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Abstract— In present paper Reinforcement learning (RL) based 
control is implemented with Actor-critic based technique. 
Generation of reinforcement signal is described earlier with 
binary sign function for Actor-Critic based Reinforcement 
Learning. In the present paper two more discriminate functions 
introduced to generate reinforcement signal. It is proved with the 
results that these functions have faster convergence then earlier 
method to obtain reinforcement signal. In this paper, 2-link 
robot manipulator system’s dynamics is used to simulate results. 
It is assumed that the system has a certain ‘canonical’ structure. 
Present paper also shows reinforcement learning based 
controller achieves faster convergence then conventional 
controller based on loop gains. Convergence proof of proposed 
algorithm is defined with Lyapunov stability theory. Also we 
have proposed generalized Lyapunov function for any 
discriminant functions and system expressed in canonical form. 
 
Keywords—Reinforcement learning, Neural Network, Lyapunov 
Stability, Discriminate function 

I. INTRODUCTION 

Reinforcement learning (RL) is analogues to how human 
learn by experience. RL is based on the common sense notion 
that if an action gives satisfactory results or improves results 
then, tendency to produce similar action should be 
strengthened, i.e. reinforced. There are many techniques 
available which implement this concept, like Q-learning, 
Temporal Difference based learning, SARSA, Actor-Critic 
based learning etc. Reinforcement learning (RL) is one of the 
major NN approaches to learning control. The ability to 
generate the correct control actions nevertheless makes RL 
important in situations where lack of sufficient structure in the 
task definition makes it difficult to define a priori the desired 
outputs for each input, as required for supervised learning 
control and direct inverse control. In this paper, we will 
explore a new type of RL algorithm, in which the learning 
signal is merely a binary, "+1" or "-1", from a critic rather 
than an instructive correction signal. It was proposed by Lewis 
[1].We modify this reinforcement generating signal with other 
discreminant functions. We have also explored stability proof 
for general case (i.e. any discriminant functions and system 
which can be expressed in canonical format). We view RL 
based methods as computationally simple, direct approaches 
to adaptive-learning control.  

 In section 2 we will review stability of systems and 
some fundamentals of NN. Then section 3 presents RL control 
architecture and rigorous mathematical analysis on the 

tracking stability of the closed-loop system. In section 4 
convergence proof of the algorithm is given using generalized 
Lyapunov function. At the last, present algorithm is applied to 
simulate control of a highly nonlinear 2-link robot system. 

II.  BACKGROUND 

Let denote ℝ  the real numbers, nℝ  the real n-vectors, 
mxnℝ  and the real m x n matrices. We define the norm of a 

vector nx∈ℝ  as      
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The absolute value is denoted as. , and (.)T denotes the 

transpose of a vector or a matrix. The trace of A written 
tr(A),is the sum of diagonal elements, and satisfies tr(A)= 
tr(A)T for a matrix A=[aij] 

mxn∈ℝ  
Given A= [aij] and mxnB∈ℝ  , the Frobenius norm is 

defined by 
2 2( )T

ijF
ij

A tr A A a= =∑ with tr(.) the trace operator. 

The associated inner product is (A,B)F =tr(ATB). The 
Frobenius norm is compatible with the 2-norm so 

that
2F

A xAx ≤ , with A mxn∈ℝ  and nx∈ℝ . 

A. Practical Stability of Nonlinear Systems  

Given ( ) nx t ∈ℝ and a nonlinear 

function ( , )f x t : n nx →ℝ ℝ ℝ , the differential equation  

0 0 0( , )....., , ( )x f x t t t x t x≤= =ɺ has a differentiable solution  

( )x t  if  f(x,t) is continuous in ( )x t  and t. 

The solution is ( )x t is said to be uniformly ultimately 

bounded (UUB) if there exists a compact set nU ⊆ℝ  

B. Stability of Systems  

Given nx∈ℝ and a nonlinear function ( , ): n nh x t Χ →ℝ ℝ ℝ ,the 

differential equation 
.

0 0 0( , ); , ( )x h x t t t x t x= ≤ =  

Has a differential solution x(t) if ( , )h x t  is continuous in 

( )x t and t.. The solution ( )x t  is said to be Uniformly 

Ultimately bounded (UUB) if there exists a compact set  
nU ⊆ℝ .Such that for all, there exists a 0δ > and a number 

0( , )T xδ  such that x δ<  for all (.)σ . 



