
Detecting permission over-claim in android
applications

Submitted By

Raj J Majethiya

20MCEI08

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2022

Detecting permission over-claim in android
applications

Major Project

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology in Computer Science and Engineering(INS)

Information and Network Security

Submitted By

Raj J Majethiya

(20MCEI08)

Guided By

Prof Monika Shah

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2022

Certificate

This is to certify that the major project entitled “Detecting permission over-claim

in Android application” submitted by Raj J Majethiya (20MCEI08), towards the

partial fulfillment of the requirements for the award of degree of Master of Technology

in Computer Science and Engineering of Nirma University, Ahmedabad, is the record

of work carried out by him under my supervision and guidance. In my opinion, the

submitted work has reached a level required for being accepted for examination. The

results embodied in this Major Project Part-I, to the best of my knowledge, haven’t been

submitted to any other university or institution for award of any degree or diploma.

Prof Monika Shah Dr Sharda valiveti

Internal Guide & Associate Professor Professor & PG Coordinator (M.Tech - INS)

CSE Department CSE Department

Institute of Technology Institute of Technology

Nirma University, Ahmedabad Nirma University, Ahmedabad

Dr Madhuri Bhavsar Dr Rajesh Patel

Professor & Head Director

CSE Department Institute of Technology

Institute of Technology Nirma University, Ahmedabad

Nirma University, Ahmedabad

iii

Statement of Originality
———————————————————————————————————————

I, Raj J Majethiya, 20MCEI08, give undertaking that the Major Project entitled

“Detecting permission over-claim in Android applications” submitted by me,

towards the partial fulfillment of the requirements for the degree of Master of Technol-

ogy in Computer Science & Engineering(INS) of Institute of Technology, Nirma

University, Ahmedabad, contains no material that has been awarded for any degree or

diploma in any university or school in any territory to the best of my knowledge. It is

the original work carried out by me and I give assurance that no attempt of plagiarism

has been made.It contains no material that is previously published or written, except

where reference has been made. I understand that in the event of any similarity found

subsequently with any published work or any dissertation work elsewhere; it will result

in severe disciplinary action.

———————–

Signature of Student

Date:

Place:

Endorsed by

Prof Monika Shah

iv

Acknowledgements

It gives me immense pleasure in expressing thanks and profound gratitude to Prof

Monika Shah, Associate Professor, Computer Science and Engineering Department,

Institute of Technology, Nirma University, Ahmedabad for her valuable guidance and

continual encouragement throughout this work. The appreciation and continual support

she has imparted has been a great motivation to me in reaching a higher goal. Her guid-

ance has triggered and nourished my intellectual maturity that I will benefit from, for a

long time to come.

I would also like to thank Dr Sharada Valiveti PG Co-ordinator M.tech(INS), Com-

puter Science and Engineering Department,Institute of Technology, Nirma University,

Ahmedabad for her constant support during the completion of this project.

It gives me an immense pleasure to thank Dr Madhuri Bhavsar, Hon’ble Head

of Computer Science And Engineering Department, Institute of Technology, Nirma Uni-

versity, Ahmedabad for her kind support and providing basic infrastructure and healthy

research environment.

A special thank you is expressed wholeheartedly to Dr Rajesh Patel, Hon’ble Di-

rector, Institute of Technology, Nirma University, Ahmedabad for the unmentionable

motivation she has extended throughout course of this work.

I would also thank the Institution, all faculty members of Computer Science and

Engineering Department, Nirma University, Ahmedabad for their special attention and

suggestions towards the project work.

- Raj J Majethiya

20MCEI08

v

Acronyms

AAB Android App Bundle

AAR Android ARchive

AD Advertisement

ADB Android Debug Bridge

API Application Programming Interface

APK Android Application PacKage

APP Application

CNN Convolution Neural Network

DBN Deep Belief Network

DEX Dalvik Executable

GPS Global Positioning System

GUI Graphical User Interface

HIN Heterogeneous Information Network

JAR Java ARchive

KNN K-Neaest Neighbour

LSTM Long Short-Term Memory

NLPNatural Language Processing

OS Operating System

RQ Research Question

SMS Short Message Service

SVM Support Vector Machines

vi

Abstract

Android devices have become very popular nowadays due to their rich functionality and

good performance. To give the users better functionality, Android has introduced a

permission model allowing developers to access the resources and information of the

device with the user’s permission. However, few developers over-claim the permission

that has nothing to do with the apps’ functionality. By using over-claim permission,

many android apps may steal sensitive information from users, Which is one of the leading

privacy issues. Looking towards its criticality, we have started working on detecting over-

claim permission. Detecting the over-claim permission is done in a variety of ways. In our

proposed methodology the semantic analysis is done for the sentences of the permission

description and the app description. The analysis is done using sentence transformer,

sentence similarity using Space and universal sentence encoder technique. Also keyword

based analysis is done to find out if the given keyword that is related to permission is

present in the app description or not.

vii

List of Figures

1.1 Active mobile phone users worldwide . 1
1.2 Market share of different mobile operating system 2

2.1 Android.manifest.xml file . 6
2.2 Static analysis . 6
2.3 Dynamic analysis . 7
2.4 Semantic analysis . 8

4.1 Proposed methodology . 15
4.2 Extracted Permission List . 15
4.3 Extracting app description . 16
4.4 Pre processing of data . 17
4.5 Pre processing of data . 17
4.6 Pre processing of data . 19

