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Abstract

In the proposed project it has been required to carry out the various sim-
ulations for the different chaotic systems and also the hardware circuit is to
be carried out for the nonlinear chaotic systems. The fractional order based
modeling of the chaotic system will be carried out first. In this project we are
going to work on Matlab software. First we simulate all the circuits which
we are going to study or refer in this project. Then it has been proposed to
compare all the output of circuit and to make a decision for the nonlinear
system is chaotic or not. In the next part the algorithm development and
simulation study will be carried out for the identification of known nonlinear
system. The hardware implementation and real time identification will be
carried out for the some known nonlinear chaotic system using intelligent
algorithms.after doing this we have done synchronization between two frac-
tional order and integer order system of Chua’s as well as Duffing holme by
using SMC (Sliding Mode Controller).
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Nomenclature

α: Parameter value of chua’s system

β: Parameter value of chua’s system
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∆fY (t): Uncertainty of system
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Chapter 1

Introduction

In simple word we can say that system which does not satisfy or follow the
superposition theorem are called the non linear systems and system which
satisfy superposition theorem are called linear systems[20].In any case if sys-
tem contains nonlinear equation or element they are also called nonlinear
system.These are the characteristics of non linear system

Non linear systems are also useful for engineers and scientist.non linear
systems are also useful for mathematician.we all know that some of real sys-
tems have naturally non linear behaviour[20].It is very easy to solve linear
equations by analytically and mathematically but it is very difficult to solve
non linear equations by using these methods.For linear systems we have pre-
dictable out put of our system but for non linear systems we can’t predict
the out put or behaviour of the system.These type of non linear system gives
interesting phenomena of bifurcation and chaos.chaos behaviour of system is
also found in some of non linear systems. At this point we have to say that
the word chaos is not uniquely defined.

In this we use a simple electronic system to develop a scheme for chaos
secure communication with two coupled Chua circuits. First, we analyze
separately each oscillator to study their dynamic behavior when a parameter
of control is changed, and then we investigate the synchronization effect in
the coupled circuits.Bifurcations of the output voltage are constructed using
a resistance as a control parameter.
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Chaos is a phenomenon that occurs widely in dynamical systems. From
educational point ofview this phenomenon was considered to be complex and
was never given importance because there was no simple analysis available,
which could help students to delve into this interesting phenomenon and get
some hands on experience. In the current scenario, since the presence of
chaos is being realized in many fields, it is good to have some insight into
this phenomenon right from the undergraduate level.
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Chapter 2

Literature Review

Chua’s circuit (also known as a Chua’s circuit) is a simple electronic circuit
that exhibits classic chaos theory behavior. It was introduced in 1983 by
Leon O. Chua, who was a visitor at Waseda University in Japan at that
time.The ease of construction of the circuit has made it a ubiquitous real-
world example of a chaotic system, leading some to declare it ”a paradigm
for chaos.

We have use system identification tool box for find mathematically to
measure the input and out put of the our system[1,21]. the main use of system
identification tool box is for measure the input and out put can be measured
for some control system as well as for some industrial application also.for
nonlinear system we can say in simple word that system does not follow
superposition theorem or system which are not linear are called nonlinear
systems[20]. This system is often necessary because there are so many types
of nonlinear systems. system identification tool box are use for nonlinear
systems which are developed by focusing on specific classes of system and
can be categorised into different basic approaches which are defined by a
model class neural network models nonlinear ARX Models models Hammer
stein-Wiener Model

2.1 Neural networks

A typical neural network consists of a number of simple processing units in-
terconnected to form a complex network. Layers of such units are arranged

13



so that data is entered at the input layer and passes through either one or
several intermediate layers before reaching the output layer. In supervised
learning the network is trained by operating on the difference between the
actual output and the desired output of the network, the prediction error, to
change the connection strengths between the nodes. By iterating the weights
are modified until the output error reaches an acceptable level. This process
is called machine learning because the network adjusts the weights so that
the output pattern is reproduced[22].There are two main problem types that
can be studied using neural networks static problems, and dynamic problems.
Static problems include pattern recognition, classification, and approxima-
tion. Dynamic problems involve lagged variables and are more appropriate
for system identification and related applications. Neural networks have been
applied extensively to system identification problems which involve nonlinear
and dynamic relationships.
If we want to use ANFIS for system identification tool box first we all have
to decide which elements are our input signals and which are our out put
variables.here in our case we have take 10 inputs for our systems they are
(y(k-1), y(k-2), y(k-3), y(k-4), u(k-1), u(k-2), u(k-3), u(k-4), u(k-5), u(k-6)),
and the output to be predicted is y(k). A heuristic approach to input se-
lection is called sequential forward search, in which each input is selected
sequentially to optimize the total squared error.where 3 inputs (y(k-1), u(k-
3), and u(k-4)) are selected with a training RMSE of 0.0609 and checking
RMSE of 0.0604.

