracking application performance. It will give us helpful

application insight such as CPU usage, Services rate, and many more. We can utilize

these insights to set up a better infrastructure for our application.

5.4.1 Prometheus

Prometheus is an open-source tool that is used to view metrics information. As a part of

this project, we have used service-monitoring [22] of the OpenShift environment, which

is based on the Prometheus rule only. Service monitoring provides a very interactive

UI design where we can visualize metrics information and events of the application.

Figure5.17 shows metrics information related to Pod CPU usage.

30

Figure 5.17: Service Monitoring of OpenShift.

Service monitoring also provides feature for visualization custom metrics data. Insight

metrics tab, we have a field for searching our custom metrics information. In Figure5.18,

we can see the custom metrics that we have created for this project with visualization.

Figure 5.18: Visualizing custom metrics data of application in Service Monitoring.

Grafana [23] is a great data visualization tool. Having grafana with prometheus is

similar to having ice on the cake. Figure 5.19 demonstrates application metrics visualiza-

tion in the grafana dashboard. The reason why we want grafana along with prometheus

is that prometheus provides very limited visualization capability; that’s why we need

grafana for out of the box visualization.

Grafana, on the other hand, has various other integration options for logging, metrics,

and trace data. We can use grafana for better observability in the system.

31

Figure 5.19: Application performance monitoring in Grafana

Some of the features of Prometheus and Grafana: 1) Prometheus have effective query

language for fetching and analyzing metrics data. 2) Grafana supports various integration

options. 3) Grafana provide excellent data visualization feature. 4) We can use grafana

for alerting on fly application failure information. 5) Grafana supports data grouping for

more useful data visualization.

Scope of improvement in Prometheus and Grafana: 1) Prometheus is lacking in pro-

viding good visualization UI. 2) Prometheus doesn’t have a long term storage option. 3)

Grafana does not store data. 4) Visualization libraries are limited in grafana.

5.5 Alerting

Alerts play a crucial role in the application. Using alerts, we can get on-fly information

regarding system failure. Openshift will trigger alerts when any metrics information hits

a certain threshold. We have the option to configure to get messages via Webex or mail.

Figure 5.20 is alerting configuration where we can configure our alerts. We have

options to configure multiple alerts into single groups and multiple groups as per our

requirements. Inside the ’rules’ field, we can define our rule by which Openshift can

trigger an alert. We have the option to configure the severity, what message we want to

see, the expression on which the alert used to be triggered, and the alert name. Here in the

example Figure 5.20, we define an expression where if the rate of sampleapp ticks total

increases more than 0.0002 in less than a minute, it will generate an alert. We can

customize this expression based on our requirements.

32

Figure 5.20: Alerting configuration

Figure 5.21 is the message that we have received on the Webex group, which includes

various useful information such as site name, cluster name, project name, the current

status of the alert, severity, what time it is generated, and what is a type of error. These

information will be very useful to debug application in much faster way. We have done

these setup for our project in Openshift environment.

Figure 5.21: Alert on Webex

33

5.6 Dynamic Routing

In the ocelot package, we have the option to add service information. Still, it is tightly

coupled with the configuration file because if we update single information, we need

to re-deploy the configuration again. For that reason, we need dynamic routing in a

microservice architecture. One of the challenging things in a microservice architecture

is to enable dynamic routing so that the application self-register as and when it is up

and automatically de-register if it is down. For this purpose, we have used Consul [24]

developed by HashiCrop for enabling dynamic routing. Consul provides distributed key-

value storage for application configuration, and it provides service mesh for secured service

segmentation in any cloud environment. [25].

Figure 5.22: Consul dashboard for dynamic configuration

Figure 5.22 is the home page of the Consul, where we will have the lists of various

services in the application. As we increase the instance count, it will dynamically bind

that service to the Consul. It will automatically de-register services if they are not up

and re-register as and when they are up. Another reason why service discovery (Consul)

plays an important role is because we can have multiple instances of a single application

running into the same cluster in cloud applications. It will work as a load balancer in

the architecture. The health check is also provided by Consul so that we don’t need any

external monitoring servers for a health check. Consul is a very crucial tool in cloud-based

applications.

34

Chapter 6

Future Work and Conclusion

As data increases, we need to increase resources as per needs, and typical monolithic

architecture cannot handle scalability at this enormous scale. The main disadvantage of

monolithic is that we cannot achieve rapid application development at a gigantic scale.

In this paper, we have discussed microservice architecture and challenges within ar-

chitecture. We worked on an observability design pattern that addressed issues related

to observability in microservices. We have investigated and implemented various open-

source tools such as Prometheus, Grafana, SigNoz, Jaeger, Zipkin, Loki, and ELK stack.

Our study will help others to understand the capabilities of these tools. So in this

project, we have the functionality of API Gateway extension (Rate-Limiting, Caching,

and IP whitelisting/blacklisting), Monitoring and Observability (Logging, Tracing, Met-

rics, Notification Alert, and Standard Visualization) as a part of infrastructure as a code.

