
VERIFICATION OF VARIOUS NUMERICAL
METHODS USING HARDWARE

IMPLEMENTATION

Major Project Report

Submitted in Partial Fulfillment of the Requirements
for the degree of

MASTER OF TECHNOLOGY
IN

INSTRUMENTATION & CONTROL

(CONTROL & AUTOMATION)

By

Trivedi Tej T.
13MICC24

Instrumentation & Control Engineering Section
Department of Electrical Engineering

Institute of Technology
Nirma University

Ahmedabad-382481

May-2015

VERIFICATION OF VARIOUS NUMERICAL
METHODS USING HARDWARE

IMPLEMENTATION

Major Project Report

Submitted in Partial Fulfillment of the Requirements
for the degree of

Master of Technology
in

Instrumentation and Control

(Control & Automation)

By

Trivedi Tej T.
13MICC24

Under the Guidance of

Prof. Sandip A. Mehta

Instrumentation & Control Engineering Section
Department of Electrical Engineering

Institute of Technology
Nirma University

Ahmedabad-382481

May-2015

Declaration

This is to certify that

i) The thesis comprises my original work towards the degree of Master of
Technology in Instrumentation and Control Engineering (Control and
Automation) at Nirma University and has not been submitted elsewhere
for a degree.

ii) Due acknowledgement has been made in the text to all other material
used.

Trivedi Tej T.
13MICC24

Undertaking for Originality of the Work
—————————————————————

I, Trivedi Tej T., Roll No. 13MICC24, give undertaking that the Ma-
jor Project entitled “VERIFICATION OF VARIOUS NUMERICAL
METHODS USING HARDWARE IMPLEMENTATION” submit-
ted by me, towards the partial fulfillment of the requirements for the degree
of Master of Technology in Instrumentation & Control (Control & Au-
tomation) of Nirma University, Ahmedabad, is the original work carried out
by me and I give assurance that no attempt of plagiarism has been made. I
understand that in the event of any similarity found subsequently with any
published work or any dissertation work elsewhere; it will result in severe
disciplinary action.

—————————
Signature of Student

Mr. Tej T. Trivedi

Date:

Place: Ahmedabad

Endorsed by:

————————–
Signature of Guide

Prof. S. A. Mehta

Certificate

This is to certify that the Major Project entitled VERIFICATION OF
VARIOUS NUMERICAL METHODS USING HARDWARE IM-
PLEMENTATION submitted by Mr. TRIVEDI TEJ T. Roll No.
13MICC24, towards the partial fulfillment of the requirements for the award
of degree in Master of Technology (Instrumentation & Control Engi-
neering) in the field of Control & Automation of Nirma University is
the record of work carried out by him under our supervision and guidance.
The work submitted has in our opinion reached a level required for been ac-
cepted for examination. The results embodied in this major project work to
the best of our knowledge have not been submitted to any other University
or Institution for award of any degree or diploma.

Date: Place: Ahmedabad

Guide: Program Coordinator:

—————————– —————————–
Prof. Sandip A. Mehta Prof. J. B. Patel
Assistant Professor, IC Sr. Associate Professor, IC
Institute of Technology Institute of Technology
Nirma University Nirma University

HOD: Director:

———————— ————————
Dr. P. N. Tekwani Dr. K. Kotecha
Professor, EE Director
Institute of Technology Institute of Technology
Nirma University Nirma University

v

Acknowledgement

It is indeed a pleasure for me to express my sincere gratitude to those who
have always helped me in my project work.

First of all, I would like to thank my Project Guide Prof. Sandip A.
Mehta, who helped me selecting the project topic, understanding of the
subject, stimulating suggestions, encouragement, constant motivation and
also for writing of this report, I am sincerely thankful for his valuable guid-
ance and help to enhance my practical skills.

I would also like to thank our Section Head, IC Department Dr. D. M.
Adhyaru and Program Coordinator Prof. J. B. Patel for providing valu-
able guidance and also to the Nirma University for providing excellent in-
frastructure and facilities whenever and wherever required.

Finally, I would also like to thank all other respected faculty members as
well as Lab Assistants for their support during the project work. Last but
not the least; I would like to thank God almighty, my parents and my friends
for being a constant source of support, whose constant motivation helped me
to increase my enthusiasm during our whole journey.

Trivedi Tej T.
13MICC24

vi

Abstract

Numerical analysis is the study of algorithms that use numerical approxima-
tions for the problems of mathematical analysis and control system. These
Numerical Algorithms are dedicated to applying its unique expertise in nu-
merical software engineering to delivering high quality computer software
and high performance computing services. In this project different Numeri-
cal Methods will be simulated for different system models. The system will
be modeled using Differential Equations. The differential equations will be
solved using available numerical methods. The comparative analysis will be
carried out for different numerical methods using advanced software tools.
The hardware implementation of the numerical methods will be done using
Real-Time (RT) embedded system/hardware. A Graphical User Interface
(GUI) will be developed for selection and comparison among the different
numerical methods for the simulation as well as hardware implementation.

vii

List of Abbreviations

ABM Adams-Bashforth-Moulton
CRIO Compact Reconfigurable Input/Output
DSO Digital Storage Oscilloscope
EPC Euler’s Predictor-Corrector
FPGA Field-Programmable Gate Array
GUI Graphical User Interface
I/O Input-Output
LabVIEW Laboratory Virtual Instrument Engineering Workbench
MATLAB Matrix Laboratory
NI National Instruments
ODEs Ordinary Differential Equations
PC Predictor-Corrector
RK Runge-Kutta
RT Real-Time

Contents

Declaration ii

Undertaking iii

Certificate iv

Acknowledgement v

Abstract vi

List of Abbreviations vii

Contents viii

List of Figures x

List of Tables xiii

1 Introduction 1
1.1 Motivation & Objective . 1
1.2 Numerical Analysis . 1
1.3 Thesis Organization . 3

2 Various Numerical Methods 4
2.1 Methods for Ordinary Differential Equations 4

2.1.1 Single Step (Self Starting) Methods 6
2.1.2 Predictor-Corrector Methods 8

3 Simulation Results 13
3.1 MATLAB Simulation . 13

3.1.1 Euler’s Method . 14
3.1.2 Heun’s Method . 16
3.1.3 RK Method . 17

viii

CONTENTS ix

3.1.4 ABM Method . 17
3.1.5 Milne’s Method . 19
3.1.6 Hamming’s Method . 21
3.1.7 Simulation of Systems 22

3.2 LabVIEW Simulation . 27
3.2.1 Euler’s Method . 27
3.2.2 Heun’s Method . 28
3.2.3 RK Method . 29
3.2.4 ABM Method . 30
3.2.5 Milne’s Method . 32
3.2.6 Euler’s Predictor-Corrector Method 35
3.2.7 Simulation of Systems 37

4 Real-Time (RT) Implementation 39
4.1 C-RIO . 39

4.1.1 Analog Input (AI) & Analog Output (AO) Modules . . 42
4.1.2 Results of Real-Time Implementation 43

4.2 Circuit Design . 46
4.2.1 Full-wave Rectifier With Three Element Filter 46
4.2.2 Unsymmetrical Voltage Doubler 47

4.3 Real-Time Data Acquisition in LabVIEW 48
4.4 Standalone System . 50

5 Graphical User Interface (GUI) 54
5.1 Designing a GUI in LabVIEW 55

6 Conclusion 57

Appendix A Comparative Analysis 58
A.1 Results of 1st Order Differential Equation 58
A.2 Results of Full-wave Rectifier With Three Element Filter Circuit 59
A.3 Results of Unsymmetrical Voltage Doubler Circuit 59

Appendix B Specifications 60
B.1 CRIO Chassis . 60
B.2 I/O Modules . 61

References 63

List of Publications 65

List of Figures

1.1 Non-Linear Equations as well as Equations with Complex-Roots 2

2.1 Graphical depiction of single step 5
2.2 Graphical depiction for fourth order RK method 5
2.3 Euler’s Approximation . 7

3.1 Euler’s Approximation 109 iterations 15
3.2 Euler’s Approximation 50 iterations 15
3.3 Euler’s Approximation less iterations small step size 15
3.4 Euler’s Approximation more iterations small step size 15
3.5 Heun’s Method for 109 iterations 16
3.6 Heun’s Method for 50 iterations 16
3.7 Heun’s Method few iterations small step size 17
3.8 Heun’s Method more iterations small step size 17
3.9 ABM Result for h = 0.15 . 18
3.10 ABM Method for 109 iterations 19
3.11 ABM Method for less iterations 19
3.12 Milne Result for h = 0.15 . 20
3.13 Milne’s Method 61 iterations 20
3.14 Milne’s Method 109 iterations 20
3.15 Hamming’s Method 44 iterations 22
3.16 Hamming’s Method 109 iterations 22
3.17 Hamming Result for h = 0.15 22
3.18 Result of solver ode113 . 23
3.19 Result of solver ode23 . 23
3.20 Result of solver ode23s . 23
3.21 Result of solver ode113 . 24
3.22 Result of solver ode23 . 25
3.23 Result of solver ode23s . 25
3.24 Lorenz Attractor Design in Simulink 26
3.25 Lorenz Attractor Chaotic Response 26

x

LIST OF FIGURES xi

3.26 Euler Method LabVIEW code 28
3.27 Euler Method 100 iterations 28
3.28 Heun’s Method LabVIEW code 29
3.29 Heun’s Method 100 iterations 29
3.30 Fourth Order RK Method LabVIEW code 29
3.31 ABM code in LabVIEW . 30
3.32 ABM step-size . 30
3.33 Equation in Formula Node . 30
3.34 ABM Predictor . 31
3.35 ABM Corrector . 31
3.36 ABM Error < 10−6 . 31
3.37 ABM Next Values . 32
3.38 ABM Method for 100 iterations 32
3.39 Milne’s code in LabVIEW . 33
3.40 Milne step-size . 34
3.41 Equation in Formula Node . 34
3.42 Milne Predictor . 34
3.43 Milne Corrector . 34
3.44 Milne’s Error < 10−6 . 34
3.45 Milne Next Values . 34
3.46 Milne’s Method (unstable)* 100 iterations 34
3.47 Euler’s PC in LabVIEW . 35
3.48 Euler’s PC Error < 10−6 . 36
3.49 Euler’s Predictor . 36
3.50 Euler’s Corrector . 36
3.51 Euler’s PC for 100 iterations 36
3.52 Output Response of EPC & ABM method 37
3.53 Output Response of Milne method 37
3.54 ABM Predictor Corrector Result 38
3.55 Milne Predictor Corrector Result 38
3.56 Euler Predictor Corrector Result 38
3.57 Chaotic Response of EPC & ABM method 38
3.58 Response of Milne method . 38

4.1 C-RIO Layout . 40
4.2 NI 9219 AI Module . 42
4.3 NI 9269 AO Module . 42
4.4 Euler single-point on RT target 44
4.5 Heun’s on RT target . 44
4.6 ABM on RT target . 44
4.7 Euler’s Predictor-Corrector on RT target 44