14



2.2 Nonlinear ARX Model Identification

A conventional method is to remove the means from the data and assume a
linear model of the form: y(k)+a1*y(k-1)+...+am*y(k-m)=b1*u(k-d)+...+bn*u(k-
d-n+1) where ai (i = 1 to m) and bj (j = 1 to n) are linear parameters to
be determined by least-squares methods. This structure is called the ARX
model and it is exactly specified by three integers [m, n, d]. To find an ARX
model for the dryer device[23], the data set was divided into a training (k
= 1 to 300) and a checking (k = 301 to 600) set. An exhaustive search was
performed to find the best combination of [m, n, d], where each of the integer
is allowed to changed from 1 to 10 independently. The best ARX model thus
found is specified by [m, n, d] = [5, 10, 2].[23]

The ARX model is inherently linear and the most significant advantage
is that we can perform model structure and parameter identification rapidly.
However, if a better performance level is desired, we might want to resort to
a nonlinear model. In particular, we are going to use a neuro-fuzzy modeling
approach, ANFIS, to see if we can push the performance level with a fuzzy
inference system. Nonlinear ARX model represents a parallel form of nonlin-

Figure 2.1: Non linear ARX model
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earity where simple transformation of measured inputs and outputs (called
”regressors”) are used in parallel linear and nonlinear blocks to describe the
observed phenomenon. Configuration of these models involves two steps set-
ting the model regressors and configuring the properties of the nonlinearity.
The two tabbed panels titled ”Regressors” and ”Model Properties” facilitate
these two steps. For multi-output systems, these specifications have to be
done separately for each output. In multi-output cases, select the output for
configuration from the outputs popup (this popup is hidden if working data
has only one output). The check box ”apply settings to all outputs” allows
specifications for regressors and model properties to be applied to all outputs.

The regressors are specified by entering the delay and number of terms
in the table under the Regressors panel. Each row in the table corresponds
to a single input or output channel. The first column lists the names of
input/output channels. For each channel, specify the delay and number of
terms in the second and the third columns respectively. The fourth column
is a visual aid for the list of regressors that will be created for each chan-
nel.Press Edit Regressor. button to view a list of all regressors, select a
subset for nonlinear block and create new (custom) regressors.

Nonlinearity estimator: From the Nonlinearity popup, select a type of
nonlinearity to use in the nonlinear block of the model. Available choices
are: Wavelet Network (default), Tree Partition, Sigmoid Network, Neural
Network, Custom Network and None. Properties related to the selected non-
linearity are configured in the group box located beneath the popup. Linear
Block: You may also include or exclude the linear block from the Nonlinear
ARX model by using the corresponding checkbox, located adjacent to the
nonlinearity popup. This choice is available only if the selected nonlinearity
is one of Wavelet Network, Sigmoid Network or Custom Network. There are
no configurable properties of the linear block. The only choice available, as
indicated above, is whether to include it in the model or not.

Nonlinearity Configuration: When a nonlinearity type is selected in the
popup, the group box beneath it updates to show the properties of the chosen
nonlinearity. For most nonlinearities, the main choice is the number of units
to use. Reasonable default settings are available for all properties. For more
information on nonlinearity configuration.
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2.3 Hammer stein-Wiener Identification

Hammer stein-Wiener model represents a series form of nonlinearity where
the inputs and outputs to an Output-Error type linear model are distorted
by static nonlinearities. Configuration of these models involves two steps
choosing the type of nonlinearity for each channel and selecting the orders
for the embedded linear model. The two tabbed panels, titled ”I/O Nonlin-
earity” and ”Linear Block”, facilitate these two steps.

In the panel for I/O Nonlinearity, there is a table listing all the input and
output channels and the type of static nonlinearity on each channel. The
first column lists the channel names. For each channel, choose the type of
nonlinearity in the second column and configure its properties in the third
and fourth columns. All configurations have to be made for one row at a time.

The second column specifies the type of nonlinearity on a channel. Click-
ing on an entry in the second column reveals a popup menu from where
the type of nonlinearity may be changed. By default, nonlinearities on all
channels are set to Piecewise linear. Available choices for nonlinearities are:
Sigmoid network, Saturation, Dead zone, Piecewise linear (default), Wavelet
network, One-dimensional polynomial, Custom network and None. ”None”
indicates an absence of nonlinearity in the corresponding I/O channel. For
one-dimension polynomial nonlinearity (POLY1D), the ”number of units”
refers to the degree of the polynomial.

In the third column of the table, specify the number of units to be used
in the nonlinearity selected in the second column. For Saturation and Dead
zone, the number of units is inactive (this option is not applicable). Simi-
larly, there is no value for number of units if nonlinearity is set to None. For
wavelet network, this table cell is an editable popup menu: you may either
choose one of the three listed option (”Select automatically”, ”10”, ”Select
interactively during estimation”) or type in a positive integer in the cell. For
One-dimensional Polynomial nonlinearity, enter the degree of the polynomial
in this column (default: second degree).The fourth column of the table offers
more options for configuring the chosen nonlinearity (i.e. the nonlinearity
type listed in the second column of the same row).
Wavelet Network: If nonlinearity type is Wavelet network, this column offers
an Advanced... button. Advanced properties related to the structure of the

17



Figure 2.2: Hammer stein-Wiener model

wavelet network, such as Dilation step and Maximum number of levels, may
be configured by clicking on this button. See the documentation on wavenet
for information on these properties.