Here we want to conclude that there would never be a scenario where we can have

one fixed tool for observability in a microservice architecture. Many tools come and can

replace existing tools based on market performance. So we should always look for an

updated tool in a microservice architecture.

35

Bibliography

[1] M. Fazio, A. Celesti, R. Ranjan, C. Liu, L. Chen, and M. Villari, “Open issues

in scheduling microservices in the cloud,” IEEE Cloud Computing, vol. 3, no. 5,

pp. 81–88, 2016.

[2] “Digital 2021 april global statshot report, https://datareportal.com/reports/digital-

2021-april-global-statshot,” 2022.

[3] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices architecture enables

devops: Migration to a cloud-native architecture,” Ieee Software, vol. 33, no. 3,

pp. 42–52, 2016.

[4] P. Rodgers, “Service-oriented development on netkernel-patterns processes & prod-

ucts to reduce system complexity web services edge 2005 east: Cs-3”,” CloudCom-

putingExpo, 2005.

[5] R. Chen, S. Li, and Z. Li, “From monolith to microservices: A dataflow-driven

approach,” in 2017 24th Asia-Pacific Software Engineering Conference (APSEC),

pp. 466–475, IEEE, 2017.

[6] O. Al-Debagy and P. Martinek, “A comparative review of microservices and mono-

lithic architectures,” in 2018 IEEE 18th International Symposium on Computational

Intelligence and Informatics (CINTI), pp. 000149–000154, IEEE, 2018.

[7] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi, R. Mustafin,

and L. Safina, “Microservices: yesterday, today, and tomorrow,” Present and ulterior

software engineering, pp. 195–216, 2017.

[8] M. Villamizar, O. Garces, L. Ochoa, H. Castro, L. Salamanca, M. Verano, R. Casal-

las, S. Gil, C. Valencia, A. Zambrano, et al., “Infrastructure cost comparison of run-

36

ning web applications in the cloud using aws lambda and monolithic and microservice

architectures,” in 2016 16th IEEE/ACM International Symposium on Cluster, Cloud

and Grid Computing (CCGrid), pp. 179–182, IEEE, 2016.

[9] M. P. de Sá, “Emergent microservices in emergent ecosystems,” in 2020 IEEE/ACM

13th International Conference on Utility and Cloud Computing (UCC), pp. 449–450,

IEEE, 2020.

[10] A. Ciuffoletti, “Automated deployment of a microservice-based monitoring infras-

tructure,” Procedia Computer Science, vol. 68, pp. 163–172, 2015.

[11] B. Mayer and R. Weinreich, “A dashboard for microservice monitoring and manage-

ment,” in 2017 IEEE International Conference on Software Architecture Workshops

(ICSAW), pp. 66–69, IEEE, 2017.

[12] N. Marie-Magdelaine, T. Ahmed, and G. Astruc-Amato, “Demonstration of an ob-

servability framework for cloud native microservices,” in 2019 IFIP/IEEE Sympo-

sium on Integrated Network and Service Management (IM), pp. 722–724, IEEE,

2019.

[13] “Ocelot, https://ocelot.readthedocs.io/en/latest/introduction/gettingstarted.html,”

2022.

[14] “Redis, https://redis.io/,” 2022.

[15] “Filebeat overview, https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-

overview.html,” 2022.

[16] “Elastic stack: Elasticsearch, kibana, beats &; logstash,” 2022.

[17] “Elastic apm, https://www.elastic.co/observability/application-performance-

monitoring,” 2022.

[18] “Grafana loki, https://grafana.com/oss/loki,” 2022.

[19] “Open source, end-to-end distributed tracing by jaeger,

https://www.jaegertracing.io/,” 2022.

[20] “Signoz, ’https://signoz.io/’,” 2022.

37

[21] “Zipkin, https://zipkin.io/,” 2022.

[22] “Service monitoring, prometheus, https://docs.openshift.com/container-

platform/4.7/monitoring/managing-metrics.html,” 2022.

[23] “Grafana, https://grafana.com/,” 2022.

[24] “Consul, service discovery, https://www.consul.io/,” 2022.

[25] “Consul, wiki, https://en.wikipedia.org/wiki/consul(software),
′′ 2022.