5.1 Tokenizing data . 20
5.2 cleaning of sentences . 21
5.3 Common words used in permission description 21
5.4 removal of extra words . 21
5.5 Similarity check process . 22

viii

List of Tables

2.1 Dangerous permission list [1] . 5

3.1 Comparison of over-claim permission detection in Third-party library . . 10
3.2 Over-claim permission detection using malware analysis 10
3.3 Summary of category based over-claim permission detection approaches . 11
3.4 comparison of different tool to decompile .APK 11
3.5 Summary of semantic analysis for over-claim permission detection 12
3.6 NLP based semantic analysis to detect over-claim permission 13
3.7 Summary of parameters used in semantic analysis 13

5.1 Apps that over-claim dangerous permission 23
5.2 Apps that over-claim dangerous permission 23
5.3 Keywords related to permission . 24

ix

Contents

Certificate iii

Statement of Originality iv

Acknowledgements v

Abstract vii

Abbreviations viii

List of Figures viii

List of Tables ix

1 Introduction 1

2 Background and concept 3
2.1 Android permission model . 3
2.2 Permission categories . 3
2.3 Over-claim permission . 4
2.4 Over-claim permission detection approaches 4

2.4.1 Static analysis . 6
2.4.2 Dynamic analysis . 6
2.4.3 Symantic analysis . 7
2.4.4 Hybrid analysis . 7

3 Literature survey 9
3.1 Analysis of Third-party Library . 9
3.2 analysis of malware apps . 10
3.3 Category wise application . 10
3.4 Tools for APK decompilation . 11
3.5 Analysis using semantic methods . 12

4 Proposed methodology 14
4.1 Decompiling APK File . 14
4.2 Extracting apps description . 15
4.3 Data Pre-processing . 16
4.4 Semantic analysis . 16

4.4.1 Cosine similarity using Spacy 17
4.4.2 Cosine similarity using MiNiLM (sentence transformer) 18

x

4.4.3 Cosine similairty using Tensorhub (TFHub Universal Sentence En-
coder) . 18

4.4.4 Keyword based matching . 18

5 Implementation 20
5.1 Results . 23

6 Challenges 25

7 Conclusion 26

xi

Chapter 1

Introduction

It is tough to imagine today’s life of common man without mobile phones. There are

many activities performed using mobile phones in our day-to-day life, including wake-up

alarms, exercise training apps, scheduling meetings, bank transactions, communicating

with other people, preparing documents, personal entertainment, and to name a few.

which has resulted in more usage of phones as shown in Fig. 1.1 . The total active

mobile user presently are 6.5 billion globally[2].

Figure 1.1: Active mobile phone users worldwide

Statistics presented in Fig. 1.2 shows that the android operating system has the

largest market share of about 74 percent [3]. The android system facilitates a permis-

sion model that allows developers to seek permission from the users to access mobile

resources to perform claimed functionalities of the app. Despite that, it has been seen

that many developers are seeking over-claim permission. Being unaware of the use of

1

each permission, users grant the authorization of requested permissions. In this case,

over-claim permissions may attempt to take over mobile control to perform malicious ac-

tivities and access users’ sensitive data to infringe on their privacy. Generally, permissions

are requested at the installation time of the app, up-gradation of, and during the app’s

execution. Therefore Researchers have proposed various approaches to detect over-claim

permissions at various stages of the app life cycle. Despite that, over-claim permission

in android is still a critical problem. Therefore, this paper comprehends the basics of the

Android permission model and the stages of requesting and granting permission to under-

stand the criticality of permissions. Then after it discusses various proposed approaches

to deal with over-claim permissions and compare them to identify their limitation.

Figure 1.2: Market share of different mobile operating system

2

Chapter 2

Background and concept

2.1 Android permission model

The Android permission model refers to the authorization method that the developer must

follow for using the mobile device’s resources. The list of permission can be extracted from

the in manifest.xml. After introducing android 6.0 (API level 23), the permission model

concept got changed [4]. Before Android 6.0, the application has to make a declaration of

permission used when installing the application. The access is given at installation time.

However, after introducing android 6.0, the permission model has been changed to Run

Time Permission Model. The application can ask for permission anytime when needed

to perform that functionality while using the app. The permissions are categorized by

the different levels of security based on how users’ data and resources it uses.

2.2 Permission categories

Permissions are crucial in Android as it is used to fulfill the application’s functionalities.

The permissions used in Android are categorized into three groups based on the security

level and right to access the resources. [5].

• Normal Level permission This type of permission has a very low risk and does not

affect user’s privacy. In this type of permission, no dialogue box appears and the

application can directly get permission from the device. This permission includes

ACCESS NETWORK STATE

3

ACCESS WIFI STATE

INTERNET

• Signature Level permission Signature level permissions are install time permissions,

which has a condition that must be fulfilled. The app requesting these permissions

must be signed with the same signature of the app that has already defined signature

level permission. Example:

BIND JOB SERVICE

SYSTEM ALERT WINDOW

BIND VPN SERVICE

• Dangerous level permission Dangerous level permission carries a high level of risk

that may compromise the user’s privacy. Dangerous permission does not always

cause privacy problems if appropriately used according to the app’s functionality.

There are many dangerous level permission declared by android as shown in table

2.1.This permission are asked during running of application.

2.3 Over-claim permission

Permissions are used to provide better functionality to the users. However, some devel-

opers may ask for more permission than required to fulfill the app’s functionality. The

extra asked permission is called over-claim permission which may be used to infringe

user’s privacy. Over-claim permission may not always be dangerous level permission.

2.4 Over-claim permission detection approaches

To handle the issues of over-claim permission in Android applications, many researchers

have contributed their work, including different analysis and detection approaches. The

different analysis techniques are Static, Dynamic, and Semantic analysis. Other than

these three methods, some of the researchers have adopted hybrid analysis, which in-

cludes the use of more than one analysis method. To analyze the permission used should

be extracted from android.manifest.xml file. Fig. 2.1.Later Different analysis method-

ologies can be used to analyze the permission usage and detect over-claim permission.