Saturation, Dead Zone and Piecewise Linear: The fourth column con-
tains a button called Initial value. Press this button to (optionally) specify
the initial values of the breakpoints for saturation, dead zone or piecewise
linear nonlinearity. For saturation, the breakpoints denote the two ends of
the linear interval. For dead zone, the breakpoints are the two end of the
zero (dead) interval. For piecewise linear case, the number of breakpoints
equals the number of units specified in the third column of the table.

Sigmoid Network or None: No options are offered. One-dimensional poly-
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nomial: Enter the initial values (optional) of the polynomial coefficients, as
a row vector. The length of the coefficients vector is D+1, where D is the
Degree of the polynomial (entered in column 3 of the I/O Nonlinearity table).
Custom Network: The fourth column contains a button called ”Unit func-
tion...”. Press this button to specify a unit function for the custom network.
Note that specification of a unit function is necessary for the custom net-
work to be functional. Note: The option ”None” for the type of nonlinearity
implies absence of nonlinearity on that channel. This is equivalent to choos-
ing ”unitgain” as type of nonlinearity in the corresponding IDNLHW model
object (when working in the MATLAB Command Window). For more in-
formation on this choice, see documentation on nonlinearity estimator called
”unitgain”.

The linear model configuration is similar to that of the corresponding
linear OE model. Orders of polynomials B and F and the input delay nk
need to be specified in the table titled ”Model Order”. These values must be
entered for one output at a time. The output to configure may be changed
in the popup labeled ”Choose output”. Click on the ”Use same orders for
all outputs” checkbox to use the same order values for all outputs. The first
column of table lists the input channels. Orders of polynomials B and F and
the input delay (nk) have to be chosen for each input channel. In second
column, enter the order of numerator polynomial B, which is equal to the
number of zeros+1 in the corresponding linear model. In third column, enter
the order of denominator polynomial F, which is equal to the number of poles
in the corresponding linear model.

A black-box tester is unaware of the internal structure of the application
to be tested, while a white-box tester has access to the internal structure of
the application[24]. A gray-box tester partially knows the internal structure,
which includes access to the documentation of internal data structures as well
as the algorithms used Gray-box testers require both high level and detailed
documents describing the application, which they collect in order to define
test cases Gray-box testing is beneficial because it takes the straightforward
technique of black-box testing and combines it with the code targeted systems
in white-box testing. Gray-box testing is based on requirement test case
generation because it presets all the conditions before the program is tested
by using the assertion method. A requirement specification language is used
to make it easy to understand the requirements and verify its correctness[25].
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Chapter 3

Concept of Chua’s Circuit

In this project we have use chua’s circuit.it is a very simple circuit that
gives us interesting behaviour of bifurcation and chaos.For appearing of chaos
behaviour in our circuit it must have to satisfy some criteria.it may contain
more than two energy storage elements one nonlinear element and one locally
activate register[5,6].

3.1 Classical Chua’s Oscillator

For appearance of chaos in our circuit chua’s circuit satisfy all criteria which
are been needed for appearance of chaos and circuit gives chaotic behaviour.For
classical chua’s oscillator active resistor supply energy to separate trajecto-
ries and three dimensional state space equations permits circuit for chaotic
behaviour.chaos produce in our circuit[2,4].

we have study chua’s circuit which is an ideal circuit.the circuit consist of
two capacitors inductor resistor R and chua’s diode(NR).by applying KCL
in circuit it can be describe by following three equations.

dV1(t)
dt

= 1
C1

[G(V2(t) − V1(t) − f(V1(t))]

dV2(t)
dt

= 1
C2

[G(V1(t) − V2(t) − IL(t)]

dIL(t)
dt

= 1
L

[−V2(t) −RLIL(t)]
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Figure 3.1: Simple chua’s circuit

In above three equations G is known as conductance.current pass through
the inductor is assign as IL(t).voltages over capacitors are V1(t) and V2(t).Piecewise-
linear v-i characteristic of chua’s circuit is assign as (V1(t)) and NR is known
as chua’s diode.Below figure shows the piece wise linear characteristic of
chua’s system.

x(t) = α(y(t) − x(t) − f(x))
y(t) = x(t) − y(t) + z(t)
z(t) = −βy(t) − yz(t)
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3.2 Classical Chua’s simulation result

In simulation we have take three values for find out a chaotic system In the
first case we have take same order of the system In the second case we have
take different order of the system In the third case we have take two order
of the system same and third order is different Order of system=q1,q2,q3.

Classical Chua’s simulation result for same order of system

In the first case we have take same order of the system means we have take
same value of q1=q2=q3=0.99.

Figure 3.2: Simulation result of chua’s system for q1=0.99 q2=0.99 q3=0.99

In above figure we can see the chaotic behaviour of the circuit.strange at-
tractor is not produce in the above figure but still the system is chaotic.in this
case we have taken parameters a=10.7,b=10.5,c=0.27.tottal order of system
q=0.99,simulation time T=100s,and initial conditions are x(0)=0.6,y(0)=0.1,z(0)=-
0.6[7].

We know that chaotic system or non linear system highly depend on the
initial condition of a system.in first case we take order of the system same.we
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can see from figure that system is chaotic and it is oscillating from one point
to another point.

