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Abstract

Intelligent systems are sophisticated machines that can sense and react to their sur-

roundings. These systems investigate how these technologies interact with human users

in constantly changing physical and social situations. Some of the applications of intel-

ligent systems are traffic lights, smart meters, automobiles, digital television, and many

more. In spite of it’s wide success, there are many software defects in these existing

systems namely, system crashes, hangs, undefined behaviour. Such defects are exploited

by hackers for various security attacks. Many defects are discovered and addressed by

various machine learning models. Hence, the prime focus of this article is to exhaustively

review various software defects, methods to compare various approaches to address the

detects. The article also compares various machine learning models (tree based gradient

boosting, decision tree based gradient boosting, optimized distributed gradient boost-

ing, Gaussian Naive Bayes, Multinomial Naive Bayes and Bernoulli Naive Bayes) on five

PROMISE datasets including JM1, KC1, KC2, and PC1.
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Abbreviation

Abbrevations Explanation
UAV Unmanned aerial vehicle
AV Autonomous Vehicles
TM Telemedicine
ITS Intelligent Transportation system
IA Intelligent Automation
AI Artificial Intelligence
ML Machine Learning
V2V Vehicle to vehicle
V2X Vehicle to any
OBD On-board diagnostics
Wifi Wireless Fidelity

CACC Cooperative Adaptive Cruise Control
NB-IoT Narrowband Internet of things

Table 1: List of Abbreviations
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Chapter 1

Introduction

This chapter discusses the critical applications and how it plays roles in the real world.

This chapter discusses in brief critical applications, Automation, and bugs.

1.1 Critical applications

Critical applications depend highly on hardware, software, network, and environmental

conditions. A critical system is one whose failure might jeopardize human lives and the

environment. Various critical applications are aircraft flight control, nuclear systems,

surveillance, telemedicine, voting system, and robotics.

1.2 Types of critical applications

These applications are classified into safety-critical, mission-critical, and business-critical

applications. Safety-critical applications include fire alarms, fire sprinklers, electricity

generation, transmission and distribution, and circuit breakers. Navigating systems, nu-

clear reactors, Railway/aircraft operating and control systems, electric power grid sys-

tems, and much more are examples of mission-critical applications [1]. Business-critical

applications contain cloud-based data storage, networking systems, online banking sys-

tems, and more [1]. Any failure in these applications can cause trouble to humans and

the environment in any form of software hardware and communication.

1.3 Failure scenarios of critical applications

Recent incidents have taken the place of the failure of critical applications due to soft-

ware and hardware failure. According to the facts, from 2013 to 2021, many incidents
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have happened with UAVs (Unmanned Aerial Vehicles). For example, in 2021, while ap-

proaching Buttonville Municipal Airport, a Cessna 172 of Canadian Flyers International

Inc., registered as C-GKWL, collided with a drone operated by the York Regional Police.

The Cessna landed safely, but with a bent air-box, broken engine cowling, and a propeller

strike, it was substantially damaged. [2] [3]. It was a hardware failure incident. Some

incidents regarding self-driving cars/autonomous vehicles occurred from 2018 to 2021. In

2021, Tesla’s model Y went on the wrong lane in FSD (Full self-driving) mode and hit

another driver in California [4]. The software failure occurred because some bug occurred

at FSD mode and went rogue. The primary cause of failure in such critical applications

is software, hardware, and security attacks.

1.4 Driving Force of critical applications

Software is the backbone of any critical applications controlled remotely based on the

equation and conditions. Communication is via an open channel, the internet so that an

attacker can compromise the data of any critical applications. Hardware is the micro-

controller over which the software can run to complete the specific task with proper safety

and security. Once the hardware has been designed, it is hard-bounded. We can install

it into our critical applications, but the significant role is that the software needs to be

updated regularly for security purposes. In every update, more security features have

been added. Hence, the software must be up to date so that no one can attack systems.

In addition, software needs to be adequately designed to be tested many times before

deploying in critical applications.

1.5 Reasons for software failure of critical applica-

tion

Software integration fails, glitches in software, IEC (Integrated electrical components)

fails because of corrosion, heat, or other circumstances. The software can have bugs/exceptions,

such as the wiring causing integrated electrical components to fail. The software is not

integrating correctly with the hardware and can lead to the removal of essential safety

features [5].
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1.6 Software defects after deployment

It is crucial to track these things that can offer security to critical applications. Iden-

tifying software defects is very important in the initial phase. If there are no bugs in

the preliminary stages, the system must be tested; once it has been upgraded. However,

we might not include these in a critical application because many issues occur at the

beginning phase of a critical application. Everyone knows its use for safety so that the

attacker can breach the system. The software needs to apply security to every update

of standard applications; however, no survey covers all such instances. The developer

must test, develop, and integrate the best security mechanisms to critical applications

several times. It has to be completed prior to delivery. Many software defects occur in

every critical application to identify, and we need software defect solutions. If a critical

application problem arises by chance, we may resolve it until then. Many researchers

have to give solutions concerning specific tasks; however, none has made software bug

identification related to critical applications. So motivated by this paper, we consolidate

all the works at a single platform by presenting a comprehensive survey on Intelligent

systems to detect software defects in critical applications.
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Chapter 2

Scope of the Survey

The scope of survey contains detailed survey of software defect prediction [6], [7], [8], [9],

[10], [11], [12], [13], [14], [15], [16]. Here are a few of them: Dam et al. [6] created a

unique prediction model that automatically learns attributes for describing source code

and uses them to predict the defect. This model was created using tree-structured Long

short-term memory (LSTM), a powerful deep learning approach that fits the abstract

syntax tree structure of source code. The datasets used were from Samsung open-source

projects and the PROMISE dataset.

Tong et al. [7] proposed an approach which is SDAEsTSE, combination of two ap-

proaches which are Stacked denoising autoencoders (SDAEs), which are powerful future

learning, and ensemble learning, a two-staged ensemble (TSE). Initially, SDAEs were

used to extract DPs (Deep Represenation) from the traditional software metrics, and

TSE addresses the class imbalance problem. This model is used in 12 datasets of the

National aeronautics and space administration (NASA) to demonstrate the effectiveness

of Deep representation (DPs).

