Verification of Various Numerical Methods Using
Hardware Implementation

Prof. Sandip Mehta
Assistant Professor
Department of Electrical Engineering
Instrumentation & Control Engineering
Institute of Technology, Nirma University
Ahmedabad, India
Email: sandip.mehta@nirmauni.ac.in

Abstract—Numerical analysis is the study of algorithms that
use numerical approximation for the problems of mathematical
analysis and control system. These Numerical Algorithms are
dedicated to applying its unique expertise in numerical software
engineering to delivering high quality computational software
and high performance computing services. In this paper different
numerical techniques for ordinary differential equations are
simulated for different system models. The system will be mod-
eled using differential equations. The differential equations will
be solved using available numerical methods. The comparative
analysis will be carried out for different numerical methods
using advanced software tools. The hardware implementation
of the numerical methods will be done using real time embedded
system/hardware.

Index Terms—Numerical Methods, LabVIEW, C-RIO.

I. INTRODUCTION

In many engineering problems there is a constant need
for solving systems with differential equations. Numerous
scientific and technical problems can be described by means
of single equation with one variable or systems of n equations
with n variables. These equations that are dependent on
number of independent variables and corresponding number of
derivatives can be divided into ordinary differential equations
and partial differential equations [1].

Ordinary differential equations frequently occur in mathe-
matical models that arise in many branches of science and
engineering. Unfortunately it is seldom that these equations
have solutions which can be expressed in closed form, so
it is common to seek approximate solutions by means of
numerical methods. However most real world problems do
not have closed form analytical solutions. Instead one has to
use computer algorithms to calculate numerical solutions. With
the combination of math knowledge and programming ability
numerical algorithms can be designed and selection of such
algorithms can be made applicable to wide range of real world
problems [1], [2].

These ordinary differential equations defined only for one
value of the independent variable are called initial value prob-
lems satisfying the given differential equation with an initial
condition y(tp) = o . These concept was proposed by Cauchy
in Cauchy’s Theorem [1], [2]. The different methods for

978-1-4799-8433-6/15/$/31.00©2015 IEEE

Tej Trivedi
Research Scholar
Department of Electrical Engineering
Instrumentation & Control Engineering
Institute of Technology, Nirma University
Ahmedabad, India
Email: 13micc24 @nirmauni.ac.in

solving differential equations are programmed in LabVIEW
[3]-[6] and real-time implementation of it is done on C-RIO
[7]-[9]. Later, for verification of these methods, the system
models are implemented using real hardware.

II. DIFFERENT METHODS FOR SOLVING ORDINARY
DIFFERENTIAL EQUATIONS

This section is devoted to solving ordinary differential
equations of the form
dy
= = f(t 1
iR ACE)) (D
Here various numerical methods are used to solve such equa-
tions; the method in general form is as follows:

New value = old value + slope step size

or, in mathematical terms,
Yit1 = Yi + oh

This formula can be applied step by step to compute out into
the future and, hence, trace out the trajectory of the solution
[10].

Initial Value Problems can be solved using one-step nu-
merical methods such as Euler’s Method, Heun’s Method, RK
Method etc. and multi-step numerical methods such as Adams-
Bashforth-Moulton Method and Milne-Simpson Method. All
these self-starting & non self-starting methods are discussed
in these paper. Runge-Kutta (RK) method is single-step self-
starting method which is used to find the initial values for
non self-starting; Predictor-Corrector Methods (ABM, Milne’s
etc.); is described first with its algorithm [11].

Runge-Kutta (RK) Method:

The Runge-Kutta (RK) method of order N = 4 is most
popular. The fourth-order RK method gives better accuracy,
stability and is also easy to program. This method is based
on computing yi41 and starts with the initial point (¢g,y0)
and generates the sequence of approximation using following
formula:

h(ky + 2ko + 2ks + k4q)
6

Yk+1 = Yk + 2

Fig. 1. FourthOrder RK Method LabVIEW code

where,
k1 = f(tr, ur)
ko= f(ts+ 2 ys+ 2 11)
ks = f(tx + 5,9k + 5 f2)
ka = f(tk +h,yx + hfs)

Algorithm for RK Method: [11]

Algorithm steps for Fourth Order Runge-Kutta method are
shown below:
1) Define f(t,y) [= RHS function of the differential equation
y = f(ty)]
2) Read t,y,h[the initial values of t, y and the step size h
of t]
3) Fori = 1(1) n, do till (12)
4) k1 < hA(ty)
5) ko < hA(t + h/2,)y + k1/2)
6) ks < hf(t + h/2,y + k2/2)
7) t<t+h
8) ky h.f(t,y + k3)
9) y<+y+h(fi +2f2+2f3 + f1)/6
10) y,, < “the mathematical solution of the equation to be
supplied”
Write t, y, Y,
Next i
End

11
12)
13)

Note: Initial values are assumed as t, y. Compute the value
of y at the points ¢o + h, ty + 2h, ...

