
iii

Declaration

This is to certify that

(i) The thesis comprises my original work towards the degree of Master of Technology

in Instrumentation and Control Engineering at Nirma University and has not been

submitted elsewhere for a degree.

(ii) Due acknowledgement has been made in the text to all other material used.

Zeel Christian

13MICC03



iv

Undertaking for Originality of the Work

I, Zeel Christian, Roll.No.13MICC03, give undertaking that the Major Project entitled

“Part Load Stability Analysis of a Gas Turbine” submitted by me, towards the partial

fulfilment of the requirements for the degree of Master of Technology in Instrumentation

and Control Engineering (Control and Automation) of Nirma University, Ahmedabad, is

the original work carried out by me and I give assurance that no attempt of plagiarism

has been made. I understand that in the event of any similarity found subsequently with

any published work or any dissertation work elsewhere; it will result in severe disciplinary

action.

Signature of Student

Date:

Place: NU, Ahmedabad

Endorsed By:

Signature of Guide



v

Certificate

This is to certify that the Major Project entitled “Part Load Stability Analysis of a

Gas Turbine” submitted by Ms. Zeel Christian (13MICC03), towards the partial

fulfillment of the requirements for the degree of Master of Technology in Instrumentation

and Control Engineering (Control and Automation) of Nirma University, Ahmedabad is

the record of work carried out by him under my supervision and guidance. In my opinion

the submitted work has reached a level required for being accepted for examination. The

results embodied in this major project to the best of my knowledge haven’t been submitted

to any other university or institution for award of any degree or diploma.

Date: Place: Ahmedabad

Guide Program Coordinator

Dr. Dipak Adhyaru Prof. J B Patel

Section Head Sr. Associate Professor

Institute of Technology Institute of Technology

Nirma University Nirma University

Head of Department Director

Department of Electrical Engineering Institute of Technology

Institute of Technology Nirma University

Nirma University Ahmedabad

Ahmedabad



vi

Acknowledgement

I owe a debt of gratitude to Mr. Vikas Handa (Engineering Manager), Dr. Prabhan-

jana Kalya (Engineering Technical Leader) and Mr. Akilez Krishnamurthy (Engi-

neer/Technologist) for the vision and foresight which inspire me to conceive this project.

It is also my duty to record my thankfulness to Dr. Jayesh Barve, Dr. Dipak Adh-

yaru and Mr. J. B. Patel from whom I have been inspiring and helping me to grab this

wonderful opportunity.

I extend my gratitude Institute of Technology, Nirma University, Ahmedabad for

giving me this opportunity.

Finally, I take this opportunity to acknowledge the service of the total team of GE-

HTC (Power and Water- NPI Controls) and everyone who collaborated directly and

indirectly to complete this report.

- Zeel Christian

13MICC03



vii

Abstract

Majority of the Gas Turbines are designed to operate at their rated power output condi-

tions, typically referred as base load conditions. The performance of a gas turbine at part

load may vary from its base load performance. The purpose of this study is to analyze

stability of Gas Turbines under part load conditions. This study involves a stability anal-

ysis of control strategies during part load operation and proposes control actions that can

enhance performance.

As a part of this study, analysis of field data will be done first to observe the per-

formance/stability of controls strategies. A simulation will be setup to replicate the site

behaviour and will be used to perform root cause analysis. Once the cause, if any, is un-

derstood, feasible solutions will be explored and implemented in simulation environment.

The complete process will also be documented in detail.
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Chapter 1

Introduction

1.1 Gas Turbine

Gas turbine works on Brayton cycle. Gas turbines are thermodynamic systems that con-

vert chemical energy of fuel into mechanical energy. Air from the atmosphere enters the

compressor where it is compressed. The compressed air is then combined and burned with

fuel in the combustion chamber. The combustor increases both the temperature and the

specific volume of the air. The hot air is then fed into the turbine where it is expanded.

The expansion of the air creates a positive shaft work transfer. The expanded air is then

exhausted to the atmosphere.

1.1.1 The Brayton cycle

The Brayton cycle consists of two adiabatic work transfers and two constant pressure heat

transfer processes.

From State 1 to 2: The gas undergoes an isentropic, adiabatic compression. This pro-

cess increases the temperature, pressure, and density of the gas.

From State 2 to 3: Heat is added at constant pressure. For a gas-turbine, heat is added

through a combustion process.

From State 3 to 4: When gas passes through turbine an adiabatic isentropic expansion

takes place which decreases the temperature and pressure of the gas.

For the closed Brayton cycle, heat is removed from the gas between State 4 and State

1 via a heat exchanger.

3 major components of gas turbine

• Compressor

1
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Figure 1.1: T-s diagram for Brayton Cycle*

*Source: http://www.yildiz.edu.tr/ dagdas/Brayton%20cycle.pdf

• Combustor

• Turbine

Figure 1.2: Gas Turbine Block Diagram*

*Source: http://www.allstar.fiu.edu/aero/turbine3.html

1.1.2 Compressor

3 main parts of the compressor

• IGV (Inlet Guide Vanes)
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• Axial flow compressor

• Exit guide vanes

IGV (Inlet Guide Vanes)

IGVs are arranged at compressor inlet. Main Purpose of IGV is to control and direct the

inflow of air to the compressor. The angle of the inlet guide vane could be change so as to

have the smooth aerodynamics of the air flowing to the compressor.

Axial flow compressor

Rotation of the blades of the compressors provides pressure rise at each stage of the com-

pressors. There are total of 14 -17 stage compressor used in the gas turbine. There are two

types of blades: Rotating blades which are attached to the shaft and static blades which

are connected to the casing of the compressor. The rotating blades increase the velocity

of the incoming air and the static blades direct the flow for next rotating stage.

Exit guide vanes

The two rows of the exit guide vanes obtain the maximum pressure increase before the air

goes to the combustion system.

