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Abstract

In this project, design and implementation of self balancing two wheeled robot

system has been done successfully. PID(Proportional integral derivative) control,

FOPID(Fractional order proportional integral derivative) control and LQR(Linear

quadratic regulator) has been done successfully on MATLAB simulation and do the

comparative analysis. The PID and FOPID control algorithms are successfully im-

plemented on the hardware(self balancing two wheeled robot) system and it has been

proved that fractional order control gives better response compare to integer order

control.
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Chapter 1

Introduction

In modern calculus the differentiation term D = d
dx

is a well known tool.For function

f the nth derivative is a well-defined as Dnf(x) = df(x)
dxn

, here n is a positive integer

number.we extend this concept like ”if n is arbitrary,e.g. fractional then what hap-

pen”,

In the recent years fractional order controller was not popular.when benefits stem-

ming from using its concepts became evident in various scientific fields, including

system modeling and automatic control. The rise of interest to the topic of fractional

differentiation is also related to accessibility of more efficient and powerful computa-

tional tools. The introduction of computer algebra systems, such as MATLAB and

Mathematic, led to new possibilities for evaluating the theoretical aspects of frac-

tional calculus in specific application.

There are three definition for fractional calculus [5]

Definition 1 Riemann-Liouville definition

aDα
t f(t) =

1

Γ(m− α)
(
d

dt
)m

∫ t

a

fm(τ)

(t− τ)α−m+1
dτ

where m− 1 < α < m,m ∈ N,α ∈ R+,Γ(.)isaeulersgammafunction

2
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Definition 2 Caputo definition

0Dα
t f(t) =

1

Γ(m− α)

∫ t

0

fm(τ)

(t− τ)α−m+1
dτ

where m− 1 < α < m,m ∈ N,

Definition 3 Grunwald Letnikov definition)

aDα
t f(t) = lim

h→0

1

hα

@ t−a
h

A∑
j=0

(−1)jαjf(t− jh)



Chapter 2

Motivation

We found that PID control algorithm have wide acceptance and mainly in industries,

but for faster response of the system and specially for nonlinear system PID control

is not give desired output, so for that we found one new control algorithm is FOPID

control algorithm.

It is remarkable to note the increasing the number of studies of fractional order con-

troller .For the faster response of the system the fractional order controller which are

very effective compare to PID controller in more precise and robust control perfor-

mance.And in FOPID control have two more parameter compare to PID for tuning,

and there are λ and µ and λ is varies between 0 to 1.

4



Chapter 3

Objective And Block diagram

3.1 Objective

Here in this project, modelling of self balancing two wheeled robot system and applied

PID, LQR and FOPID control algorithm on MTLAB simulation. Then implement

PID and FOPID controller on the self balancing hardware and do the comparative

analysis.

3.2 Blockdiagram

Figure 3.1: project flow diagram 1

5
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The LQR control algorithm is applied on the integer and fractional order system

and do the comparative analysis into the MATLAB simulation as shown in fig 3.1.

Figure 3.2: project flow diagram 2

The PID and FOPID control algorithm are applied on integer and fractional order

system and do the comparative analysis into the MATLAB simulation. and also ap-

plied PID and FOPID control algorithm on self balancing two wheeled robot hardware

system as shwon in fig 3.2.



Chapter 4

System modelling

4.1 system modelling

Here in this chapter mathematical model of the self balancing robot system has to

be described, equation of inverted pendulum, wheeled and DC motor are derived in

details.

4.1.1 modelling of a DC motor

[?] The self balancing robot is balancing on the two wheeled and this wheeled are

connected with two DC motor. The mathematical equation of the DC motors are de-

rived. These mathematical equations are provide relationship between input voltage

to motor and required torque to balance the system. Free body diagram of the motor

is shown in fig 4.1.

Motor torque is proportional to the current I, we can write as per the equation (4.1)

τmotor = Kmotor ∗ I......(4.1)

7
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Figure 4.1: Diagram of a DC motor

Magnetic field is present into the motor, when Coil of the motor moving into the

magnetic field back emf is produced,

Vemf = Kemf ∗ ω......(4.2)

Apply Kirchof voltage law at the figure 4.1

V −R.I − LdI
dt

= 0.....(4.3)

Summation of the all the torques produce on the motor shaft are related to the

acceleration of the shaft by the inertia load of the armature IR,as per Newton’s law

of motion.