4

Sr. no. Permission name
1 ACCEPT HANDOVER
2 ACCESS BACKGROUND LOCATION
3 ACCESS COARSE LOCATION
4 ACCESS FINE LOCATION
5 ACCESS MEDIA LOCATION
6 ACTIVITY RECOGNITION
7 ADD VOICEMAIL
8 ANSWER PHONE CALLS
9 BLUETOOTH ADVERTISE
10 BLUETOOTH CONNECT
11 BLUETOOTH SCAN
12 BODY SENSORS
13 BODY SENSORS BACKGROUND
14 CALL PHONE
15 CAMERA
16 GET ACCOUNTS
17 NEARBY WIFI DEVICES
18 POST NOTIFICATIONS
19 PROCESS OUTGOING CALLS
20 READ CALENDAR
21 READ CALL LOG
22 READ CONTACTS
23 READ EXTERNAL STORAGE
24 READ MEDIA AUDIO
25 READ MEDIA IMAGES
26 READ MEDIA VIDEO
27 READ PHONE NUMBERS
28 READ PHONE STATE
29 READ SMS
30 RECEIVE MMS
31 RECEIVE SMS
32 RECEIVE WAP PUSH
33 RECORD AUDIO
34 SEND SMS
35 USE SIP
36 UWB RANGING
37 WRITE CALENDAR
38 WRITE CALL LOG
39 WRITE CONTACTS
40 WRITE EXTERNAL STORAGE

Table 2.1: Dangerous permission list [1]

5

Figure 2.1: Android.manifest.xml file

2.4.1 Static analysis

In this method, analyzing of the APK file is done. The application’s source code is ex-

tracted by decomposing the APK or DEX files. After decompilation, the android.manifest.xml

file is used to extract the permissions requested in the app. As demonstrated in Fig. 2.1,

permissions are placed in android.manifest.xml. The permission usage is checked to iden-

tify the permission over-claim problem based on the permission extracted. The flow is

described in Fig. 2.2.

Figure 2.2: Static analysis

2.4.2 Dynamic analysis

The Permissions requested at run-time can be analyzed by dynamic analysis. The per-

missions asked during the run time are saved in the activity manager’s services check

permission method. This run time permission can be dynamically tested using any tool

by running the app in real-time. For example, if the user requests to perform a function

that requires specific permission, the permission is requested at that time to fulfill the

6

app’s requirement. Further, this requested permission is included for analysis as shown

in Fig. 2.3.

Figure 2.3: Dynamic analysis

2.4.3 Symantic analysis

This technique examines the metadata provided by the developer and check for overclaim

permission. In this method, permission asked by the developer is cross-checked with the

app’s description, whether there exists any related information in the description by

the developer for using that particular permission or not. Further machine learning

algorithms related to semantic analysis are used to check for the semantic meaning of the

permission as shown in Fig. 2.4

2.4.4 Hybrid analysis

In this model multiple analysis methods are used together. The run time permission

asked during the running of the application is also analyzed in real-time, based on which

permission can be identified as over-claim permission by generating the list of appropriate

permissions using semantic analysis based on the app’s description. All three different

analysis is used in the hybrid analysis.

7

Figure 2.4: Semantic analysis

8

Chapter 3

Literature survey

This section contains a survey of papers to identify the methods adopted to detect the

over-claim permission. The gaps and limitations of different methods are also explained,

providing a better understanding of what work has been done and how to conduct future

research. To start the survey, papers that include detection of over-claim permission are

selected. Further, there are many different methods and techniques to figure out the usage

of over-claim permission. Many researchers share the common domain and have related

work based on different methods. For example, many papers contain the work related

to identifying over-claim permission in Third-party libraries. Identification of over-claim

permission for only a particular application category has also been made. Our survey has

been diversified based on identified research topics, and a comparison of methods used

for each of the topics is presented in this section.

3.1 Analysis of Third-party Library

The android gives feature to developer to use any third party library. for example adver-

tisement library. Therefore it created another challenge to detect over-claim permission

used by the third party. The authors of [6, 7, 8, 9, 10, 11] have worked on detection

of permission over-claim in third party libraries which is presented in table 3.1. The

comparison is made based on whether compile-time permission is used for analysis or

permission used at run time in analysis. The compile-time permission refers to the Static

analysis process, and run time permission refers to Dynamic analysis. Another challenge

is to identify permission added during the up-gradation of the Android application, which

9

is discussed in [12]. Further, the limitations of each method are also summarized in the

table

ref. Year CT RT Limitations
[6] 2021 Y N Identification of certain permission
[7] 2021 Y N All third party library app falls under un-trusted domain
[8] 2021 N Y Manual usage of tool
[9] 2021 Y N Check only dangerous permission
[10] 2021 Y N Manually identification
[11] 2017 N Y Only identify add library
[12] 2022 Y Y Check for permission change only after update

Table 3.1: Comparison of over-claim permission detection in Third-party library

3.2 analysis of malware apps

In many of the works, the researchers are using the data that contain malware Applica-

tions. Malware app those which per from activities like taking control of users’ devices,

modifying the device settings, and infringing on users’ privacy. The cause or the reason

for this also includes the extra declared permissions. The authors of [13, 14, 15, 16, 17]

have worked on identifying apps as malware or not based on the already known malware

families. The comparison is shown in table 3.2 which includes whether the analysis car-

ried out is for the compile-time permission that is static analysis, or run-time permission

that is dynamic analysis. Also, the limitations of each paper are discussed. From which

it is identified that there are limited known malware families and unknown malware apps

which do not belong to any category can not be identified accurately.