1.1.3 Combustor

Combustion chamber is a component of gas turbine in which the fuel is combined with air

from the compressor and burned. The combustion chamber functions like a heat exchanger

and can be modeled as a constant pressure device. Combustion process raises the temper-

ature of air in the system by converting the chemical potential energy of the reactants to

thermal energy. There is no work transfer involved in the reaction. Following are some

components that are involved in combustion process.

Combustion casing

Allow compressor discharge air to be directed through the flow sleeves into combustion

liners.

Spark plug

Initiate the combustion process.
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A combustion liner

Combustion liner contains the combustion process and energy released from combustion is

added to the air flow.

Can cover

Can cover contain passage for fuel flow to fuel nozzles mounted on it.

Flame detector

Flame detector indicates whether the flame exist in the can.

Crossfire tubes

They are located in aft combustor cans. They provide sealed pathway for flame to travel

from one combustor chamber to another.

Flow sleeves

Give pathway to compressor discharge air and gases from the combustion chamber to the

transition piece.

Transition Piece

Direct hot combustion gases from liner assembly to the 1st stage nozzle of turbine section.

1.1.4 Turbine

High temperature and pressure gas enters into turbine from combustion chamber, where

it expands down to exhaust pressure and produces a shaft work output. Each stage of the

turbine consists of a row of stationary blades followed by a row of rotating blades. This is

the reverse of the order in the compressor. In the compressor energy is added to the gas by

the rotor blades, and then converted to static pressure by the stator vanes. In the turbine,

the stator blades increase gas velocity, and then the rotor blades extract energy. The stator

blades and rotor blades are air-foils that provide for a smooth flow of the gases. As the

air-stream enters the turbine section from the combustion section, it is accelerated through

the first stage stator blades. The stator blades (also called nozzles) form convergent ducts

that convert the gaseous heat and pressure energy into higher velocity gas flow. In addition

to accelerating the gas, the nozzles “turn” the flow to direct it into the rotor blades at the

optimum angle.
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1.2 Basic operations of gas turbine

Figure 1.3: Gas Turbine Operation

Cranking: After all the start checks have been completed successfully, cranking device is

started to take the turbine shaft speed up to 25% to 30% of the final speed. Cranking

motor is required to speed up unfired turbine.

Purging: Even though, the ignition speed of the turbine is only 10% to 15%, the extra

power that has been produced is used for purging. Before igniting the turbine purge

sequence has been done for cleaning the turbine. Purging removes combustible or

heat recovery elements from the turbine to ensure safe ignition.

Ignition: After completion of purging sequence, turbine is allowed to slow down speed

up to 10% to 15%. Ignition sequence includes turning on the power to spark plugs

for initiating the ignition. Necessary fuel is injected in to the combustor. Flame is

detected by flame detectors, which are arranged at the opposite side of the spark

plug. Fuel is reduced to the warm up level. After completion of warm up, fuel is

allowed to increase and turbine starts accelerating.

Acceleration: After completion of cranking, purging and ignition sequences, turbine

starts accelerating. When speed reaches up to 50% to 80% of the speed, turbine

can be self-sustained and no cranking devices are needed. IGVs also start opening,
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which were closed to avoid compressor surge. Between the speed of 80% to 90%,

IGVs settle down on predefined angle.

FSNL and Synchronization When turbine shaft speed reaches its 100% speed, that

condition is called FSNL (Full Speed No Load). Now turbine is in the condition in

which it can be synchronized with the grid. Synchronization is initiated by closing

the breaker. Breaker connects the generator to the grid.

Spinning reserve After synchronization with the grid, turbine will be at spinning reserve

load, which is predefined load and can be different for different gas turbines. Spinning

reserve is the stage of turbine at which it has capability to produce more output but

has not been commanded to produce more than the spinning reserve load.

Part load and Base load When turbine reaches spinning reserve load, it waits for the

command to reach preselected intermediate load or the base load. Base load is the

maximum load that can be produced, which is limited by the combustor temperature

and/or exhaust temperature of turbine. Because IGVs are at its maximum position

so we cant further increase airflow and combustor temperature becomes so high so

that we cant further increase fuel flow. Any intermediate load between spinning

reserve load to base load can be defined as part load.

1.3 Gas turbine controls

1.3.1 Gas turbine effectors

IGV (Inlet guide vanes)

IGV (Inlet Guide Vanes) are actuators to control the inlet air flow to the turbine. By

actuating the angle of IGVs we can regulate the air inflow. Turbine exhaust temperature

is a primary controlled variable in temperature control. Exhaust temperature is measured

by an array of thermocouple.

Exhaust temperature is compared with the reference exhaust temperature value for IGV

control. Error signal is generated through that is fed to the controller. Depending on the

error controller gives reference command to the IGV to regulate its angular position. IGV

changes its angle that again is compared with the reference angle from controller 1. Error

in the IGV angle is corrected by inner control loop, if any. Outer loop takes care of the

exhaust temperature and inner loop controls IGV angle.

FSR (Fuel Stroke Reference)

FSR controls the inflow of fuel into combustor. FSR control is a simple min select block

as shown in figure which controls the fuel flow accordingly in different modes of operation.
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Figure 1.4: IGV Control

Figure 1.5: FSR Control
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Main controlling FSRs throughout the operations are FSRSU (Startup FSR), FSRACC

(Acceleration FSR), FSRN (Speed/load Control FSR) and FSRT (Temperature Control

FSR). FSRMIN and FSRMAX determine upper and lower limits for FSR.

IBH (Inlet Bleed Heat)

Anti-icing of inlet components is occasionally required for gas turbine in a cold and humid

ambient environment. One method utilized to combat the formation of ice is to bleed

hot gas turbine compressor discharge air and re-circulate this air to the inlet to warm the

inlet air flow. This control is designed to prevent the formation of ice from humid air

and only limited effectiveness at melting ice and snow already present on compressor inlet

components.