Qiao et al. [11] proposed an approach of deep learning techniques that predicts the

number of defects in the software. A custom-built deep neural network model is used to

organize the input data for the deep learning model, conduct data modelling, and forecast

the number of faults. The publicly accessible dataset is first preprocessed, which includes

log transformation and data normalization.
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Wang et al. [13] suggested a defective approach that relies on Gated hierarchical long

short-term memory networks (GH-LSTM), which uses hierarchical LSTM networks to

extract semantic features from word embeddings of source code files. Hanon Tong et al.

[16] proposed Subspace hybrid sampling ensemble (SHSE). This method combines hy-

brid sampling, ensemble learning, and subspace construction to build high-performance

Software defect number prediction (SDNP) models and uses 27 types of different defect

datasets which are publically available.
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Author Year Objective Technique Cons
Dam et al.
[6]

2018 A model that can ac-
quire attributes for defining
source code and use them
to identify defects automat-
ically

LSTM Can be used with other web
and mobile apps, as well as
programming languages like
C++ and PHP.

Tong et al.
[7]

2018 SDAEsTSE is a new
SDP(Software defect pre-
diction) strategy that
combines SDAEs with
ensemble learning, precisely
the suggested TSE method

SDAEsTSE Cross-project defect predic-
tion and class imbalance

Liang et al.
[8]

2019 For fault prediction, it com-
bines similar representation
of words and deep learning
approaches

LSTM Extend Seml to forecast de-
fects at a finer level.

Li et al.
[10]

2020 Examine the application
and efficiency of unsuper-
vised learning approaches in
the estimation of software
defects

Unsupervised
learning

It is uncertain which quali-
ties are needed.

Qiao et al.
[11]

2020 To estimate the amount of
faults in software systems

Deep learn-
ing

To investigate the num-
ber of projected faults in
software modules by in-
cluding more projects cre-
ated in other programming
languages, and also big
projects from industry.

Alsawalqah
et al. [12]

2020 To develop expert and ro-
bust heterogeneous classifi-
cation models

Heterogeneous
Ensemble
Classification

Explore more advanced
clustering algorithms and
investigate techniques that
can automatically deter-
mine the best number of
clusters for each dataset

Wang et al.
[13]

2021 To extract semantic fea-
tures from word embed-
dings of abstract syntax
trees (ASTs) of source code
files

GH-LSTM Examine cross-project pre-
diction performance and ex-
periment with various lan-
guages such as C and C++.

Feng et al.
[14]

2021 A unique oversampling ap-
proach that may concur-
rently achieve low pf and
high pd

Oversampling
Technique

Apply COSTE to various
software datasets using a
range of parameters, classi-
fiers, and performance eval-
uations to evaluate the tech-
nique’s generalizability.

Tong et al.
[16]

2022 Introduces a new subspace
hybrid sampling ensem-
ble (SHSE) approach for
creating high-performance
SDNP models based on
feature substructure cre-
ation, hybrid sampling, and
ensemble learning.

Subspace
hybrid
sampling
ensemble

To see if deep representa-
tions may assist enhance
the performance of SDNP
models by combining deep
learning with software de-
fect number prediction.

Table 2.1: Scope of the survey
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Chapter 3

Critical application faults

This section describes faults in critical applications.

3.1 Autonomous Vehicles

An autonomous vehicle is a system that can operate independently or with little assis-

tance from humans. Tesla, uber, autox, cruise, waymo, voyage, swift navigation embark

trucks, zoox, and many other AVs have been launched in recent years [17]. Before, after,

and during the deployment, culpability was created. These vulnerabilities result in un-

fortunate events that were not expected. In autonomous vehicles, many distinctive types

of flaws can be generated. Many researchers have unique discoveries related to AVs. [18]

[19], [20], [21] demonstrate the faults that might be generated in the sensors in their

study. Hard-over, erratic, stuck, spike, and drift defects are among the issues. These are

the five most common problems that autonomous vehicles may encounter. The definition

for the faults are as follows:

1. Hard-over fault: Hard-over faults are simple to identify since they have unique

features, peculiar qualities. For a very short instance of time, sensor value reaches

the saturation point. No conventional driving strategy should generate this sensor

output for sensors with a signal gradient approaching infinity. This fault leads to a

complete depletion in the safety of a vehicle and causes crucial damage.

2. Erratic fault: Value of sensor fluctuates around the true value, and the amount of

the variance may increase with time. AVs detect the object to be operated on. An

erratic fault arises when the value is close to its true value, at that time the vehicle

7



hits or avoids the item, causing damage to public property and human life.

3. Stuck fault:The value of the sensor remains constant for a short period of time. As

one specific aspect of stuck faults in the absence of noise dispenses following fault

beginning, stuck faults indicate lower accuracy. In AVs, if a stuck fault materializes,

the steering or the breaking malfunction for a small amount of time. At that point,

an unexpected event may occur, along with a car operating in the wrong lane or

within the traffic centre; it begins and loses control. Because the value of the fault

rises to the top in that little amount of time, it endangers human life and different

vehicles.

4. Spike fault: For a single point, the sensor value is much higher than the actual

value, and the number of spike faults within the signal might arise with time.

When the vehicle’s user enters its destination to the navigation, and after putting

the vehicle in Full self-driving (FSD) mode, the spike fault may change location.

It’s possible that the position will change in very short period. So, the user is unable

to reach its destination.

5. Drift fault: Over time, the actual value of sensor deteriorates linearly. When

drift errors initially arise, they might be hard to spot since they can look like

typical sensor behaviour. However, the drift problem may not be severe enough

to compromise vehicle safety remarkably. For example, AVs may have a problem

starting the radio or playing songs if a drift fault happens. It may imitate normal

conduct, as described. As a result, identifying the problem is challenging, and it

may not be a severe sensor problem.

These are the main faults generated in autonomous vehicles. It includes the sensors,

actuators, process components, and electrical components. Furthermore, classifying the

component where the problem occurs might help differentiate faults.