LIST OF FIGURES xii

4.8 Milne’s Predictor-Corrector on RT target 44
4.9 Euler PC Full-wave Rectifier Filter Response 45
4.10 Milne PC Full-wave Rectifier Filter Response 45
4.11 Euler PC Voltage Doubler Response 45
4.12 Milne PC Voltage Doubler Response 45
4.13 Chaotic Response on RT target 45
4.14 Full-wave Rectifier With Three Element Filter Circuit 46
4.15 Output Voltage Graph of Circuit 47
4.16 Unsymmetrical Voltage Doubler Circuit 47
4.17 Output Voltage Graph of Circuit 48
4.18 USB 6008 DAQ . 48
4.19 Low Frequency Sine-Wave . 49
4.20 Full-wave Rectifier Response using ABM 49
4.21 Full-wave Rectifier Response using EPC 49
4.22 Voltage Doubler Response using Single Point Method 50
4.23 Voltage Doubler Response using ABM 50
4.24 Voltage Doubler Response using Milne PC Method 50
4.25 Voltage Doubler Response using EPC 50
4.26 Full-wave Rectifier Response on Standalone System 52
4.27 Voltage Doubler Response with 10K load on Standalone System 53
4.28 Voltage Doubler Response with 100K load on Standalone System 53

5.1 GUI for Third Order System 55
5.2 GUI for Second Order System 56
5.3 GUI for First Order System 56

List of Tables

4.1 NI C-RIO Requirements . 41

A.1 Comparison of Simulated Response Time against C-RIO Im-
plementation . 58

A.2 Comparison of Simulated Response Time against C-RIO &
Hardware Implementation . 59

A.3 Comparison of Simulated Response Time against C-RIO &
Hardware Implementation . 59

B.1 NI C-RIO Specifications . 60
B.2 NI 9219 Specifications . 61
B.3 NI 9269 Specifications . 62
B.4 NI USB 6008 Specifications 62

xiii

Chapter 1

Introduction

1.1 Motivation & Objective

In Engineering, there are some real systems which can be modeled
mathematically with differential equations that can be solved using various
numerical techniques. Moreover, there are many control algorithms required
for controlling such systems; like optimal control which requires Search tech-
niques to find local or global minima/maxima with the help of Gradients &
Hessians. These Gradients & Hessians are calculated from numerical meth-
ods and basis on that decision can be made to select the suitable solver.

The comparative analysis will be carried out for different numerical
methods using advanced software tools. This analysis will be done based
upon the type & order of the system. The differential equations can be
obtained from transfer function or state-space model; that will be solved
using available numerical methods. A Graphical User Interface (GUI) will
be developed for selection of different numerical methods. The user will be
prompted to enter the differential equations in the GUI and can also select
the method to solve. The stand-alone system will be prepared for the specific
system model that uses any one of the selected numerical methods using RT
system/hardware.

1.2 Numerical Analysis

Linear Equations are required to solve for various systems continuously
in different engineering problems. Large number of scientific & technical
problems are described by means of single equation with one variable or
system of n equations with n variables. These equations can be divided

1

CHAPTER 1. INTRODUCTION 2

into ordinary differential equations and partial differential equations that
are dependent upon number of independent variables and its corresponding
derivatives. Obtaining solution/s for such equations constitutes one of the
most common and important problems in numerical mathematics.

Ordinary differential equations frequently occur in mathematical mod-
els that arise in many branches of science and engineering. These ordinary
differential equations defined for single value of the independent variable are
called initial value problems satisfying the given differential equation to solve
with an initial condition y(t0) = y0 . These concept was proposed by Cauchy
in Cauchy’s Theorem.
The various numerical methods which are used are discussed in the next
chapter.

These equations can be defined as linear or nonlinear according to the
character of functions appearing in these equations. The corresponding clas-
sification of such algebraic equations is given in figure (1.1).
The class of single nonlinear equations is divided into polynomial and tran-
scendent equations.

Figure 1.1: Non-Linear Equations as well as Equations with Complex-Roots

Combining math knowledge with some knowledge of programming and
developing the ability of selecting appropriate numerical algorithms help to
solve a large range of day-to-day problems. However, closed form analytical
solutions for majority real world problems is not possible. Instead com-
puter algorithms are used to calculate numerical solutions for such problems.
Increase in complexity of the systems increases the number of differential
equations; that can be solved with simple/complex programs written to run

CHAPTER 1. INTRODUCTION 3

on a programmable computers with high speed and low cost. The techniques
for solving these differential equations were developed before existence of
programmable computers. Currently, the computer can solve these problems
that were though for the fastest supercomputers just a decade ago.

Computing numerical solutions to those problems for which there is no
closed form algebraic solution (e.g. root finding, many integrals, approxi-
mation problems, etc); the focus is to obtain practical numerical solutions
and applying them on large variety of real world problems. Unfortunately
it is very rare that these equations have solutions which can be expressed
in closed form, so it is common to seek approximate solutions by means
of numerical methods. For solving such problems one should be able to
program numerical algorithms in high-level programming softwares such as
MATLAB/LabVIEW. MATLAB stands for Matrix Laboratory & LabVIEW
stands for Laboratory Virtual Instrument Engineering Workbench. Also,
the various numerical methods are programmed and implemented on the
real-time target. The RT target support is provided by C-RIO stands for
Compact Reconfigurable Input/Output.
More details for C-RIO are provided in later chapter/s.

1.3 Thesis Organization

In first chapter, motivation & objective of the project is discussed fol-
lowed by introduction of the numerical methods and how it can be used to
solve various systems using advance softwares. The second chapter covers
the theoretical explanation of various numerical methods that will be stud-
ied and implemented. This chapter also covers the algorithm steps which
will be useful to prepare the code of various numerical methods. In the third
chapter, the simulated results are discussed. The results are available for the
different systems that are solved using numerical methods prepared in MAT-
LAB as well as LabVIEW. In the fourth chapter, the RT hardware (CRIO)
is explored and the simulated results are verified on the real hardware. Also,
real system is prepared to compare the results of CRIO. All these results are
compared against each other to carry out comparative analysis and finally
the conclusion is drawn for the same. The comparative analysis is shown in
the tabular form in Appendix A while Appendix B covers some information
about advance softwares and hardware specifications required for the project
work.

Chapter 2

Various Numerical Methods

2.1 Methods for Ordinary Differential Equa-

tions

This chapter explores ordinary differential equations of the form

dy

dt
= f(t, y) (2.1)

which uses various numerical methods to obtain the solution for such equa-
tions. The method in general form is as follows:

Next value = Previous value + slope × step-size

or, in mathematical terms,

yi+1 = yi + φh

This formula is applicable for step by step computation and can trace the
trajectory of the solution. It is also helpful to plot the polygon path joining
the approximation points (tk, yk) and plot the trajectory as shown in figure
(2.1).

Initial Value Problems can be solved using one-step numerical meth-
ods such as Euler’s Method, Heun’s Method, RK Method etc. All these
self-starting & non self-starting methods are discussed in the subsections of
this chapter. Runge-Kutta (RK) method is single-step self-starting method
which is used to find the initial values for non self-starting methods such as
Predictor-Corrector Methods (ABM, Milne’s, Hamming etc.); this method is
described first with its algorithm.

4

CHAPTER 2. VARIOUS NUMERICAL METHODS 5

Figure 2.1: Graphical depiction of single step

Runge-Kutta (RK) Method:

Figure 2.2: Graphical depiction for fourth order RK method

The Runge-Kutta (RK) method of order N = 4 is most popular. The
fourth-order RK method gives better accuracy, stability and is also easy to
program. This method is based on computing yk+1 and starts with the initial
point (t0, y0) and generates the sequence of approximation using following
formula:

yk+1 = yk +
h(k1 + 2k2 + 2k3 + k4)

6
(2.2)

CHAPTER 2. VARIOUS NUMERICAL METHODS 6

where,
k1 = f(tk, yk)
k2 = f(tk + h

2
, yk + h

2
f1)

k3 = f(tk + h
2
, yk + h

2
f2)

k4 = f(tk + h, yk + hf3)

Algorithm for (RK) Method:

Algorithm steps for Runge-Kutta fourth order method are as follows:
1. Define f(t,y) [function of the differential equation y’ = f(t, y)]
2. Enter t, y, h [initial values]
3. For i = 1(1) n, do till (12)
4. k1 ← hf(t, y)
5. k2 ← hf(t + h/2, y + k1/2)
6. k3 ← hf(t + h/2, y + k2/2)
7. t ← t + h
8. k4 ← hf(t, y + k3)
9. y ← y + h(f1 + 2f2 + 2f3 + f4)/6
10. ym ← ”the mathematical solution of the equation to be supplied”
11. Write t, y, ym
12. Next i
13. End

Remarks: Initial values are assumed as t, y. Compute the value of y at
the points t0 + h, t0 + 2h, ...

2.1.1 Single Step (Self Starting) Methods

Euler’s Method

Euler Method is one of the simplest representative of the single-step
methods, discussed below with the help of figure (2.3). Computation of
consecutive values yn = y(tn) = y(x0 + n · h) for n = 1, 2, 3, . . . , begins
from the initial point P0 = (t0, y0), at which

dy(t)

dt
= f [t0, y(t0)] = f [t0, y0] (2.3)

CHAPTER 2. VARIOUS NUMERICAL METHODS 7

Figure 2.3: Euler’s Approximation

The value of the function f(t0, y0) is equal to the tangent of the angle,
at which the tangent to the curve y(t) satisfies the equation (2.3). Therefore,
first computed value of this function is:

y1 = y(t0 + h) = y0 + hf [t0, y(t0)] (2.4)

Hence, point P1 = (t1, y1) is obtained, which is considered as the initial point
in computing y2, related to point P2 = (t2, y2). Iterating the process several
times, calculates the discrete values yn of the function approximating desired
solution y(t).

Algorithm for Euler’s Method:

Algorithm steps for One-Step Euler’s Method are as follows:
1. Define f(t, y) [function of the differential equation y’ = f(t, y)]
2. Enter t, y, h[initial values]
3. yi ← ym ← ys[yi = ym = ys]
4. For i = 1(1) n, do till (10)
5. ys ← ys + h.f(t, ys)
6. tn ← t + h
7. ye ← ”the exact solution of the equation to be supplied, with t replaced
by tn”
8. Write tn, ys
9. t ← tn
10. Next i
11. End

CHAPTER 2. VARIOUS NUMERICAL METHODS 8

Remarks: Initial values are assumed as ys in step 3 & in step 4 it is
assumed as yi and ym. Compute the value of y at the points t0 + h, t0 +
2h, ...