3.3 Classical Chua’s simulation result where

two order of system are same third order

is different

In the second In the second case we have take two order of the system same
and third order is different q1=q2=0.99,q3=0.92 In above figure we can see

Figure 3.3: Simulation result of chua’s system for q1=0.99 q2=0.99 q3=0.92

that two order of systems are same third order is different.so in this case total
order of system q=0.97.strange attractor are produce in this system for that
parameters value are a=10.7,b=10.5,c=0.27.simulation time T=100s,and ini-
tial conditions are x(0)=0.6,y(0)=0.1,z(0)=-0.6[7].
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3.4 Classical Chua’s simulation result where

all three order of system are different

In the third case we have take three different order of the system.q1=0.99,q2=0.92,q3=0.93

Figure 3.4: Simulation result of chua’s system for q1=0.99 q2=0.92 q3=0.93

In above figure we can see that all three order of systems are different.so
in this case total order of system q=0.95.strange attractor are produce in
this system for that parameters value are a=10.7,b=10.5,c=0.27.simulation
time T=100s,and initial conditions are x(0)=0.6,y(0)=0.1,z(0)=-0.6[7].
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3.5 Using Chaotic System Train Neural net-

work anfis data

In this we have take input and output data from chua’s circuit.then we have
call that values in neural network which trains data and gives us the input
and output graph of our system.also give us the error graph of our chua’s
circuit After getting a input and out put graph we get the error graph for
our train data from figure we can see that after some time error is reducing
which means that circuit give us the best result for chaotic system[12].

Figure 3.5: InputZ(K)ouputY3(K) Error graph
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Chapter 4

Concept of Volta’s Circuit

The system was discovered by Volta in 1984.Volta’s system is described by
the system of state differential equations

dx(t)

dt
= −x(t) − ay(t) − z(t)y(t) (4.1)

dy(t)

dt
= −y(t) − bx(t) − x(t)z(t)

(4.2)
dz(t)

dt
= cz(t) + x(t)y(t) + 1

(4.3)

4.1 Volta’s simulation result

In simulation we have take three values for find out a chaotic system In the
first case we have take same order of the system In the second case we have
take different order of the system In the third case we have take two order of
the system same and third order is different Order of system order is defined
by=q1,q2,q3[5,12].
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4.2 Volta’s simulation result for same order

of system

In the first case we have take same order of the system means we have take
same value of q1=q2=q3=0.99 In first case all three order of system are

Figure 4.1: Simulation result of Volta’s system for q1=0.99 q2=0.99 q3=0.99

same.chaotic behaviour of system is projected into 3D state space.for this to-
tal order of system q=0.99.for this the parameters values are a=19,b=11,c=0.7
and simulation time is T=100 second.Initial conditions are x(0)=8,y(0)=2,z(0)=1

4.3 Volta’s simulation result where two order

of system are same third order is different

In the second case we have take two order of the system same and third order
is different q1=q2=0.99,q3=0.92 chaotic behaviour of system is projected into
3D state space.for this total order of system q=0.97.for this the parameters
values are a=19,b=11,c=0.7 and simulation time is T=100 second.Initial
conditions are x(0)=8,y(0)=2,z(0)=1
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Figure 4.2: Simulation result of Volta’s system for q1=0.99 q2=0.99 q3=0.92

4.4 Volta’s simulation result where all three

order of system are different

In the third case we have take three different order of the system.q1=0.99,q2=0.92,q3=0.93
In Fig is shown the chaotic behavior for fractional-order chaotic system.chaotic

Figure 4.3: Simulation result of Volta’s system for q1=0.99 q2=0.92 q3=0.93

behaviour of system is projected into 3D state space.for this total order of
system q=0.97.for this the parameters values are a=19,b=11,c=0.7 and sim-
ulation time is T=100 second.Initial conditions are x(0)=8,y(0)=2,z(0)=1
time step h =0.1.As we can see,behavior of the fractional-order Voltas sys-
tem is still chaotic because we have observed double-scroll attractor
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4.5 Using Chaotic System Train Neural net-

work anfis data

In this we have take input and output data from volta’s circuit.then we have
call that values in neural network which trains data and gives us the input
and output graph of our system.also give us the error graph of our volta’s
circuit from figure we can see that after sometime error is reduce which means
circuit gives the best result for chaotic system.

Figure 4.4: InputZ(K)ouputY3(K) Error graph
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Chapter 5

Simulink and System
Identification Tool Box

5.1 Simulink

In simulink we have make a simple nonlinear block for a system which consist
of ramp input coulomb and viscous friction block.from that we take input and
out in to work space.from workspace we import data in system identification
tool box

Figure 5.1: Simple nonlinear block
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Figure 5.2: Simulink output

5.2 System identification tool box

system identification is a tool box where we find out different techniques
for time domain data,frequency domain data,etc.in this tool box we import
our data from workspace in time domain form.then with help of nonlinear
ARX method we get time domain output nLRx out put and system best fit
out put

Figure 5.3: Time plot u1 v1
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Chapter 6