C. Neural Networks 

 
Figure 1: Functional Link Neural Network 

Figure 1 depicts a functional link neural net (FLNN) which 
can be considered as “1”-layer feed forward neural net with 
input pre-processing element. This architecture is inspired by 
the work on high-order nets by Giles and Maxwell [11] and by 
the work on functional-link nets by Pao [10]. The FLNN 
architecture appears to be identical to that of the conventional 
“2”-layer neural net, except for the critical differences that 
only weights in the output layer will be adjusted. Note that the 
FLNN architecture is different from the functional link net in 
[10]. The ability of such neural nets to approximate 
continuous functions has been widely studied [3], [10].An 
FLNN can be used to approximate a nonlinear mapping 

( ) : n my x X ψ→ ,where n nX ⊂ ℝ  is the application specific 

n-dimensional input space and m mψ ⊂ ℝ  in the application 

specific output space. If  (.)σ  is a continuous discreminant 

function, then finite sums of the form         
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are dense in the space of continuous functions defined on 
hypercube or a compact set, where ijw ∈ℝ  are output layer 

weight values, ,i jθ θ ∈ℝ  are threshold values and iz ∈ℝ  is 

the ith  input to hidden neurons. ( )j xε : is the sigmoidal 

activation function and N and is the number of units (also 
called nodes and neurons) in the hidden layer. (.)σ . is the 

output of the sigmoidal function. Note that the activation 
functions (.)σ  for each neuron are not necessarily the same. 

Finally ( )xε  is called as the neural-net functional 

reconstruction error. 

III.  REINFORCEMENT LEARNING IN CONTROL 

This is where the RL techniques show to have a major edge 
over the other methods as the RL techniques has the capability 
to learn in the absence of a teacher, i.e. with out a goal 
directed data pattern. Of all the existing structures of RL, the 
Actor-Critic/Adaptive-Critic structure seems to have a very 
close connection with the well-established structure of 
Adaptive control. Like in Adaptive control scheme, the 
Adaptive-Critic structure has an Adjustment Mechanism unit, 
a Critic, and an action-taking controller, an Actor.  

In the Actor-Critic structure of RL, the actor takes actions 
that drive the state of system. The critic gives a scalar 
evaluation of the new state of the system. The scalar 

evaluation provided by the critic conveys much less 
information than the desired outputs required in the supervised 
learning. This critic information helps the actor in updating its 
parameters to produce a better action in the future that yields 
an improved system performance. Though the Actor-Critic 
structure is basically developed in game theory perspective, its 
link to control is very clear. Infect, its links with Bellman’s 
Dynamic Programming is proved in the literature [5]. The 
control view point of Actor-Critic structure is presented in the 
next section. 

A. Adaptive-Critic Structure 

 

 
 

Figure 2: Actor-critic based reinforcement learning 
 
A two link robot manipulator is used as a system for 

illustrating the operation of the present control structure. The 
details of error dynamics of the two link manipulator are given 
in section -4. The critic unit monitors the filtered error, and 
produces a reinforcement signal R(t) is a function of r(t), 
where r(t) is the filtered error as defined in (section-III-B). In 
the present work we have implemented signal R(t) with three 
different discriminant functions, as described below. 

(1) The signum function is defined as 

1 0
sgn ( )

1

if x
x

otherwise

+ ≥
= −

    So the critic signal is a mere 

binary signal, a +1 or -1, depending upon the filtered error 
information.  

     i.e R1(t) =sgn(r(t))                                                        (2) 
(2) R2(t) =R+(t) + R-(t) = ) )t t+ −σ ( + σ (                             (3) 

Where )t+σ (  =α+ / (1 – e- α+r(t)) 

(3) R3(t) =R+(t) + R-(t) = ) )t t+ −σ ( + σ (                            (4) 

Where )t+σ (  = α+ {e+ α+r (t) – e- α+r (t)  / (e+ α+r (t) + e- α+r (t)) 
The time derivative of the measured performance signal 

can be written as  

( , ) ( ) ( )dr g x x u t d t= + +ɺ                                          (5) 

Where ( , )dg x x is fairly complex function of x and xd. 

The control input to the plant is selected as  

 ( ) ( , ) ( )v du t K r g x x v t= − − +⌢
                    (6) 



Where ( , )dg x x
⌢

 is provided by the NN, the performance 
measurement gain matrix Kv = Kv

T  > 0 and v(t) is a 
robustifying parameter that will be dealt later.  

The NN approximation of ( , )dg x x  can be given as,  

( , ) ) )T
dg x x W x= σ(χ + ε(⌢

…, ) Nxε( ≤ ε                   (7) 

where the input 
TV xχ = , V is first layer weights of the 

NN, x is the input to the  NN and ( )xε is the approximation 

error ,bounded by known constant.  
The different parameters are chosen as following so that the 

filtered error r and the error in weights  W  are Uniformly 
Ultimately Bounded by known positive values[8] : 

MF
W W≤ , where MW is known value. 

The robustifying parameter ( ) .zv t k R R= −    .(8) 

Where z dk b≥ , an upper bound on the disturbance and R 

is the reinforcement signal. 