A. Single Step (Self Starting) Methods

Fig. 2. Euler’s Approximation

1) Euler’s Method: Euler’s Method is one of the simplest
representative of the one-step methods, discussed on the basis

iterations

Fig. 3. Euler Method LabVIEW code

of Fig. 2. Process of finding the consecutive values vy, = y(,,)
=y(zo + n*h) forn =1, 2, 3, . . ., begins from the starting
point Py = (to, yo). The first computed value of the desired
function is:

y1 = y(to + h) = yo + hf[to, y(to)] 3)

Thus point P, = (¢1, y1) is obtained, which can be treated
as the starting point in the process of finding next points.
Repeating this procedure several times, the set of discrete
values ¥, of the function approximating desired solution y(t)
is evaluated. [1], [10], [12]

iﬂt.' =

Fig. 4. Heun’s Approximation

2) Heun’s Method: In case of the Heun’s method, an
auxiliary coordinate y, . = y, + hf (t,, y,) is calculated
first and used next to determine the quantity

f(tns1,Ynat) @

expressing the slope coefficient of the tangent to the curve

iterations
i

Fig. 5. Heun’s Method LabVIEW code

described by equation (5) and passing through the point

Py = (tns1, Y4 1) being first approximation of the desired
solution. The point, which gives a much better approximation,
P,t1 =({n+1, Ynt1), has the coordinate y,, 1 calculated from
the formula: [1], [10], [12]

1
Yn+1 = Yn + ih[f(tnvyn) + f(tn-i-lvy:;-&-l)] &)

B. Predictor-Corrector Methods [12]

In case of all one-step methods discussed in the previous
section, the value vy, 1 = y({,+1) of the determined function is
calculated on the basis of only one value y,, = y(¢,,), computed
using the previous iteration information. In the multi-step
methods not only the value y,, = y(¢,,) but also several other
values Ynr11 = YEnk+1)> Ynk+2 = YEnkt2)s Ynk+3 = Y(lnk+3),

.» Yn =y(t,) are required for calculation, where the number
of steps k=1, 2, 3, . . . also determines the order of method.

(1], [12]

/_

I |
| |
I I
+ }

t

n=-3 t n t mef
Fig. 6. Discrete Values of Predictor-Corrector Methods

1) ABM’s Method: The Adams-Bashforth-Moulton (ABM)
Method is a multi-step Predictor-Corrector Method derived
from the fundamental theorem of calculus:

tr41
)=o)+ [SO ©
k

The predictor uses the Lagrange Polynomial approximation
for f(t, y(t)) based on the points (tx_3, fr—3), (tk—2, fr—2),
(tk—1, fr—1) and (¢, fx). It is integrated over the interval [ty
ti+1] in equation (6). This process produces Adam-Bashforth
Predictor:

h
Dht1 = Yk + ﬂ(—9fk—3 + 37 f—2 — 59 fr—1 +55f,) (7)

The corrector is developed similarly. The value pg; just
computed can now be used. A second Lagrange polynomial
for f(t,y(t)) is constructed, which is based on the points (t5_o,
fr—2)s (tx—1, fr—1), (tg, fr) and the new point (1, fri1) =
(tk+1, f(tk+1, Pk+1))- This polynomial is then integrated over
[tk.tx+1], producing the Adams-Moulton corrector: [12]

h
Yk+1 = Yk + ﬂ(fk—2 —5fk—1+19fx +9frs1) (8

=
Xi_next_HMAS
bV
5
x
[] e
i |
, :
b correction for || 2250 |
mula_JHM(Sub ||| —————
] Yi_next_HMIS
- i ubVIvi
v CorrectorH
““‘ﬁx:’"‘ I z MiSubVD
=) - CaC:
r 28m
7 Waveforr
- é
)
S| o]
z

Fig. 7. ABM Method LabVIEW code

2) Milne’s Method: Another popular Predictor-Corrector
method is Milne-Simpson Method. Its predictor is based on
integration of f(t, y(t)) over the interval [tx_3, tx+1]:

U(th) = ylth_s) + / rtyya o)

tk—3

The predictor uses the Lagrange Polynomial approximation
for f(t, y(t)) based on the points (tx—3, fx—3), (tx—2, fr—2),
(tk—1, fr—1) and (tg, fx). It is integrated over the interval
[tx—3, tx+1] in equation (9). This produces Milne Predictor:

Dk+1 = Yk—3 T %(2#4 — fr—1+2f%) (10)