38

Appendix A

• https://docs.microsoft.com/en-us/azure/architecture/guide/

architecture-styles/microservices

• https://docs.openshift.com/

• https://redis.io/

• https://www.jaegertracing.io/

• https://prometheus.io/

• https://www.elastic.co/what-is/elk-stack

• https://www.elastic.co/beats/filebeat

• https://medium.com/swlh/

building-net-core-api-gateway-with-ocelot-6302c2b3ffc5

• https://ocelot.readthedocs.io/en/latest/features/configuration.html

• https://redis.io/topics/config

• https://www.geeksforgeeks.org/difference-between-iaas-paas-and-saas/

• https://www.blogofpi.com/restrict-ip-address-asp-net-core-web-api/

• https://cloud.netapp.com/blog/

cvo-blg-5-red-hat-openshift-benefits-you-didnt-know-about

• https://logz.io/blog/filebeat-vs-logstash/

• https://docs.openshift.com/container-platform/4.6/virt/logging_

events_monitoring/virt-openshift-cluster-monitoring.html

• https://medium.com/opentelemetry/

deploying-the-opentelemetry-collector-on-kubernetes-2256eca569c9

39

https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/microservices
https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/microservices
https://docs.openshift.com/
https://redis.io/
https://www.jaegertracing.io/
https://prometheus.io/
https://www.elastic.co/what-is/elk-stack
https://www.elastic.co/beats/filebeat
https://medium.com/swlh/building-net-core-api-gateway-with-ocelot-6302c2b3ffc5
https://medium.com/swlh/building-net-core-api-gateway-with-ocelot-6302c2b3ffc5
https://ocelot.readthedocs.io/en/latest/features/configuration.html
https://redis.io/topics/config
https://www.geeksforgeeks.org/difference-between-iaas-paas-and-saas/
https://www.blogofpi.com/restrict-ip-address-asp-net-core-web-api/
https://cloud.netapp.com/blog/cvo-blg-5-red-hat-openshift-benefits-you-didnt-know-about
https://cloud.netapp.com/blog/cvo-blg-5-red-hat-openshift-benefits-you-didnt-know-about
https://logz.io/blog/filebeat-vs-logstash/
https://docs.openshift.com/container-platform/4.6/virt/logging_events_monitoring/virt-openshift-cluster-monitoring.html
https://docs.openshift.com/container-platform/4.6/virt/logging_events_monitoring/virt-openshift-cluster-monitoring.html
https://medium.com/opentelemetry/deploying-the-opentelemetry-collector-on-kubernetes-2256eca569c9
https://medium.com/opentelemetry/deploying-the-opentelemetry-collector-on-kubernetes-2256eca569c9

8%
SIMILARITY INDEX

6%
INTERNET SOURCES

5%
PUBLICATIONS

1%
STUDENT PAPERS

1 1%

2 1%

3 1%

4 <1%

5 <1%

6 <1%

ORIGINALITY REPORT

PRIMARY SOURCES

s3-eu-west-1.amazonaws.com
Internet Source

export.arxiv.org
Internet Source

dzone.com
Internet Source

Muhammad Waseem, Peng Liang, Mojtaba
Shahin, Amleto Di Salle, Gastón Márquez.
"Design, monitoring, and testing of
microservices systems: The practitioners’
perspective", Journal of Systems and
Software, 2021
Publication

Nebrass Lamouchi. "Chapter 14 Flying All
Over the Sky with Quarkus and Kubernetes",
Springer Science and Business Media LLC,
2021
Publication

slides.com
Internet Source

Jay - Aggregation and Observability in Microservice Accelerator

7 <1%

8 <1%

9 <1%

10 <1%

11 <1%

12 <1%

13 <1%

14 <1%

15 <1%

16 <1%

17 <1%

18

Submitted to Napier University
Student Paper

www.jaegertracing.io
Internet Source

www.economyinformatics.ase.ro
Internet Source

thenextweb.com
Internet Source

ieeexplore.ieee.org
Internet Source

dokumen.pub
Internet Source

Submitted to Colorado State University Fort
Collins
Student Paper

Submitted to Free University of Bolzano
Student Paper

Submitted to Macquarie University
Student Paper

scholarsbank.uoregon.edu
Internet Source

aaltodoc.aalto.fi
Internet Source

ns2.thinkmind.org

<1%

19 <1%

20 <1%

21 <1%

22 <1%

23 <1%

24 <1%

Internet Source

tel.archives-ouvertes.fr
Internet Source

"Monitoring High Throughput Distributed
System using Statistical Data Analysis",
International Journal of Recent Technology
and Engineering, 2020
Publication

Mario Villamizar, Oscar Garces, Lina Ochoa,
Harold Castro et al. "Infrastructure Cost
Comparison of Running Web Applications in
the Cloud Using AWS Lambda and Monolithic
and Microservice Architectures", 2016 16th
IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid),
2016
Publication

helda.helsinki.fi
Internet Source

www.elastic.co
Internet Source

"Cloud Computing and Services Science",
Springer Science and Business Media LLC,
2020
Publication

25 <1%

26 <1%

Exclude quotes On

Exclude bibliography On

Exclude matches Off

Omar Al-Debagy, Peter Martinek. "A
Comparative Review of Microservices and
Monolithic Architectures", 2018 IEEE 18th
International Symposium on Computational
Intelligence and Informatics (CINTI), 2018
Publication

Shuaiyu Wang, Yinsheng Li. "A Creditworthy
Resources Sharing Platform Based on
Microservice�", 5th International Conference
on Crowd Science and Engineering, 2021
Publication