Hardware Description Of
Chua’s Circuit

6.1 Circuit design

There are many variations on how to build Chua’s circuit, but this is the
basic design.there is not much to it. This is the standard Chua’s circuit
used in research and a number of experiments, but there are many different
ways to realize the full circuit. Chua’s circuit is literally the simplest chaotic
circuit. However, when building this circuit at home be aware that, as a
chaotic circuit, very slight variations can cause large effects or failure of the
entire circuit. A loose connection or uneven voltages will dramatically affect
the output. Building Chua’s circuit on a breadboard can be a frustrating
endeavor if care is not taken. Even a slight bump can loosen connections
enough to wildly change the output. But that can be fun too! Also, the
quality of the output from a breadboard will be quite less than that of a
soldered circuit board[27]. The Chua’s diode must be constructed as no one
manufactures them. There are a number of ways to create a Chua’s diode,
which is actually a type of nonlinear resistor. In you can see Chua’s diode
made from only resistors and op-amps. Figure C is a little different and em-
ploys standard diodes. Both designs equally satisfy the circuit, but Figure B
is easier to make.The inductor can also be replaced and accurately simulated
with an additional circuit called a gyrator, as shown in out of the same com-
ponents. To understand how this simulation is accomplished, please read
this PDF on the Antoniou Inductance-Simulation Circuit[27]. Thus, with
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Figure 6.1: Basic chua’s circuit

this inductor simulator, a fully realized circuit can be built from only resis-
tors, capacitors and op-amps.These circuit components can be found lying
around in most labs and are readily available off the shelf in any RadioShack
or similiar establishment[27].

Figure 6.2: Gyrator simulating inductor

33



6.2 Components

Figure 6.3: Fully labeled chua’s circuit

R=2.5 k (pot.)C=100nF R1=220 C1=10 nF R2=220 C2=100 nF R3=2.2k
R4=22.0 k L=15 mH R5=22.0 k R6=3.3 k R7=100 R8=1.0 k R9=1.0 k
R10=2.5 k (pot.)

While there are many ways to build a standard Chua’s circuit and many
variations on the standard, for simplicity, we will focus here on the version
made only from resistors, capacitors and op-amps as shown on the previous
page.There are many factors to consider when selecting components, e.g.
circuit size, accuracy needed, cost etc. I’ll show you how an effective, cheap
and compact circuit can easily be built with 9-volt power supply and the
aforementioned components. All op-amps used are TL082. Each chip has
two op-amps–one on either side. You could also use the TL084, which has
4 op-amps, depending on your specific circuit design. L here represents the
inductance value of the gyrator, which we are using in place of an actual
inductor. Calculating this value can be done as follows:

L=(R7R9R10C)/R8

This gyrator simulates an ideal inductor, and you will see later how this
is useful for measuring the signals produced. If you don’t wish to use a
gyrator, please read our page on using real physical inductors.For capacitors,
I highly recommend you avoid the common, round, ceramic capacitors. Go
for mylar capacitors. They work much better and it will make the output
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much sharper.Precision resistors are not really worth it unless you want really
clear and precise double scrolls. Regular resistors work just fine. But you
do want to get nice, easy to adjust potentiometers. You will be spending
most of your time turning these little dials trying to get the right patterns to
show up, and you will thank yourself for not using the screwdriver-adjustable
only pots. Get something with big nobs that are easy to tune and have fine
control. These circuits are sensitive and you want to have control over what
is going on[27].

6.3 Hardware setup and double scroll attrac-

tor

Figure 6.4: Hardware setup

In Figure we can see Chua’s circuit.which is soldered on a grid-style cir-
cuit board,where power supply of 9 volt connected to negative and positive
terminal of circuit.we have take two out from capacitor c1,c2.which are goes
in analog oscilloscope.we can see from figure There are 3 signals that you
will want to measure on the Chua’s circuit: X, Y, and Z. X is the voltage
across the capacitor C1, Y is the voltage across the capacitor C2, and Z is
the current through the inductor. Since we are using a gyrator to simulate
the inductor, all we need to do is measure the voltage at point P since we
can determine the state vectors from just that. The actual current through
our simulated inductor can be calculated by[27].
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Figure 6.5: Double scroll attractor

Z=(VP-Y)/R7

Eventually you should come up with something like. This is the classic
chaotic double-scroll attractor also known as Chua’s attractor. This figure,
however, comes from an analog scopenot a digital one.You can try plotting
the circuits with X vs Y, X vs Z and Y vs Z to see the scroll from different
2D perspectives. In a simulation you can actually rotate the attractor in 3D.
Check out our simulation page to see the double scroll evolve much slower
than you will be able to see on an oscilloscope. It will give you a feel for
how the signals interact to actually create the double scroll attractor The

Figure 6.6: Lemon attractor
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best advice can give you when you are struggling to find the double scroll,
wildly tuning both pots with no luck, is to very slowly tune one at a time
until you see a shape like in Once you see this lemon shape, start tuning the
other potentiometer, slowly again, until you get the double scroll.

Figure 6.7: Saturated double scroll attractor

Another problem you may have is a saturated scroll where the scroll seems
to be bounded on two sides and is flat instead of rounded. Saturation, or
’voltage clipping’, is caused by voltage that exceeds the ideal functional range
of the component and reaches the limits of the components of the circuit. ’By
definition, the Double Scroll attractor is bounded. This is important because
all physical resistors are eventually passive, meaning simply that for a large
enough voltage across its terminals, the power consumed by a real resistor is
positive[27].
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Chapter 7

Duffing Holme Chaotic System

7.1 Introduction

Duffings Holme system was introduced in 1918 by G. Duffing, with neg-
ative linear stiffness,damping and periodic excitation is often written in the
form.To get the fractional-order Duffings system, Equation can be rewrit-
ten as a system of the first-order autonomous differential equations in the
form[8,9].