1.3.2 Gas turbine control

Start up control

From cranking to FSNL turbine is in startup control mode. The main two active effectors

in startup control mode are FSRSU (Fuel Stroke Reference Startup) and FSRACC (Fuel

Stroke Reference Acceleration). The purpose of startup FSRSU is to transition the turbine

from ignition through warm up. The FSRSU control algorithm is enabled when master

protective logic becomes true. The algorithm holds FSRSU at 0% until the ignition per-

missive is energized & firing logic becomes true. After these all permissive are completed

successfully, FSRSU steps to the firing fuel command. Fuel flow is maintained at firing

level until the ignition is confirmed by flame detectors.

Once the warm up sequence has been completed successfully start up acceleration com-

mand logic becomes TRUE. The FSRACC is used to prevent over firing during start up

and preventing the machine from operating on temperature control during start up. As

the machine continues to accelerate the starting means contribution will reduce. As the

turbine approaches to FSNL the control will switch to speed control (FSRN), and FSRACC

hovers slightly higher.

IGV remains at its predetermined angle to allow the minimum amount of air flow during

start up to prevent the turbine from surge.

Part load control

After reaching at FSNL, turbine is synchronized with the grid by closing the breaker. After

synchronization has been done, turbine will be at predetermined spinning reserve load. As

load increases turbine exhaust temperature will go up. When it starts approaching the
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reference exhaust temperature limit IGVs start opening, to allow more air to the turbine.

To generate more power output, it is needed to supply more fuel. Now at this part load

region of operation FSRN is the controlling effector, which is also known as Speed/load

control or Droop control. The purpose of FSRN is to maintain electrical grid frequency

constant. Generally, a drop in an electrical grid frequency indicates that the power gen-

eration capability of the grid is less than demanded load and vise verse. If electrical grid

frequency goes below rated frequency turbine will be commanded to generate more power

output by increasing its speed. For increasing the speed FSRN is the effector. The droop

response of a turbine generator governor is typically referred to in terms of percentage fre-

quency variation required to cause a 100% turbine load output change. The standard droop

response configuration for GE gas turbine generator application is 4% droop response.

Base load control

As load increases, turbine exhaust temperature also goes up. When exhaust temperature

starts increasing IGVs also start increasing angle accordingly. When it touches the reference

exhaust temperature limit IGVs are at its maximum angle. At the base load condition

FSRT (Fuel Stroke Reference Temperature) is the controlling effector, and IGVs are fully

open so to control temperature at base load we need to modify fuel flow by FSRT. When

exhaust temperature starts increasing IGVs also start increasing its angle accordingly.

1.4 DRY LOW NOX (DLN1) Combustion System

1.4.1 Introduction

The regulatory requirements for low emissions from gas turbine power plants have increased

during the past 10 years. Environmental agencies throughout the world are now demand-

ing lower rates of emissions of NOX and other pollutants from both new and existing gas

turbines. Traditional methods of reducing NOX emissions from combustion turbines (wa-

ter and steam injection) are limited in their ability to reach the utmost low levels required

in many regions.

Since the commercial introduction of GEs DLN combustion systems for natural-gas-

fired heavy-duty gas turbines in 1991, systems have been installed in more than 222 ma-

chines, from the most modern FA+e technology to field retrofits of older machines.

1.4.2 DLN1 Combustor

The GE DLN1 combustor is a two-stage premixed combustor which can operate on gas

as well as liquid fuel. As shown in figure 1.6 the combustion system includes four major
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components: fuel injection system, liner, venturi and cap/centerbody assembly.

Figure 1.6: Dry Low NOX Combustor*

*Source: Davis & Black, p. 3, Figure 5

The GE DLN-1 combustion system operates in different combustion modes, illustrated

in Figure: 1.7 during premixed natural gas or oil fuel operation.

The components form two zones in the combustor. In premixed mode, the primary

zone thoroughly mixes the fuel and delivers a uniform, lean, unburned fuel-air mixture to

the secondary zone.

1.4.3 Operating Modes of DLN

Primary: A mode where all the fuel is entering the primary nozzles with combustion

occurring in the primary combustion zone. This is achieved by setting the fuel splitter

valve (GSV) to 100% position. This mode of operation is used to ignite, accelerate

and operate the machine over low- to mid-loads, up to a pre-selected combustion

reference temperature. Primary operation occurs from ignition to full speed and

then no load to 35% approx. load.

Lean-Lean: In this mode, fuel is passing into both the primary and secondary combustion

zones, with combustion occurring in both zones. The primary split can vary from

50-70%. To do so, the fuel splitter valve is moved to an intermediate position. This

mode of operation is used for intermediate loads between two pre-selected combustion

reference temperatures. In this mode of operation load varies from 35 to 70%.

Secondary transfer: In this mode of operation GSV moves to full secondary, supplying

fuel to the secondary nozzle only, so no more fuel is flowing through the primary

nozzle. Flame is in the secondary zone only. Transfer valve begins to open, thus
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passing all fuel into the secondary combustion zone only. Primary zone flames out due

to lack of the fuel and all combustion occurs in the secondary zone only. This mode

is necessary to extinguish the flame in the primary zone, before fuel is reintroduced

into what becomes the primary premixing zone.

Premix transfer In this mode of operation, GSV ramps from 0% to typically 80% pri-

mary split. Flame is in the secondary stage only. This is a transition mode between

secondary transfer and premix steady state and is characterized by the transfer valve

beginning to close following the primary valve opening. Fuel is being admitted into

the primary and secondary combustion zones through the primary, secondary and

transfer fuel passages, with combustion occurring only in the secondary zone.

Premix steady state This is the optimal mode of operation for a DLN1 turbine with the

lowest NOX and CO obtainable. In this mode fuel is entering both the primary and

secondary zones through the primary and secondary fuel nozzles, with combustion

occurring only in the secondary zone. The transfer valve is fully closed and no fuel

is entering through the transfer fuel passage. Approximately 80% of the fuel is “pre-

mixing in the primary zone before combustion occurs in the secondary combustion

zone downstream of the venturi.