The corrector is developed similarly. The value pg; just
computed can now be used. A second Lagrange polynomial
for f(t,y(t)) is constructed, which is based on the points (f5_o,
fr—2), (t—1, fr—1), (tx, fi) and the new point (tgy1, fr41) =
(ti+1, f(tx+1, Pr+1))- The polynomial is then integrated over
[tx—1.tk+1], and the result is familiar Simpson’s rule: [1], [12]

4h
Yht1 Zyk—1+§(fk—1 +4fk + frt1) (11)

[)

Correcian far | | 551
mula_minasu
bpa

[

iy

N —
L]

.
{ tonpgasaisu | |||| sredicioe_mie
¥ etsuviln
i v
z 7 v
m o
z
o o=
n
o)

Fig. 8. Milne’s Method LabVIEW code

3) Euler’s Predictor Method: Euler’s Predictor-Corrector
(EPC) Method uses the simple Euler’s Formula as the predictor
and the improved Euler’s Formula as corrector. The simple
Euler’s formula is given by:

y(t+h)=yt)+hf(ty)

and the improved Euler’s Formula is given by:

u(t+B) = y(t) + 21 w) + S+ by bS] 03)

12)

n
b terabors .
[T - B e
a_
r_ 2_
= | — .
[o
Euler_comectn e =
" cion formalal Enlers net i
B il Safi EI Bkl
i o Eulers main ¢
* =4 &
levn | R i 1 2
A B m | =
v in B w e
o Briesa @E
e fSubviw
L— ™
|
m £l

Fig. 9. EPC Method LabVIEW code

III. SIMULATION RESULTS

The Simulated Results of following equation (14) using
different numerical methods is discussed next.

Yy = 30— 5y (14)

The computation of the above equation (14) is done in
LabVIEW with a fix step-size and initial condition y(0) = 1.
[12]

The following Table 1 shows the simulation time in Lab-
VIEW and its real-time implementation in C-RIO. The equa-
tion (14) is taken as an example to solve, using different
numerical methods for comparison and verification of the
algorithms by obtaining various results. In the Table 1 for

TABLE I
COMPARISON OF SIMULATED RESPONSE TIME AGAINST C-RIO
IMPLEMENTATION
Approx. Real-Time
Methods Simulation Time | Implementation
in LabVIEW (using C-RIO)
Euler 4ms 50ms(approx.)
Heun 2ms 10ms
ABM 5s 20ms
Milne Unstable Unstable
Euler
Predictor-Corrector | 4ms 20ms

Milne’s Method the real-time solution is unstable and that is
due to 3 point method. Dahlquist Theorem proposed that if
the modulus of characteristic roots of the equation are greater
than one then the equation does not obey the concept of zero-
stability. Hence, it may happen that this method does not give
proper solution in some cases [2], [12].

A. Simulation of Real Systems

The above methods can be used to solve the practical
systems in the real-world. Any practical system can be mod-
eled using the concept of mathematical modeling [1], [13],
[14] and simulation is done in LabVIEW. Two different real
systems are modeled and its real hardware is also prepared
for verification. The simulation results in LabVIEW and its
Real-Time Implementation in C-RIO is discussed in following
tables.

One of the two system is Full-wave Rectifier Integrated

D2 L1

T P
_ch 0.1mH Lm
D1 D3 1000yF 1000pF a
AN 1500
D4 5%

Fig. 10. Multisim Layout of Full-wave Rectifier Integrated With Three-
Element Filter

With Three-Element Filter [1], [15], [16]. The time-domain
analysis of this circuit (shown in Fig. 10) consists in determin-
ing the functions of current and voltage, which are considered
as the state variables. The values of currents and voltages are
related with state variables mentioned in the following set of
differential equations:

de(t) 1 1
i = —Cl * y(t) CIR * J?(t) (15)
d 1 1
% =¥ 2(t) — T* x(t) (16)
dx(t) 1 (B ==, 1
i = 62 * Is[ewp[w] ” 02 * y(t) (17)

where, uy(t) = V,,, sin(27*50%t) Volts.
These equations (15, 16 & 17) are nonlinear in nature

TABLE 11
COMPARISON OF SIMULATED RESPONSE TIME AGAINST C-RIO &
HARDWARE IMPLEMENTATION

Predictor-
Corrector
Methods
Approx.
Simulation Time
in LabVIEW
Real-Time
Implementation
(using C-RIO)
Real Hardware
Response Time

ABM Milne Euler

130ms 150ms 120ms

625ms | 800ms | 300ms

250ms

hence single point numerical methods fails to solve such
systems. Predictor-Corrector methods are used for solving
these differential equations and comparative analysis is done
for the verification of numerical methods. This analysis is
also compared with the output response of the real hardware
and the conclusion can be made for the suitable numerical
method which replicates the similar type of output response.