D.qx1 = x2 (7.1)

D.qx2 = x1 − αx2 − x1.3 + βcos (t) (7.2)

Parameters alpha=0.25 and beta=0.3 respectively. When order of system is
reduced the chaos and behaviour of system is oscillatory and gives chaotic
behaviour.In slave system we have add disturbance and uncertainty in system
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7.1.1 Duffing Holmes simulation result

In simulation we have take different order of the system than we have done
different simulation with help of fde 12 method and differential equation of
our system.

Figure 7.1: Duffing Holmes simulation result for q=1

In above fig we can see chaotic behaviour of duffing homle’s system.Strange
attractor is produce in our system for parameters α=0.25,β=0.3.for this
initial conditions x(0)=0.2,y(0)=-0.2 simulation time t=100s and step size
h=0.005

Figure 7.2: Duffing Holmes simulation result q=0.98
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In second case we have change value of q and run the differential equation
in matlab with help of fde12 method which is use for derive fractional order
differential equations Strange attractor is produce in our system for param-
eters α=0.25,β=0.3.for this initial conditions x(0)=0.2,y(0)=-0.2 simulation
time t=100s and step size h=0.005[8,9].

Figure 7.3: Duffing Holmes simulation result q=0.97

In third case we have change value of q and run the differential equation
in matlab with help of fde12 method which is use for derive fractional order
differential equations.Phase trajectory (attractor) in plane xy for the integer-
order Duffings system with parameters = 0.25, = 0.3, = 1, and initial
conditions (x(0),y(0)) = (0.2,0.3).In above Fig is depicted the limit cycle of
the fractional-order Duffings system.
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Chapter 8

SMC and Synchronization For
Chaotic System

Synchronization means One system drive the another system means by chang-
ing the value in first system there is been sudden change in other system are
called synchronization.in synchronization one system is work as master and
other system is work as slave.we can control the other system by master.so it
is also called master slave system. synchronization and control of system are
almost same.It has been very difficult to synchronize two chaotic systems. for
stability analysis of chaotic system it is very difficult to implement Lyapunov
method for analysis[8,9].

For modeling a new physical system we have to provide new mathematical
structure for designing control system.Fractional order could attract scientist
and researcher for control task in two different ways.In first case it gives an
interesting idea for designing a controller in different way.This is due to the
fact that, in most cases, controller design procedure is heuristic.fractional
order will provide a good mathematical structure in which many charac-
teristics of system behaviours are simply related to less number of parame-
ters.According to this the paradigm of design should be changed. The second
reason of attraction is related to the performance analysis of the designed
system.fractional order should provide a mathematical structure in which
stability analysis is done in many cases .

In this synchronization and controlling method we have use Sliding Mode
Controller (SMC)controller for controlling the synchronization and its be-
haviour after adding disturbance and uncertainty.when SMC is introduce in
the system.system works or behave as a robust system.so after introduced
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SMC or control law in the system disturbance and uncertainty did not af-
fect the behaviour of the duffing holme’s system.system become stable after
some time.It is also depend on the parameter value and disturbance which
we have taken in the system.This makes the fractional calculus easier to find
an appropriate function for stability analysis.This idea is verified when SMC
is used to synchronize fractional order Duffing Holmes chaotic system[13,14].
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8.1 Simulation with out adding control law

and synchronization

Figure 8.1: With out control law graph for q=1
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Figure 8.2: With out control law graph for q=0.99
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Figure 8.3: With out control law graph for q=0.98
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8.2 Sliding mode synchronization of fractional

order systems

In synchronization of system one system will work as master and another
different system work as slave.we have to control our system so we have to
design a controller in that manner a nonlinear system obtains signal from
system which is known as master to tune the other system which works as
slave.we have use master and slave with fractional order differential equa-
tions[8].

D.qx1 = x2 (8.1)

Dqx2 = f(X, t) (8.2)

D.qy1 = y2 (8.3)

Dqy2 = f(Y, t) + ∆f(Y, t) + d(t) + u(t) (8.4)

for providing control input u(t) a sliding mode control is introduce 1- Con-
structing a sliding surface which represents a desired system dynamics. 2-
Developing a switching control law to make the sliding mode possible on ev-
ery point in the sliding surface. Any states outside the surface are driven to
reach the surface in a finite time. However, to achieve the control law, u(t),
the synchronization error is defined as:

e = x− y (8.5)

we can design sliding surface by following equation

S(t) = c1e1 + c2e2 (8.6)

we have to select c1 and c2 in such easy way that the sliding surface of the sys-
tem vanished quickly.when states of the sytem are reach to their desire point
or surface they become robust there will be no change in its behaviour.when
this kind of effect occurred called in the system we can say that SMC has
taken place. After this effect the whole system is controlled by Sliding mode
control(SMC).we have to chose c1 and c2 in that way when they reach to
surface they behaves like desired point[19]. The sliding mode control(SMC)
will be deigned in two phases: 1. The reaching phase when S(t)is not equal
0 and 2. The sliding phase by S(t)=0. A sufficient condition for the error to
move from the first phase to the second one, is as follows:

S(t)Ṡ(t) ≤ 0 (8.7)
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above condition is called the sliding condition.when disturbance and uncer-
tainty are absent the force on main equation is obtain by S(t)=0.the equation
is derived into fractional order equation.

first we have studied integer order now we are going to study fractional
order duffing system by following equations:

D.qx1 = x2 (8.8)

Dqx2 = x1 − αx2 − x13 + βcos(t) (8.9)

D.qy1 = y2 (8.10)

Dqy2 = y1 − αy2 − y13 + βcos(t) + ∆f(Y, t) + d(t) + u(t) (8.11)

where

Deltaf(Y, t) = 0.1sin(t)
√
y12 + y22andd(t) = 0.1sin(t) (8.12)

results the control law, which is as follows

u(t) = (c1/c2)e2+e1−αx2−x13+αy2+y13−0.1sin(t)
√
y12 + y22 + 1+Kssat(S(t)

(8.13)
simulation result of duffing holme’s systems are shown in figure.we have
choose parameter value like c1 and c2 are same.gain k=10.The control signal
sliding surface and synchronization of states X and Y for q = 0:98 are also
shown in Fig. Similarly, the results for different values of q = 0:96 and q q
0:9.7 are shown in Fig, respectively. It should be noted that the control is
activated at t = 20 s.by changes the value of q we can get faster response of
master as well as from slave system.synchroniztion process also done faster
by using SMC and changing q[15,16].
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8.3 Simulation result and synchronization of

Duffing Holmes system

Figure 8.4: Synchronize graph e1 for q=1
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Figure 8.5: Synchronize and sliding graph q=0.99
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Figure 8.6: Synchronize and sliding graph q=0.98
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Chapter 9

Synchronization Of Fractional
Order With Integer Order Of
System Using Smc

9.1 Simulation result of Chua’s system

we have study chua’s circuit which is an ideal circuit.the circuit consist of
two capacitors inductor resistor R and chua’s diode(NR).by applying KCL
in circuit it can be describe by following three equations[10,11].

dV1(t)
dt

= 1
C1

[G(V2(t) − V1(t) − f(V1(t))]

dV2(t)
dt

= 1
C2

[G(V1(t) − V2(t) − IL(t)]

dIL(t)
dt

= 1
L

[−V2(t) −RLIL(t)]

In simulation we have take different order of the system than we have done
different simulation with help of fde 12 method and differential equation of
our system.

In above fig is depicted chaotic attractor of the integer-order Duffings sys-
tem for the following parameters =10, with initial conditions (x(0),y(0),z(0))
= (-3,-2,3) for simulation time Tsim = 100s and time step h = 0.005 In above
fig is depicted the limit cycle of the integer and fractional order chua’s sy-
atem[19].

In second case we have change value of q and run the differential equation
in matlab with help of fde12 method which is use for derive fractional or-
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Figure 9.1: Simple chua’s circuit

Figure 9.2: Chua’s simulation result for q=1

der differential equations.Phase trajectory (attractor) in plane xy for the
integer-order chuas system with parameters = 10 and initial conditions
(x(0),y(0),z(0)) = (-3,-2,3).In above Fig is depicted the limit cycle of the
fractional and integer order Chua’s system[13,14].

In third case we have change value of q and run the differential equa-
tion in matlab with help of fde12 method which is use for derive fractional
order differential equations.Phase trajectory (attractor) in plane xy for the
integer-order Chuas system with parameters = 10 and initial conditions
(x(0),y(0),z(0)) = (-3,-2,3).In above Fig is depicted the limit cycle of the
fractional and integer order Chua’s system[16,17].
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Figure 9.3: Chua’s simulation result q=0.98

Figure 9.4: Chua’s simulation result q=0.97

9.2 SMC and Synchronization of integer or-

der and fractional order Chuas systems

We present a fractional order Chua’s circuit that behaves chaotically based
on the use of a fractional order low pass filter. Next, an integer order robust
observer will be designed to synchronize the fractional order Chua’s circuit as
well as integer order Chua’s circuit with unknown nonlinearity.For continuous
time nonlinear dynamical systems, it has been shown in,that an integer-order
unforced system must have a minimum order of three for chaos to appear.
While in periodically excited systems a degree of two is enough to chaotic

53



behavior to occur.The aim of the present work is two folds. We first present
a practical way to obtain a fractional order Chua’s circuit and second, we
design a robust observer to synchronize the fractional order as well as the
integer order Chua’s systems.Next, we attempt to design a synchronization
method based on robust observers in order to synchronize Chua’s systems
with unknown nonlinearity[26].

In synchronization task, there are a particular dynamic system as master
and another different dynamic as slave. From the view point of control,
the task is to design a nonlinear controller which obtains signals from the
master to tune the behaviour of the slave. Let us consider master and slave
with fractional order derivative equations respectively for integer order we
take q=1 and for fractional order we have take q=0.98,0.97 and we will
synchronize system using SMC[17,18]

d.qx1 = x2 (9.1)

d.qx2 = x1 − x2 + x3 (9.2)

d.qx3 = α(x2 − x3 − g(x2) (9.3)

In second case we can take q=0.98,0.97 and add disturbance in our sys-
tem.Equation for second system is given below

d.qx4 = x5 (9.4)

d.qx5 = x4 − x5 + x6 (9.5)

d.qx6 = α(x2 − x3 − g(x2)) + d(t) + u(t) (9.6)

d(t)is an acting disturbance against the performance of the system. A sliding
mode control is proposed to provide the control input u(t) we have taken
g(x2)=-4tanh(x(1)) k=gain

d(t) = 0.1sin(t) (9.7)

u(t)=k*e1+e2+e3 e1=x1-x4 e2=x2-x5 e3=x3-x6
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9.3 Simulation result and synchronization of

Chua’s system

Figure 9.5: Synchronize graph e1 for q=1

In above figure we have synchronize graph of data x1 and x4 after adding
control law and disturbance.it has little effect on output.they are synchronize
and system become robust so after some time disturbance does not affect
system out put.