τmotor −Kfri ∗ ω − τarm = IR ∗ ω....(4.4)

Put equation (4.1) and (4.2) into(4.3) and (4.4),

dI

dt
=
R

L
I +

Kemf

L
ω +

V

L
...(4.5)

dω

dt
=
Kmotor

IR
i+
−Kemf

IR
ω − τarm

IR
...(4.6)
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Equation (4.5) and (4.6) are function of Velocity and I and its have first order deriva-

tive therefore motor inductance and friction are negligible,

I =
−Kemf

R
ω +

1

R
V.....(4.7)

dω

dt
=
Kmotor

IR
I − τarm

IR
.....(4.8)

put equation (4.7) into (4.8),

dω

dt
= −Kmotor.Kemf

IR.R
ω +

1

IR.R
V − τarm

IR
...(4.9)

The DC motor mathematical equation can represented with a state space model, and

this system have parameters are position θ and velocity ω, as shown in equation (4.10)

and (4.11)

 θ̇

ω̇

 =

 0 1

0
−Kmotor.Kemf

IR.R

 θ

ω

 +

 0 0

Kmotor
IR.R

−1
IR

 V

τarm

 ...(4.10)

y =
[

1 0
] θ

ω

 +
[

0 0
] V

τarm

 ...(4.11)

4.1.2 Mathematical model of two wheeled

[?]

Here in this section we have to derived mathematical equation of the left and right

wheel, free body diagram of the wheeled as shown in the fig 4.2.

Summation of the force on the horizontal direction as per the Newton’s law is

F = m.a

Mwẍ = Fr −Gr.....(4.12)
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Figure 4.2: Free body diagram of the wheels

Here Fr is friction or conflict force between the plane and right wheel and Gr is back

force between the right wheel and robot chassis,

Summation of the force acting on the wheel’s center is

M = I.α

Iwφ̈w = τR − Fr.r.....(4.13)

Where Iw is wheel’s moment of inertia, φ̈w is angular acceleration and τR is applied

torque from the motor to wheel.

As per above derivation of the motor torque which derived in the mathematical model

of DC motor(as per equation (4.8))

τmotor = IR
dw

dt
+ τarm....(4.14)
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substitute value dw
dt

from equation (4.9)

τw = −Kmotor.Kemf

R
φ̇w +

Kmotor

R
V....(4.15)

substitute value of τ from the equation (4.15) to equation (4.13)

Iwφ̈w = −KmotorKemf

R
φ̇w +

Kmotor

R
V − Fr.r...(4.16)

Thus,

Fr = −Kmotor.Kemf

Rr
φ̇w +

Kmotor

R.r
V − Iw

r
φ̈w...(4.17)

substitute Fr value from equation (4.17) to equation (4.12)

Equation of left side wheel

Mwẍ = −Kmotor.Kemf

R.r
φ̇w +

Kmotor

R.r
V − Iw

r
φ̈w −GL...(4.18)

Equation of right side wheel

Mwẍ = −Kmotor.Kemf

R.r
φ̇w +

Kmotor

R.r
V − Iw

r
φ̈w −GR...(4.19)

Here we have to transform angular rotation to linear motion, for that we can used

below equation

φ̈w.r = ẍ =⇒ φ̈w =
ẍ

r

φ̇wr = ẋ =⇒ φ̇w =
ẋ

r

After this transformation above left and right side wheel equation (4.18) and (4.19)

becomes like,

Equation of left side wheel

Mwẍ = −Kmotor.Kemf

R.r

ẋ

r
+
Kmotor

R.r
V − Iw

r

ẍ

r
−GL...(4.20)
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Equation of right side wheel

Mwẍ = −Kmotor.Kemf

R.r

ẋ

r
+
Kmotor

R.r
V − Iw

r

ẍ

r
−GR...(4.21)

After the summation of the equation (4.20) and (4.21) we get,

2(Mw +
Iw
r2

)ẍ = −2.KmotorKemf

R.r

ẋ

r
+

2Kmotor

R.r
V − (GL +GR)....(4.22)

4.1.3 Mathematical model of self balance robot’s chassis

[?]