Figure 1.7: Fuel-staged Dry Low NOX Operating Modes*

*Source: Davis & Black, p. 4, Figure 6

1.4.4 Emission Performance

The emissions performance of the DLN1 combustor varies as the mode of combustor oper-

ation varies with load. The NOX and CO emissions created by a DLN1 system operating
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on natural gas vary as the load increases.

NOX and CO emissions from the DLN1 combustor at less than 35% gas turbine load are

similar to those from the non DLN system. This is expected as both systems are diffusion

flame combustors in this range.

Between 35 and 70% load, the DLN1 system is in the lean-lean mode. There is a flow

split between the primary nozzles and secondary nozzles. This produces the lower NOX

emissions. But note that as fuel flow increases with load, the NOX emissions increase.

From 70% to 100% load, the DLN1 system is operating as a premixed combustor.

Significant reduction in NOX emissions are observed while CO emissions are comparable

to those from the non DLN system.
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Literature Survey

This chapter gives a review of literature related to this project work. It gives outline of

gas turbine basics and different controls of gas turbine.

2.1 Gas turbines

Rowen [1983] represents simplified mathematical model for gas turbine to study its dynam-

ics power system studies and thermodynamic properties. For both liquid as well as gas fuel

system the entire range from 18 MW to 106 MW is covered. The purpose of this paper

is limited to single shaft single simple cycle gas turbines only. Gas turbine acceleration,

Speed, temperature controls are also discussed.

Speed control is designed for droop as well as isochronous control and operates on speed

error. Speed controller is straight proportional controller. Isochronous controller is PI con-

troller. Under part load condition speed governor is primary means for turbine controls.

Combustor inside temperature is one of the limiting factors for megawatt output. Exhaust

temperature is measured with the help of array of thermocouple. As the load increases

exhaust temperature also starts increasing. At the full load it reaches its maximum tem-

perature. The acceleration control acts during startup of the gas turbine. The purpose of

the acceleration control is to control turbine acceleration rate and preventing it to over fire

during start up.

In the previous Rowens simplified model [1983] prior work is concentrated on generator

drive applications where operation was limited to a narrow range of turbine speed. Earlier

model assumes both IGV angle and ambient temperature at constant. Rowens [1992] paper

explores these limitations in the context of more general case of variable speed mechanical

drive application. Some specific features are also added in this model. Only isochronous

governor control is modeled. Only gas fuel control system is modeled. The control system

discussed here are speed control, acceleration control, temperature control, IGV control

13
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and upper and lower limit fuel control. This paper discusses many of the features and

characteristics that affect the application of heavy duty single shaft GT to variable me-

chanical drive applications. It also offers high flexibility and fairly accurate, yet still simple

mathematical representation of GT and its fuel control system. This paper offers features

such as modulating IGC, calculation of exhaust flow and accommodation of variable am-

bient temperature that were not included in Rowens [1983] paper.

Soon Kiat Yee [2008] discusses a comparative analysis and an overview of various models

of gas turbines in this paper. This paper explains a short overview of gas turbine and brief

direct comparison of two most widely used models of the gas turbine (IEEE and Rowen)

suitable for small and large disturbance stability studies is also presented. The main

differences between the two models are highlighted and the possible simplification of the

Rowen model is explained. The IEEE model is split into two parts: one pertaining to the

controls of the gas turbine (the temperature control loop, the air flow control loop and

the fuel flow control loop) and the other representing the thermodynamic characteristics

of the turbine. Comparison of the IEEE model to that presented in Rowens first paper

explores that the main difference is the control action necessary to maintain a high firing

temperature. This action of the IGVs is included in the later Rowens model. The IEEE

model assumed a fixed compressor ratio, which is only valid for a relatively constant rotor

speed. Their different degree of complexity makes various models suitable for different

types of studies. The actual turbine control representation, however, must be carefully

verified to ensure that the selected model is adequate for the intended study. The main

aim of this particular study is to understand and critically assess suitable models for system

stability studies, especially those for transient and small disturbance stability studies. The

IEEE and the Rowens model have been chosen as they are some of the most simplified

ones.

2.2 Gas turbine controls

Salah I. Al-Majed and Saudi Aramco [2010] discusses about the gas turbine and generator

controls with the objective to enhance intuitive user understanding. The paper also fo-

cuses on control issues like droop and isochronous modes of governor control and excitation

system voltage control. The droop control settings will specify how much fuel is admitted

when frequency drops and how much fuel should be reduced when frequency rises. When

the frequency drops, the governor will increase fuel in order to meet the new power de-

mand by the droop line without bringing the frequency back to the rated value. Governor

Isochronous Control behaves slightly different than droop control. An isochronous gover-

nor delivers power exactly to maintain the frequency. Usually, isochronous is utilized when

a generation or a cogeneration plant is isolated from the grid. This way, the frequency will

be maintained by the isochronous governor while other generators will be in droop control.
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An excitation system will contain three limiters: Overexcitaion (OEL), Underecitation

(UEL) and Overflox (OFL). The OEL will prevent overheating of the rotor DC windings,

while the UEL will prevent the torque angle from becoming too big which will break the

flux linkage between the rotor and the stator. Over-fluxing will overheat the entire core of

the generator. When flux value is exceeded, the core will overheat due to increased eddy

current. This paper also discusses about PSS (Power system stabilizer). The PSS is only

responsible for the oscillatory stability the oscillatory stability is related to the interaction

between torque angle and power supplied to the system. Both the torque angle and the

power supplied affect each other in a way that cause power and torque angle oscillation.

The PSS job is to boost the magnetic link at the right point of time to suppress the torque

angle oscillations. So, when the torque angle is increasing, the PSS will boost the DC field

current to strengthen the magnetic link to slow the rate of increase.