Heun’s Method

In Heun’s method, an auxiliary coordinate is computed first y∗n+1 = yn
+ hf (tn, yn) and used next to find the function value with quantity

f(tn+1, y
∗
n+1) (2.5)

expressing the slope coefficient described by equation (2.6) and passing through
the point P ∗

n+1 = (tn+1, y
∗
n+1) being first approximation of the required solu-

tion. The point, giving more better approximation, Pn+1 = (tn+1, yn+1), has
the coordinate yn+1 calculated from following formula:

yn+1 = yn +
1

2
h[f(tn, yn) + f(tn+1, y

∗
n+1] (2.6)

2.1.2 Predictor-Corrector Methods

In single-step methods discussed above, the value yn+1 = y(tn+1) of
the given function is calculated on the basis of only one value yn = y(tn),
computed during the previous iteration. Whereas the multi-step methods
not only calculates the value yn = y(tn) but also yn−k+1 = y(tn−k+1), yn−k+2

= y(tn−k+2), yn−k+3 = y(tn−k+3), . . . , yn = y(tn), where the number of
steps k = 1, 2, 3, . . . determines steps of the method.

ABM’s Method

The Adams-Bashforth-Moulton (ABM) Method is a multi-step Predictor-
Corrector Method derived from the fundamental theorem of calculus:

y(tk+1) = y(tk) +

∫ tk+1

tk

f(t, y(t))dt (2.7)

The predictor of ABM requires the Lagrange Polynomial approximation
for f(t, y(t)) based on the points (tk−3, fk−3), (tk−2, fk−2), (tk−1, fk−1) and

CHAPTER 2. VARIOUS NUMERICAL METHODS 9

(tk, fk). The Adam-Bashforth Predictor is obtained by integrating over the
interval [tk, tk+1] in equation (2.7).[Eq. (2.8)]

pk+1 = yk +
h

24
(−9fk−3 + 37fk−2 − 59fk−1 + 55fk) (2.8)

The corrector is obtained similarly by using the value pk+1 that is
computed by equation (2.8). A second Lagrange polynomial for f(t,y(t)) is
formed, on the basis of points (tk−2, fk−2), (tk−1, fk−1), (tk, fk) and the new
point (tk+1, fk+1) = (tk+1, f(tk+1, pk+1)). This polynomial is then integrated
over [tk, tk+1], to get the Adams-Moulton corrector. [Eq. (2.9)]

yk+1 = yk +
h

24
(fk−2 − 5fk−1 + 19fk + 9fk+1) (2.9)

Algorithm for ABM Method:

Algorithm steps for Multi-Step ABM Method are as follows:
1. f(t, y) ← ’Function to be supplied’
2. Enter t0, t1, t2, t3
3. Enter y0, y1, y2, y3
4. h ← t1 - t0
5. For i = 1(1) n, do till (26)
6. f0 ← f(t0, y0)
7. f1 ← f(t1, y1)
8. f2 ← f(t2, y2)
9. f3 ← f(t3, y3)
10. yp ← y3 + h(-9f0 + 37f1 - 59f2 + 55f3)/24
11. t4 ← t3 + h
12. c ← y3 + h(f1 - 5f2 + 19f3)/24
13. yc ← c + 9h f(t4, yp)/24
14. if | yp - yc | < 10−6

15. Write t4, yc
16. Else yp ← yc
17. Goto (13)
18. t0 ← t1
19. t1 ← t2
20. t2 ← t3
21. t3 ← t4
22. y0 ← y1
23. y1 ← y2

CHAPTER 2. VARIOUS NUMERICAL METHODS 10

24. y2 ← y3
25. y3 ← yc
26. Next i
27. End

Milne’s Method

Another well-known Predictor-Corrector method is Milne-Simpson Method.

y(tk+1) = y(tk−3) +

∫ tk+1

tk−3

f(t, y(t))dt (2.10)

The predictor requires the Lagrange Polynomial approximation for f(t,
y(t)) based on the points (tk−3, fk−3), (tk−2, fk−2), (tk−1, fk−1) and (tk, fk).
It is integrated over the interval [tk−3, tk+1] in equation (2.10) to obtained
Milne Predictor. [Eq. (2.11)]

pk+1 = yk−3 +
4h

3
(2fk−2 − fk−1 + 2fk) (2.11)

The corrector is obtained similarly using the value pk+1 that is com-
puted by equation (2.11). A second Lagrange polynomial for f(t,y(t)) is
formed, basis on the points (tk−2, fk−2), (tk−1, fk−1), (tk, fk) and the new
point (tk+1, fk+1) = (tk+1, f(tk+1, pk+1)). The polynomial is then integrated
over [tk−1, tk+1], and the result is familiar Simpson’s rule:

yk+1 = yk−1 +
4h

3
(fk−1 + 4fk + fk+1) (2.12)

Algorithm for Milne’s Method:

Algorithm steps for Multi-Step Milne’s Method are as follows:
1. f(t, y) ← ’Function to be supplied’
2. Enter t0, t1, t2, t3
3. Enter y0, y1, y2, y3
4. h ← t1 - t0
5. For i = 1(1) n, do till (24)
6. f1 ← f(t1, y1)
7. f2 ← f(t2, y2)

CHAPTER 2. VARIOUS NUMERICAL METHODS 11

8. f3 ← f(t3, y3)
9. yp ← y0 + 4h(2f1 - f2 + 2f3)/3
10. t4 ← t3 + h
11. c ← y2 + h(f2 + 4f3)/3
12. yc ← c + h f(t4, yp)/3
13. if | yp - yc | < 10−6

14. Write t4, yc
15. Else yp ← yc
16. Goto (12)
17. t1 ← t2
18. t2 ← t3
19. t3 ← t4
20. y0 ← y1
21. y1 ← y2
22. y2 ← y3
23. y3 ← yc
24. Next i
25. End

Hamming’s Method

Another Predictor-Corrector method is Hamming Method. Its pre-
dictor is same as Milne’s Predictor but there is a modification in corrector
compare to Milne-Simpson. The Corrector is given by:

yk+1 =
−yk−2 + 9yk

8
+

3h

8
(−fk−1 + 2fk + fk+1) (2.13)

Euler’s Predictor Method

Euler’s Predictor-Corrector Method uses the simple Euler’s Formula as
the predictor and the improved Euler’s Formula as corrector. The simple
Euler’s formula is given by:

y(t+ h) = y(t) + hf(t, y) (2.14)

and the improved Euler’s Formula is given by:

y(t+ h) = y(t) +
h

2
[f(t, y) + f(t+ h, y + hf(t, y))] (2.15)

CHAPTER 2. VARIOUS NUMERICAL METHODS 12

Algorithm for Euler’s Predictor-Corrector:

Algorithm steps for Euler’s Predictor-Corrector are as follows:
1. f(t, y) ← ’Function to be supplied’
2. Enter t0, y0, h
3. yp ← y0 + h f(t0, y0)
4. t1 ← t0 + h
5. c ← y0 + h/2 f(t0, y0)
6. yc ← c + h/2 f(t1, yp)
7. if | yp - yc | < 10−6

8. y1 ← yc
9. Write t1, y1
10. Else yp ← yc
11. Goto (6)
12. For i = 1(1)n, do till (25)
13. yp ← y0 + 2h f(t0, y0)
14. t2 ← t1 + h
15. c ← y1 + h/2 f(t1, y1)
16. yc ← c + h/2 f(t2, yp)
17. if | yp - yc | < 10−6

18. Goto (21)
19. Else yp ← yc
20. Goto (16)
21. Write t2, yc
22. t1 ← t2
23. y0 ← y1
24. y1 ← yc
25. Next i
26. End

Chapter 3

Simulation Results

The Simulated Results of different Numerical Methods is obtained using
High-Level Programming Languages; mentioned earlier in the Introduction.
Initially the MATLAB codes for different methods are written using m-file
and results are tested. These same methods are also designed in LabVIEW on
the basis of algorithms which are discussed in the previous chapter-Numerical
Methods. To verify the simulation results, the simple first order ordinary
differential equation is approximated and passed as a function inside the
MATLAB as well as LabVIEW. Then after obtaining the same results in
both softwares at different iterations using different numerical methods; these
methods were used to solve different type of system/models.

The concept of Mathematical modeling is used to define the different
type of system models. The mathematical modeling of electrical & electronics
circuit is done and the equations are design and approximated in the first
order differential equations. These set of ODEs are passed as a function
inside both softwares and the comparative study of the results is carried out
for different numerical methods. The analysis & verification of these models
is done by real-time implementation on the hardware; (discussed in later
chapter/s-RT Implementation).

3.1 MATLAB Simulation

In this section, the details of designing various numerical methods in
MATLAB and the code for the same are discussed. All initial value problems
can be solved and the approximate solution can be obtained. If solution with
higher precision is required then more computing efforts and sophisticated
algorithms are used. One of the computing software, MATLAB is used for

13

CHAPTER 3. SIMULATION RESULTS 14

verification of results using ode function of MATLAB. (Designing of various
methods is done in LabVIEW).

Besides ode function, some other important MATLAB functions are
also used for the coding of numerical methods. These functions solve the
purpose of lengthy scripts which were to be written in Turbo C and simplify
the codes.

feval is MATLAB command to solve the value of function. Syntax is
feval(function name, function values). Example- feval(f, value1, value2, . .
.).
This function is solved by writing the m-file in MATLAB where the func-
tion values are passed as arguments and the function call is made in this file
which is considered as the main program file. Also, plot command is used in
MATLAB script to plot the graph which is the part of our solution shown
in different figures below. This plot command is enrich with various fea-
tures where multiple plots with legends, different colors & pattern are made
possible. Moreover, title is also used to give the title to each plot.

Using various numerical methods, single first order differential equation-

y’ = 30 - 5y (3.1)

is computed and the results are obtained at different iterations for various
step size.
The initial conditions defined for computing this equation is y(0) = 1 and
the size of step is a very small value.

3.1.1 Euler’s Method

Euler’s approximation is obtained by updating the resulting values ob-
tained from the given initial conditions. These values are a sequence of points
computed successively from the previous point and the chosen step size. The
function for the approximation is as follows:
Euler’s Function
function [T,Y] = eulers(f,a,b,y0,m)
h = % step size;
T = zeros(1,m+1);
Y = zeros(1,m+1);
T(1) = % starting point;
Y(1) = % initial condition;

CHAPTER 3. SIMULATION RESULTS 15

for j=1:m,
Y(j+1) = Y(j) + h*feval(f,T(j),Y(j));
T(j+1) = a + h*j;

end

Results of Euler’s Method

Figure 3.1: Euler’s Approxi-
mation 109 iterations

Figure 3.2: Euler’s Approxi-
mation 50 iterations

Figure 3.3: Euler’s Approx-
imation less iterations small
step size

Figure 3.4: Euler’s Approxi-
mation more iterations small
step size

Different figures show the solution for different iterations using Euler’s
Method. The step-size is kept fix; h = 0.1 and the difference in graph is
observed on the basis of variation in number of iterations. The figure (3.1)
shows graph for more than 100 iterations and figure (3.2) shows graph for
very less iterations.
If the step size is changed to h = 0.01 then the nature in the curve is changed
drastically. The response is seen much slower if the iterations are very less;
figure (3.3). But if the iterations are more, then the final value is achieved
but time taken is much more compare to step size of h = 0.1.