Here we have to derived mathematical equation of the robot’s chassis, fig 4.3

display free body diagram of the self balancing robot chassis,

Figure 4.3: Diagram of the self balancing robot chassis

As per Newton’s law of motion,

Fx = Mp.ẍ
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(GL +GR)− lMP φ̈p cosφp + lMP φ̇p
2

sinφp = Mp.ẍ....(4.23)

Thus

(GL +GR) = Mp.ẍ+ lMP φ̈p cosφp − lMP φ̇p
2

sinφp....(4.24)

Summation of forces acting vertical to the chassis are

∑
Fvp = Mp.ẍ cosφp

(GL +GR) cosφp + (VL + VR) sinφp −Mpg sinφp − lMpφ̈p = Mpẍ cosφp....(4.25)

Summation of moments to the center of mass of self balancing robot’s chassis,

∑
M = I.α

−(GL +GR)l cosφp − (VL + VR)l sinφp − (τL + τR) = Ipφ̈p....(4.26)

The torque applied on the robot’s chassis from the right motor and left motor which

defined in the equation (4.15), and after the linearised its becomes

(τL + τR) = −2KmotorKemf

R.r

ẋ

r
+

2Kmotor

R.r
V

put the value of τL + τR in equation (4.26),

−(GL +GR)l cosφp − (VL + VR)l sinφp − (−2Kmotor.Kemf

R.r

ẋ

r
+

2Kmotor

R.r
V ) = Ipφ̈p

thus

−(GL +GR)l cosφp− (VL + VR)l sinφp = Ipφ̈p−
2Kmotor.Kemf

R.r

ẋ

r
+

2Kmotor

R.r
V....(4.27)

Both the side multiplying with l to the equation (4.25)

(GL +GR)l cosφp + (VL + VR)l sinφp − lMpg sinφp −Mpl
2φ̈p = Mplẍ cosφp....(4.28)
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Put the value of equation (4.27) in equation (4.28)

Ipφ̈p −
2KmotorKemf

R.r

ẋ

r
+

2Kmotor

R.r
V − lMpg sinφp −Mpl

2φ̈p = Mplẍ cosφp....(4.29)

Put the value of(GL+GR) from the equation (4.24) into the (4.22)

2(Mw+
Iw
r2

)ẍ = −2Kmotor.Kemf

R.r

ẋ

r
+

2Kmotor

R.r
V−Mpẍ−Mplφ̈p cosφp+Mplφ̇p

2
sinφp....(4.30)

Rearranging equation (4.29) and (4.30)

(Ip +Mpl
2)φ̈p −

2KmotorKemf

R

ẋ

r
+

2Kmotor

R.r
V + lMpg sinφp = −Mplẍ cosφp....(4.31)

2Kmotor

R.r
V = (2Mw+

2Iw
r2

+2Mp)ẍ+
2KmotorKemf

R

ẋ

r
+Mplφ̈p cosφp−Mplφ̇p

2
sinφp...(4.32)

Above equation (4.31) and (4.32) are nonlinear, so for linearising we have to assume

φp = π + φ,

cosφp = −1, sinφp = −φ, and(
dφp
dt

)2 = 0

After the linearised these equation of motion are

(Ip +Mpl
2)φ̈− 2Kmotor.Kemf

R

ẋ

r
+

2Kmotor

R.r
V + lMpgφp = −Mplẍ.....(4.33)

2Kmotor

R.r
V = (2Mw +

2Iw
r2

+ 2Mp)ẍ+
2Kmotor.Kemf

R

ẋ

r
−Mplφ̈.....(4.34)

When rearranging equation (4.33) and (4.34) for the state space representation of the

system its becomes

φ̈ =
Mpl

(Ip +Mpl2)
ẍ+

2Kemf .Kmotor

R(Ip +Mpl2)

