

Patel, Himanshu K. (Sr. Lecturer) Jadeja, Rajendra B.(Assistant Professor)
 Institute of Technology, Nirma University C.U.Shah Engg. College, Wadhwan
 Hkp_ic.it@nirmauni.ac.in rbjadeja_2001@yahoo.com

Abstract-- This paper presents an application of ANDEng, an
Artificial Neural Network Design Automation tool for the design
of a rapid Nickel Cadmium battery charger. Rapid charging
needs high charge current of the order of 8C where C represents
the capacity of the battery. The battery charger needs an
intelligent strategy as the charging has to be controlled to avoid
damage to the battery due to rise in temperature caused by high
charging currents. The temperature control assumes significance
as the rise in temperature is exponential after initial charge. The
paper also presents the analog implementation of neurons with
log sigmoid and linear activation functions using discrete
components.

I. INTRODUCTION
HE present day world presents a scenario of high
mobility. Due to this, the recent years have seen fast
pace development in the field of mobile technologies

and hike in the use of mobile devices such as laptops, cell
phones etc. The development in this sector infers a growth in
the electronics industry and is directly dependent upon the
source of power for these devices i.e. the battery. The boom
in the electronics industry has revolutionized the field of
battery management, which includes regulating the charging,
protection, and monitoring of the battery [1]. Managing the
battery resources properly has become a necessity because
the batteries limit the performance of the electronic devices.
Keeping in view all the above points, the need to accentuate
research in the field of battery management is clear enough.

The lifetime of a battery is decided by its charging and
discharging cycles. Earlier this was the total lifetime of the
battery but now with recharging as an option, it is not so.
Conventionally, batteries were charged using a constant
current source. The continuous monitoring of battery charge
was impossible. Thus, at times the batteries were
overcharged or under charged. Also, since the temperature
rises with the flow of current, the batteries also got damaged
because of overheating. This called for the need to devise a
system, which could decide for itself, the amount of
charging current, which needs to be supplied to the battery at
a particular combination of inputs. For a device to be able to
make decision, it has to be an intelligent one. Any device
can be converted into an artificially intelligent device just by
applying any technique by which it is able to make decisions
for itself for e.g. Fuzzy, Artificial Neural Networks etc.

This paper presents a Nickel Cadmium battery charger,
which has been rendered intelligent by the application of
Artificial Neural Networks. Our battery charger
continuously monitors the battery and as the input varies,
pumps varying charging current into the battery accordingly.
Since, any battery is most affected by the increase in
temperature as the charging continues; we have taken
temperature and temperature gradient as the two input
factors. The battery charger would be constantly monitoring

the battery for any changes in temperature and temperature
gradient. As soon as any change occurs, it manipulates the
output current being pumped accordingly.
This charger increases the life of battery by maintaining
proper charging. It also charges the battery to 66.6% of its
maximum value within the first 5 minutes of charging time
and the remaining capacity of 33.33% can be charged in
another 5 minutes at lower charging rate. It has been
observed that during the first few minutes of providing the
charge, the battery temperature falls down and as such, we
can apply full blast charging current to it without the fear of
getting damaged and after that as the temperature goes on
increasing, the charging current also needs to be reduced to
prevent over heating of the battery. Thus, at moderate
atmospheric temperature the charger would charge a
completely discharged battery within 15minutes or so. If the
temperature is higher, then slightly more than 15minutes
time would be sufficient. So, we consider temperature &
temperature gradient as the two control parameters for the
charger.

II. ARTIFICIAL NEURAL NETWORKS
 The concept of artificial neural networks is rooted
deep into the recognition that though the human brain
performs the functions about a million times slower than the
digital computers, yet the human brain is more efficient
when it comes to performing a complex set of the tasks.
ANNs have been proved to be universal function
approximators. These can learn and reproduce any complex
function which makes them very useful in intelligent
systems [2-7].

Any neural network can be represented as a combination
of input layer, hidden layer and output layers. Each layer
further contains one or more neurons of the same type. Here,
p1 and p2 are the two inputs, w11, w12, w21, w22 are the
respective weights from the input layer to the hidden layer.
2.1 Layer Architecture: The number of neurons in the input
layer equals to the number of inputs to the circuit and the
number of neurons in the output layer equals to the number
of outputs of the circuit. In the hidden layer, the user decides
the number of neurons usually but our software ANDEng [8]
does the optimization for the user.

Figure 1 A typical 2-2-1-network architecture

Ann Based Design of A Rapid Battery Charger

T

p1 1

2
p2

1

2

w11

w22

w12

w21
1

Input Hidden
Output

The design of the network is such as to exploit the most
beneficial property of the neural networks i.e. parallelism.
The neuron in each layer takes the input from their common
input line, multiply it with their corresponding weight and
add the bias value. This sum is passed on to the activation
function for that layer. The output of the activation function
marks the end of one layer and is passed on to the next layer
and the same process follows invariably.

2.2 Neuron Architecture

Various types of neurons can be classified depending
upon the activation function they are employing. The user
depending upon the kind of problem being implemented
decides the kind of neuron in a network. The outputs of the
previous layer neurons multiplied by their corresponding
weights enter serially into the neuron along with the bias
value for the neuron. The supporting algorithm provides the
weights and the bias values.

Figure 2: Structure of a Neuron
Here, w is the weights required, p is the input to the

neuron, b is the bias value, f is the activation function which
is actually the deciding factor for the output we get.
The design of any Artificial Neural Network involves the
following considerations:-

1) The network topology
2) Number of layers in the network
3) Number of neurons in each layer
4) Type of neurons in each layer

III. IMPLEMENTATION
The design of any application in Artificial Neural

Network involves following steps:-

1) Fix a single neuron structure,
2) Train the ANN and evaluate network performance
3) If performance is as desired then go to step 5.
4) If performance level is below the desired value then

modify the network structure (network structure is first
modified by adding the number of neurons one at a time
up to a certain number followed by adding a hidden
layer) and Go to step 2.