CHAPTER 3. SIMULATION RESULTS 16

3.1.2 Heun’s Method

Similar to Euler’s Method, this method also depends on initial con-
ditions and appropriate step size; but the successive sequence of points is
approximated after updating the results twice with the same values. This
can be made clear from the function written below for the Heun’s Method:
Heun’s Function
function [T,Y] = heun(f,a,b,y0,m)
h = % step size;
T = zeros(1,m+1);
Y = zeros(1,m+1);
T(1) = % starting point;
Y(1) = % initial condition;
for j=1:m,

s1 = feval(f,T(j),Y(j));
k = Y(j) + h*s1;
T(j+1) = a + h*j;
s2 = feval(f,T(j+1),k);
Y(j+1) = Y(j) + h*(s1 + s2)/2;

end

Results of Heun’s Method

Figure 3.5: Heun’s Method for
109 iterations

Figure 3.6: Heun’s Method for
50 iterations

Similar type of results which were shown in Euler’s Method are dis-
cussed in different figures for Heun’s Method. Figures (3.5) & (3.6) are for
step-size h = 0.1. Figures (3.7) & (3.8) are for step size h = 0.01.
Here, again the results for decreasing the step size and variation of iterations
are same as that of Euler’s Approximation.

CHAPTER 3. SIMULATION RESULTS 17

Figure 3.7: Heun’s Method few
iterations small step size

Figure 3.8: Heun’s Method
more iterations small step size

3.1.3 RK Method

Runge-Kutta (RK) Method is derived from Taylor Method to perform
several function evaluations at each step and eliminates the necessity to com-
pute higher derivatives. This method can be constructed for any order N.
The function for fourth order (N=4) RK Method is as follows:
RK Function
function [T,Y] = rk m(f,a,b,y0,m)
h = % step size;
T = zeros(1,m+1);
Y = zeros(1,m+1);
T(1) = % starting point;
Y(1) = % initial condition;
for j=1:m,

t0 = T(j);
y0 = Y(j);
s1 = h*feval(f,t0,y0);
s2 = h*feval(f,t0+h/2,y0+s1/2);
s3 = h*feval(f,t0+h/2,y0+s2/2);
s4 = h*feval(f,t0+h,y0+s3);
Y(j+1) = yj + (s1 + 2*s2 + 2*s3 + s4)/6;
T(j+1) = a + h*j;

end
This method is used to compute initial values of Predictor-Corrector (PC)
Methods.

3.1.4 ABM Method

The multi-step ABM method requires four starting points which are
computed by RK method. These points are passed in the predictor formula

CHAPTER 3. SIMULATION RESULTS 18

and the next value is obtained. This value is passed in the corrector formula
where is error is reduced and the minimal solution is obtained. Set of points
are successively predicted, approximated and corrected based on the step size
chosen for several iterations. The function for ABM is as follows:
ABM Function
function [T,Y] = abm(f,T,Y)
n = length(T);
if n<5, return, end;
F0 = feval(f,T(1),Y(1));
F1 = feval(f,T(2),Y(2));
F2 = feval(f,T(3),Y(3));
F3 = feval(f,T(4),Y(4));
h = T(2)-T(1); % step size
h2 = h/24;
a = T(1);
for k = 4:n-1,

p = Y(k) + h2*(-9*F0 + 37*F1 - 59*F2 + 55*F3);
T(k+1) = a + h*k;
F4 = feval(f,T(k+1),p);
Y(k+1) = Y(k) + h2*(F1 - 5*F2 + 19*F3 + 9*F4);
F0 = F1;
F1 = F2;
F2 = F3;
F3 = feval(f,T(k+1),Y(k+1));

end

Results of ABM Method

Figure 3.9: ABM Result for h = 0.15

CHAPTER 3. SIMULATION RESULTS 19

Figure 3.10: ABM Method for
109 iterations

Figure 3.11: ABM Method for
less iterations

Different figures show the solution for different iterations and the effect
of change in graph with the change in step size. In this method, the accuracy
of solution is more dependent on step size irrespective of the number of
iterations. Higher number of iterations give faster response but slightly higher
step value modifies the nature of curve; figure (3.9).
Figures (3.10) & (3.11) show the solution for very small step size h = 0.01
at different iterations.

3.1.5 Milne’s Method

The multi-step Milne-Simpson method requires three starting points
which are computed by RK method. These points are passed in the predictor
formula and the next value is obtained. This value is passed in the corrector
formula where is error is reduced and the minimal solution is obtained. Set
of points are successively predicted, approximated and corrected based on
the step size chosen for several iterations. The function for this method is as
follows:
Milne Function
function [T,Y] = milne(f,T,Y)
n = length(T);
if n<5, return, end;
F0 = feval(f,T(1),Y(1));
F1 = feval(f,T(2),Y(2));
F2 = feval(f,T(3),Y(3));
F3 = feval(f,T(4),Y(4));
h = T(2)-T(1); % step size
a = T(1);
pold = 0;
yold = 0;

CHAPTER 3. SIMULATION RESULTS 20

for k = 4:n-1,
pnew = Y(k-3) + 4*h*(2*F1 - F2 + 2*F3)/3;
pmod = pnew + 28*(yold-pold)/29;
T(k+1) = a + h*k;
F4 = feval(f,T(k+1),pmod);
Y(k+1) = Y(k-1) + h*(F2 + 4*F3 + F4)/3;
pold = pnew;
yold = Y(k+1);
F1 = F2;
F2 = F3;
F3 = feval(f,T(k+1),Y(k+1));

end

Results of Milne’s Method

Figure 3.12: Milne Result for h = 0.15

Figure 3.13: Milne’s Method
61 iterations

Figure 3.14: Milne’s Method
109 iterations

CHAPTER 3. SIMULATION RESULTS 21

Different figures show the solution for different iterations and the effect
of change in graph with the change in step size. In this method, the accuracy
of solution is more dependent on step size irrespective of the number of
iterations. Higher number of iterations give faster response but slightly higher
step value modifies the nature of curve; figure (3.12).
Figures (3.13) & (3.14) show the solution for very small step size h = 0.01
at different iterations.

3.1.6 Hamming’s Method

The multi-step Hamming method is similar to Milne-Simpson Method
except the correction formula as described earlier. The function for this
method is as follows:
Hamming Function
function [T,Y] = hamming(f,T,Y)
n = length(T);
if n<5, return, end;
F0 = feval(f,T(1),Y(1));
F1 = feval(f,T(2),Y(2));
F2 = feval(f,T(3),Y(3));
F3 = feval(f,T(4),Y(4));
h = T(2)-T(1); %step size
a = T(1);
pold = 0;
cold = 0;
for k = 4:n-1,

pnew = Y(k-3) + 4*h*(2*F1 - F2 + 2*F3)/3;
pmod = pnew + 112*(cold-pold)/121;
T(k+1) = a + h*k;
F4 = feval(f,T(k+1),pmod);
cnew = (9*Y(k) - Y(k-2) + 3*h*(-F2+2*F3+F4))/8;
Y(k+1) = cnew + 9*(pnew-cnew)/121;
pold = pnew;
cold = cnew;
F1 = F2;
F2 = F3;
F3 = feval(f,T(k+1),Y(k+1));

end

CHAPTER 3. SIMULATION RESULTS 22

Figure 3.15: Hamming’s
Method 44 iterations

Figure 3.16: Hamming’s
Method 109 iterations

Figure 3.17: Hamming Result for h = 0.15

Results of Hamming’s Method

Hamming’s Method also have the results similar to above two predictive-
corrective methods. Figures (3.15) & (3.16) show the solution for very small
step size h = 0.01 at different iterations.
Figure (3.17) for slightly higher step size, h = 0.15

3.1.7 Simulation of Systems

The above methods can be used to solve the practical systems in the
real-world. Any practical system can be modeled and simulated in the MAT-
LAB using ode solvers or designing the model in MATLAB Simulink
using various blocks. Few different real-world systems are taken into con-
sideration for the simulation and verification on real-time as well. Here the
simulation of these systems is discussed and the real-time implementation of
all the system is discussed in the next chapter/s. One of the systems is Full-
wave Rectifier with Three-Element Filter, other is Unsymmetrical

CHAPTER 3. SIMULATION RESULTS 23

Voltage Doubler & another is a Chaotic System, Lorenz Attractor.

Full-wave Rectifier With Three-Element Filter

Functions of current and voltages are considered as state variables in
this circuit to carry out time-domain analysis. The values of currents and
voltages corresponds to state variables shown in the set of differential equa-
tions below:

dx(t)

dt
=

1

C1

∗ y(t)− 1

C1R
∗ x(t) (3.2)

dy(t)

dt
=

1

L
∗ z(t)− 1

L
∗ x(t) (3.3)

dz(t)

dt
=

1

C2

∗ Is[exp[
|us(t)| − z(t)

2 ∗ VT
]− 1]− 1

C2

∗ y(t) (3.4)

where, us(t) = 10 sin(2π*50*t) Volts.

Figure 3.18: Result of solver ode113

Figure 3.19: Result of solver
ode23

Figure 3.20: Result of solver
ode23s

CHAPTER 3. SIMULATION RESULTS 24

These set of equations (3.2), (3.3) & (3.4) are solved in MATLAB
using odeset. The solutions obtained with zero initial conditions are shown
in figures which are the simulation results of output voltage of the system.
Graph shown in figure (3.18) is the result of ode113. ode113 is a multi-step
solver which is equivalent to ABM PC method. The other solver is ode23
which is an implementation of an explicit Runge-Kutta (pair of Bogacki and
Shampine) method. The result of which is shown in figure (3.19). Figure
(3.20) shows the graph obtained from ode23s solver; based on a modified
Rosenbrock formula of order 2.

Voltage Doubler

Figure 3.21: Result of solver ode113

Similar to previous system, this circuit is also analyzed using node volt-
ages. These nodes are used as state variables. Here also, applying the concept
of mathematical modeling for different state variables the first order differ-
ential equations are obtained as follows:

dx(t)

dt
=
dus(t)

dt
+
Is
C1

[exp(
−x(t)

VT
)− 1]− Is

C1

[exp(
x(t)− y(t)

VT
)− 1] (3.5)

dy(t)

dt
=

Is
C2

[exp(
x(t)− y(t)

VT
)− 1]− 1

RC2

y(t) (3.6)

where, us(t) = Vm sin(2π*50*t) Volts.