ẋ

r
− 2Kmotor

R(Ip +Mpl2)
v +

Mpgl

Ip +Mpl2
φ..(4.35)

ẍ =
2Kmotor

R(2Iw
r2

+ 2Mw +Mp)r
v +

2KemfKmotor

R(2Iw
r2

+ 2Mw +Mp)r2
ẋ− Mpl

(2Iw
r2

+ 2Mw +Mp)
φ̈..(4.36)
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Put the value of (4.35)into(4.34)and (4.36) into (4.33)


ẋ

ẍ

φ̇

φ̈

 =


0 1 0 0

0
2KmotorKemf (Mplr−Mpl2)

Rr2α

Mp
2gl2

α
0

0 0 0 1

0
2KmotorKemf (rβ−Mpl)

Rr2α

Mpglβ

α
0




x

ẋ

φ

φ̇

+


0

2Kmotor(Ip+Mpl2−MP lr)

Rrα

0

2Kmotor(Mpl−rβ)

Rrα

V..(4.37)

where

β = (
2Iw
r2

+ 2Mw +Mp), α = [Ipβ + 2l2Mp(
Iw
r2

+Mw)]

Here

Mw = 0.04,

r = 0.052,

Iw = 0.000049,

Ip = 0.0042,

Mp = 1.14,

l = 0.08,

Kemf = 0.006091,

R = 4,

g = 9.81,

Kmotor = 0.006131,

Put these all above value in equation (4.37),we get

A =


0 1 0 0

0 −0.0076 13.3230 0

0 0 0 1

0 −0.0292 183.5182 0

 , B =


0

0.0650

0

0.2491


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C =

 1 0 0 0

0 0 1 0

 , D =

 0

0



4.2 Convert integer order to fractional order sys-

tem

Here we convert system from integer order to fractional order system.[1]

Representation of state space model for integer order system is shown in below,

state equation

ẋ = Ax+Bu

Representation of state space model for fractional order system is shown below,

state equation

Dα
x = Ax+Bu

Whereα = [α1, α2, α3......αn] ,A is state matrix, B is input matrix,C is output matrix

and D is the direct transmission matrix.

We have one laplace transform’s properties of fractional order is,[2]

L[aDα
t .F (t)] = sα.L[F (t)]....(4.38)

[6]

Here we have to rearranging equation (4.38),

[aDα
t .F (t)] = L−1[sα.L[F (t)]]

[aDα
t .F (t)] = L−1[sα].L−1[L[F (t)]]

[aDα
t .F (t)] = L−1[sα].[F (t)]...(4.39)



CHAPTER 4. SYSTEM MODELLING 17

as per the laplace transform properties L−1[sα] = Γ(α)
tα−1

Put this above laplace transform properties into the equation (4.39) and we get new

equation as shown below in equation (4.40)

[aDα
t .F (t)] =

Γ(α)

tα−1
.[F (t)]...(4.41)

We can write these two equation as shown below from the integer order state space

model,

ẍ = −0.0076.ẋ+ 13.3230.φ+ 0.0650.Va....(4.42)

φ̈ = −0.0292.ẋ+ 183.5182.φ+ 0.2491.Va...(4.43)

For the fractional state space model we have to find out [aDα
t .ẍ] and [aDα

t .φ̈] using

equation (4.41),(4.42) and (4.43). And we can write fractional state space equation

are

[aDα
t .ẍ] = −0.0076.

Γ(α)

tα−1
.ẋ+ 13.3230.

Γ(α)

tα−1
.φ+ 0.0650.

Γ(α)

tα−1
.Va....(4.44)

[aDα
t .φ̈] = −0.0292.

Γ(α)

tα−1
.ẋ+ 183.5182.

Γ(α)

tα−1
.φ+ 0.2491.