Mehdi Rahbar explain effect of various control systems such as constant IGV, constant

TIT and constant TET on the performance of Siemens V94.2 gas turbine and specially the

fuel consumption and its costs at the control systems in simple and combined cycle power

plants are considered and the results are explained. According to the analysis the IGV

constant control system has the lowest fuel consumption and the highest efficiency rather

than the two other systems in open cycle. In the combined cycle this control system has

the lowest efficiency and also has the lowest fuel consumption. Also due to the decrease

in the turbine temperature in IGV constant control system the cost of maintenance of hot

section of turbine will be reduced. The TIT constant control system has the highest fuel

consumption rather than the two other control systems.

2.3 Neural Network

Identification and control of dynamic system using neural network is explained deeply

by Kumpati S. Narendra and Kannan Parthasarthy (1990). The paper explains that the

NN can be used effectively for dynamical system control. It demonstrates two different

methods for back-propagation algorithm: Static and dynamic. It also gives overview of

the need for these two methods. Unified approach for creating multilayer and recurrent

NN is introduced. Simulation results shows identification and control schemes suggested

are practically possible.



Chapter 3

Problem Identification and Analysis

3.1 Analysis of field data

Analysis of the field data has been done for four different load select operations- at part

load, at base load, at variable peak and at peak load of operation as shown in fig: 3.1.

Throughout fluctuations in plant output (MW) is observed.

It is also observed that effectors like Fuel flow and Angle of IGVs are also fluctuate at

part load. At part load operation, fuel is controlled through FSRN. At base load and peak

load fuel is controlled through FSRT loop. And at variable peak load operation IGVs are

at its maximum position and load is purely controlled through FSRN. From observation of

site trend (Fig:3.1), it is seen that fluctuation range is higher while running on part load

and variable peak load selects but megawatt output fluctuates lesser while operating on

base load and peak load selects. So from this observation, it is concluded that at part and

variable peak, when FSRN controls, the fluctuations are higher than when (at base and

peak) FSRT controls. So the conclusion had been made that ‘FSRT loop offers tighter

control than FSRN loop.

3.2 Root cause

In order to find the root cause behind fluctuations in FSRN loop, inputs to FSRN loop are

observed in the software. After the analysis has been done on FSRN loop, it is observed

that FSRN directly depends on turbine shaft speed and turbine shaft speed is fluctuating.

Even in field data, same thing is observed. In the field data, the range of shaft speed

fluctuations is ± 0.2% of the rated speed is observed. So whenever turbine shaft speed

goes up, megawatt output goes down in order to maintain grid frequency and vice versa.

It could be also translated as the power delivered is higher than the power demanded by

grid. During part load operation, turbine shaft speed fluctuates and because of that FSRN

also fluctuates, that leads to fluctuations in plant megawatt output.

16
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Figure 3.1: Comparison of plant output fluctuation
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As shown in Fig: 3.2 that turbine shaft speed fluctuates, and because of that fluctua-

tions FSRN loop reacts. The control action is taken by FSRN loop if the error between

reference turbine shaft speed and original turbine shaft speed increases above the defined

dead band. The manipulating variable of FSRN loop is FSRN and controlled variable

is megawatt output. So because of change in manipulating variable (FSRN) controlled

variable (plant megawatt output) fluctuates.

Figure 3.2: Observed % turbine shaft speed fluctuations in field data

3.3 Replicating the fluctuations and analysis

After knowing the root cause behind the fluctuations, replicating those fluctuations in sim-

ulation environment was the next challenging task.

The root cause has been found is turbine shaft speed fluctuations. To replicate the

fluctuations in simulation environment random noise is added to the turbine shaft speed

in the model of gas turbine. The random noise function generator generates noise in the
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Figure 3.3: Simulation results with added noise

defined range. The noise has been injected in part load as well as base load. So that effect

of noise can be observed for both FSRN as well as FSRT loop. The results of simulation

are shown in fig: 3.3(a) & (b). From both the results it can be seen that MW output

fluctuates more at part load (2.57MW) than at base load (1.5MW). Even FSR fluctuations

are less at base load region because the effect of shaft speed fluctuations on FSRT loop is

less.

FSRT loop works on temperature reference and grid fluctuations doesnt affect FSTR

loop directly because turbine shaft speed is not a direct input to the FSRT loop. But some

fluctuations are still observed in base load and peak load region. These fluctuations are

indirect effect of turbine shaft speed fluctuations. When turbine shaft speed fluctuates it

affects compressor parameters like compressor discharge pressure. Compressor discharge

pressure has direct effect on MW output. That is the reason behind base and peak load

fluctuations in MW output. But range of base and peak load fluctuations are in range and

somehow tolerable.

In variable peak region where fluctuations are same as part load, IGVs are at their

maximum angle and FSRN loop controls the MW output. From the discussion, it is

proved that FSRT offers tighter control then FSRN loop.



Chapter 4

Proposed Solution

4.1 Control of variable peak through FSRT

FSRT loop takes temperature reference as an input and generates FSRT to maintain ex-

haust temperature as per reference temperature which is shown in fig: 4.1. Exhaust

temperature is measured through array of thermocouples. When base load and peak load

are commanded, fuel is controlled through FSRT loop. Since FSRT is less affected because

of turbine shaft speed fluctuations, it could be a solution to control variable peak.

Figure 4.1: Actual FSRT Loop

If exhaust temperature reference can be generated as per MW set point given by oper-

ator and if FSRT loop tries to maintain exhaust temperature as per megawatt set point,

then better control can be achieved. The modified FSRT loop for variable peak is shown

in fig: 4.2. In the figure: 4.2 control algorithm that is generating exhaust temperature

reference as per MW set point should be adaptive to variations in ambient temperature

and fluctuations in compressor parameters. Megawatt output is a function of ambient tem-

20
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perature and compressor discharge pressure. To generate exhaust temperature reference as

per MW set point, ambient temperature and compressor parameter, some adaptive control

is needed.