The weight updating law ̂ ˆ) TW F R F W= σ( χ − κɺ  .(9) 
with F = FT > 0 and the learning rate κ >0 for the speed of 

convergence.  
Using equations (8) to (12) we have following performance 

measure dynamics, which is useful for stability proof(section-
V). 

( ) ( ) ( ) ( ) ( ) ( ).T
vr t K r t W x x d t v tσ ε= − + + + −ɶɺ  (10) 

Here weight estimation error is ˆ .W W W= −ɶ  The 
justification for selection of the parameters as above is done 
with the help of Lyapunov theory[1] in section -IV. 

B. System and Tracking Error Dynamics Section Headings 

The Robot manipulator dynamics, in general, can be 
expressed in state-space representation in the Brunovsky 
canonical form (BCF) as  

1 2 2 3

1

; ; .......; ( ) ( )nx x x x x f x g x u

y x

= = = +
=
ɺ ɺ ɺ

 

Feedback linearization will be used to perform output 
tracking, whose objective can be described as the following: 
Given a desired output, yd(t), find a control action u(t), so that 
y(t) = x1(t) follows the desired trajectory with an acceptable 
accuracy (i.e. bounded error tracking) while all states and 
control remain bounded. To design a tracking controller, a 
mild assumption is made. Define the trajectory vector as  

1( ) .
Tn

d d d dx t y y y − =  ɺ …  

Assumption: The desired trajectory vector xd(t) is 
continuous, available for measurement, and 

( )dx t Q≤       ,with Q a known bound. 

Define a state error vector as, de x x= −  and a filtered 

tracking error as  
Tr e= Λ                                            (11) 

where [ ]1 2 3 1 1
T

n−Λ = λ λ λ λ… is an appropriately 

chosen coefficient vector so that 0e →  exponentially as 

0r → , (i.e. 1 2
1 1

n n
ns s− −

−+ λ + + λ⋯ is asymptotically 
stable).  

The time derivative of the filtered error can be written as 

( ) ( ) dr f x g x u Y= + +ɺ                     (12)  
Where         

1
( ) ( )

1
1

[0 ]
n

n n T
d d i i d

i

Y x e x e
−

+
=

= − + λ = − + Λ∑   

is a known signal.  
Using the error dynamics given by equation (11), a 

controller can be constructed using NN that keeps r(t) 
bounded. Then since equation (10) is a stable system, e(t) is 
bounded, thus, the tracking performance is achieved. The 
mathematical model for the 2-link robot manipulator is shown 
below 

                                                                                         (13) 
The robot dynamics can be expressed in terms of filtered 

error as 

        
where unknown nonlinear robot function is defined as, 

 

 
Figure 3: Robot Manipulator 

IV.  STABILITY ANALYSIS 

There are many person who had given convergence proof 
RL based control algorithm.[7],[8],[9].Here we have used 
Lyapunov based approach to prove convergence. 

We have proposed a generalized Lyapunov function for the 
stability analysis. 

It is .
1 1( , ) ( ( ))  + ( )
2

L r W R r t dt tr WF W−= ∫ɶ ɶ ɶ  (14) 

Then, the time derivative of Lyapunov function is given by 
1( , ) ( ) ( ) ( ).L r W R t r t tr WF W−= + ɺɺ ɶ ɶ ɶɺ                        (15) 

Evaluating (15) along the trajectories of (10) yields 

{ } 1( , ) () () () ( ) () ()  + () ( ) ( ).T T
vLrW Rt Krt Rt x dt vt RtW z trWF Wε σ −=− + + − + ɺɺ ɶ ɶ ɶ ɶ (16) 

And applying (8) and by the property of trace operator, we 
have 

1( , ) ( ) ( ) ( ) ( )+tr{ ( ( ) ( )}T T T T
vL r W R t Kr t R t x W F W x R tε σ−≤− + +ɺɺ ɶ ɶ ɶ (17) 

Here following property of trace operator is used 

( )T T Ttr D ab a Db=                                                   (18) 

( ) ( , ) ( ) ( ) dM q q Vm q q q F q G q τ τ+ + + + =ɺɺ ɺ ɺ ɺ



,    and n l n la b D ×∈ ∈ ∈ℝ ℝ ℝ  
Inserting the reinforcement learning rule (9) into (17) yields 

( , ) ( ) ( ) ( ) ( )+ ( ( ).T T T T
v ML r W R t K r t R t x tr W W Wε κ≤− + −ɺ ɶ ɶ ɶ  (19) 

Using the inequality  
ˆ( ) { ( )} ( )T T

MF F
tr W W tr W W W W W W= − ≤ −ɶ ɶ ɶ ɶ ɶ       (20) 

And ( ) 1R t k≤  we obtain 

2 2( , ) - 1( ) ( ) ( /2) /4 k1v M M NF
L r W k K r t W W Wκ κ ε≤ − − + +ɺ ɶ ɶ (21) 

The time derivative of L is guaranteed to be negative as 
long as either (22) or (23)hold. 