Γ(α)

tα−1
.Va...(4.45)

From the above two equation we can write fractional state space model is shown in

equation(4.46)


aDα

t ẋ

aDα
t .ẍ

aDα
t .φ̇

aDα
t .φ̈

 =


0 1 0 0

0 −0.0076.Γ(α)
tα−1 13.3230.Γ(α)

tα−1 0

0 0 0 1

0 −0.0292.Γ(α)
tα−1 183.5182.Γ(α)

tα−1 0




x

ẋ

φ

φ̇

+


0

0.0650.Γ(α)
tα−1

0

0.2491.Γ(α)
tα−1

Va..(4.46)



Chapter 5

Design different controller for self

balancing system

The self balancing robot system described in chapter 4 is nonlinear and fully unstable

system, control objective of this system is always challenging. Here in this chapter

we applied LQR(Linear Quadratic Regulator), PID(Proportional Integral Derivative)

and FOPID(Fractional Order Proportional Integral Derivative) control algorithm on

the integer order system and fractional order system and do the comparative analysis

on the MATLAB simulation.

5.1 Linear Quadratic Regulator (LQR) control

The LQR control is a well known state space technique for designing robust and

optimal regulators. LQR control refers only linear system and quadratic performance

index as per the,

ẋ(t) = Ax(t) +Bu(t)...(5.1)

x(0) = x0...(5.2)

18
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Here below equation (5.3) is representing integral performance index

J =
1

2

∫ ∞
0

[x′(t)Qx(t) + U ′(t)RU(t)]dt...(5.3)

Linear quadratic regulator control law is

u = −R−1B′P̄ x...(5.4)

Where P̄ = P̄ ′ ≥ 0, and we have to solve the Ricati equation as shown in equation(5.5)

0 = PA+ A′P − PBR−1B′P +Q...(5.5)

Here in LQR control have one gain vector is K, and its determine some amount of

feedback into the system and K = R−1B′P̄ . Here for LQR have two another tuning

parameter are Q and R, and its value are always positive,Q matrix value is depend on

the size of the system state matrix, and R matrix size depend on the system’s control

input. Here fig 5.1 is shown the block diagram of the linear quadratic regulator

control.

5.1.1 Applying LQR controller on integer order system

First of all we have to check system is controllable or uncontrollable,controllability is

depend upon the matrix A and B, if rank of CB = [BABAn−1B] is N,here N is no

state of the self balancing system.

MATLAB command for checking controllability

>>CB=ctrb(A,B)
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Figure 5.1: LQR control block diagram

>>rank(CB)

Here rank of CB is 4 and system state is also 4 it means system is controllable, so we

can apply LQR control algorithm on the self balancing robot system.

For LQR we have to choose two parameter Q and R, normally we assume R=1 and

Q=c*c’,here our system have 4 state so Q matrix is like

Q =


a 0 0 0

0 b 0 0

0 0 c 0

0 0 0 d



Here for our system a = x,b = ẋ,c = φ and d = φ̇, the value of Q = c′ ∗ c matrix is

Q =


1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0



Here in the Q matrix position weighting is (1x1) and chassis angle weighting is (3x3)

When we apply LQR control algorithm on the system and solve the ricati equation
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for position(1x1) weighting is 1000,chassis’s angle(3x3) weighting is 5000 and R=1

and plot the response for the system state, response shown below for the different

weighting

State response

Figure 5.2: Appropriate response with appropriate weighting

Here fig 5.2 shows the most acceptable response, here weighting of position is

1000, chassis’s angle weighting is 5000 and R=1,
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Figure 5.3: Response with high value of R

Here fig 5.3 shows the response with high weighting of R, and R value is 100, here

we can see the less motor control, this response in a low gain value for x and ẋ, it

causes the self balancing robot to continuously moving.
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Figure 5.4: Response with high value of x(position)

Here fig 5.4 shows the response with high value of position, we can see the settling

time is very less to every state response, but motor will not get appropriate response

because motor have to required maximum torque.
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Figure 5.5: Response with high value of chassis’s angle

Here fig 5.5 shows the response with high value of chassis’s angle, here when we

increasing weighting of chassis’s angle then we have to compromise with response of

the state and settling time.
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5.1.2 Applying LQR controller on fractional order system

Here we have to applied LQR control algorithm on the fractional model which de-

scribed in equation (4.46), here we have three different parameters for tuning, like Q

and R are same as integer order system and one new parameter is α, in fractional

model we can varies α between 0 to 1, here we have one more tuning parameter is α

compare to integer model.