Figure 4.2: Modified FSRT Loop for Variable Peak

4.2 Neural network as an adaptive control

Consider that the input data shown in fig: 4.3 to generate temperature reference are

known. For fixed ambient, exhaust temperature reference is also a fix value (for fixed MW

set point). In this situation where input and output data is known, neural network can be

the suitable adaptive algorithm to generate temperature reference as per inputs.

Figure 4.3: Input and output of Neural Network
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By giving input and output data, the neural network can be trained and after training

it can be used in modified FSRT loop to control megawatt output. As shown in fig: 4.3

MW set point, compressor discharge pressure, compressor discharge temperature and am-

bient temperature will be the inputs for NN and temperature reference will be the output

from NN.

4.3 Implementation

Figure 4.4: Block diagram of neural network algorithm with back-propagation*

*Source: Identification and control of dynamical system using NN by Narendra and Parthasarthy (fig 7)

As discussed in chapter 2 about neural network implementation in control system ap-

plication by Narendra and Parthasarthy fig 4.4 is showing the internal structure of neural

network. Neural network has one forward path and one weight update rule algorithm which

is shown in fig 4.4. As shown in the fig 4.5 by combining matrix algebra and activation

function one neuron can be built and by combining more than one neurons one layer of

neural network can be built.

As shown in fig 4.5, inputs and weights are the inputs for neuron. If the structure has n

inputs it must have n weights (multiplying factors) related with inputs. Dot multiplication
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Figure 4.5: Simulation result at part load with added noise

of inputs with weights will give output matrix of 1Xn. The output matrix of 1Xn will

pass through activation function which can be linear or nonlinear (sigmoidal or tanh). The

output of activation function will be the output of one neuron.

Figure 4.6: Simulation result at part load with added noise

As shown in fig 4.4 by combining more than one neuron layer can be made. Layer

structure is shown in fig 4.6. Here, n is number of inputs to the layer (if it is a first layer)

or number of outputs from previous layer (if it is a hidden layer or output layer), m is

number of neurons in the layer.
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4.4 Implementation of NN in ToolboxST R©

Initial attempt is tried to make the NN with just 2 hidden layer (each hidden layer has

2 neurons), one output layer, and learning parameter= 0.7. Activation function for all

neurons is tanh function.

tanh(x) =
ex − e−x

ex − e−x
(4.1)

The NN has 6 inputs and one output. The inputs are MW set point, humidity, ambient

temperature, Compressor discharge pressure, Compressor discharge temperature and In-

let flange temperature. NN output is ‘Required temperature reference. These inputs and

output have different scales though they are different physical quantity. So it is needed to

normalize those values in the input range of tanh function [-1, 1].

Training of NN is conducted for variable peak region and for ambient of 59 F. 3 Inputs

(humidity, Inlet flange temperature and ambient temperature) are held constant while MW

set point is changed. The effect of changed MW set point can be observed in compressor

discharge pressure and compressor discharge temperature.

To train the NN it is needed to give the steady state values of input and output variable

to the NN. Sampling of the input data has been done before passing the input to the NN.

Testing data covers the whole range of variable peak region.

During training, it is observed that the error is not converging towards its optimum

value. So the learning is not actually happening in the NN.

After analyzing the NN, it is found that number of neurons needs to be increased. The

inputs are 6 and total neurons used are only 5, so tuning is not occurring in the NN. To

minimize the error to its optimum value, more tuning parameters (weights) are needed.

After getting this solution, NN is made with 9 hidden layers and one output layer, each

hidden layer containing 6 neurons with learning parameter= 0.7. Training is conducted

for the expanded NN. During training, it is observed that error is converging to the zero

value. But after sometime Neural network output saturates to the maximum value of tanh

function which is 1 and -1. After doing some literature survey, it is found that the learning

parameter value is comparatively large and that is causing the saturation in input of tanh

function and because of the saturation of tanh function, NN output saturates. The learn-

ing parameter value is changed from 0.7 to 0.07. Again the training is initiated. During

training it is found that now error is converging towards zero value and activation function

doesnt saturate. After 50 times of training of neural network through loading and unload-

ing in variable peak region, the final updated weights are with us.
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With the final updated weights testing of NN has been conducted. Whatever data has

been given during training should not contain the testing data points into it. Testing data

have to be different than testing data. So the training has been done for MW set points of

42, 43 and 45 but not for 44. During training, weight update algorithm is attached with

forward path and weight update occurs in the direction to minimize the square of error.

The observations are made during testing is shown in fig: 4.7.

Figure 4.7: Reults of NN

For testing it is needed to disengage the weight update algorithm. MW set point 44,

compressor discharge pressure and compressor discharge temperature values for 44 MW

are applied as test data. But couldnt get expected temperature reference. After that,

all the data points, which are not used in the training, are applied as testing data. The

resultant curve is shown in figure 4.7. In the result graph, the curve Actual OP is showing

the output expected from the neural network and NN OP is showing the results after this

attempt. From the error graph in fig 4.7, it is seen that for last sample error is zero.

• NN forgot the past samples because the input fed to it was scalar value. So at an

instance it is just one sample that is going in the NN and it generated the scalar

error which is tried to minimize at that instance by updating the weights.

• But here, NN is used for function approximation (as curve fitting tool) thats why it
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Number of Samples MW SP CTD CPD CTIM ATID CMHUM

1 42 677.8 171.33 58.77 58.77 0.0064

2 42.5 678.7 171.83 58.77 58.77 0.0064

3 43 679.09 171.9 58.77 58.77 0.0064

4 43.5 680.2 172.5 58.77 58.77 0.0064

5 44 680.4 172.5 58.77 58.77 0.0064

6 44.5 681.3 173.02 58.77 58.77 0.0064

7 45 681.9 173.3 58.77 58.77 0.0064

Temp Ref 1014 1024 1034 1044 1054 1064 1074

Table 4.1: Training Data of NN

is needed to feed all the data point as a vector at each instance to fit the curve. By

feeding the inputs as a vector at each instance, error would be a vector.