These set of equations (3.5) & (3.6) are also solved in MATLAB using
odeset. Similar to previous system the solutions obtained with zero initial
conditions are shown in figures which are the simulation results of output

CHAPTER 3. SIMULATION RESULTS 25

Figure 3.22: Result of solver ode23

voltage of the system. Graph shown in figure (3.21) is the result of ode113 a
multi-step solver equivalent to ABM PC method. The other solver is ode23
which is an implementation of an explicit Runge-Kutta (pair of Bogacki and
Shampine) method. The result of which is shown in figure (3.22). Figure
(3.23) shows the graph obtained from ode23s solver; based on a modified
Rosenbrock formula of order 2.

Figure 3.23: Result of solver ode23s

Lorenz Attractor

The Lorenz equations, given by Edward Lorenz are well-known for
having chaotic solutions for several parameter values and specific initial con-
ditions. The model consists of three ordinary differential equations known
as the Lorenz equations:

dx

dt
= 10(y − x) (3.7)

CHAPTER 3. SIMULATION RESULTS 26

Figure 3.24: Lorenz Attractor Design in Simulink

dy

dt
= x(28− z)− y (3.8)

dz

dt
= xy − 8

3
z (3.9)

The above set of equations (3.7), (3.8) & (3.9) are designed in MATLAB
Simulink, figure (3.24). The initial conditions are set to [0.6 0.6 0.6] and solver
ode23s is used to solve the system and accordingly the chaotic response is
generated as shown in figure (3.25).

Figure 3.25: Lorenz Attractor Chaotic Response

CHAPTER 3. SIMULATION RESULTS 27

3.2 LabVIEW Simulation

In this section, the details of designing various numerical methods in
LabVIEW using the various algorithms are discussed. The design of various
algorithms is done in the simplest way in LabVIEW with the graphical pro-
gramming facility of LabVIEW. The LabVIEW is a high level programming
language with the ready-made blocks available and the designer/ program-
mer can get rid of the program codes. The description for various blocks
used in the design of methods is done under the different methods describing
each blocks used for designing the algorithm.

The various blocks used for the design in the Block Diagram of Lab-
VIEW are from the Express VI & Programming Section in LabVIEW.
Also, Mathematics Section is used more for designing various equations
& formulas of the numerical methods. The complex design is converted into
subVI using Edit → SubVI and the solution obtained from these subVIs
are processed further. Arrays, Numerics, Comparison, Graphs and other
controls/indicators are used from the Front Panel of LabVIEW. The same
equation (3.1) is solved using different numerical methods for comparison
and verification of the results. In LabVIEW this equation is passed through
formula node were the equation is solved with the given initial conditions
and chosen step size. The equation is solved for fix number of iterations in
all the methods so that the comparative analysis can be done easily.

3.2.1 Euler’s Method

In figure (3.26), the outer most loop is the For Loop located on Func-
tions → Programming → Structures Palette. The blocks under the area
of that loop are executed as per For Loop logic of C program. The two ter-
minals in blue N & i are count terminal and iteration terminal respectively.
The number of iterations for which the loop is executed can be set by the
count value. Until the count value is connected the loop is broken and the
code execution is not possible showing the error in For Loop. The number
of iterations executed can be monitored from the terminal i.

The loop inside for loop where the equation is written, is Formula
node located on Functions → Mathematics → Scripts & Formulas .
The formula node supports the different mathematical equations which can
be written in the form of script under the area of node. The border of the
node is used to connect the inputs and outputs of the formula. These input-
outputs are added by right clicking on the border of the node. This node

CHAPTER 3. SIMULATION RESULTS 28

Figure 3.26: Euler Method
LabVIEW code Figure 3.27: Euler Method 100

iterations

evaluates the formula as per the input values and the solution can be seen
by connecting the indicator with desired output connector.

The rest of the blocks are used to design the Euler’s formula using add,
multiply etc. blocks located at Functions → Express Numeric. The
initial conditions and step size required for the calculation are passed through
connection of controls; where a user can set the desired values. These controls
are placed in the Front Panel which is also called a GUI of LabVIEW.

The figure (3.27), shows the graph of equation (3.1) solved using Euler’s
Method. This graph is displayed using the Controls → Graph Indicator
in Front Panel.

3.2.2 Heun’s Method

The figure (3.28) shows the Heun’s Code designed in LabVIEW. The
blocks used here are mostly similar to that of Euler’s Method. But there
are two formula node used in the Heun’s code. As discussed in the function
of Heun’s Method in section (3.1.2) the result of the equation is updated
twice in the same iteration and hence two nodes are required which passes
different input values updated from the equation in that same iteration. In
addition to this the rest of the blocks are add, multiply, divide etc. from
the Numeric Palette.

The figure (3.29), shows the graph of equation (3.1) solved using Heun’s
Method. This graph is displayed using the Waveform Graph in Front

CHAPTER 3. SIMULATION RESULTS 29

Figure 3.28: Heun’s Method
LabVIEW code

Figure 3.29: Heun’s Method
100 iterations

Panel. The number of iterations in Heun’s as well as Euler’s Method was
kept same for the comparison of results for single point methods.

3.2.3 RK Method

Figure 3.30: Fourth Order RK Method LabVIEW code

The fourth order Runge-Kutta (RK) method is considered the standard
single point numerical method. This method is design in LabVIEW (figure
(3.30)) for calculating the initial points of Predictive-Corrective (PC) meth-
ods. The fourth order calculations require four formula nodes in which the
weights are updated four times in order to obtained more accurate solution
directly after one iteration.

CHAPTER 3. SIMULATION RESULTS 30

3.2.4 ABM Method

One of the Predictive-Corrective (PC) methods is ABM method, shown
in figure (3.31). The Predictive & Corrective formulas are very complex
and their design in LabVIEW is very lengthy. So this method has different
SubVIs designed in the LabVIEW which have had reduced the complexity
of the code. Different SubVIs are made for step-size calculation, passing the
equation in formula node, Predictive formula, Corrective formula etc.

Figure 3.31: ABM code in LabVIEW

Figure 3.32: ABM step-size
Figure 3.33: Equation in For-
mula Node

CHAPTER 3. SIMULATION RESULTS 31

Figure (3.32) shows the SubVI of step-size. There is need of specific
step-size in these PC methods. As we discussed earlier that four initial
points are needed to start ABM method, 1-D array is used in which four
values are stored. These values are required to pass one after the other
and hence indexing is to be done. The two blocks connected with ‘0’ &
‘1’ before subtract block, are Index Array blocks located at Functions
→ Programming → Array Palette. Other figure (3.33) shows SubVI
for formula-node. Here also the formula node is used to solve the equation
(3.1) as in previous methods. The for loop is used here with fix number of
iterations; that is ‘4’. This gives four values as output and is stored in 1-D
array as mentioned above. These values are used in predictive and corrective
approximation as discussed below.

Figure 3.34: ABM Predictor
Figure 3.35: ABM Corrector

Figure 3.36: ABM Error < 10−6

Figure (3.34) shows the predictive design of ABM method & figure
(3.35) shows corrective design. These Predictor and Corrector are design with
the simple Mathematics blocks. The predictive and corrective formulas
are designed such that all four values stored in 1-D array are required in
the calculation in same iteration. As these points are passed through array,
indexing is required. Index Array blocks are used along with the numeric
constants where the numeric constants are the fix (constant) values of the
formula. These blocks are connected with different math blocks such that

CHAPTER 3. SIMULATION RESULTS 32

the required formula is designed. This predictive corrective action is done
until the error is not reduced to the minimum.

Figure 3.37: ABM Next Values

Figure 3.38: ABM Method for
100 iterations

As per the algorithm in section (2.2.2) the error must be less than 10−6.
Figure (3.36) shows the LabVIEW code for the error reduction and giving
the corrected values as output. The outer loop in this figure (3.36) is while
loop located in Functions → Programming → Structures Palette. The
predicted points are passed in the formula node and the equation is evaluated
till the condition is satisfied, that is error is less than 10−6. The blocks under
while loop are connected with stop if true logic, which is indicated by red
button type icon at right corner of while loop. The comparison block is used
to design the logic for comparing the error value. Comparison blocks are
found in Functions → Programming → Comparison . These corrected
values are passed for the next iteration (figure (3.37)) where the another set
of values will be approximated and at the end graph is obtained as shown in
figure (3.38)

3.2.5 Milne’s Method

Milne’s Predictive-Corrective Method has three initial points. Figure
(3.39) shows the Milne’s LabVIEW code. Similar to ABM, this method also
has some lengthy formulas due to which the coding becomes complex. The
complexity can be reduced by converting several codes of LabVIEW into
SubVIs.

Figure (3.40) shows the SubVI for step-size calculation which is similar
to ABM method. Also from the figure (3.41) it is clear that the formula

CHAPTER 3. SIMULATION RESULTS 33

Figure 3.39: Milne’s code in LabVIEW

node is used to solve the equation (3.1); but here 3 initial points are required
and the zeroth point is not considered later on. Therefore, the for loop is
fixed with 3 iterations and the first iteration is incremented by one so that
the iterations start from ‘1’ instead of ‘0’. These evaluated values are stored
in 1-D array as it was in the case of ABM method and then the Predictive-
Corrective SubVIs were designed to obtain the solution for next iterations
[figure (3.42) & (3.43)].

The Predictive-Corrective design for this method is done as per same
logic used in ABM method. Here also the math blocks are connected to
design the required formula. Also, the algorithm is such that the absolute
error must be less than 10−6. Therefore, the logic for obtaining the corrected
points for next iterations is similar to ABM method. Only difference we will
see is that the initial point from which the step-size is calculated is never
updated; (it can be made clear from the algorithm in section (2.2.2)). Figure
(3.45) shows that how the corrected values are updated for next iterations
and the graph is seen in figure (3.46).

*Note: Some Research is required in this method to maintain stability &
obtaining bounded solution.

CHAPTER 3. SIMULATION RESULTS 34

Figure 3.40: Milne step-size
Figure 3.41: Equation in For-
mula Node

Figure 3.42: Milne Predictor Figure 3.43: Milne Corrector

Figure 3.44: Milne’s Error < 10−6

Figure 3.45: Milne Next Val-
ues Figure 3.46: Milne’s Method

(unstable)* 100 iterations

CHAPTER 3. SIMULATION RESULTS 35

3.2.6 Euler’s Predictor-Corrector Method

Figure 3.47: Euler’s PC in LabVIEW

Figure (3.47) shows the LabVIEW code for Euler’s Predictor-Corrector
method. This method is single-point, self-starting, predictor-corrector method.
The single point is approximated as per Euler’s approximation and it is up-
dated till the absolute error is less than 10−6. This value is passed into
the predictor-corrector algorithm and the predictive-corrective values are ob-
tained. These values are again updated till the error is less than 10−6 (figure
(3.48)).

Initially, the method is single point, but the predictive & corrective val-
ues are obtained on the basis of present and previous values. But the method
uses its own updated value, it is still considered as self-starting method. The
PC algorithms design logic is similar to that of previous two PC methods.
Figures (3.49) & (3.50), respectively shows predictor & corrector code de-
signed in LabVIEW for this method. The absolute error is minimize up to
less than 10−6 and the updated values are further solved in the next itera-
tions by this algorithm and the resulting graph is obtained as shown in figure
(3.51).