2 / 4 k1
( )

1( )
M N

r
v

W
r t B

k K

κ ε+≥ ≡                                  (22) 

2/ 2 / 4 1 /M M N WF
W W W k Bε κ≥ + + ≡ ɶ
ɶ           (23) 

Where rB and 
W

B ɶ  are the convergence regions for the 

performance measure (error) and the weight estimation error 

respectively. Therefore  ( , )L r Wɺ ɶ  is negative outside a 
compact set. According to a standard Lyapunov theory 

extension, this demonstrates the UUB of both ( )r t  and 

F
Wɶ . 

 Now we can use definition of different reinforcement 
signal (in equations (2),(3) and (4)) to propose Lyapunov 
stability proof. 

(A) For the reinforcement signal R1 defined in section 3.1 
equation (2) 

      Consider following Lyapunov-like function 

1

1

1
( , ) + ( ).

2

m

i
i

L r W r tr WF W−

=

=∑ɶ ɶ ɶ                              (24) 

(B) For the reinforcement signal R2 defined in section 3.1 
equation (3) 

      Consider following Lyapunov-like function 

r(t) - r(t) 11
( , ) ln(1 + e )+ln(1 + e ) + ( ).

2
L r W tr WF Wα α+ − −=ɶ ɶ ɶ (24) 

 (C) For the reinforcement signal R3 defined in section 3.1 
equation (4) 

      Consider following Lyapunov-like function 

r(t) r(t) - r(t) r(t) 11
( , ) ln(e  + e )+ln(e  + e ) + ( ).

2
L r W tr WF Wα α α α+ + − −− −=ɶ ɶ ɶ  (25) 

V. RESULTS AND DISCUSSIONS 

The present controller performance is illustrated by 
applying it on a two link robot manipulator. The parameters of 
the problem are as follows: Length l1=l2=1m and masses 

m1=m2=1Kg desired trajectory 1desiredq = 0.1 * sin (t); 

2desiredq = 0.1*cos (t); Loop gains Kv = diag (40).  

The NN parameters used in simulations are as given below: 
Number of Hidden neurons: 50, α+= α- =30 

Hidden neuron activation function: tansig 
Output neuron activation function : Purelin 
Learning rate in the weight tuning law: F = diag[1]; κ = 

0.01 

Inputs to NN: 
TT T T T T T T

desired desiredx q q e e r q q = ɺ , a 

total of 14 inputs. 

Inputs to Hidden neurons: 
TV xχ =  

First layer weights V: randomly initialized and kept 
constant. 

Simulation time: 10 seconds. 
    The simulation results are presented in four parts: with 

fixed loop gains only, with the RL controller (using 1st 
discriminant function) included along with the loop gains, 
with the RL controller (using 2nd discriminant function) 
included along with the loop gains, with the RL controller 
(using 3rd discriminant function) included along with the loop 
gains .We have also second case under a sudden disturbance 
for all above four parts. 

 A . Simple Loop gains 

 
           Figure 4:  (a)                                      (b) 

 
          Figure 5:  (a)                                        (b) 
The output tracking performance of the plant with loop gains 
alone is shown in Figures 4(a) and 4(b), for a loop gains of 
diag (40). The performance is not as encouraging as a steady 
error component is always present in the output. When the 
loop gains are increased by a substantial amount, to diag[120], 
the system performance got better as shown in Figures 5(a) 
and 5(b). But in practice limitations on loop gains always exist 
because of actuator saturation and unnecessary excitation of 
higher modes of the plant. Also when we apply sudden 
disturbance then there is a permanent steady state error of 
large amount. 

C.  RL controller with different discreminant function  

The simulation was re-run with the RL controller included 
as a supplementing controller to the existing loop gain 
controller, infect for lower values of loop gains, at Kv=diag(20) 
only. The system tracking performance has improved 
considerably as shown in Figure-6(a).Here system achieves 



faster steady-state when we use 3rd discreminant function, in 
comparison with other discreminant functions. Also when we 
introduce sudden disturbance then RL controller gives better 
performance with zero steady –state error, as compare to 
simple loop gains. The results are shown in figure-6(b), 
figure-7(a) and 7(b). 
 

 
Figure 6:     (a)                                            (b) 
  

 
Figure 7:          (a)                                             (b) 

VI.  CONCLUSIONS 

In this paper, Actor-critic type RL based control 
algorithm is simulated on 2-link robot manipulator system. 
Results shows it gives better performance compared to the 
controller designed based on loop gain alone. Also we have 
tried to generate RL signal with different discriminate 
functions. Results shows R2 gives best performance among 
three. Stability proof of all three functions based RL algorithm 
is explained in section-4.the generalized Lyapunov function 
for any discriminant function is also given. One can try with 
other type of function to get better reinforcement signal.  
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