When applying LQR control algorithm on fractional order control system we get dif-

ferent response as shown below,

Figure 5.6: Response of the system when α is 0.9

Here fig 5.6 shows that here response is good but maximum peak overshoot and

settling time is more
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Figure 5.7: Response of the system when α is 0.5

Here fig 5.7 shows that here settling time is less compare to above response but

peak overshoot is more
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Figure 5.8: Response of the system when α is 0.1

Here fig 5.8 shows that system is more faster and less peak overshoot compare

to above two response,it means when α is nearest to 0 then we get good response,

but here when system become faster that time high torque is required for our self

balancing system.

5.2 Apply PID and FOPID control algorithm

Here in this chapter PID and FOPID control algorithms are applied on the integer

order and fractional order system and do the comparative analysis. For applying PID

and FOPID control algorithm on the system before that we have to modelling system

into the MATLAB simulink.

Integer model and fractional model are derived in the chapter 4, from the state space

equation of the model we have to design system model into the MATLAB simulink,
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Model of integer order system

Here these below two equations are for integer order, using these equations we have

to modelling into the MATLAB,

ẍ = 2.5783x+ 2.9346ẋ− 122.6800φ− 10.3701φ̇+ 0.0815Va

φ̈ = 7.7680x+ 8.8416ẋ− 231.1195φ− 31.24333φ̇+ 0.2456Va

Figure 5.9: Integer order model

Model of fractional order system

Here these below two equations are for fractional order, using these equations we have

to modelling into the MATLAB,

ẍ = 3.6432x+ 3.5945ẋ− 169.7749φ− 10.9601φ̇+ 0.1152Va
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φ̈ = 13.9620x+ 13.7750ẋ− 415.8496φ− 42.0024φ̇+ 0.4415Va

Figure 5.10: Fractional order model

Apply PID controller on integer order and FOPID controller on fractional

order system

Here fig 5.11 shows the closed loop model of the self balancing system,and fig 5.12

shows the output response of the self balancing system, here yellow response is for the

PID controller and purple response is for the fractional order system. As per the fig

5.12 we can say that the FOPID controller response is faster compare PID controller

response, oscillation is less compare to PID controller, and also peak overshoot is less

compare to PID controller. so as per the response we can say FOPID gives better

response compare to PID controller.
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Figure 5.11: closed loop model

Figure 5.12: output response
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Apply PID and FOPID controller on the fractional order system[3]

Figure 5.13: closed loop model

Figure 5.14: output response

Here we applied PID and FOPID control algorithm on the fractional order system

and its closed loop is shown in fig 5.13, and fig 5.14 shows output response of the

self balancing robot system, here we observe that PID and FOPID controller’s set-

tling time is same but peak overshoot of PID controller is more compare to FOPID

controller.[4]
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Apply PID and FOPID controller on the integer order system

Figure 5.15: closed loop model

Figure 5.16: output response

Here we applied PID and FOPID control algorithm on the integer order system and

its closed loop is shown in fig 5.15, and fig 5.16 shows the output response of the

self balancing robot system, here we observe that settling time and peak overshoot of

the FOPID controller is less compare to PID controller, and oscillation of the FOPID

response is less compare to PID response.[7]



Chapter 6

Hardware implementation of self

balancing system

Here in this chapter we have to implement PID and FOPID control algorithm on the

hardware system of self balancing robot, and do the comparative analysis and try to

understand which algorithm gives better response. Fig 6.1 shows the hardware model

Figure 6.1: Hardware of self balancing robot

of the self balancing robot,this model is the group of different parts like MPU6050

33



CHAPTER 6. HARDWARE IMPLEMENTATION OF SELF BALANCING SYSTEM34

gyro and acceleration sensor,20A motor driver circuit,12v two DC motor,12v power

supply and Arduino controller,

6.1 Parts description

Here in this chapter different parts of the self balancing system has to be describe

shortly, and these parts are MPU6050 gyro and acceleration sensor,20A motor driver

circuit.