3.2 Unmanned Aerial Vehicle

3.2.1 Background

A remote-controlled or self-contained vehicle is known as a Unnamed Aerial Vehicle

(UAV). UAVs have gained popularity, commonly known as drones. They are employed

8



Applications Objective
Smart agriculture [23] Crop surveillance in the form of photos or video feeds
Smart healthcare [24] To comprehend a patient’s physiological state remotely,

generate, monitor, and analyse health data utilising
smart wearable devices.

Traffic monitoring [25] Monitoring and analysis of real-time traffic data on a reg-
ular basis

Social Distancing [26] The monitoring of data distance between persons over a
chosen region or location.

Smart Parking [27] Using unmanned aerial vehicles (UAVs) to investigate
parking lots

Construction Project [28] To keep track of the progress of construction on high-rise
structures.

Disaster Management [29] Drones can be used to identify and convey actions that
occur before and after a disaster.

Table 3.1: Application and their Objectives in UAVs

in a variety of military and civilian settings. By 2028, the market for UAVs in the mili-

tary is estimated to reach $26.11 billion [22]. According to numerous studies, the use of

UAVs for non-military purposes may eventually exceed their usage for military purposes,

perhaps reducing the need for future conflicts. A UAV can be controlled using one of two

methods: self-control or ground control channel. The increased research and development

in UAVs have enhanced their usability capabilities over the last few years. As technology

evolves, there are several security solutions for UAV communication. However, most of

these solutions are only ideas or are in the early stages of development.

3.2.2 Applications of UAVs

This section explores a variety of scenarios in which UAVs may be used to collect essential

data, which can then be utilized for more meaningful analysis and intelligent real-time

decision-making. Table 3.1 summarises several real-time UAV application scenarios, in-

cluding healthcare, volcano monitoring, and agriculture.

3.2.3 Faults

Actuator jams, airframe damage, communication failure, accidents, and environmental

influences are all possible reasons of UAV failure. These factors, which are regarded as

common defects in UAV formations, may occur at the same time or trigger the occurrence

of the others. The description of the specific faults is as follows [30]:

9



1. UAVs component failure: It conveys the failure of sensors, actuators, control

systems, power systems, flight computers, and other components. If the UAV’s

power and control system breaks down, it will crash, causing significant damage.

This fault may lead to a UAV crash that hurts public property and human lives.

2. Air-frame damage: This damage can happen due to UAVs’ collision with other

obstacles. When UAVs are on surveillance, if some obstacle accidentally hits the

UAV, they may destroy other living or non-living things.

3. Communication failure: It is possible that information transmission and recep-

tion to others will be disrupted due to a fault. Hence, there might be permanent

or temporary loss with connected users.

4. Formation Collision: This fault may harm other neighboring aircraft because

if the UAV changes its behavior, such as the address to the wrong navigation

or quicken or change in speed, that is an abnormal thing, and it leads to some

unpredicted occurrence.

5. Environmental Impact: Climate change or other environmental effects cause the

reduction in the performance of UAV sensors, actuators, and the communication

system. If lightning strikes the UAVs, it may damage some components of the

system or the whole UAVs.

There are a few other sensor failure types such as stuck with constant bias, drift or

additive-type, and multiplicative-type [31].

• Stuck with constant bias: This failure can cause maximum communication or elec-

trical problems in UAVs because the sensor is stuck at one position and remains

constant until the output.

• Drift or additive-type: This is a typical problem with analog sensors. Due to the

heat up/down, the internal temperature causes serious damage to the sensor.

• Multiplicative-type: A scaling issue in the sensor output causes this failure category.

10



3.3 Intelligent Transportation System

The faults are of Intelligent transportation systems such as high-speed trains as follows:

IGBT, inter-turn, gear, gearbox, sensor, operation, motor gap, and braking faults. The

discussion of some faults is as follows [32]:

1. IGBT fault: IGBT stands for Insulated gate bipolar transistor. This fault is the

main root of electric faults in motor drives and inverters. It can cause in every

transportation system because it may endanger human lives.

2. Inter-turn fault: As the name indicates, an inter-turn fault occurs when a fault

takes place between two adjacent twists in a machine winding. It might be the

result of insulation failure in the windings. If not maintained effectively, these

inaccuracies can lead to inter-phase failures, phase to ground difficulties, and other

serious issues. [33].

3. Sensor fault: Faults can occur in some sensors, such as the current sensor, speed

sensor, temperature sensor, and voltage sensor. If that happens in voltage and

current sensor fault, it can lead to a short-circuit of the electrical transportation

system. For example, a speed sensor failure might cause the transportation system

to lose control, putting human life in danger.

4. Motor fault: If this fault occurs, the motor may overheat or overload, preventing

it from being used for other purposes. Some of the causes are voltage imbalance,

operational overloads, shaft imbalance, shaft looseness, etc.

5. Braking fault: This fault is produced by leaking fluid in various transportation

systems, which indicates that the breaks are not entirely functional. Hence this

might be dangerous to human lives.
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Chapter 4

Tools and Techniques to detect

software defects

This section contains the taxonomy of tools and techniques to detect software defects

in each application. Techniques include statistical techniques, supervised learning, semi-

supervised learning, and unsupervised learning algorithms in Figure 4.1. The description

of specific techniques and algorithms are as follows:

4.1 Statistical techniques

Naive Bayes classifier, linear regression, Bayesian networks, discriminant analysis, k-

nearest neighbour, logistic regression and correlation analysis are some of the statistical

approaches used. Here’s a more detailed explanation of statistical methodology:

4.1.1 Linear regression

One or more variables appear to have a linear relationship using linear regression. Simple

and multiple linear regression are the two formations of linear regression [34]

4.1.2 Logistic regression

A logistic function is used to express a binary variable which is dependent in the simplest

form in logistic regression. There are, however, several more sophisticated variations.

[35].
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4.1.3 Naive bayes

It is a classification approach based on Bayes’ Theorem and the hypothesis of predictor

independence. In other words, the presence of one value in a class has no influence on

the presence of succeeding values, according to a Naive Bayes classifier. [36].

4.1.4 Classifier

An algorithm that translates input data to a specified category is a classifier.