5) Hardware Implementation.

We have used ANDEng [8] a design automation tool to
design an ANN to meet a particular performance parameter.
3.1 Network Topology and Training

For training our network, we have used the dataset as
given in [9]. ANDEng first selects single hidden layer
structure, then trains the network and if the required

performance is not achieved, the network structure is
changed by adding neurons in the hidden layer. In case, the
required performance is still not met, the number of hidden
layers is increased and the network is retrained using feed
forward back propagation algorithm. ANDEng uses gradient
descent with momentum. This software not only trains the
network but also optimizes the number of hidden layers
depending upon the number of iterations and the mean
square error. The output of this software gives us – the
number of layers in the network and number of neurons in
each layer. Also, the weight and bias values for each neuron
are given. The type of network and type of neurons in each
layer is to be decided by the user himself depending upon
the specifications of the problem. Having gathered all the
above information, the system is now ready to be
implemented in hardware.

For this data set, the output of the software gives a

4-1-1 network, which implies we have a network with two
hidden layers and one output layer. The type of neurons for
the hidden layers for this application is logsigmoidal and
linear neurons for output layer. The first hidden layer
consists of 4 neurons and second layer consists of a single
neuron. The output layer contains a single neuron of linear
type.

Figure 3

HARDWARE IMPLEMENTATION
The software-trained network would do nothing for the

designer except providing a test bench for his concepts. With
the application area of ANN ever widening, the need to
realize the concepts in hardware is vivid.
The main concern here is to design the neurons involved in
the network and the weight control circuit because these two
factors actually decide the output of a network. This section
presents the design of Logsigmoidal and linear neurons.

3.1.1 Design of Log sigmoid neurons
The sigmoid transfer function shown below takes the input,
which may have any value between plus and minus infinity,
and squashes the output into the range 0 to 1.

Figure 4

X ∑ f

w

wp p

b

Wp+b

The transfer function
 f = 1 / (1 + exp (-x))

Where, x = wp + b, i.e. the summation of the product of all
inputs to the neuron with their respective weights and the
bias values. Therefore, the block diagram for the
implementation of the logsigmoidal neuron is shown in
Figure 5 and Figure 6.

Figure5 & 6 : Block diagram for the implementation of the
logsigmoidal neuron

All the circuits in this paper have been simulated using
ORCAD V 9.1. The simulation of the designed neuron
produces the output given in fig 8, which is in close
resemblance with the original transfer function curve.
3.2.2 Design of Linear neurons

In these neurons, the output gives the linear function of
input n as given. y= f(n)

f(n) = n for n>=0
 0 for n< 0

The simulation of the designed linear neuron is shown in
Figure 7 & 8.

Figure 7 & 8

The circuit shown in Figure 9 is the design for the linear
neuron.

Figure 9: Design for the linear neuron

3.2.3 Weight Control Circuit:
Having designed the neurons involved in the circuit
implementation, the next aspect is the design of a weight
control circuit. This circuit has to produce an output, which
is the product of the input parameter’s value and the weight
obtained for that particular neuron by training. This means
that this circuit needs to provide a gain factor which when
multiplied with the input produces the required output.
For example:- if the value of input is 0.3 and the weight by
training comes out to be 5 then the output of the weight
control circuit should be 0.3*5 = 1.5 units.

The simulation for the same example is being shown in
the following figure10.

Figure 10: Simulation result from Example

The solid line shows the output 1.5V and the dotted line
represents the input 0.3 V.

Weight w1

Input2

Summer

Input1

p1

p2

Weight w2

Bias

x

Summer

Multiplier

Multiplier

1 1

e-x 1+e-x

Divider

1/1+e-x

Exponential

 Function

 -X

Inverter Summer

n

Since we have by now designed the basic building blocks of
our network, the next step is to assemble all these blocks as
per our configuration.

The circuit in figure 11 shows the assembly of one
logsigmoidal neuron. Similarly, the figure 12 shows the
assembly of complete network. For a 4-1-1 neural net
structure.

Figure 11: Assembly of one logsigmoidal neuron

Figure 12: Assembly of complete network.

IV. CONCLUSIONS
This paper presented an analog implementation of a rapid
nickel cadmium battery charger based on Artificial Neural
Networks. The key concept behind a rapid battery charger
was the observation that a maximum of charging current up
to 8C can be applied to a 2AA Ni-Cd battery up to about the
first 5 minutes of charging. Further as the temperature rises,
the charging current is controlled based upon the
temperature and temperature gradient of the cell. The
charging has to be controlled very carefully as the
temperature rises because the battery gets damaged at
around 50o C. The paper also presented the design of analog
neurons with log sigmoid and linear activation functions.
These neurons were used in implementing the 4:1:1
topology as suggested by ANDEng.

V. REFERENCES
[1] Sharon Ahlers, and Mukherjee Anirban, “Advances in Battery

Management using Neural Networks and Fuzzy Logic Technical
report, School of Electrical and Computer Engineering, Cornell
University, Ithaca, NY 14850, 16th May 2003.

[2] 4. Demuth Hagan B., Beale Mark, Thomson, “Neural Network
Design”, 2002.

[3] Widrow Bernard, Lehr A. Michael,” 30 Years of Adaptive Neural
Networks: Perceptron, Madaline and Back Propagation”, