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Abstract— In present paper Reinforcement learning (RL) base
control is implemented with Actor-critic based techique.
Generation of reinforcement signal is described eéier with
binary sign function for Actor-Critic based Reinforcement
Learning. In the present paper two more discriminae functions
introduced to generate reinforcement signal. It iproved with the I
results that these functions have faster convergeedhen earlier
method to obtain reinforcement signal. In this pape 2-link
robot manipulator system’s dynamics is used to simate results.
It is assumed that the system has a certain ‘canaml’ structure.
Present paper also shows reinforcement learning bad
controller achieves faster convergence then convémbal
controller based on loop gains. Convergence prooff groposed
algorithm is defined with Lyapunov stability theory. Also we
have proposed generalized Lyapunov function for any
discriminant functions and system expressed in canaal form.

tracking stability of the closed-loop system. Inctgen 4
convergence proof of the algorithm is given usiegeagalized
Lyapunov function. At the last, present algoritrsrapplied to
simulate control of a highly nonlinear 2-link rolsytstem.

. BACKGROUND

Let denotelR the real numbersR" the real n-vectors,
R™ and the real m x n matrices. We define the norm of

vector X|_|Rn as
1/2
HXH = [Zn ij]
1=1

The absolute value is denoted".His and (.J denotes the

transpose of a vector or a matrix. The trace of Atten
tr(A),is the sum of diagonal elements, and sassti€A)=
Keywords—Reinforcement learning, Neural Network, Lyapunov  tr(A)" for a matrix A=[g] [JR™N

Stability, Discriminate function Given A= [3] and BLOR™" | the Frobenius norm is

. INTRODUCTION defined by||A||i =tr(A'A) = ) aZ with tr(.) the trace operator.
i

Reinforcement learning (RL) is analogues to how &mum
learn by experience. RL is based on the commoreseotson
that if an action gives satisfactory results or ioyes results
then, tendency to produce similar action should
strengthened, i.e. reinforced. There are many tqube
available which implement this concept, like Q-éag,
Temporal Difference based learning, SARSA, ActatiCr
based learning etc. Reinforcement learning (Rlgnis of the
major NN approaches to learning control. The abilio
generate the correct control actions nevertheleskesnRL
important in situations where lack of sufficientusture in the
task definition makes it difficult to define a prighe desired

The associated inner product is (A:BFtr(A'B). The
Frobenius norm is compatible with the 2-norm so

geat| AX| <A, [, with ADR™" andX_IR".

A. Practical Stability of Nonlinear Systems
X(t)LIR"
function f (X,t): R"XR — R", the differential equation

X=f(Xt).....1, st X )=x has a differentiable solution
x(t) if f(xt)is continuous irp((t) andt.

Given and a nonlinear

outputs for each input, as required for supervisatning
control and direct inverse control. In this papemr will

explore a new type of RL algorithm, in which therking
signal is merely a binary, "+1" or "-1", from a tari rather
than an instructive correction signal. It was pisgabby Lewis
[1].We madify this reinforcement generating signdth other
discreminant functions. We have also explored Btalmroof

for general case (i.e. any discriminant functions aystem
which can be expressed in canonical format). Wev VL

based methods as computationally simple, directoamhes
to adaptive-learning control.

In section2 we will review stability of systems and U OR"

some fundamentals of NN. Then section 3 presentsdrtrol
architecture and rigorous mathematical analysis tbe

The solution isx(t) is said to beuniformly ultimately
bounded (UUB) if there exists a compact &1 |IR"

B. Stability of Systems
Given X_R'and a nonlinear functioh(xt):R"XR - R" the

differential equationx = h(x,t);t, <t,X(t,) = X,

Has a differential solution x(t) if(X,t) is continuous in
x(t) and t.. The solutionx(t) is said to be Uniformly
Ultimately bounded (UUB) if there exists a compast
.Such that for all, there existsde>0and a number

T(J,%,) such thaﬂ)q‘ <J forallo(.).



C. Neural Networks evaluation provided by the critic conveys much less

information than the desired outputs required enghpervised

learning. This critic information helps the actorupdating its

parameters to produce a better action in the futakeyields

an improved system performance. Though the ActdieCr

- structure is basjcally developed in ga.lme.theor)?s.pmrtive, its
link to control is very clear. Infect, its links thi Bellman’s
Dynamic Programming is proved in the literature. [Bhe
control view point of Actor-Critic structure is @nted in the
next section.

Figure 1: Functional Link Neural Network ) .
Figure 1 depicts a functional link neural net (FUNMhich A Adaptive-Critic Sructure
can be considered as “1"-layer feed forward neusdl with

input pre-processing element. This architecturiaspired by R(t)

the work on high-order nets by Giles and Maxwell][and by - Criie  [* [ 0
the work on functional-link nets by Pao [10]. Th&NN Element: v g4t | Performance
architecture appears to be identical to that ofcthreventional Kv IMeasurement
“2"layer neural net, except for the critical difemces that 7| Robustifying Mechaniam
only weights in the output layer will be adjustéthte that the tertn \

FLNN architecture is different from the functioralk net in Avion

[10]. The ability of such neural nets to approxienat

W7 Nekel y [mp—

oty

continuous functions has been widely studied [3D].An g4t Netwotl g

FLNN can be used to approximate a nonlinear mapping ’_‘ u)

y(x): X" - ¢ where X" OR" is the application specific *

n-dimensional input space agd” (0 R™ in the application Figure 2: Actor-critic based reinforcement learning

specific output space. Ifg(.) is a continuous discreminant . ) .

function, then finite sums of the orm. A two link robot _rnanlpulator is used as a system fo
n illustrating the operation of the present conttolsture. The

YEKED WoG+G 8 1He (0] =12.m......... o) details of error dynamics of the two link manipolaare given

=1 in section -4. The critic unit monitors the filtdrerror, and

are dense in the space of continuous functionsieéfon produces a reinforcement signal Ri{$) a function of r(t),
hypercube or a compact set, wheyellR are output layer wherer(t) is the filtered error as defined in (section-I)i-Bn

. . the present work we have implemented signal R(th iree
weight values 61 UR are threshold values arg OR is different discriminant functions, as described faelo

the " input to hidden neuronss; (X) : is the sigmoidal (1) The  signum  function is  defined as
activation function and N and is the number of sir(@lso _[+1 if x=20 . .
called nodes and neurons) in the hidden lagdr) . is the S9N &)= -1 otherwise So the critic signal is a mere

output of the sigmoidal function. Note that theiation binary signal, a +1 or -1, depending upon the réitieerror
functions o(.) for each neuron are not necessarily the samgegrmation.

Finally E(X) is called as theneural-net functional i.e R(t) ngn(r('_[)) + 7 @
reconstruction error. (2) Ro(t) =R'(t) + R(t) = 0" () + 0 (t) 3)
Where o™ (t) =a*/ (1 —e&*")

[Il. REINFORCEMENTLEARNING IN CONTROL " ! N _
. . (3) Re(t) =R'() + R(t) = o" (1) + 0 (t) 4
This is where the RL techniques show to have amejge
A 33 Where O'+(t) — ot {e+a+r " _ e—a+r ® / (e+<x+r ® + e—a+r (t))
over the other methods as the RL techniques hasathebility a
to learn in the absence of a teacher, i.e. with augoal The time derivative of the measured performancaasig
directed data pattern. Of all the existing strugsuof RL, the can be written as
Actor-Critic/Adaptive-Critic structure seems to kaa very F=g(xx,) +u(t) +d(t) (5)
close connection with the well-established struetusf . ) )
Adaptive control. Like in Adaptive control schemghe  Where 9(X,X;) is fairly complex function of and x..
Adaptive-Critic structure has an Adjustment Meckaniunit, The control input to the plant is selected as
a Critic, and an action-taking controller, an Actor - _ —d
; " ; , ut) = -K,r X, Xy ) +v(t

In the Actor-Critic structure of RL, the actor takactions ( ) v g( d) ( )
that drive the state of system. The critic givessaalar
evaluation of the new state of the system. The ascal

(6)



Where §(X, Xy ) is provided by the NN, the performance \yhere A = [)\1 A As )\n_ll]T is an appropriately
measurement gain matrix k= K, > 0 andwv(t) is a

robustifying parameter that will be dealt later. chosen coefficient vector so th& — O exponentially as

The NN approximation o@(X, X;) can be given as, r-0, (e s +A, 8"+ . +), is asymptotically
_ nT stable).
g(x, %, )=W" o(x) +&(x) ..., e(x) <, () The time derivative of the filtered error can batten as
—\/T ;=
where the inpul{ =V X, Vis first layer weights of the [ = f(x) + g()u + Y, (12)
. . . ) . Where
NN, x is the input to the NN anG(X) is the approximation et
error ,bounded by known constant. . Y, = -x"+ D Ae, = -x"+[0 A'le
The different parameters are chosen as followingpabthe i=1
filtered errorr and the error in weightsWW are Uniformly is a known signal.
Ultimately Bounded by known positive values[8] : Using the error dynamics given by equation (11), a

controller can be constructed using NN that kee($
bounded. Then since equation (10) is a stable mysg) is
The robustifying parameter(t) = —k, R/"R” (8) bounded, thus, the tracking performance is achieddw
mathematical model for the 2-link robot manipulatshown

W[ =W, , whereW, is known value.

WherekZ =D, | an upper bound on the disturbance and Row
is the reinforcement signal. M(Q)§+Vm(q,q)q+F(q)+G(q)+7, =T (13)
The weight updating law = F o(X)RT -k FW .(9) The robot dynamics can be expressed in terms tefdi

with F = F" > 0 and the learning rat >0 for the speed of error as

convergence. Mi=—Vr+fx)+,-t. _

Using equations (8) to (12) we have following penfance where unknown nonlinear robot function is defined a
measure dynamics, which is useful for stabilitygi¢section- . (%) = M (@)(d,; +4&) +Vinlg d)(d, +A&)+ F () +Clg)
V).

(1) = =K1 () +W' 0 () + £09 +d(®) - V(). (10)

Here weight estimation error iV =W -W. The

justification for selection of the parameters aswabis done
with the help of Lyapunov theory[1] in section -IV.

B. System and Tracking Error Dynamics Section Headings L
The Robpt manipulator dynamics, .in general, can be Figure 3: Robot Manipulator

expressed in state-space representation in the oBsknp

canonical form (BCF) as V. STABILITY ANALYSIS
X XX = X e x = f There are many person who had given convergena® pro
ATR%=% & Q()"'QQ()J RL based control algorithm.[7],[8],[9].Here we hawsed
Y=X Lyapunov based approach to prove convergence.

We have proposed a generalized Lyapunov functiomhto

Feedback linearization will be used to perform attp i~ -
stability analysis.

tracking, whose objective can be described as dhewing: 1
Given a desired outpuyy(t), find a control actiomi(t), so that - AT — +4 M~F_ A
y(t) = x(t) follows the desired trajectory with an acceptable ftis L(r’W) I R(r (t))dt 2tr ]\N) (14)

accuracy (i.e. bounded error tracking) while altss and  Then, the time derivative of Lyapunov function isep by
control remain bounded. To design a tracking cdietroa

mild assumption is made. Define the trajectory eeas L(r,W)=R()r (t) +tr(\NF‘W). (15)
0 = . netdT Evaluating (15) along the trajectories of (10) gl ‘
%) =[va Yoy ] LEV=—ROKr0)+R0f 234t} ROV F W 16)

Assumption: The desired trajectory vectog(t) is And applying (8) and by the property of trace operave

continuous, available for measurement, a%ve
[ @] <Q  wih @ aknown bound. L(r W<—R OKr€)+R QeH{W(F Wy R(9} (17)
Define a state error vector &= X=X, and a filtered Here following property of trace operator is used
tr(D'ab’) =a'Db 18]

tracking error asl" = N e (11



alR",b0] R andDOR™ Hidden neuron activation function: tansig

. . . . . Output neuron activation function : Purelin
Inserting the reinforcement learning rule (9) i(@@) yields Learning rate in the weight tuning law: F = diag[k]=

I;(r,\ﬂl) <R OKr)+ R (t)e()+xtr (\/‘/T W, -W ). (19) 0.01
. . ! -
Using the inequality Inputs to NN: x:[qT qT ger’ quesiraj quas'rej:' , a

tr (VVTVV) =tr{W'(W-W} S"\N“F( Wi _"\N“v-) (20) total of 14 inputs.

And ” R(t)” < k1 we obtain Inputs to Hidden neurongY = VT x
L(r,\ﬂl)s_m_(}g)"r(tm_KMF ~W, /2F +RNE [ 4+ Kis, (21) Corlf;rtztntlayer weightsV: randomly initialized and kept
The time derivative of L is guaranteed to be negatis Simulétion time: 10 seconds.
long as either (22) or (23)hold. The simulation results are presented in foutspavith
K\Nnj/4+ kle, fixed loop gains only, with the RL controller (ugint™
|||’('[)||2 =5 (22) discriminant function) included along with the loggains,
K1(K, ) with the RL controller (using 2nd discriminant fiion)
v 2 _ included along with the loop gains, with the RL toler
”\N“ =W, /2+\/\N [4+kle, Ik = BW (23) (using 3rd discriminant function) included alongtwihe loop

ains .We have also second case under a suddenbdiste

Where B, and 3N are the convergence regions for th?rall above four parts

performance measure (error) and the weight estmatiror

respectively. Therefore L(I’,W) is negative outside a
compact set. According to a standard Lyapunov thec

extension, this demonstrates the UUB of bHﬂ(t)” and e R

p,. / 1/

Now we can use definition of different reinforcathe - T /
signal (in equations (2),(3) and (4)) to proposeapynov ' 1
stability proof.

(A).For the reinforcement signal; Rlefined in section 3.1 Figure 4: (a) (b)
equation (2)

Consider following Lyapunov-like function

L(r,W)= Zm:|ri|+%tr(WF‘]W). (24)

(B) For the reinforcement signal, Rlefined in section 3.1
equation (3)
Consider following Lyapunov—like function

A . Smple Loop gains

B N ) Figure 5: (a) (b)

LrW)=InL+& ™ )+In1+&" ) +tr WF W (24) The output tracking performance of the plant witbd gains
alone is shown in Figures 4(a) and 4(b), for a Igams of
(C) For the reinforcement signak Beflned in section 3.1 diag (40). The performance is not as encouraging steady
equation (4) error component is always present in the outputeithe
Consider following Lyapunov-like function loop gains are increased by a substantial amaonaiag[120],
- " s - . 1 ~ .~ the system performance got better as shown in &sgb(a)
LrW)=InE@® +& Hn@® +€% )3 WWW (25) and 5(b). But in practice limitations on loop gaatways exist
2 because of actuator saturation and unnecessartatixei of

higher modes of the plant. Also when we apply sandde

disturbance then there is a permanent steady stebe of
The present controller performance is illustrateg t?arge amount.

applying it on a two link robot manipulator. The@aeters of
the problem are as follows: Length=lb=1m and massesC. RL controller with different discreminant function

m=m,=1Kg desired trajectoryQegeq = 0.1 * sin (t); The simulation was re-run with the RL controlleclided

_ ) . . as a supplementing controller to the existing loggin

Qpesired = 0-17C0s (t); Loop g§|n§J¢ d|:.ag (40). . controller, infect folower values of loop gains, at,&diag(20)
The NN parameters used in simulations are as gietw: only. The system tracking performance has improved
Number of Hidden neurons: 5@'= " =30 considerably as shown in Figure-6(a).Here systehieses

V. RESULTS ANDDISCUSSIONS



faster steady-state when we ust dscreminant function, in International Conference on Robotics and Automa@olando, Florida

comparison with other discreminant functions. Algoen we - May 2006.
introduce sudden disturbance then RL controlleegjibetter [8] c. c. chean, M. Hirano, S. Kawamura, and S. Ariméjgproximate
performance with zero steady —state error, as cenpa Jacobian Control With Task-Space Damping, |IEEE $i@m Automatic

. . . X Control,Vol. 49, No.5,May 2004
§|mple |00p gams. The results are shown in flgi(lb}, [8] V. S. Borkar and S. P. Meyn, The O.D. E. MethodGanvergence of
flgure-7(a) and 7(b). Stochastic Approximation and Reinforcement Learn®iAM Journal
on Control and optimization , Volume 38, IssuéJanuary 2000)
[9] Pao, Y.—H., et al.. Neural-net Computing and Iigeiht Control

Systems. International Journal of Control 56(23-2889 (1992)
[10] Giles, C.L. and T. Maxwell. 1987. Learning, Inkarce, and
, Generalization in High-Order Neural Networks. Aupl. Optics, v. 26,
' R p.4972
Figure 6: (a) (b)

Figure 7: (a) (b)

V1. CONCLUSIONS

In this paper, Actor-critic type RL based control
algorithm is simulated on 2-link robot manipulateystem.
Results shows it gives better performance comptoethe
controller designed based on loop gain alone. Alsohave
tried to generate RL signal with different discriaie
functions. Results shows;Rjives best performance among
three. Stability proof of all three functions bastd algorithm
is explained in section-4.the generalized Lyapufigction
for any discriminant function is also given. One ¢ay with
other type of function to get better reinforcemsighal.
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