4.1.5 K-nearest neighbours

The k-Nearest-Neighbors (kNN) classification method is a non-parametric classification

approach that is basic but successful in many situations. The kNN algorithm is skewed

due to k. There are some ways to figure out the k value, but one of the easiest is to run

the algorithm multiple times with different k values and choose the one that works best.

[37].

4.1.6 Bayesian networks

A Bayesian Network is a pictorial representation of the numerous probabilistic interac-

tions between random variables in a collection of data [38].

4.1.7 Discriminant analysis

As a pre-processing step for machine learning and pattern classification applications,

Discriminant Analysis is a reasonably prevalent approach for dimensionality reduction

challenges. Simultaneously, it is widely utilized as a black box, although it is (sometimes)

poorly understood [39].

4.1.8 Correlation analysis

The approach of correlation analysis is extensively utilised for finding hidden patterns

in data. These connections help us comprehend the importance of attributes with the

expected target class [40].

4.2 Supervised learning algorithms

In supervised learning, training data is given to utilities that function as supervisors,

emphasizing that the equipment properly forecast the output. In addition, the labeled
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information indicates that some input data has already been marked with the relevant

result.

4.2.1 Ensemble Based

Ensemble techniques are a machine learning approach that connects multiple base models

to create a single optimal predictive model [41].

1. Random forest: Random Forest Models are similar to BAGGing but with a few

differences. Based on randomly selected elements, Random Forest models decide

where to split.Because each tree splits depending on diverse qualities rather than

separating at comparable attributes throughout each node, Random Forest models

give a level of differentiation.

2. Bagging Boosting: The word BAGGing stems from combining Bootstrapping and

Aggregation into a single ensemble model. Several bootstrapped subsamples are

created from a collection of data. Each of the bootstrap sub-samples is allotted its

own tree.

4.2.2 ML Based

Machine Learning-based algorithms for fault detections are OneR, CART-LS, C4.5, De-

cision Tree, classification tree, and J48.

4.2.3 Fuzzy Techniques

According to the probability theorem, a model matches the link between inputs and

outcomes. It can deal with situations where there are uncertainties, such as challenges

requiring human perception and experience [42]. The essential component of a fuzzy

logic decision-making system is the Fuzzy Inference System. The ”IF...THEN” controls

and connectors ”OR” or ”AND” are used to create basic decision rules. Fuzzy regression

coefficients of model genetic algorithm are applied.

4.2.4 Instance Based

Instance-based learning systems memorize the training examples and then generalise to

new cases using some similarity metric. It has called instance-based since the hypotheses

are built from the training data. It is also known as sluggish learning or memory-based

learning.
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Figure 4.1: Techniques of software defect prediction

4.2.5 Search Based algorithm

1. Genetic Algorithm: Genetic Algorithm (GAs) are adaptive heuristic search algo-

rithms that categorize the evolutionary algorithm. Genetic algorithms are estab-

lished on the basis of selecting naturally and biological genetics. These are inno-

vative uses of random search, supported by prior data, to guide the search to a

solution space area with superior performance. They’re usually used to suggest

high-quality solutions for optimisation and search strategies.

2. Ant Colony Optimization: An ant’s foraging activity when exploring for a passage

between their colony and a food source is the basis for the Ant Colony Optimization

approach. It is used to solve the well-known dilemma of the traveling salesman. It

is then utilized to solve a variety of complex optimization problems.

4.2.6 Perceptron based model

A perceptron model is a guided learning strategy using binary classifiers in Machine

Learning. The single-neuron perceptron model determines whether a function is an input

or not and categorizes it accordingly.
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1. Neural Network: By replicating the function of the human brain, a neural network

is a group of algorithms that seeks to find hidden correlations in a block of data.In

this respect, neural networks refer to biological or artificial systems of neurons.

2. Multi-Layer Perceptron: The most complicated artificial neural network architec-

ture is the multi-layer perceptron. It is mainly made up of numerous layers of the

perceptron. To fully understand what a multi-layer perceptron is, we must build

one from scratch using Numpy.

3. Backpropagation: Backpropagation is one of the most crucial ideas in a neural net-

work. We need to change the parameter and bias weights for this; To optimise

the constant in the linear regression model, we utilize gradient descent. Backprop-

agation is also used to deploy the gradient descent technique.Our main aim is to

classify our data as precisely as possible.

4.2.7 Kernel Based

The SVM is referred to as a ”kernel” because it employs a set of mathematical functions

to provide a window through which data may be changed. A kernel method accepts data

and converts it into the format required for processing. As a consequence, the Kernel

Function modifies the training data in order to convert a non-linear decision surface into

a linear equation in a larger number of dimension spaces.

1. SVM: The SVM is a supervised learning approach used for regression and classi-

fication. The fundamental notion is that the algorithm tries to discover the best

hyperplane based on the labeled data (training data) to categorize fresh data points.

The hyperplane is a simple line in two dimensions.

2. LS-SVM: Least-squares support-vector machines (LS-SVM) are least-squares vari-

ations of support-vector machines (SVM), a series of related supervised learning

algorithms for data analysis and pattern recognition for regression and classifica-

tion problems.

4.2.8 Other Techniques

There are different machine learning techniques for fault detections in critical applications:

Case-based, Reasoning, PRM, ZIP, NBRM, and Boolean [43].
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4.3 Un-supervised learning algorithms

Ml algorithms are often used in unsupervised learning to analyse and categorize unlabeled

data without any human input. The expectation-maximization technique, the cluster and

label strategy, and the graph-based learning approach are all included in this algorithm.

[43]. Furthermore, these algorithms reveal previously unknown patterns or data clusters.

[44].

4.4 Semi-supervised learning algorithms

Semi-supervised learning is a machine learning technique that combines training with

both labelled and unlabeled data. A self-organizing map, fuzzy clustering, x-mean clus-

tering, k-means algorithm, and neural gas clustering are examples of semi-supervised

learning methods. [43].

17



Chapter 5

Architecture

This section narrates the proposed software defect detection architecture in critical ap-

plications. First, we will understand all the layers that are presented in our architecture.

The layers are critical applications, driving force, Machine learning (ML)/Deep Learn-

ing(DL) layer, and alert message in Figure 5.1.

5.1 Critical applications layer

This layer merely pivots on every critical application in the world. Here, critical ap-

plications such as CA1 (Autonomous vehicles), CA2 (Unmanned aerial vehicles), CA3

(Telemedicine), CA4 (Intelligent transportation system) and many more. {CA1, CA2,

CA3, CA4,..., CAX} ∈ CAall. Any CAa ∈ CAall, wherein ’a’ is just any whole num-

ber, may generate a large quantity of data with a wide range of attributes like variety,

volume, and velocity. The data engenders via CAs software components which are very

much capable of producing a huge amount of data in any location and from each CAs.

For example, the data from CA1 (Autonomous vehicles) is generated via its sensor, actu-

ators, gyroscope, camera, radar, lidar, and many more components. However, this layer

is primarily responsible for data created from any given environment, as required by the

application.

5.2 Driving force layer

Each CAa ∈ CAall are made up of software and hardware components. Each hardware

and software component can generate the data. Here, in this layer, we are entirely

focused on the software components because we have to find out a defect in software
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components. {CA1, CA2, CA3, CA4,..., CAn} are the set of critical applications. From

the software data of these CAs, they can generate the faults from sensors, actuators,

gyroscope, camera, radar, lidar, storage, communication, runtime environment, and many

more software components.

5.3 ML / DL layer

This layer distinguishes whether the software is defected or non-defected by using the

unusual circumstance. Furthermore, in this Figure 5.2, the data generated from the

above layers is transferred securely in this layer. How this layer works has been discussed

further below:

5.3.1 Dataset

There are many datasets regarding software defect classification available on different

sites. The datasets such as NASA’s [45],PROMISE repository [46], AEEEM [47], Eclipse

[48], and many more. These datasets are extensively used in many research projects for

software defect classification.

5.3.2 Data preprocessing

Data preprocessing is requisite because it ensures correctness, consistency, punctuality,

believability, and interpretation. For doing data preprocessing, there are a few tasks to do

which are vital. The tasks are data cleaning, integration, reduction, and transformation.

• Data cleaning: Data cleaning is the process of eliminating erroneous, incomplete,

or incorrect data from databases as well as restoring missing information.

• Data integration: Data integration, or the combining of disparate databases into

a single dataset, is one of the most important parts of data management.

• Data reduction: This strategy allows for a reduction in data amount, which makes

analysis easier while maintaining the same or almost comparable findings. It also

saves storage space.

• Data transformation: The process of changing the format or arrangement of data

is referred to as data transformation. This method might be simple or complex,

19



Figure 5.1: The proposed layered architecture
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Figure 5.2: The ML layered architecture
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depending on the demands.

5.3.3 Training models

Here, many models have been used for defect detection. ML models such as K nearest

neighbor, Random forest, Decision tree, Naive Bayes, etc. DL models include LSTM,

RNN, CNN, TCNN, DNN, GH-LSTM, etc.

5.3.4 Classification

After implementing ML and DL models to a certain dataset, it classifies into 0 and 1

labels. 0 for non-defective data and 1 for defective data. Each label contains metrics

such as precision, recall, F1-score, and accuracy. For example, if accuracy contains 95-

97%, the dataset is likely to be defective.

5.4 Alert message

Every critical application must be connected to some device that shows this CA has some

faults and get a notification to stop the operation or repair the fault as soon as possible.

It is the proposed architecture for detecting software defects within any critical ap-

plication.
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Chapter 6

Analysis

In this analysis, we have used four datasets from the PROMISE repository, NASA’s

dataset, namely JM1, KC1, KC2, and PC1. These are the software defect classification

datasets [46]. For fault categorization, we use the publicly available PROMISE data

set to encourage repeatable, verifiable, refutable, and improveable software engineering

prediction models. This dataset is made of various modules and repositories that meet

our needs. JM1, KC1, KC2, and PC1 are the names of the four repositories. The dataset’s

description is as follows:

A real-time predictive ground system is written in ”C” for the JM1. The KC1 is a

”C++” system that receives and analyses data from the ground using storage manage-

ment. KC2 is the result of using C++ functions. Data processing for scientific purposes;

is part of the same project as KC1; not the same individuals as KC1. KC1 was given

access to some third-party software libraries but no other applications. PC1 stores data

from C functions used in-flight software for an earth-orbiting satellite [49]. These datasets

contain the metrics to find out defects in the datasets. The types of metrics are McCabe,

Halstead, Line count, operator/operand, and Branch.

In this table, each attribute contains its type and definition:

Each attribute contains its values from the function of the programming language C,

C++, JAVA, and many more.

• Mccabe [50] : The McCabe metrics are a set of four software measures: essential

complexity (ev(g)), cyclomatic complexity (v(g)), design complexity (iv(g)), and

Line of code (LOC)

.
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Metric Definition Metric type
loc Line Of Code

Mccabe [50]
v(g) Cyclomatic Complexity
ev(g) Essential Complexity
iv(g) Design Complexity
n Length

Halstead [51]

v Volume
l Level
d Difficulty
i Intelligent
e Effort
b Error Estimator
t Programming Time
lOCode Line Count

Line Count
lOComment Count of Line of Comment
lOBlank Count of Blank lines
lOCodeAnd Comment Line of Code and Comment
uniq Op Unique Operators Operators & Operands
uniq Opnd Unique Operands
total Op Total Operators
total Opnd Total Operands
branchCount Total Branch Count Branch

The number of linearly independent paths across a flow graph is measured by Cy-

clomatic Complexity, which is determined as follows:

ν (G) = e− υ + 2

where e = edge of the graph & v = vertices of the graph.

The amount to which a flowgraph can be ”reduced” by dissecting all sub-flowgraphs

of G is called essential complexity:

e(ν (G)) = ν (G)−m

Design Complexity, or

i(ν (G))

, is the cyclomatic complexity of a module’s reduced flowgraph. The module’s

flowgraph is reduced to eliminate any complexity that does not influence the inter-

relationship between design modules.
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• Halstead [51]: The Halstead Measurements are another popular set of software

metrics. They’re named after the man who invented them, Maurice H. Halstead.