• If the error is a vector, weights will be updated such that they can minimize the sum

of square of error for the whole variable peak region and not only for one point.

The input should not be a column vector but had to be the matrix of m X n, which covers

the whole input range and can give the error at each point over the curve. Here m =

number of samples and n = number of inputs.

After getting the results, it is concluded that NN is minimizing the error at one point

and not over the entire range of the curve. The reason is it was given scalar inputs and

not the samples of inputs over the curve. So the modifications are made to the algorithm.

Samples of input are taken over the entire range of the curve. Samples of MW set point,

Compressor discharge pressure, Compressor discharge temperature and Inlet flange tem-

perature has been taken over the entire range of the curve is shown in the table 4.1.

The matrix made up of the input samples (7 X 6) is fed to the NN. The table 4.1 is

showing the input training data. For this vector configuration of NN, every time the same

matrix of input data and same matrix of output data would be the training data for NN.

Here, only 7 samples are fed to the NN but training could be better if number of samples

could be more. If each and every data point can be fed then NN could fit the curve with

optimum error.

Training is initiated for the modified NN. The results are shown in fig: 4.8

As shown in result graph of fig: 4.8 NN was minimizing the error at the midpoint of
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Figure 4.8: Reults of NN
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the curve. In other words, NN is giving the straight line passing through the midpoint of

training curve as an output. Essentially, the 7 element output vector of NN has same value

for every element.

After the analysis of the NN has been done, it is observed that activation function used

in neural network is getting saturated during training. The straight line is coming as an

output of NN because of saturation of activation function. To resolve this issue, possible

solution could be use of scalable tanh function instead of using same activation function

in each layer of NN.

If activation function is

f(x) = atanh(bx) (4.2)

Then

f ′(x) =
d

dx
f(x) =

(
b

a

)
(a2 − f 2(x)) (4.3)

Here ‘a and ‘b are two coefficients of tanh function and f ′(x) can be used in back prop-

agation algorithm. In f(x), ‘a can be any real value, and ‘b can be any value less than

1. Coefficient ‘a is used to increase the output magnitude of tanh function and ‘b is used

to limit the input of tanh function so it wont create saturation of tanh function. Using

scalable tanh function, layers of NN are created. Coefficients of tanh function are stated

as A=1 and B=2/3, for 9 hidden layers as well as for output layer.

During training, the issue is found that NN is giving the straight line after doing some

iteration. So NN tries to fix the curve. But weight update occurs in such manner that

at the end NN gives straight horizontal line. In the input data matrix, the column of

humidity, ambient temperature and Inlet flange temperature contain same data over the

entire range. They are 3 input data columns form 6. It covers almost 50% of the data,

which was constant. The issue is that in NN, constant inputs ruled on the weight update

and they pull some of the weights to constant value and dont allow the NN to fit the curve.

So the conclusion made after facing this issue that the input samples should not contain

constant value over the entire range of the curve rather changing inputs can train the NN

better than constant inputs.

Discarding the two constant inputs (humidity and Inlet flange temperature) new NN is

made. So now, the NN have 4 inputs (MW SP, ambient temperature, compressor discharge

pressure, compressor discharge temperature). Among these four inputs only ambient tem-

perature is held constant at 59. So after making the modifications, input matrix formed
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was of 7X4.

During training, it is observed that error vector is converging towards optimum value.

But all the elements of the error vector couldnt achieve almost zero error. Some offset is

there between the expected output from NN and the actual output got from NN.

Research paper by Yann LeCun [2] on efficient back-propagation explains about what

should be the initial weights, how normalization of inputs and outputs should be done.

It also gives idea about the activation function saturation problem and the solutions are

discussed in detail.

Some of the important points learned from the paper are mentioned below.

• Coefficient of the activation function should be in ascending order to prevent satura-

tion of activation function.

• Ideal value of the learning parameter is in between 0.05 to 0.07.

• Initial weights should not be a very high value because that may cause saturation of

activation function.

• If the function, for which NN is implemented, is linear it is better to use linear

function with bias (y=mx+c) as an activation function of last output layer.

So based on these points, changes are made to the NN. The coefficient of tanh function for

each layer is changed. B remains constant for each layer. (B=0.4)

Layer 1 2 3 4 5 6 7 8 9

Coefficient 1 1.7195 2.5 3 3.5 4 4.5 4.8 5.5

Table 4.2: tanh function coefficient for each layer

The outer layer activation function is changed with linear.

y = mx (4.4)

where, m = 1

After making these changes the resultant curve found is shown in figure 4.9. Some offset is

still there between the desired output and NN output. The solution to make the best curve

fit is to add bias to activation function. Adding the fixed bias to the activation function

helps to reduce the error. But the value of bias cant be changed after training has been
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Figure 4.9: Reults of NN

done. The value given to NN as bias remains same for the entire operation of training as

well as testing. So the bias is added to the outer layer of NN.

y = mx + c (4.5)

Value for c is mentioned in the table 4.3.

Bias C1 C2 C3 C4 C5 C6 C7

Value -1.7 -1.2 -0.6 -0.08 0.4 1 1.6

Table 4.3: Bias values for linear activation function

The results are shown in figure 4.10 after adding the bias.

The results achieved after adding bias are satisfactory for linear curve fit. But it is

required to check that if NN can give the satisfactory curve fit even for nonlinear functions.

So the input and output data are changed. Input/output data is mentioned in the table

4.4.