ref. Year CT RT Limitations
[13] 2021 Y N Only identify Known Malware
[14] 2018 N Y Limited known malware apps family
[15] 2017 Y N Over fitting of data
[16] 2020 Y N Time consuming
[17] 2019 Y N Permission categorizing is not official

Table 3.2: Over-claim permission detection using malware analysis

3.3 Category wise application

There are over 50 different categories in which the Android apps have been categorized

based on their functions. For example, the most popular categories are Shopping, food

10

drinks, productivity, Books, Lifestyle, Entertainment, music, Education, and to name

a few [18]. Instead of detecting over-claim permission for all categories of application,

the authors of [19, 20, 21, 6] have only focused upon a single category of application.

table 3.3 contains the comparison of this work. The comparison of these methods is

based on whether the permission used in the analysis is compiled time or run time.

The common technique used by researchers is that a data set is created that includes

applicable permission. Based on this, over-claim permission is identified. Further, the

limitations of each work are discussed.

ref. Year CT RT Limitations
[19] 2021 Y N Less input malware app
[20] 2021 Y N Only statistical study
[21] 2021 Y N Only carried out for diabetics related app
[6] 2021 Y N Identify certain set of permission

Table 3.3: Summary of category based over-claim permission detection approaches

3.4 Tools for APK decompilation

From the research articles that have been surveyed, it is identified that to carry out

the analysis of permissions used in-app decompiling is done. This is done using many

decompilation tool. The table 3.4 contains the complete survey of different tools used

in different research works.

Sr. no Tool name Format Extraction Interface
1 Bytecode viewer APK,DEX Offline GUI
2 JADx APK,DEX,AAR,AAB Offline Command line
3 APK tool APK Offline GUI
4 classy shark APK,JAR,DEX,AAR Offline GUI
5 Andro guard APK,DEX Offline GUI
6 AndroPyTool APK,DEX Offline,Runtime GUI
7 MobSF APK,DEX Offline,Runtime GUI
8 Enjarify APK,DEX,JAR Offline GUI
9 Drozer APK,DEX Offline Command line
10 ADB APK Offline GUI
11 APK easy tool APK,DEX Offline Command line

Table 3.4: comparison of different tool to decompile .APK

11

3.5 Analysis using semantic methods

Many researchers have adopted the semantic analysis method to check permission usage.

table 3.5 represents the comparison of different approaches and algorithms that uses

semantic analysis to identify app as malware. The article [22] have work related to

identifying app as malware based on the feature set. Semantic analysis is used to create a

feature set for permission with similar descriptions but uses different resources. In article

[23] along with permission, opcodes and intents are used to generate a knowledge graph

for classification of the app. The latent semantic indexing algorithm obtains a lower

dimension representation of parameters to create a precise feature set. In the article, [24]

API vector embedding is done using semantic methods to generate a feature set.

Ref Year Approach Algorithm
[22] 2021 Generate knowledge graph to classify app as malware CNN
[23] 2020 Identify app as malware based on knowledge graph CNN,KNN
[24] 2020 identify malware app using API calls KM clustering
[25] 2020 identify app as malware based on android malware ac-

tivities and features
CNN,LSTM

[26] 2019 Classify app malware app based on feature set KNN,SVM

Table 3.5: Summary of semantic analysis for over-claim permission detection

Semantic analysis has a close relationship with Natural Language processing, which

may be a reason for having a large fraction of semantic analysis of over-claim detection

using NLP. Therefore, this paper gives a separate summary of semantic analysis using

NLP in table 3.6. Every app specifies its functionalities in natural language format at

App description. It is a general understanding that every permission requested by the

app must match the statements given in the app description. Therefore most work [27,

28, 29, 30, 31] uses app description to find significance of usage of individual permission.

This inclination toward the use of permission name analysis with apps description has

been observed in the article[28, 29, 30] using keyword matching. In the article, [27] the

comments given in the code are also analyzed to check the similarity with the app’s

description. In the article, [31] the analysis of privacy policy is done.

To analyze the permission usage in the android app, we need to extract permission

from source code. The extracted APK file contains many parameters other than per-

missions that can be used for semantic analysis.The work-related to semantic analysis

is presented in table 3.5 and table 3.6 which summarize the different approaches and

12

Ref Year Approach Algorithm
[27] 2021 Check for insensitive flow using semantic analysis of

comments included in code
NLP

[28] 2021 Correlate app’s description with permission using word
embedding algorithm

NLP

[29] 2020 create list of requested dangerous permission at run time
and check if it is related to apps description

NLP

[30] 2019 Identify permission usage from description by keyword
matching

NLP

[31] 2016 Check for permission usage by matching verbs related
to permission with description and also privacy policy
& NLP

NLP

Table 3.6: NLP based semantic analysis to detect over-claim permission

algorithms used. table 3.7 includes the comparison of input parameters. Parameters to

analyze the use of over-claim permission in the app shows the popularity of permission

name followed by API call and App description. Use of permission name seems more

obvious to find irrelevant permission usage in the app.