Halstead believed that software (or the writing of software) might be linked to the

themes discussed in the psychological literature at the time. He devised several

measures to encompass these characteristics; these metrics may be retrieved using

the McCabe IQ tool and are explained in more depth below [52]. The Halstead met-

rics are n(length), v(volume), l(level), d(difficulty), i(intelligent), e (effort), b(error

estimate), and t (programming time).

Using some of the values, we can find the other attributes of Halstead metrics. The

values are as follows:

n1 = number of unique operators

n2 = number of unique operands

N1 = total number of operators

N2 = total number of operands

n1* = potential operator count

n2* = potential operand count

With the possible exception of the future operator/operand counts, these six met-

rics are self-explanatory. First, Halstead defined the minimal number of operators

and operands that a module can contain. This minimal number would occur in a

(perhaps fictitious) language when the needed operation existed as a subroutine,

function, or procedure. Because each function must include at least two operators:

one for the function name and one for the assignment or grouping symbol, n1* =

2. n2* is the maximum number of arguments that must be passed to the function

or method without being repeated.

By using these measurements length of program calculate by :

N = N1 + N2

total number of unique operators and operands is:
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n = n1 + n2

The volume of program is :

V = N ∗ ln n

Potential volume of program is :

V* = (2 + n2*) ln (2 + n2*)

Level of program is:

L = V*/V

Difficult of program is:

D = 1/L

Estimator of L is:

L̂ = 1/D = 2/n1 ∗ n2/N2

Intelligent content of a program is :

I = L̂ ∗ V

Effort required to generate program is :

E = V/L

Programming time required by program P is:

T = E/18seconds
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Various models have been used to detect software defects, such as lightgbm, catboost,

xgboost, Gaussian naive Bayes, muti-nomial naive Bayes, and Bernoulli naive Bayes. By

using the dataset, we are training the model.

• Lightgbm: LightGBM outperforms XGBoost in various ways, including sparse op-

timization, simultaneous training, various loss functions, regularisation, bagging,

and early stopping. The structure of trees distinguishes the two. Unlike most other

implementations, LightGBM does not construct a tree level by level and row by

row. Rather, it starts from the ground up, leaf by leaf, to form trees. It selects

the leaf that it feels would reduce the greatest loss. Furthermore, unlike XGBoost

and other implementations, LightGBM does not use the popular sorted-based deci-

sion tree learning technique, which looks for the optimal breakpoint among sorted

attribute values. Instead, it develops trees leaf by leaf from the ground up. Ex-

clusive Feature Bundling (EFB) and Gradient-Based One-Side Sampling are two

unique tactics used by the LightGBM method to run quicker while retaining high

accuracy (GOSS). LightGBM, on the other hand, makes use of a highly optimized

histogram-based decision tree learning method that maximizes efficiency and mem-

ory consumption [53].

• Catboost:Yandex created CatBoost, an open-source software package[54]. It intro-

duces a gradient boosting framework that, instead of using the traditional approach,

intends to address Categorical features using a permutation-driven option. Native

handling is available for categorical characteristics. Hurried GPU training, visual-

izations, and tools for model and feature analysis, Oblivious Trees or Symmetric

Trees for faster execution, and Ordered Boosting to elude over-fitting. The project

aims to develop a ”Scalable, Portable, and Distributed Gradient Boosting Library”

[54].

• Xgboost: XGBoost is an open-source software package that imparts a regularizing

gradient boosting framework. It can encourage you to predict any type of data

if you have formerly forecasted data. Any type of data can be classified. Tree

boosting is a well-known and effective machine learning method. Data scientists

use XGBoost, a scalable end-to-end tree boosting algorithm, to get cutting-edge

results on a diversity of machine learning problems [55].
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• Gaussian näıve Bayes: It is standard to assume that the constant values associated

with each class follow a standard (or Gaussian) distribution when working with

continuous data. We can not use Gaussian naive Bayes that portray discrete count.

Gaussian naive Bayes is used where the values of features are in continuous nature.

Mean, standard deviation, and variance is present in this formula of Gaussian naive

Bayes [56].

• Multinomial näıve Bayes: Multinomial is Natural Language Processing (NLP), and

Naive Bayes algorithm is a probabilistic learning method [57]. The Bayes theorem is

predicted using this approach. It assesses each label’s feasibility for a given sample

and outputs the label with the most escalated probability for a text’s tag, such as

an email or a newspaper story.

Naive Bayes classifier is a genus of methods that all follow the same principle: each

feature to be classified is trivial to the others [58].

• Bernoulli Naive Bayes: BernoulliNB renders the naive Bayes training and classifica-

tion algorithms multivariate Bernoulli distribution data. Several features may be,

but each is a binary-valued variable. As an outcome, samples must be characterized

as binary-valued element vectors; if given any other type of data, the BernoulliNB

representative may binarize it. Word occurrence vectors can be utilized to train and

apply this classifier in the point of text classification. BernoulliNB may outperform

other algorithms on some datasets, distinctly ones with fewer documents. If time

allows, it is recommended that analyze both models [59].

After implementing models to each datasets we utilize an f1-score, Precision and

Recall. When there are uneven classes of data, precision and recall take precedence over

accuracy. We need these parameters for assessment since the dataset has unstable classes.

The comparative debate is made more accessible as a result.

Precision = TP/ (TP+ FP) (6.1)

Here TP and FP stand for True Positive and False Positive, respectively.

Recall = TP/ (TP+ FN) (6.2)
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Here, FN is False Negative.

F1-score is calculated as:

F1-score = 2 ∗ (Precision ∗ Recall)/(Precision + Recall) (6.3)

These are all evaluation measures we have performed in each 4 of the datasets. Here,

we have performed an analysis of the performance evaluation of each dataset with each

model.