After training the NN with the input/output data shown in table 4.4, testing of NN has

been done. The figure 4.11 shows the testing results after training the NN with nonlinear

data.
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Figure 4.10: Results for linear curve fit

ATID 30 40 50 60 70 80 90

MW SP 46.5 44.4 43 42 40.4 39.2 37.8

CPD 180.91 176.65 173.07 171.33 165.9 162.6 159.01

CTD 645.32 656.17 667.81 677.81 692.35 704.95 717.29

Temp Ref 1030 1015 1022 1014 1044 1050 1060

Table 4.4: Training Data of NN (with different ambient temperature)
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Figure 4.11: Results for non-linear curve fit
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Results and Discussion

5.1 Neural network in FSRT loop

In the previous chapter, neural network and results obtained from NN are discussed. After

getting satisfactory results from neural network, the next task is to put the implemented

NN block in the FSRT loop. From the results of NN, it is seen that NN is learning and

giving the best possible function approximation for linear and nonlinear functions. NN is

giving temperature reference for variable peak region. As shown in figure 4.2, NN is placed

in FSRT loop. The NN placed in FSRT loop have updated set of weights and throughout

the operation weights will remain same.

The inputs are MW set point, compressor discharge temperature, compressor discharge

pressure and ambient temperature. Inputs are applied to the FSRT loop online in variable

peak region. For different scenarios, the results are observed. First scenario is observed,

keeping the ambient temperature constant and changing MW set point. Other scenarios

are observed, changing ambient temperature as well as changing MW set point.

MW Set point 42 42.5 43 43.5 44 44.5

Table 5.1: MW set points (Fix ambient: 59oF)

In the figure 5.1, trends are shown for four variables (MW set point, temperature ref-

erence, MW output, and exhaust temperature). In the table 5.1, the MW set points are

shown. Ambient temperature is kept constant during simulation. As soon as the operator

gives command of MW set point change, NN generates temperature reference according to

the MW set point given by operator. Exhaust temperature starts following the tempera-
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Figure 5.1: Results for MW output (Fix ambient: 59o F)

ture reference given by NN. MW output also starts following the MW set point and settles

down at the set point. Here, fuel is controlled through FSRT loop at variable peak region,

at fixed ambient temperature of 59 oF.

Amb temp(Fo) 30 40 50 60 70 80 90

MW set point 45 44 42 41 39.5 38 36.5

Table 5.2: MW set points (increasing ambient temperature)

In figure 5.2, trends are shown for five variables (MW set point, temperature reference,

ambient temperature, MW output, and exhaust temperature). These trends are showing

the effect of ambient change with MW set point change. The simulation is run by changing

MW set point and increasing ambient temperature. The effect of change in temperature

reference change due to increasing ambient temperature can be seen in the figure 5.2. So it

is seen that NN is giving satisfactory results while increasing ambient temperature. Here,

fuel is controlled through FSRT. Exhaust temperature is following the temperature refer-

ence given by NN during variable peak region.

Table 5.3 is showing the MW set point given by the operator to the NN while decreasing
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Figure 5.2: Results for MW output (At different ambient, increasing ambient)

Figure 5.3: Results for MW output (At different ambient, decreasing ambient)
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Amb temp(oF) 85 75 65 55 45 35 25

MW set point 37.2 38.6 40.1 41.1 43 44.6 46.1

Table 5.3: MW set points (decreasing ambient temperature)

ambient tem-perature. The trends in figure 5.3 are showing the effect of ambient change

with MW set point change. The simulation is run by changing MW set point and decreas-

ing ambient temperature. The effect of change in temperature reference change due to

decreasing ambient temperature can be seen in the figure 5.3. From the results of figure

5.3 and 5.2, it is seen that NN can give temperature reference as per ambient change.

(Increasing or decreasing)

In the last two cases, the ambient temperature was changed in ascending and descending

order. NN was giving the desired temperature reference. MW output was satisfactory

following the MW set point given by the operator. Now, it is tried to change MW set point

as well as ambient temperature in random manner the data given to the NN is shown in

table 5.3. MW output follows MW set point is shown in figure 5.4.

Figure 5.5 shows that even during random change of ambient, NN gives the satisfactory

Figure 5.4: Results for MW output (At different ambient)

temperature reference as per MW set point and it also considers ambient conditions.
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Amb temp(oF) 25 37 29 41 57 46 71 67

MW set point 46 4 45.2 43.4 41 42.6 39.2 39.5

Table 5.4: MW set points (decreasing ambient temperature)

Figure 5.5: for TEMP REF NN (At different ambient)
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Conclusion and Future Scope

6.1 Conclusion

1. After understanding the issue and analyzing it, some of the conclusions are made.

• Fluctuations in MW output of gas turbine are observed.

• In the simulation environment, plant output doesnt fluctuate.

• MW output fluctuates more at part and variable peak region than base and

peak load region.

2. During part load and variable peak, FSRN loop controls MW output and during base

and peak load, FSRT controls MW output.

3. The root cause is turbine shaft speed fluctuations.

4. At base and peak load, MW output fluctuations are the effect of the fluctuations in

compressor discharge pressure. Compressor discharge pressure fluctuates because of

the fluctuations in turbine shaft speed.

5. Turbine shaft speed is one of the inputs to FSRN loop, which initiates fluctuations

in MW output. The noisy MW output goes as a feedback in FSRN loop, which adds

more fluctuations in MW output.

6. FSRT loop works on temperature control and shows less sensitivity to turbine shaft

speed fluctuations than FSRN loop. (FSRT dont have turbine shaft speed as an

input.)

7. The proposed solution could be:

• Control the fuel through exhaust temperature reference.

• Instead of controlling variable peak through FSRN, control it using FSRT.
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8. By using neural network as a function approximator, temperature reference can be

generated as per MW set point given by operator. Generation of temperature refer-

ence should also consider the ambient condition changes, because ambient conditions

could affect MW output. (Considering that the temperature reference is available for

MW set point at different ambient)

9. From the results obtained by using NN in FSRT loop, it has been concluded that

MW output can be controlled by controlling exhaust temperature.

10. By controlling through FSRT, better control of MW output can be achieved than

FSRN loop.

6.2 Future Scope

• To add the MW error (MW Error=MW set point - MW output) as one of the inputs

to the NN to generate temperature reference.

• To implement neural network by using different weight update rules.

• To make the neural network generic, scalable and flexible.
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