CHAPTER 3. SIMULATION RESULTS 36

Figure 3.48: Euler’s PC Error < 10−6

Figure 3.49: Euler’s Predictor
Figure 3.50: Euler’s Corrector

Figure 3.51: Euler’s PC for 100 iterations

CHAPTER 3. SIMULATION RESULTS 37

3.2.7 Simulation of Systems

The numerical methods designed in LabVIEW are to be used for solv-
ing the practical systems of real-world. The mathematical modeling of real
systems is done and the ordinary differential equations are approximated in
the form of simple equations. These set of equations are solved using numer-
ical methods described above and simulated results can be obtained. The
comparative analysis is discussed in Appendix A.

The same systems which are simulated in MATLAB are used for the
simulation in LabVIEW. The single point numerical methods fail to simulate
such non-linear and chaotic systems. Predictor-Corrector methods are used
to solve such systems. The set of equations (3.2), (3.3) & (3.4) resembles
the model of full-wave rectifier, equations (3.5) & (3.6) resembles to voltage
doubler model and equations (3.7), (3.8) & (3.9) are for chaotic system.
These systems are solved using different PC methods and the results are
obtained. The comparative analysis for these systems is also discussed in
Appendix A.

Full-wave Rectifier With Three Element Filter

The Euler’s and ABM PC methods produce similar response and it is
shown in figure (3.52). Figure (3.53) shows the output response of Milne’s
PC method which produces slower response compare to previous two. Also
this method gives unbounded output in some cases and hence, it is considered
least effective method.

Figure 3.52: Output Response
of EPC & ABM method

Figure 3.53: Output Response
of Milne method

Unsymmetrical Voltage Doubler

The equations (3.5) & equation (3.6) are also solved in LabVIEW using
various predictor-corrector numerical methods like it was done for previous

CHAPTER 3. SIMULATION RESULTS 38

Figure 3.54: ABM Predictor
Corrector Result

Figure 3.55: Milne Predictor
Corrector Result

Figure 3.56: Euler Predictor Corrector Result

system. Simulated results of ABM and Milne methods are obtained as shown
in figures (3.54) & (3.55) respectively. Also figure (3.56) shows the result
of Euler’s PC method which gives more accurate solution than above two
methods.

Chaotic System

The set of equations (3.7), (3.8) & (3.9) are ordinary differential equa-
tions for Lorenz Attractor. Here also Euler’s and ABM PC methods produce
similar chaotic response as shown in figure (3.57). But Milne’s PC method
fails to generate the chaotic response (figure (3.58)) as stability is not guar-
antee.

Figure 3.57: Chaotic Response
of EPC & ABM method

Figure 3.58: Response of Milne
method

Chapter 4

Real-Time (RT)
Implementation

A real-time implementation of any application/program or algorithm
functions within a time frame that the user senses as immediate or current.
In other words, RT implementation must be deterministic; the latency must
be less than a defined value, usually measured in seconds. The defined task
or set of tasks requiring the maximum length of time on a given hardware
platform is known as its implementation time.

Real-Time implementation can be possible with NI C-RIO which is the
hardware support from National Instruments the developers of LabVIEW.
To develop a Compact-RIO application in LabVIEW using the RIO Scan
Interface there is a requirement of Compact-RIO Reconfigurable Embedded
system with LabVIEW to make a simple process-control VI. It is mandatory
to learn concepts and techniques for developing Compact-RIO applications
with Scan Interface. The Scan Interface enables the use of C Series modules
directly from LabVIEW Real-Time. The complete description for this is
discussed in section below.

4.1 C-RIO

The NI C-RIO-9073 is an integrated system with the combination of
a real-time processor and a reconfigurable field-programmable gate array
(FPGA) within the same chassis for embedded machine control and mon-
itoring applications. The Specification Summary is given in Appendix B
Table (B.1).

39

CHAPTER 4. REAL-TIME (RT) IMPLEMENTATION 40

Figure 4.1: C-RIO Layout

To start with Compact RIO Reconfiguration Embedded System there
is a need to install following supports:

• Compact-RIO reconfigurable embedded chassis with integrated intelli-
gent real-time controller.

• C Series I/O modules.

• DIN rail mount kit (for DIN rail mounting only).

• Two M4 or number 10 pan-head screws (for panel mounting only).

• Power supply.

Required Components are listed in table (4.1) below:

Creating a Project in Scan Interface Mode; use a LabVIEW project to
manage VIs, targets, and I/O modules on the development computer. To
create a project follow the steps below:

a. Start LabVIEW.

b. Create Empty Project through Getting Started window to open the
Project Explorer window. Or select File→New Project to open the
Project Explorer window.

CHAPTER 4. REAL-TIME (RT) IMPLEMENTATION 41

Required Software
NI LabVIEW 2009 or later
NI LabVIEW Real-Time Module 2009 or later
NI LabVIEW FPGA Module 2009 or later optional
NI-RIO 3.2 or later
Required Hardware
Power supply for the controller
Ethernet connection and cable
Analog Input (AI) module NI 9201/NI 9205/NI 9206/

NI 9215/NI 9221
Analog Output (AO) module NI 9263/NI 9264/NI 9269
Digital Input (DI) module NI 9401/NI 9411/NI 9421/

NI 9423
Digital Output (DO) module NI 9401/NI 9472/NI 9474
For Scan Interface
cRIO-9073/cRIO-9074
Integrated Real-Time Controller and Chassis
For FPGA Interface
Compact-RIO controller and chassis

Table 4.1: NI C-RIO Requirements

c. Right-click the top-level project item in the Project Explorer window
and select New→Targets and Devices to display the Add Targets and
Devices dialog box.

d. Select ‘Existing target or device’ radio button.

e. Expand Real-Time Compact-RIO.

f. Select the Compact-RIO controller to add to the project and click OK.

g. If LabVIEW FPGA is installed, then Select Programming Mode dialog
box appears. Select Scan Interface to put the system into Scan Interface
mode.

h. Click Continue. LabVIEW adds the controller, the chassis, and all the
modules to the project.

i. Select ‘Discover’ in the Discover C Series Modules dialog box if it ap-
pears.

CHAPTER 4. REAL-TIME (RT) IMPLEMENTATION 42

j. Select File→Save Project and save the project as x.lvproj.

Adding AI and AO to the VI; in real-world applications, the AI chan-
nel receives input from same device or another device and the AO channel
sends a voltage to a device in a physical process. Devices can be connected
to the analog modules and controlled or monitored, using the following steps
by adding AI and AO to the VI:

a. Expand the AI/AO module item in the Project Explorer window and
the I/O variable items for that module channels will be available.

b. Drag and drop the required I/O variable from the Project Explorer
window on to the block diagram of the VI.

c. Right-click the I/O variable and select Create→Control/Indicator to
create a control/indicator on the front panel. Or connect the wire of
interested variable in the existing VI to get its physical value.

4.1.1 Analog Input (AI) & Analog Output (AO) Mod-
ules

Figure 4.2: NI 9219 AI Module
Figure 4.3: NI 9269 AO Mod-
ule

CHAPTER 4. REAL-TIME (RT) IMPLEMENTATION 43

The NI 9219 is a 4-channel universal C series AI module for multipur-
pose testing in NI Compact-RIO and NI Compact-DAQ C Series chassis.
Individual channel selection is possible to measure various signals from dif-
ferent sensors. Measurement ranges and different sensor support is provided
in the specifications summary given in Appendix B Table (B.2). To use I/O
from this module in a VI, drag and drop I/O variables from the Project Ex-
plorer window to the block diagram of the VI (discussed in previous section).
The I/O variables write floating-point values to the channels in volts.

The NI 9269 is also a 4-channel AO module for NI Compact-RIO and
NI Compact-DAQ C Series chassis. The channel-to-channel isolation in this
module increases safety, improved signal quality, and the ability to stack
channels to output up to 40V. Channel-to-channel isolation is commonly
needed for applications that have multiple electrical systems, such as auto-
motive test, or industrial applications where the noise is more and hence
it often requires multiple ground planes; which is supported in this mod-
ule. The specification summary is given Appendix B Table (B.3). Similar
to AI module one can use I/O from this module in a VI, drag and drop I/O
variables from the Project Explorer window to the block diagram of the VI
(discussed in previous section). The I/O variables write floating-point values
to the channels in volts.

4.1.2 Results of Real-Time Implementation

With all these hardware setup and configurations of devices discussed
above; the real-time implementation of various numerical methods is possible.
The following figures show the result captured on Digital Storage Oscilloscope
(DSO) from the AO module.

Figures (4.4) to (4.8) are the results of equation (3.1); whereas fig-
ures (4.9) and (4.10) show the result of full-wave rectifier, figures (4.11) and
(4.12) show the result of voltage doubler and figure (4.13) shows the chaotic
behavior of Lorenz Attractor (equations (3.7), (3.8) & (3.9)). Figures (4.9)
to (4.12) are results comparing Euler’s PC method and Milne PC method.

CHAPTER 4. REAL-TIME (RT) IMPLEMENTATION 44

Figure 4.4: Euler single-point
on RT target

Figure 4.5: Heun’s on RT tar-
get

Figure 4.6: ABM on RT target
Figure 4.7: Euler’s Predictor-
Corrector on RT target

Figure 4.8: Milne’s Predictor-Corrector on RT target

CHAPTER 4. REAL-TIME (RT) IMPLEMENTATION 45

Figure 4.9: Euler PC Full-
wave Rectifier Filter Response

Figure 4.10: Milne PC Full-
wave Rectifier Filter Response

Figure 4.11: Euler PC Voltage
Doubler Response

Figure 4.12: Milne PC Voltage
Doubler Response

Figure 4.13: Chaotic Response on RT target

CHAPTER 4. REAL-TIME (RT) IMPLEMENTATION 46

4.2 Circuit Design

The various numerical methods are simulated, tested and implemented
on real-time hardware. Also simulation of some real system is also carried out
and the results are discussed above. Thus, for the verification of all the above
results, it is necessary to prepare the required real system and the results
obtained can be compared and verified. Hence, there is a need to design
specific circuits for the corresponding systems and practical observations are
recorded. The details described below contain type of system design, its
specifications, component values used, other requirements etc.

4.2.1 Full-wave Rectifier With Three Element Filter

One is Full-wave Rectifier Integrated with Three-Element Filter circuit,
shown in Figure (4.14). The design (figure (4.14)) is clear that the three-
element filter is a low-pass filter. The circuit is supplied by alternating volt-
age, which after transforming has practical value equal to us = 19sin(2π50t)
V. 12-0-12 transformer is used for transforming the voltage which gives prac-
tically, output rms voltage equal to 14V (measured across center-tapped).
Hence, peak-to-peak Vp−p = 19V. The time-domain analysis of circuit is done
by mathematical modeling of control systems which gives the system model.
This model is prepared by set of first order ordinary differential equations as
in equation (3.2),(3.3) & (3.4).