Figure 6.1: Performance evaluation of Lightgbm, Catboost, Xgboost, Gaussian, Multi-
nomial, and Bernoulli for JM1 defect dataset

Fig. 6.1 shows the performance evaluation of Lightgbm, Catboost, Xgboost, Gaussian,

Multinomial, and Bernoulli for the JM1 defect dataset. However, there is a low f1-score

in the JM1 dataset, which is 77%. Once again, in the JM1 dataset, the gaussian f1-score

outperformed all other models with 98%. The lightgbm, catboost, and xgboost got the

same f1-score of 82%. The multinomial was placed second among all other models in the

JM1 dataset with the f1-score of 93.3%.

Fig. 6.2 shows the performance evaluation of Lightgbm, Catboost, Xgboost, Gaussian,

Multinomial, and Bernoulli for the KC1 defect dataset. The lightgbm, catboost, xgboost,

and Bernoulli got the f1-score between 86% and 87%. In the KC1 dataset, multinomial

outperformed all other models by the f1-score of 96%, and gaussian got 95% of the f1-

score. Only in KC1 multinomial got the highest f1-score among all other datasets. The
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Figure 6.2: Performance evaluation of Lightgbm, Catboost, Xgboost, Gaussian, Multi-
nomial, and Bernoulli for KC1 defect dataset

Bernoulli can learn the defect and non-defect separation up to 82%.

Fig 6.3 shows the performance evaluation of Lightgbm, Catboost, Xgboost, Gaussian,

Multinomial, and Bernoulli for the KC2 defect dataset.From Figure 6.3, the Bernoulli

has an F-measure of 0.79. Thus, Bernoulli can learn the defect and non-defect separation

up to 80%. Similar to JM1, and KC1, the Bayes network also shows considerably low

detection performance for the KC2 dataset. The Gaussian has an increased F-measure

of 0.98. Thus the Gaussian F-measure has a combined Precision and Recall performance

of 98%. Xgboost and lightgbm & catboost got f1-score of 86% and 84%, respectively.

Fig 6.4 shows the performance evaluation of Lightgbm, Catboost, Xgboost, Gaussian,

Multinomial, and Bernoulli for the PC1 defect dataset. Lightgbm and catboost got the

increment of 7-10% of f1-score in the PC1 dataset, which is 92%. The f1 score of gaussian

is 95% which is the lowest among other datasets and the highest in the PC1 dataset. The

lowest f-measure of Bernoulli is 76% among all other models.

According to the values regarding precision-recall and accuracy, we observe that the

Gaussian naive Bayes is the best model for identifying software defects among all other

models that we have compared. Here False and True defined the data as non-defected

and defected. Here JM1 and KC2 datasets got the highest accuracy of 98% in the same

model named Gaussian naive Bayes.
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Figure 6.3: Performance evaluation of Lightgbm, Catboost, Xgboost, Gaussian, Multi-
nomial, and Bernoulli for KC2 defect dataset

Figure 6.4: Performance evaluation of Lightgbm, Catboost, Xgboost, Gaussian, Multi-
nomial, and Bernoulli for PC1 defect dataset
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DATASET MODELS PRECISION RECALL F1-SCORE ACCURACY

JM1

LightGBM F = 0.84 T = 0.49 F = 0.97 T = 0.12 F = 0.90 T = 0.20 0.82
Catboost F = 0.84 T = 0.49 F = 0.97 T = 0.12 F = 0.90 T = 0.20 0.82
Xgboost F = 0.84 T = 0.48 F = 0.96 T = 0.16 F = 0.90 T = 0.24 0.819
GaussianNB F = 0.92 T = 0.99 F = 0.96 T = 0.98 F = 0.94 T = 0.99 0.98
MultinomialNB F = 0.87 T = 0.94 F = 0.65 T = 0.98 F = 0.75 T = 0.96 0.933
Bernoulli NB F = 0.37 T = 0.95 F = 0.76 T = 0.77 F = 0.49 T = 0.85 0.77

KC1

LightGBM F = 0.89 T = 0.56 F = 0.97 T = 0.24 F = 0.93 T = 0.33 0.867
Catboost F = 0.89 T = 0.56 F = 0.97 T = 0.24 F = 0.93 T = 0.33 0.867
Xgboost F = 0.89 T = 0.59 F = 0.97 T = 0.29 F = 0.93 T = 0.39 0.87
GaussianNB F = 0.60 T = 1.00 F = 1.00 T = 0.95 F = 0.75 T = 0.97 0.95
MultinomialNB F = 0.69 T = 0.99 F = 0.91 T = 0.97 F = 0.78 T = 0.98 0.96
Bernoulli NB F = 0.29 T = 0.98 F = 0.84 T = 0.83 F = 0.43 T = 0.90 0.82

KC2

LightGBM F = 0.83 T = 0.91 F = 0.99 T = 0.38 F = 0.90 T = 0.54 0.84
Catboost F = 0.83 T = 0.91 F = 0.99 T = 0.38 F = 0.90 T = 0.54 0.84
Xgboost F = 0.84 T = 1.00 F = 1.00 T = 0.42 F = 0.91 T = 0.59 0.86
GaussianNB F = 0.93 T = 0.99 F = 0.93 T = 0.99 F = 0.93 T = 0.99 0.98
MultinomialNB F = 0.88 T = 0.92 F = 0.47 T = 0.99 F = 0.61 T = 0.95 0.91
Bernoulli NB F = 0.40 T = 0.99 F = 0.93 T = 0.77 F = 0.56 T = 0.86 0.79

PC1

LightGBM F = 0.92 T = 1.00 F = 1.00 T = 1.00 F = 0.96 T = 0.18 0.92
Catboost F = 0.92 T = 1.00 F = 1.00 T = 1.00 F = 0.96 T = 0.18 0.92
Xgboost F = 0.92 T = 0.50 F = 0.99 T = 0.15 F = 0.95 T = 0.23 0.91
GaussianNB F = 0.85 T = 0.98 F = 0.93 T = 0.96 F = 0.89 T = 0.97 0.95
MultinomialNB F = 0.72 T = 0.92 F = 0.67 T = 0.94 F = 0.69 T = 0.93 0.89
Bernoulli NB F = 0.40 T = 0.88 F = 0.50 T = 0.82 F = 0.44 T = 0.85 0.76

Table 6.1: Precision, Recall, F1-score and Accuracy of each datasets
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Chapter 7

Open Issues and Challenges

7.1 Security and Privacy

For safe communication, the important application causes numerous security challenges to

be addressed. Authentication and authorisation, secure data transfer, secure processing,

and data storage are some of the topics covered. The data in the Most Critical Application

is designed for certain user groups or organisations. Therefore , authentication and

authorzsation are required. The information must be kept safe and processed safely.