Comparative analysis for the same is shown in Table II above.
The simulation time shown in Table II is approximate
time taken after performing few simulations in LabVIEW.

Another system is Unsymmetrical Voltage Doubler [1], [16].

T c1 D2
It I .
+1t L1
H 1000upF | D1 J_Cz R1
§ ¥
T‘IUODpF 10k

Fig. 11. Multisim Layout of Unsymmetrical Voltage Doubler

Similar to previous system this electronic circuit (shown in
Fig. 11) is also analyzed using node voltages. These nodes
are used as state variables. Here also, applying the concept
of mathematical modeling for different state variables the first
order differential equations are obtained.

dzit) = du;;t)+é[exp(_‘Z(ﬂt))—l]—éil[exp((‘)/i(t)()lg)l]
dy(t) _ Is z()y(t) 1
= @[exp(TT) -1 - Ey(t) (19)

where, us(t) = V,, sin(2r*50*t) Volts.

These equations (18 & 19) are solved using various predictor-
corrector numerical methods and comparative analysis for this
system is also carried out like it was done for previous system.
Table III below shows comparison values.

The simulation time shown in Table III is approximate time
taken after performing few simulations in LabVIEW.

IV. CONCLUSION

The various systems are simulated in LabVIEW to verify the
results of each method. Basis on this simulation of different
methods different solutions are obtained which are compared
with the Real-Time Implementation on Hardware. Moreover,
mathematical model of such hardware design is dumped into
the C-RIO along with various numerical methods as solver.
All these together gives the various results and from that, the
verification of various numerical methods is done using Real-
Time Implementation.

TABLE III
COMPARISON OF SIMULATED RESPONSE TIME AGAINST C-RIO &
HARDWARE IMPLEMENTATION

Predictor-
Corrector
Methods
Approx.
Simulation Time
in LabVIEW
Real-Time
Implementation
(using C-RIO)
Real Hardware
Response Time

ABM Milne Euler

110ms 110ms 107ms

1.875s | 2s 900ms

800ms

ACKNOWLEDGMENT

We would like to thanks Dr. Dipak M. Adhyaru, (Section
Head IC), Institute of Technology, Nirma University for giving
his valuable guidance for preparation of the topic and sugges-
tions towards entire work for writing this paper.

REFERENCES

[1] Stanislaw Rosloniec, "Fundamental Numerical Methods for Electrical
Engineering”, Springer.

[2] Endre Suli and David F. Mayers, ”An Introduction to Numerical Anal-
ysis”, University of Oxford, CAMBRIDGE UNIVERSITY PRESS

[3] Jovitha Jerome, Virtual Instrumentation Using LabVIEW”, PHI.

[4] Jeffrey Travis, Jim Kring, "LabVIEW For Everyone Graphical Pro-
gramming Made Easy and Fun”, Third Edition, Pearson Education.

[5] S. Sumathi, P. Surekha, "LabVIEW based Advanced Instrumentation
Systems”, Springer.

[6] LabVIEW, "Learning & Solving errors”, [Online] Available:
http://forums.ni.com/topic name/error.

[7] Maciej Rosol, Adam Pilat, Andrzej Turnau, "Real-time controller design
based on NI Compact-RIO”, Proceedings of the International Multicon-
ference on Computer Science and Information Technology pp. 825830.

[8] National Instruments, ”About LabVIEW & NI CRIO”, [Online] Avail-
able: http://www.ni.com/getting-started/install-software/compactrio.

[9] Downloading ”Add-ons/Toolkits” for LabVIEW [Online] Available:

http://sine.ni.com/add-on/toolkit.

Steven C. Chapra, Raymond P. Canale, ”"Numerical Methods for Engi-

neers”, Sixth Edition, McGraw-Hill (Higher Education).

T Veerarajan, T Ramachandran, "Numerical Methods With Programs in

C”, Tata McGraw-Hill.

John H. Mathews, Kurtis D. Fink, "NUMERICAL METHODS USING

MATLAB”, Fourth Edition, PHI.

Katsuhiko Ogata, "Modern Control Engineering”, Fourth Edition, PHI.

I. J. Nagrath, M. Gopal, "Control System Engineering”, Fifth Edition,

New Age International Publishers.

R. S. Sedha, ”A TEXTBOOK OF APPLIED ELECTRONICS”, Multi-

colour Edition, S. Chand.

Robert Boylestad, Louis Nashelsky, "JELECTRONIC DEVICES AND

CIRCUIT THEORY” Ninth Edition, PHI.

(10]
[11]
[12]

[13]
[14]

[15]

(16]