Ref. PD PN AC HL IN OC APC AD
[22] Y Y Y
[23] Y Y Y
[24] Y Y
[25] Y Y Y Y
[26] Y Y
[27] Y Y
[28] Y Y
[29] Y Y Y
[30] Y Y
[31] Y Y

Table 3.7: Summary of parameters used in semantic analysis

13

Chapter 4

Proposed methodology

Based on the review of methods used to analyze the Android permission. Our proposed

methodology includes the analysis of android permission using semantic analysis. Among

all the analysis techniques, the semantic analysis gives the best result when used for com-

paring the statements of app description and permissions description. NLP algorithms

are best suitable for semantic analysis of English language sentences. Our proposed

methodology contains analysis using three different NLP algorithms based on which we

have to find the cosine similarity between sentences. The architecture of our proposed

methodology is shown in Fig. 4.1.First we need permission. After that, the description

of each permission is extracted using web scraping. Along with this, another script has

been made in which we can directly get the app’s description by entering the URL of the

app. So now the Apps description and the permission description are extracted, which

can be further used for the semantic analysis. The next step is to pre-process the data

and clean the data of apps description and permission description in order to get better

results while performing semantic analysis. Once the data is pre-processing, the next

step is to perform the semantic analysis.

4.1 Decompiling APK File

Decompilation of APK is done in order to extract the permission that have been used

in the app. the android.manifest.xml have these permission included in it. we need to

extract the this permission. Based on this the list is created and further analysis can be

carried out. The permission extracted is shown in Fig. 4.2

14

Figure 4.1: Proposed methodology

Figure 4.2: Extracted Permission List

4.2 Extracting apps description

Our proposed methodology also includes web scrapping of apps description in order to

get the data of apps description based on which further analysis can be carried out. To

15

extract the description of the app, a script has been made in which the URL of the app

should be given as input. The process is shown below Fig. 4.3. Permission description

is also extracted along with app description.

Figure 4.3: Extracting app description

4.3 Data Pre-processing

The next stage of our proposed methodology is data preprocessing. It is used to clean the

sentences. which includes the removal of stop words. The list of stop words in English is

already pre-defined, and we can get those sets of pre-defined stop words to check if any

stop words are present in our description or not. After this, we can also remove our own

defined extra words along with stop words. Further uppercase alphabets are converted

to lowercase. characters in order to get the clean data that can be utilized properly for

further semantic analysis as shown in Fig. 4.4

4.4 Semantic analysis

The final step of our proposed methodology is a semantic analysis of the sentences of

app description and sentences of permission description using NLP algorithms. In this

step, the permission used is checked with all the sentences of the descriptions of the apps,

and based on this, the similarity score is generated. The above step is repeated for every

permission, and the similarity score is generated based on this semantic analysis.

The semantic analysis is also done using various approaches to find the best and most

accurate similarity score. Methods used for semantic analysis include Jaccard similar-

ity, cosine similarity, TD-IDF (Term frequency-inverse document frequency), sentence

transformer, word embedding techniques, and to name a few. From all of the above-

mentioned semantic analysis techniques, Cosine similarity is the best-identified practice

for finding the similarity score between 2 sentences. The working flow of the method of

cosine similarity is shown in Fig. 4.5 Fig. 4.4

Also, there are many different approaches to finding out the cosine similarity. The

approaches used in our semantic analysis are:

16

Figure 4.4: Pre processing of data

Figure 4.5: Pre processing of data

• Cosine similarity using SPACY.

• cosine similairty using MiNiLM (sentence transformer).

• Cosine similairty using Tensorhub (TFHub Universal Sentence Encoder).

4.4.1 Cosine similarity using Spacy

The semantic analysis is also done using various approaches to find the best and most

accurate similarity score. Methods used for semantic analysis include Jaccard similarity,

cosine similarity, TD-IDF (Term frequency-inverse document frequency), sentence trans-

former, word embedding techniques, and a few others. From all of the above-mentioned

17

semantic analysis techniques, Cosine similarity is the best-identified practice for finding

the similarity score between 2 sentences. Also, there are many different approaches to

finding out the cosine similarity. The approaches used in our semantic analysis are:

4.4.2 Cosine similarity using MiNiLM (sentence transformer)

These techniques are called sentence transformers, which use the MiNiLm model to embed

words. The model is widely known for mapping paragraphs and sentences, and the model

used is 348-dimensional dense vector space. The data that we enter is converted into a

tensor which is used to give a more accurate result. After converting into a tensor, the

similarity is checked for each of the permission with each sentence.

4.4.3 Cosine similairty using Tensorhub (TFHub Universal Sen-

tence Encoder)

Tensorflow hub is a sentence encoder technique that uses the pre-trained model of vectors

for embedding the words. This method fits our proposed methodology because it is

designed to check the semantic similarity for the sentences or small paragraphs rather

than just checking the similarity between 2 words. The app description data and the

permission description data are given as input, and then the first step is embedding the

data.. After embedding the data, cosine similarity is checked for each of the permission

sentences with each of the app description sentences. The output of the cosine similarity

score is then stored in the form of a matrix.

4.4.4 Keyword based matching

Keyword-based matching is done using the rule-based matching algorithm in which we

can define our custom set of words. The algorithm only words for those custom set of

words and try to find the exact similar word from the paragraph. Rule-based matching

has various attributes that we can give to the keyword we want to find a similar word.

The attributes are: ORTH - which finds out the exact similar word, LOWER: which is

used to find the word with lowercase, and many other attributes are used.

In our proposed method, keyword-based matching is done to find out the words similar

to the name of the permission. In this, the permission grouping is done based on the per-

mission that falls under the same category, for example, ACCESS core FINE LOCATION,

ACCESS core COURSE LOCATION, ACCESS core BACKGROUND LOCATION. All

18

this permission falls under the same category and has similar usage. Location is the group

of permission. This set of keywords is identified manually by reading the description of

the apps that actually use this permission. Further, this keyword is used to detect any

similar word in the description of the app that uses that particular permission. If yes,

then the permission is genuinely used, and if no keyword is found, the permission can be

categorized as over-claim. The working flow of this method is shown in figure. Fig. 4.6

Figure 4.6: Pre processing of data

19

Chapter 5

Implementation

To start the implementation, I have download apps of 30 different categories. The APK

files of these applications are downloaded, and then, using the decompilation tool, each

app’s source code is decompiled. then the permission description is extracted.

The next step is to tokenize the data. The data is stored in the CSV file in paragraph

form as the downloaded app description is in the form of paragraph. The tokenization is

done using NLTK (Natural language toolkit) tokenization as shown in Fig. 5.1.

Figure 5.1: Tokenizing data

Along with tokenization, the cleaning of sentences is also done. Cleaning of sentences

includes removing the punctuation marks, and also the words that contain Upper case

alphabets are converted into lower case alphabets to increase the accuracy of the result,

which is shown in Fig. 5.2.

After cleaning the sentences, the stop words are removed from the sentences in order to

increase the accuracy of measuring the sentence similarity. The cleaning of sentences is

20

Figure 5.2: cleaning of sentences

also done for the sentences of the permission description. Based on the results achieved

by cleaning the sentences and removing the stop words, it has been identified that the

words such as Access, Allow, Allows, Application, Applications, Required, Apps, and

App are used in common in many permission descriptions, as shown in Fig. 5.3.

Figure 5.3: Common words used in permission description

This can lead to false results because similar words are used in different permissions,

which have different uses. For exmaple words like ”allows,” ”an” and ”application”

are commonly used, which can lead to false-positive while checking semantic similarity

because the meaning and functionality of this two permission are very different, but they

share common words. To overcome the issue these common words are also removed along

with the stop words while cleaning the sentences as shown in the Fig. 5.4.

Figure 5.4: removal of extra words

After cleaning the data, all three algorithms are used to check the sentence similarity.

First, by using spacy, the model for word embedding is used. Both the files containing

app description and permission description are loaded, and the sentences presented in the

column name ’text’ in both files are used for analysis. After that, each of the permission

sentences is checked with each of the description sentences, and the output of the simi-

larity score is printed in the form of an array. The Above process is shown in the Fig.

5.5 .

Similarly, the sentence similarity is checked using the other two algorithms in which

the app description data and permission description data is loaded into the two different

21

Figure 5.5: Similarity check process

arrays, and using different models, the embedding is done. Now each of the permis-

sion sentences is checked with each of the description sentences, and the output of the

similarity score is printed in the form of an array.

By executing the different algorithms, it is identified that the sentence transformer

using MiNiLm gives the best accurate result compared to semantic similarity using spacy

and Tensorflow hub Universal sentence encoder. To give the better understanding of

the results to find out over-claim permission, a detailed comparison of only dangerous

permission is done. The comparison is made based on the apps that genuinely use the

dangerous permission and the apps that over-claim the same dangerous permission. Based

on this comparison, it can be easily identified that the similarity score of the permission

sentence with apps description sentence that uses the permission genuinely is much more

higher than the similarity score of that permission sentence with the apps description

sentences which over-claims the permission and has the app has not defined anything

regarding that permission in the description. The comparison is presented in the Table.

5.1 and Table. 5.2. From this we can clearly identify that the permission named

location which is dangerous permission. This dangerous permission is used genuinely by

some apps and in some apps this permission is over-claim. The similarity score for the

apps that uses the permission genuinely is 0.01 is lowest and 0.4 is highest.where as for

the apps that over-claim the location permission has similarity score of -0.01as lowest and

0.18 and highest. The highest score in over-claim is also lower than the lowest score for

22

the app that uses the app genuinely Based on this similarity score we can identify that

we have successfully detected the use of over-claim permission.

PN Contact location storage
App name similarity App name similarity App name similarity

Low High Low High Low High
1 To it later 0.1 0.3 Path guide 0.15 0.4 Ente encrypt 0.1 0.3
2 Z dailer 0.1 0.4 Door dash 0.01 0.3 Dnotes 0.07 0.35
3 To do list 0.01 0.2 Weather 0.01 0.3 Libre office mate 0.05 0.4

Table 5.1: Apps that over-claim dangerous permission

PN Contact location storage
App name similarity App name similarity App name similarity

Low High Low High Low High
1 Door dash -0.01 0.1 genius scanner 0.01 0.1 Ente encrypt -0.02 0.1
2 Freed audio book -0.01 0.18 Dnotes -0.01 0.1

Table 5.2: Apps that over-claim dangerous permission

Another method that has been used apart from cosine similarity is keyword-based

matching. In this method, the keywords related to the permission name is identified by

reading the description of many sentences that uses the following permission. For exam-

ple, location has many permission related to a location and uses the same functionality

but has a different permission name. So the grouping of permission is done based on a

similar functionality. The Table. 5.3 demonstrates the permission grouping along with

the keyword related to the use of that permission which is found in the app description.

Based on this, we can determine if the permission exists in the source code is described

in the app’s description.

5.1 Results

Based on the analyses of apps using different semantic analysis method it is identified

that cosine similarity score of the sentence transformer method using MiNiLM which

convert the data into tensor at the time of embedding is more accurate compared to the

results of Tenserflowhub universal statement encoder and sentence similarity using spacy.

Further it is identified that after removing the common words, the accuracy is increased.

The comparison of the output result of the similarity score is made for the dangerous

permission to identify the threshold value, which we can use to check if the permission

23

Permission group permission name Keywords related to permission
name

contact .READ CONTACTS important contact, dailer, con-
tact, call logs

location .ACCESS FINE LOCATION location, geomagnetic, multiple
location, area, destination, place.