6.1.1 MPU6050 Sensor calibration

Here we used MPU6050 gyro and acceleration sensor which shows in fig,this is 8 pin

sensor and it gives accx, accy, accz, gyrox, gyroy, gyroz and temperature value,

Figure 6.2: MPU6050 gyro sensor

These 8 pins are VCC,GND,SCL,SDA,XDA,XCL,AD0 and INT,we have to gives 3.3v

to the pin VCC and GND is connect with the ground,SCL gives serial clock for I2C
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interfacing, SDA is a serial data line for I2C interface and used to fetch the data

stored into the internal FIFO register,XDA is used for external data interface for I2C

bus, we can connect any external device with MPU6050 sensor,XCL gives the serial

clock for externally connected device, I2C address is depend on the AD0 pin of the

sensor,if AD0 connected to the ground the address is 0x68 and if it connected with

Vlogic(3.3v) then address is 0x69 and INT pin is for the interupt.

Here the MPU6050 sensor output value is very noisy so for that we have to remove

this noise and oscillation from the sensor output data, so for that complementary

filter is the best way to remove the noise. here Fig 6.3 is shows the block diagram of

the complementary filter

Figure 6.3: Block diagram of complementary filter

As per the block diagram of complementary filter we have to make the simulation

model of the complementary filter, for that we have to implement these two equation

which are shown below,

Pitch = tan−1−accX
accZ

CompangleY = 0.93(CompangleY + gyrorate ∗ dt) + 0.07 ∗ Pitch
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Figure 6.4: Simulink model of the complementary filter

Fig. 6.4 shows the simulation model of the complementary filter. when we apply the

complementary filter and get response between gyro angle Y and compangleY which

shown in Fig. 6.5

Figure 6.5: Response of the complementary filter
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6.1.2 20A motor driver circuit

Figure 6.6: 20A motor driver circuit

Here in fig 6.6 shows the 20A motor driver circuit,it’s working with 6 to 18 V

and 20A current. This motor driver circuit is ideal for two motor where work with

20A current during normal operation and startup operation,it have breaking feature

and we can work with the motor direction like forward and reverse, it has protection

circuit for avoid any current and voltage fluctuation.

6.2 Connection diagram of hardware model

Figure 6.7: system connection diagram
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Here in fig 6.7 shows the connection diagram of the hardware model, here MPU6050

gyro sensor is connected with the arduino mega 2560, and arduino controller con-

nected with the 20A motor driver circuit, 12V two DC motor and battery is connected

with the 20A motor driver circuit.

6.3 Implement PID and FOPID on hardware model

For applying PID and FOPID control algorithm on the hardware model we have to

make a simulation model into the MATLAB,fig 6.8 shows the simulink model of the

system,

Figure 6.8: Simulink model of the system

Here we plot the response of the PID and FOPID control algorithm for different KP

value,

From these PID response we can observe that when KP value is 4 that time response

is good compare to other KP value and that time system can softly move.

From this FOPID response we can observe that when alpha value is samll like near

to 0 that time response of the system is good and system become faster.
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Figure 6.9: PID response for the KP=4,KI=0.01,KD=0

Fig. 6.15 shows the comparison graph between PID and FOPID control algorithm,

and from this response we can observe that FOPID response is good.



CHAPTER 6. HARDWARE IMPLEMENTATION OF SELF BALANCING SYSTEM40

Figure 6.10: PID response for the KP=5,KI=0.01,KD=0

Figure 6.11: PID response for the KP=7,KI=0.01,KD=0
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Figure 6.12: FOPID response for the KP=4,KI=0.01,KD=0,alpha=0.1

Figure 6.13: FOPID response for the KP=4,KI=0.01,KD=0,alpha=0.5
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Figure 6.14: FOPID response for the KP=4,KI=0.01,KD=0,alpha=0.9

Figure 6.15: Comparison of PID and FOPID control response



Chapter 7

Conclusion and Future work

Conclusion

After the apply PID and FOPID control algorithm on the self balancing system we

can conclude that the FOPID controller response is more better than PID control

algorithm,FOPID have more stability, less oscillation and gives faster response com-

pare to PID control algorithm.

Future work

Furthermore,Fractional optimal control can be implemented on aforementioned sys-

tem in order to improvise system response.
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