Figure 4.14: Full-wave Rectifier With Three Element Filter Circuit

The components required for designing this circuit are transformer (12-
0-12; center-tapped)→ 1, diode-bridge→ 1, two capacitors, one inductor and
a resistor. The combination of R-L-C forms the low-pass filter design. The
value of capacitors is 1000 µF, 0.1 mH inductor and 150 Ω, 10 W resistor.

CHAPTER 4. REAL-TIME (RT) IMPLEMENTATION 47

Figure 4.15: Output Voltage Graph of Circuit

DSO is used to observe the output voltage in the form of graph which is
shown in figure (4.15).

4.2.2 Unsymmetrical Voltage Doubler

Another is Unsymmetrical Voltage Doubler circuit shown in Figure
(4.16). The circuit is supplied by alternating voltage, which after transform-
ing has practical value equal to us = 21sin(2π50t) V. 6-0-6 transformer is
used for transforming the voltage which gives practically, output rms voltage
equal to 14V. Hence, peak-to-peak Vp−p = 21V. The time-domain analysis
of circuit is done by mathematical modeling of control systems which gives
the system model. This model is prepared by set of first order ordinary
differential equations (3.5) & (3.6).

Figure 4.16: Unsymmetrical Voltage Doubler Circuit

The components required for designing this circuit are transformer (6-
0-6; center-tapped) → 1, two silicon-diodes, two capacitors and a resistor.
The value of capacitors is 1000 µF and 10 kΩ resistor. DSO is used to observe
the output voltage in the form of graph which is shown in figure (4.17).

CHAPTER 4. REAL-TIME (RT) IMPLEMENTATION 48

Figure 4.17: Output Voltage Graph of Circuit

4.3 Real-Time Data Acquisition in LabVIEW

There are different types of USB DAQs & C-RIOs available to acquire
the data. For acquiring analog voltage USB 6008 (shown in figure (4.18)) is
used. The specifications for the same are listed in Appendix B Table (B.4).

Figure 4.18: USB 6008 DAQ

The above systems Full-Wave Rectifier With Three Element Filter and
Unsymmetrical Voltage Doubler are supplied with the step-down transformer
input. The transformer was connected with USB DAQ but due to faster
sampling; at higher frequency, numerical methods fail to give appropriate
solution. Hence, the frequency analysis of both systems was carried out
using low frequency signal. To solve the mathematical model of both the
systems using real-time input the low frequency sine wave is given as input
through USB DAQ in the LabVIEW VI using Function Generator.

CHAPTER 4. REAL-TIME (RT) IMPLEMENTATION 49

Frequency analysis of Full-Wave Rectifier Filter was carried out for 1000
iterations. Following figure (4.19) shows the input waveform. Figures (4.20)
& (4.21) shows the output response using ABM and Euler’s PC methods
respectively. Again the single point numerical method fails to solve third
order systems whereas in Milne PC Method also the computation was done
at very small step-size and fails to give appropriate output.

Figure 4.19: Low Frequency Sine-Wave

Figure 4.20: Full-wave Recti-
fier Response using ABM

Figure 4.21: Full-wave Recti-
fier Response using EPC

Similarly frequency analysis of Voltage Doubler model was carried out
for 500 iterations. Same input shown in figure (4.19) was given to USB DAQ.
Figures (4.22) to (4.25) shows the output response obtained using various
numerical methods. The single point numerical method fails to solve second
order system as shown in figure (4.22).

CHAPTER 4. REAL-TIME (RT) IMPLEMENTATION 50

Figure 4.22: Voltage Doubler
Response using Single Point
Method

Figure 4.23: Voltage Doubler
Response using ABM

Figure 4.24: Voltage Dou-
bler Response using Milne PC
Method

Figure 4.25: Voltage Doubler
Response using EPC

4.4 Standalone System

The Standalone System was build on CRIO hardware setup using Ap-
plication Builder Toolkit in LabVIEW. Verification of algorithm can be done
by building a real-time standalone system where the code is dumped into
CRIO along with the model of the system to be solved. After that the real-
time input can be given to the standalone system through AI module to
obtain the solution using inbuilt algorithm on RT target and the output can
be observed through the physical output channel of AO module. The output
of the AO module can be connected with the indicator or any fusible display
device.

Verification of numerical methods can also done by building a real-
time standalone system where the code for numerical method is dumped
into CRIO along with the model of the system to be solved. After that the
real-time input can be given through AI module to obtain the solution using

CHAPTER 4. REAL-TIME (RT) IMPLEMENTATION 51

inbuilt algorithm of numerical method on RT target and the output can be
observed through the physical output channel of AO module. The output of
the AO module is connected with DSO to observe the output waveform of
various systems.

The Real-Time Standalone System can be prepared by following few
mandatory steps along with the appropriate hardware and software support.
It is mandatory to create a RT target; steps for which are mentioned in the
above section (4.1). It is must to have a LabVIEW software that supports
CRIO specifications. Here NI CRIO-9073 is configured as standalone system
which supports LabVIEW 2009 and higher versions. After preparing the
algorithm in LabVIEW under the RT target of CRIO, following steps are
needed to build the real-time standalone system:

a. Open the Project Explorer Window where the RT Target is created.

b. Right-click ‘Build Specifications’ under the RT target and select New→Real-
Time Application to display the Real-Time Application Properties di-
alog box.

c. Give the name for standalone real-time system with .rtexe extension
on Information page of the dialog box which was open after above step.

d. Explore the other options from the same dialog box.

e. Select the Startup VI from the number of VIs under RT target. It may
contain other SubVIs (Dependencies); but select the main calling VI
as Startup VI.

f. Configure destination settings from Destination page in the dialog box.

g. Browse the path in the Source File Settings page to change the desti-
nation of Builds. (Builds is the folder where .rtexe will be created and
executed at later; once all steps are completed.)

h. Click Generate Preview button from Preview page if you want to see
the preview of files that will be generated.

i. Click ‘Ok’ and save all the settings.

j. After saving all settings, right-click on ‘Build Specification’ and several
options will be available. First Build the application, then from the
same menu select deploy to dump the algorithm.

CHAPTER 4. REAL-TIME (RT) IMPLEMENTATION 52

k. Select ‘Set as Startup’.

l. Finally click on ‘Run as Startup’. It will prompt to reboot. Let the
system reboot process completed then after you can see the standalone
real-time system started running.

m. If you want to update the VI, Rebuild whole application.

From the simulations and implementation of various numerical methods
discussed in chapter 3 as well as in above sections of this chapter it is clear
that Euler’s PC method gives faster solution and also it is useful for solving
higher order systems. Hence, the standalone system build using above steps
uses Euler’s Predictor-Corrector method to solve the above two systems; Full-
wave Rectifier Filter and Voltage Doubler. As described above, the real-time
input from transformer is given to AI module and output is observed on the
DSO through AO module. Full-wave Rectifier Filter circuit model is dumped
with EPC code. Here channel-3 of NI 9219 is configured as input and that
is followed by channel-2 of output module NI 9269 to show the sinusoidal
input in blue colour (Figure (4.26)). In figure (4.26), yellow colour shows
the output response of Full-wave Rectifier. From the figure (4.26) it can be
verified that the numerical method is a bit slower and hence it fails to hold
the previous value due to faster sampling and fails to calculate next value.
Thus, the difference in system output response can be seen by comparing
with previous figures of the same system.

Figure 4.26: Full-wave Rectifier Response on Standalone System

Similarly the real-time standalone system is also prepared for Voltage
Doubler and same code is used to solve this system. The figures (4.27) &
(4.28) shows the output response of voltage doubler for different load values

CHAPTER 4. REAL-TIME (RT) IMPLEMENTATION 53

10K and 100K respectively. Here also the method is bit slower to hold the
previous value due to faster sampling. The output response is of yellow
colour configured through AO module which can be compare with previous
results of this same system. The blue waveform is of the input which is given
through AI module. The results are taken on DSO.

Figure 4.27: Voltage Doubler
Response with 10K load on
Standalone System

Figure 4.28: Voltage Doubler
Response with 100K load on
Standalone System

Chapter 5

Graphical User Interface (GUI)

Graphical User Interface (GUI) allows user to interact with the system
code during run-time. The interaction in GUI can be made using drop down
boxes or using arrows keys for selecting various parameters. The selection of
the parameters can be done on the basis of the nature of system code. If the
code has numerous iterations then change in value of the parameter may not
be taken into consideration at that time instantly. The user has to wait till
the completion of all iterations after that the next selected value/parameter
will be applicable in the system. Moreover, there are different types of GUIs
having least user interfacing controls to the most flexible GUIs. There are
some GUIs in which the objects and blocks are available in which the user can
have only “start-stop” button available through which one can only visualize
the process and can’t modify anything else whereas in certain GUIs there
are some parameters available for user to control/change the value as per
requirement. Also there are flexible GUIs available for user to interact with
each and every control and can try all possible combination as per his/her
desire to run the system. All this is depended upon the programmer or
designer of the GUI.

The various numerical methods are designed in LabVIEW for solving
ordinary differential equations which requires initial conditions, step-size,
iterations etc. Also this differential equation obtained by concept of mathe-
matical modeling like state-space analysis is require to enter in the form of
an approximated formula. Here the GUI is prepared for single step meth-
ods and predictor-corrector methods with the flexibility given to the user for
selecting one method at a time using arrow keys available as control. Also
the initial conditions, step-size and number of iterations required are kept
available for user to define accordingly as per the requirement.

54

CHAPTER 5. GRAPHICAL USER INTERFACE (GUI) 55

5.1 Designing a GUI in LabVIEW

LabVIEW itself is a graphical programming language having wide fa-
cility of developing a GUI. LabVIEW software has front panel well-known for
using it as GUI application. Here the LabVIEW codes for numerical methods
designed previously are combined into one single VI and “Case-Structure” is
used for the design of GUI. To select these numerical methods string control
with up-down arrows called “Enumerate String Control” is used. This will
select the name of the numerical method which user wants to use as solver.
Also the formula node which was previously placed in the block diagram was
replaced by “formula node vi”. This has the flexibility to enter the formula
through front panel of LabVIEW. Hence it can be user defined. Moreover,
all other controls are designed placing the controls in front panel and hence
the code is prepared as the most flexible GUI as all variables can be set to
desire value via user interaction at any instant of time.

Three different GUIs are prepared for solving third order system, sec-
ond order and first order system respectively. It is plan to keep a single GUI
for selection of order of the system and accordingly the code can be avail-
able for user to solve the system model. Figures (4.1), (4.2) & (4.3) shows
the screen-shot of the various GUI prepared for selecting various numerical
methods.