.ACCESS COARSE LOCATION
camera .CAMERA video, photos, front camera, cam-

era, capture, scan document.
sms .SEND SMS message, sms

.READ SMS
record audio .RECORD AUDIO voice, voice message.

Table 5.3: Keywords related to permission

used is over-claim or not. It is identified that the similarity score of a permission sentence

that is not related to the description sentence ranges between -0.10 to 0.15/0.20. The

similarity score of permission that is related to the app’s description ranges between 0.10

to 0.40. The threshold value based on our results is around 0.20. So if the permission’s

similarity score with the app’s description is below 0.20 the permission is over-claim for

that app, and if the similarity score is greater than 0.20 the permission is genuinely used

by the app.

24

Chapter 6

Challenges

There are many challenges faced at the time of performing analysis for both keyword-

based matching and sentence similarity. While performing keyword-based matching, the

main challenge faced is that many permission falls under the same group, so grouping

should be done properly of similar kind of permission because there are common keywords

for similar kind of permission. Another challenge faced while performing keyword-based

matching is that contact permission was used in one of the app descriptions. While

performing keyword analysis, the word contact was detected and matched. But the

sentence was ”choose NO-CONTACT delivery”. It means that you can choose to have

no in-person contact delivery and the sentences have no similarity with the usage of

contact from a user’s device. So to overcome this, We have used sentence similarity using

semantic meaning, which is achieved using NLP algorithms.

25

Chapter 7

Conclusion

To detect the over-claim permission, we have done the analysis using three different algo-

rithms that find the cosine similarity score between the permission description statements

and app descriptions statement. We have done this analysis by cleaning the statements

by removing stop words. However, it was identified that there are some common words

used in every permission description sentence which leads to less accurate results. So

based on this, removing the common words is also done, and it results in a more accurate

sentence similarity score. The analysis is done twice before removing extra words and

after removing extra words. Based on the results of this, it is identified that the sen-

tence transformer using MiNiLM (after removing extra stop words) outperforms other

semantic similarity methods. To detect the over-claim of permission, we have done the

analysis using three different algorithms that find the cosine similarity score between the

permission description statements and app descriptions statement. We have done this

analysis by cleaning the statements with removing stop words. But it was identified that

some common words are used in every permission description sentence, which leads to

less accurate results. So based on the removing of the common words is also done and it

results in achieving more accurate sentence similarity score. The analysis is done twice

before removing extra words and after removing extra words. Based on the results of

this, it is identified that the sentence transformer using MiNiLM (after removing extra

stop words) outperforms other semantic similairty methods.

26

Bibliography

[1] “Number of smartphone subscriptions worldwide from 2016 to 2022.” https://

developer.android.com/guide/topics/permissions/overview, 2021. Accessed:

2022-03-15.

[2] “Number of smartphone subscriptions worldwide from 2016 to 2022.” https://www.

statista.com/statistics/330695/number-of-smartphone-users-worldwide/,

2022. Accessed: 2022-02-30.

[3] “Mobile operating system market share worldwide.” https://gs.statcounter.

com/os-market-share/mobile/worldwide, 2022. Accessed: 2022-03-30.

[4] J. Zhang, C. Tian, Z. Duan, and L. Zhao, “Rtpdroid: Detecting implicitly mali-

cious behaviors under runtime permission model,” IEEE Transactions on Reliability,

vol. 70, no. 3, pp. 1295–1308, 2021.

[5] F. Guyton, Feature Selection on Permissions, Intents and APIs for Android Malware

Detection. PhD thesis, Nova Southeastern University, 2021.

[6] E. Chatzoglou, G. Kambourakis, and V. Kouliaridis, “A multi-tier security analysis

of official car management apps for android,” Future Internet, vol. 13, no. 3, p. 58,

2021.

[7] P. Pande, K. Mallaiah, R. K. Gandhi, A. K. Medatiya, and S. Srinivasachary, “Fine

grained confinement of untrusted third-party applications in android,” in 2021 Inter-

national Conference on Computing, Communication, and Intelligent Systems (ICC-

CIS), pp. 372–376, IEEE, 2021.

[8] F.-H. Hsu, N.-C. Liu, Y.-L. Hwang, C.-H. Liu, C.-S. Wang, and C.-Y. Chen, “Dpc:

A dynamic permission control mechanism for android third-party libraries,” IEEE

27

https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide

Transactions on Dependable and Secure Computing, vol. 18, no. 4, pp. 1751–1761,

2019.

[9] M.-Y. Su, S.-S. Chen, T.-R. Wu, H.-S. Chang, and Y.-L. Liu, “Permission abusing

by ad libraries of smartphone apps,” in 2019 Eleventh International Conference on

Ubiquitous and Future Networks (ICUFN), pp. 475–477, IEEE, 2019.

[10] Z. Wu, H. Lee, and S. U.-J. Lee, “An empirical study on the impact of permis-

sion smell in android applications,” Journal of the Korea Society of Computer and

Information, vol. 26, no. 6, pp. 89–96, 2021.

[11] J. Tang, R. Li, H. Han, H. Zhang, and X. Gu, “Detecting permission over-claim

of android applications with static and semantic analysis approach,” in 2017 IEEE

Trustcom/BigDataSE/ICESS, pp. 706–713, IEEE, 2017.

[12] M. Shah, “Detecting over-claim permissions and recognising dangerous permission in

android apps,” International Journal of Information and Computer Security, vol. 17,

no. 1-2, pp. 204–218, 2022.

[13] Y. Du, M. Cui, and X. Cheng, “A mobile malware detection method based on ma-

licious subgraphs mining,” Security and Communication Networks, vol. 2021, 2021.