Figure 9.6: Sliding graph forq=1

In above figure it is a error graph e1 after synchronization where error is
e1=x1-x4 vs time t.which is stable after 25 seconds for order q=1.
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Figure 9.7: Synchronize graph e2 q=1

In above figure we have synchronize graph of data x2 and x5 after adding
control law and disturbance.it has little effect on output.they are synchronize
and system become robust so after some time disturbance does not affect
system out put.

Figure 9.8: Sliding graph for q=1

In above figure it is a error graph e2 after synchronization where error is
e2=x2-x5 vs time t.which is stable after 30 seconds for order q=1.
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Figure 9.9: Synchronize graph e3 for q=1

In above figure we have synchronize graph of data x3 and x6 after adding
control law and disturbance.it has little effect on output.they are synchronize
and system become robust so after some time disturbance does not affect
system out put.

Figure 9.10: Sliding graph for q=1

In above figure it is a error graph e3 after synchronization where error is
e3=x3-x6 vs time t.which is stable after 28 seconds for order q=1.
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Figure 9.11: Synchronize graph e1 q=0.98

In above figure we have synchronize graph of data x1 and x4 after adding
control law and disturbance.it has little effect on output.they are synchronize
and system become robust so after some time disturbance does not affect
system out put.

Figure 9.12: Sliding graph for q=0.98

In above figure it is a error graph e1 after synchronization where error is
e1=x1-x4 vs time t.which is stable after 17 seconds for order q=0.98.
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Figure 9.13: Synchronize graph e2 q=0.98

In above figure we have synchronize graph of data x2 and x5 after adding
control law and disturbance.it has little effect on output.they are synchronize
and system become robust so after some time disturbance does not affect
system out put.

Figure 9.14: Sliding graph for q=0.98

In above figure it is a error graph e2 after synchronization where error is
e2=x2-x5 vs time t.which is stable after 20 seconds for order q=0.98.
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Figure 9.15: Synchronize graph e3 q=0.98

In above figure we have synchronize graph of data x3 and x6 after adding
control law and disturbance.it has little effect on output.they are synchronize
and system become robust so after some time disturbance does not affect
system out put.

Figure 9.16: Sliding graph for q=0.98

In above figure it is a error graph e3 after synchronization where error is
e3=x3-x6 vs time t.which is stable after 19 seconds for order q=0.98.
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Figure 9.17: Synchronize graph e1 q=0.97

In above figure we have synchronize graph of data x1 and x4 after adding
control law and disturbance.it has little effect on output.they are synchronize
and system become robust so after some time disturbance does not affect
system out put.

Figure 9.18: Sliding graph for q=0.97

In above figure it is a error graph e1 after synchronization where error is
e1=x1-x4 vs time t.which is stable after 18 seconds for order q=0.97.
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Figure 9.19: Synchronize graph e2 q=0.97

In above figure we have synchronize graph of data x2 and x5 after adding
control law and disturbance.it has little effect on output.they are synchronize
and system become robust so after some time disturbance does not affect
system out put.

Figure 9.20: Sliding graph for q=0.97

In above figure it is a error graph e2 after synchronization where error is
e2=x2-x5 vs time t.which is stable after 19 seconds for order q=0.97.
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Figure 9.21: Synchronize graph e3 q=0.97

In above figure we have synchronize graph of data x3 and x6 after adding
control law and disturbance.it has little effect on output.they are synchronize
and system become robust so after some time disturbance does not affect
system out put.

Figure 9.22: Sliding graph for q=0.97

In above figure it is a error graph e3 after synchronization where error is
e3=x3-x6 vs time t.which is stable after 18 seconds for order q=0.97.
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Chapter 10

Conclusion and Future work

10.1 Conclusion

The modelling of the nonlinear chaotic system can easily carried out by
fractional differential equations. It has been found that the condition of chaos
can be determined by the fractional order value of the differential equations.
The various simulations prove the importance of fractional order modelling
for nonlinear systems. The identification of fractional order systems is still an
open problem. The hardware implementation of the fractional order Chuas
circuit has been done to verify the chaos nature of the system.
The sliding mode technique is found to be most suitable technique for the
synchronization problems. The synchronization of the two fractional order
chaotic systems has been achieved through the sliding mode controller. The
sliding mode control technique is also applied to synchronize the fractional
order system with integer order system.

10.2 Future work

The real time hardware implementation of chaotic systems along with syn-
chronization technique can be carried out further to validate the theoretical
simulations. A practical way to identify the fractional order nonlinear system
can be considered as part of identification problem.
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