Routing layer attacks and eavesdropping attacks are examples of attacks that interrupt

data communications. There are several threats, including ransomware, phishing, data

loss, and hacking. Multi-factor authentication, password managers, and avoid reusing the

same password are all possible solutions. To ensure secure data transfer, data encryption

and backup, anti-malware protection, and a secure wireless network are all required.

7.2 Software bugs identification at initial stage

Before deploying the programme, the developer must identify issues in the initial stages.

Unfortunately, many bugs take place at the initial step. SFunctional faults, performance

flaws, security defects, syntax and logic errors, and system-level integration issues are

all examples of software bugs that can occur during development. The software may be

tested using advanced or autonomous testing, which allows the developers to find and fix

errors.
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7.3 Deployment trust issues

If developers are distributing software, they must have confidence that the critical ap-

plication will be trusted wherever it is installed. They’ll only deploy after that. As a

result, there must be an evaluation and trustworthiness between important applications

and their sensors.

7.4 Deployment environment

Any software created, such as autonomous cars or any other critical application like UAV

or ITS, will not run in that critical application since it is hard-coded for that critical

application alone. It is determined by the platform used for deployment. It could not

be utilized for any other purpose. Making hybrid software that can run on any critical

application might be the solution.

7.5 Data collection

Data is crucial in every use case. Beginners may practise machine learning with data

easily available on Kaggle, the UCI ML Repository, and other places. The sensors of the

crucial application record pedestrians, bicycles, traffic signs, traffic lights, road borders,

traffic lanes, other infrastructure, and landscape during data collection. For critical

applications, data collecting is not an easy task. It’s also not easily available and hard

to acquire.

7.6 Data preprocessing

It’s feasible that the data will not ever be found. For example, it could be filled by

mean and median, but we can’t use so in a critical application since the data after

mean and median filling may not be right; even a minor change in data might result in

an unexpected incident. This causes its negative consequences. Developing a software

architecture designed for edge components, evaluating the efficiency of the Data prepro-

cessing solution and its influence on AI algorithms, and handling high throughput and

low-latency requirements are the difficulties for data preprocessing.
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7.7 Latency

When one system module transmits a message and then receives confirmation of receipt

from another system module before sending further data, latency is often assessed as a

round trip delay. The communication latency and reliability of traditional networks are

incompatible with the crucial application. Even a 1ms delay is ineffective in preventing

system failure, which might lead to devastating tragedy for people and property. This

issue of critical application can be solved by 6-G deployment.
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Chapter 8

Identify software defects in

Autonomous vehicles: Case study

8.1 Identify the real-life problems

A self-driving automobile, also known as an autonomous vehicle, is a vehicle that reduces

travel time, traffic deaths, and human stress. Many autonomous cars have been developed

across the world in recent years. Everyone, whether human or machine, has a limitation.

Before the launch, the engineers conducted extensive testing to identify any flaws or

defects in the autonomous vehicle software. If a failure occurs in the AVs system, it

may become uncontrollable as a result of the fault. For example, it may choose the

incorrect lane instead of the original. When a defect occurs in an AV, it causes a number

of significant issues. Some software generates defects automatically after installation,

resulting in unexpected events such as risking human life or the environment.

8.2 Select significant problems in the case

Faults in the gyroscope, sensors, actuators, connectivity, and various software components

are among the significant challenges. For example, defects in the sensor, might indicate

problems with the camera, lidar, radar, or GPS. Assume that an error occurs in these

sensor components. Many factors can interfere in this situation, including inability to

identify an item, navigation system difficulties, inability to perceive the light or frequency,

and many more. Other concerns develop, such as controller faults, which are controlled

or run according to control algorithms, such as steering, braking, and acceleration. It
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is possible that the AV user will be unable to manage steering, braking, or acceleration.

There are also solutions available to resolve these significant problems.

8.3 Suggest solutions to these significant problems

Some solutions may be used to detect problems or deficiencies in autonomous vehicles.

The answers are Machine learning and Deep learning. The techniques in Machine learning

are frequently used to detect software defects such as SVM, DT, RF, XGBoost, KNN,

NB, LR, and so on. Deep learning techniques include LSTM, R-CNN, Faster R-CNN,

Pointnet, voxelnet, VGG-16, Adapnet, Resnet, and many more.

8.4 Recommend the best solution to be implemented

There are many techniques that are best at identifying software defects.However, our

implementation primarily analyzes all machine learning algorithms, including lightgbm,

catboost, xgboost, Gaussian, Bernoulli, and multinomial. After analysing all of these

techniques, we determined that Gaussian had the best accuracy of any of them, at nearly

95%.

8.5 Detail how this solution should be implemented

The procedure is as follows: the dataset must be used to train the model, and then

the process continues. In this, the datasets are from PROMISE and NASA’s websites.

The datasets are JM1, KC1, KC2, and PC1. The data is first correlated to see how the

variables are connected to one another, and then it is used to forecast the target variables.

The assessment procedure has been completed in the next section, and it appears that

there is just one requirement that must be met if a defect exists; otherwise, the item is

not defective. Following that, preprocessing occurs, which includes data cleansing, data

integration, data transformation, and data reduction. Then we separate training and

testing to determine precision, recall, f1-score, and accuracy using the pre-trained model

Gaussian Naive Bayes classifier.
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Chapter 9

Future work & Conclusion

To conclude, the survey regarding identifying software defects of critical applications such

as Autonomous Vehicles (AVs), Unmanned Aerial Vehicles (UAVs), and Intelligent Trans-

portation Systems (ITS). The simple error or the delay of milliseconds in this application

leads to unexpected incidents. Many researchers have researched each application; how-

ever, every solution is imperfect. In the meantime, the intruders try to attack differently;

hence it is not 100% safe.
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