[14] H. Alshahrani, H. Mansourt, S. Thorn, A. Alshehri, A. Alzahrani, and H. Fu, “Dde-

fender: Android application threat detection using static and dynamic analysis,”

in 2018 IEEE International Conference on Consumer Electronics (ICCE), pp. 1–6,

IEEE, 2018.

[15] G. Tao, Z. Zheng, Z. Guo, and M. R. Lyu, “Malpat: Mining patterns of malicious and

benign android apps via permission-related apis,” IEEE Transactions on Reliability,

vol. 67, no. 1, pp. 355–369, 2017.

[16] M. S. Saleem, J. Mǐsić, and V. B. Mǐsić, “Examining permission patterns in an-

droid apps using kernel density estimation,” in 2020 International Conference on

Computing, Networking and Communications (ICNC), pp. 719–724, IEEE, 2020.

[17] A. Hamidreza and N. Mohammed, “Permission-based analysis of android applica-

tions using categorization and deep learning scheme,” in MATEC Web of Confer-

ences, vol. 255, p. 05005, EDP Sciences, 2019.

28

[18] “Number of smartphone subscriptions worldwide from 2016 to 2022.” https://

shoutem.com/blog/top-10-android-app-category-on-google-play/, 2021. Ac-

cessed: 2022-03-10.

[19] I. Almomani, A. AlKhayer, and M. Ahmed, “An efficient machine learning-based

approach for android v. 11 ransomware detection,” in 2021 1st International Con-

ference on Artificial Intelligence and Data Analytics (CAIDA), pp. 240–244, IEEE,

2021.

[20] A. S, andor and G. Tont, , “Android social applications permission overview from a pri-

vacy perspective,” in 2021 16th International Conference on Engineering of Modern

Electric Systems (EMES), pp. 1–4, 2021.

[21] J. J. Flors-Sidro, M. Househ, A. Abd-Alrazaq, J. Vidal-Alaball, L. Fernandez-Luque,

and C. L. Sanchez-Bocanegra, “Analysis of diabetes apps to assess privacy-related

permissions: systematic search of apps,” JMIR diabetes, vol. 6, no. 1, p. e16146,

2021.

[22] Y. BAI, S. CHEN, Z. XING, and X. LI, “Argusdroid: Detecting android malware

variants by mining permission-api knowledge graph,”

[23] A. K. Singh, G. Wadhwa, M. Ahuja, K. Soni, and K. Sharma, “Android malware

detection using lsi-based reduced opcode feature vector,” Procedia Computer Science,

vol. 173, pp. 291–298, 2020.

[24] J. Xu, Y. Li, R. Deng, and K. Xu, “Sdac: A slow-aging solution for android mal-

ware detection using semantic distance based api clustering,” IEEE Transactions on

Dependable and Secure Computing, 2020.

[25] X. Pei, L. Yu, and S. Tian, “Amalnet: A deep learning framework based on graph

convolutional networks for malware detection,” Computers & Security, vol. 93,

p. 101792, 2020.

[26] H. Zhang, S. Luo, Y. Zhang, and L. Pan, “An efficient android malware detection

system based on method-level behavioral semantic analysis,” IEEE Access, vol. 7,

pp. 69246–69256, 2019.

29

https://shoutem.com/blog/top-10-android-app-category-on-google-play/
https://shoutem.com/blog/top-10-android-app-category-on-google-play/

[27] Y. Liu, N. Xi, and Y. Zhi, “Nleu: A semantic-based taint analysis for vetting apps in

android,” in 2021 International Conference on Networking and Network Applications

(NaNA), pp. 327–333, IEEE, 2021.

[28] O. Olukoya, L. Mackenzie, and I. Omoronyia, “Security-oriented view of app be-

haviour using textual descriptions and user-granted permission requests,” Computers

& Security, vol. 89, p. 101685, 2020.

[29] J. Liu, D. He, D. Wu, and J. Xue, “Correlating ui contexts with sensitive api calls:

Dynamic semantic extraction and analysis,” in 2020 IEEE 31st International Sym-

posium on Software Reliability Engineering (ISSRE), pp. 241–252, IEEE, 2020.

[30] Y. Feng, L. Chen, A. Zheng, C. Gao, and Z. Zheng, “Ac-net: Assessing the consis-

tency of description and permission in android apps,” IEEE Access, vol. 7, pp. 57829–

57842, 2019.

[31] L. Yu, X. Luo, C. Qian, and S. Wang, “Revisiting the description-to-behavior fidelity

in android applications,” in 2016 IEEE 23rd International Conference on Software

Analysis, Evolution, and Reengineering (SANER), vol. 1, pp. 415–426, IEEE, 2016.

30

	Certificate
	Statement of Originality
	Acknowledgements
	Abstract
	Abbreviations
	List of Figures
	List of Tables
	Introduction
	Background and concept
	Android permission model
	Permission categories
	Over-claim permission
	Over-claim permission detection approaches
	Static analysis
	Dynamic analysis
	Symantic analysis
	Hybrid analysis

	Literature survey
	Analysis of Third-party Library
	analysis of malware apps
	Category wise application
	Tools for APK decompilation
	Analysis using semantic methods

	Proposed methodology
	Decompiling APK File
	Extracting apps description
	 Data Pre-processing
	 Semantic analysis
	 Cosine similarity using Spacy
	 Cosine similarity using MiNiLM (sentence transformer)
	 Cosine similairty using Tensorhub (TFHub Universal Sentence Encoder)
	 Keyword based matching

	Implementation
	Results

	Challenges
	 Conclusion