Figure 5.1: GUI for Third Order System

CHAPTER 5. GRAPHICAL USER INTERFACE (GUI) 56

Figure 5.2: GUI for Second Order System

Figure 5.3: GUI for First Order System

Chapter 6

Conclusion

The Simulations of various Numerical Methods for different applica-
tions are carried out in MATLAB as well as LabVIEW to verify the results
of each method. The solutions are obtained for the different applications
which are compared with the real-time implementation on CRIO. Further
the results of C-RIO and real system results are compared to justify that
Euler Predictor-Corrector method is faster and its results are best fitted
with results of real system whereas Milne’s Predictor-Corrector method does
not guarantee the stable results. Also Heun’s Method gives more appropriate
solution for 1st order system. Moreover, GUI for various Numerical Methods
is prepared in LabVIEW to simulate various systems according to the order
of the system. Hence, the best method can be chose and the standalone sys-
tem (supported by CRIO) can be prepared using Application Builder toolkit
of LabVIEW.

By performing all type of simulations and preparing real-time applica-
tions it is also concluded that numerical methods are little bit slow for solving
faster systems. Hence if the model is prepared and simulated, then it may
give proper solution but the same cannot be possible if real-time solution is
required using numerical methods. Moreover, mathematical model of such
system is dumped into the C-RIO and it is also verified that due to faster
sampling rate and slower response of numerical methods, the actual output
value is dropped or it is unable to hold the previous value for calculating the
next value. But the real-time implementation of various sluggish system can
be advantageous as the controlling action through hardware in loop can be
made possible when it is implemented on real-time embedded target.

57

Appendix A

Comparative Analysis

A.1 Results of 1st Order Differential Equation

The Simulated Results of equation (3.1) using different numerical meth-
ods is compared against real-time implementation in C-RIO is shown in the
following Table (A.1).

Approx. Real-Time
Methods Simulation Time* Implementation

in LabVIEW (using C-RIO)
Euler 4ms 50ms(approx.)
Heun 2ms 10ms
ABM 5s 20ms
Milne Unstable Unstable
Euler
Predictor-Corrector 4ms 20ms

Table A.1: Comparison of Simulated Response Time against C-RIO Imple-
mentation

For Milne’s Method the real-time solution is unstable due to 3 point
method. Dahlquist Theorem proposed that the modulus of characteristic
roots of the equation must be equal to 1 or the solution of the equation must
be z-1 = 0. If the modulus of characteristic roots of the equation are greater
than one then the equation does not obey the concept of zero-stability. Hence,
it may happen that this method does not give proper solution in some cases.

58

APPENDIX A. COMPARATIVE ANALYSIS 59

A.2 Results of Full-wave Rectifier With Three

Element Filter Circuit

The simulation results in LabVIEW, its Real-Time Implementation in
C-RIO and real hardware response time is discussed in following Table (A.2).

Predictor-Corrector Methods ABM Milne Euler
Approx. Simulation Time*
in LabVIEW 130ms 150ms 120ms
Real-Time Implementation
(using C-RIO) 625ms 800ms 300ms
Real Hardware Response Time 250ms

Table A.2: Comparison of Simulated Response Time against C-RIO & Hard-
ware Implementation

A.3 Results of Unsymmetrical Voltage Dou-

bler Circuit

One more real system is simulated and tested on real hardware and its
real-time implementation is also done using C-RIO. Table (A.3) below shows
comparison values.

Predictor-Corrector Methods ABM Milne Euler
Approx. Simulation Time*
in LabVIEW 110ms 110ms 107ms
Real-Time Implementation
(using C-RIO) 1.875s 2s 900ms
Real Hardware Response Time 800ms

Table A.3: Comparison of Simulated Response Time against C-RIO & Hard-
ware Implementation

*Note: The numeric values showing simulation time in all tables is taken
after performing few simulations in LabVIEW.

Appendix B

Specifications

B.1 CRIO Chassis

General
Number of Slots 8
NI IO Modules C Series
Operating System/Target Real-Time
LabVIEW RT Support Yes
Integrated Controller Yes
Power Requirements
Input Voltage Range 19V - 30V
Power Consumption 20W
Reconfigurable FPGA
FPGA Spartan-3
Physical Specifications
Operating Temperature -20◦C - 55◦C
Industrial RT Processor 266 MHz

Integrated with 2M Gate FPGA
Dynamic RAM 64 MB

For embedded operation
Nonvolatile Memory 128 MB

For data logging
Ethernet port 10/100 Mb/s

To conduct programmatic
communication over the network

Built-in Servers Web (HTTP) and file (FTP)

Table B.1: NI C-RIO Specifications

60

APPENDIX B. SPECIFICATIONS 61

B.2 I/O Modules

General
Product Family Industrial I/O
Measurement Type Voltage, Current,

Resistance, Temperature,
RTD, Strain/Bridged Sensor, Thermocouple

Form Factor Compact-DAQ
Compact-RIO

Isolation Type Ch-Ch Isolation
Analog Input
Number of Channels 4(0 to 3)

Differential
Resolution 24 bits
Sample Rate 100S/s
Maximum Voltage Range
Range -60V - 60V
Accuracy 243 mV
Minimum Voltage Range
Range -0.125V - 0.125V
Accuracy 271µV
Maximum Current Range
Range -0.025A - 0.025A
Accuracy 152µA
Simultaneous Sampling Yes
Bridge Configurations Half, Full & Quarter Bridge
Physical Specifications
I/O Connector 6-positions
Operating Temperature -40◦C - 70◦C

Table B.2: NI 9219 Specifications

APPENDIX B. SPECIFICATIONS 62

General
Product Family Industrial I/O
Measurement Type Voltage
Form Factor Compact-DAQ, Compact-RIO
Isolation Type Ch-Ch Isolation
Analog Output
Number of Channels 4(0 to 3)
Resolution 16 bits
Maximum Voltage Range
Range -10V - 10V
Accuracy 6.3mV
Update Rate 100kS/s
Current Drive Single 10mA
Current Drive All 20mA
Physical Specifications
I/O Connector 2-positions
Operating Temperature -40◦C - 70◦C

Table B.3: NI 9269 Specifications

Analog Inputs
Number of Channels 8(ai0 - ai7) Single-ended

4 Differential
Sample Rate 10kS/s
Analog Output
Number of Channels 2(ao0 - ao1)
Update Rate 150S/s
Resolution 12-bit
Digital I/O 12
Counter 1; 32-bit
OS Compatibility Windows, LINUX,

Mac OS, Pocket PC

Table B.4: NI USB 6008 Specifications

References

[1] John H. Mathews, Kurtis D. Fink, “NUMERICAL METHODS USING
MATLAB”, Fourth Edition, PHI.

[2] Stanislaw Rosloniec, “Fundamental Numerical Methods for Electrical
Engineering”, Springer.

[3] T Veerarajan, T Ramachandran, “Numerical Methods With Programs
in C”, Tata McGraw-Hill.

[4] Steven C. Chapra, Raymond P. Canale, “Numerical Methods for
Engineers”, Sixth Edition, McGraw-Hill (Higher Education).

[5] Dr. B. S. Grewal, “Numerical Methods in Engineering & Science
with Programs in C & C++”, Khanna Publishers.

[6] Jovitha Jerome, “Virtual Instrumentation Using LabVIEW”, PHI.

[7] Jeffrey Travis, Jim Kring, “LabVIEW For Everyone Graphical Pro-
gramming Made Easy and Fun”, Third Edition, Pearson Education.

[8] S. Sumathi, P. Surekha, “LabVIEW based Advanced Instrumentation
Systems”, Springer.

[9] Ramakant A. Gayakwad, “Op-Amps and Linear Integrated Circuits”,
Fourth Edition, PHI.

[10] R. S. Sedha, “A TEXTBOOK OF APPLIED ELECTRONICS”, Multi-
colour Edition, S. Chand.

[11] Robert Boylestad, Louis Nashelsky, “ELECTRONIC DEVICES AND
CIRCUIT THEORY” Ninth Edition, PHI.

[12] Katsuhiko Ogata, “Modern Control Engineering”, Fourth Edition, PHI.

[13] I. J. Nagrath, M. Gopal, “Control System Engineering”, Fifth Edition,
New Age International Publishers.

63

REFERENCES 64

[14] Maciej Rosol, Adam Pilat, Andrzej Turnau, “Real-time controller design
based on NI Compact-RIO”, Proceedings of the International Multicon-
ference on Computer Science and Information Technology pp. 825–830.

[15] Ned J. Corron, “A Simple Circuit Implementation of a Chaotic Lorenz
System” [Online].

[16] National Instruments, “About LabVIEW & NI CRIO”, [Online] Avail-
able: http://www.ni.com/getting-started/install-software/compactrio.

[17] LabVIEW, ”Learning & Solving errors”, [Online] Available:
http://forums.ni.com/topic name/error .

[18] National Instruments, “Video Tutorials” & “White Papers”, [Online]
Available: http://ni.com/topic name.

[19] Downloading ”Add-ons/Toolkits” for LabVIEW [Online] Available:
http://sine.ni.com/add-on/toolkit .

[20] Chaotic System, [Online] http://en.wikipedia.org/wiki/Lorenz system.

[21] Chaotic System, [Online] http://www.glensstuff.com/lorenzattractor/lorenz.htm.

List of Publications

[1] Prof. Sandip Mehta, Tej Trivedi, “Verification of Various Numerical
Methods Using Hardware Implementation”, International Conference on
Futuristic Trends in Computational Analysis and Knowledge Manage-
ment, INBUSH ERA 2015.

65

	Declaration
	Undertaking
	Certificate
	Acknowledgement
	Abstract
	List of Abbreviations
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation & Objective
	Numerical Analysis
	Thesis Organization

	Various Numerical Methods
	Methods for Ordinary Differential Equations
	Single Step (Self Starting) Methods
	Predictor-Corrector Methods

	Simulation Results
	MATLAB Simulation
	Euler's Method
	Heun's Method
	RK Method
	ABM Method
	Milne's Method
	Hamming's Method
	Simulation of Systems

	LabVIEW Simulation
	Euler's Method
	Heun's Method
	RK Method
	ABM Method
	Milne's Method
	Euler's Predictor-Corrector Method
	Simulation of Systems

	Real-Time (RT) Implementation
	C-RIO
	Analog Input (AI) & Analog Output (AO) Modules
	Results of Real-Time Implementation

	Circuit Design
	Full-wave Rectifier With Three Element Filter
	Unsymmetrical Voltage Doubler

	Real-Time Data Acquisition in LabVIEW
	Standalone System

	Graphical User Interface (GUI)
	Designing a GUI in LabVIEW

	Conclusion
	Appendix Comparative Analysis
	Results of 1st Order Differential Equation
	Results of Full-wave Rectifier With Three Element Filter Circuit
	Results of Unsymmetrical Voltage Doubler Circuit

	Appendix Specifications
	CRIO Chassis
	I/O Modules

	References
	List of Publications

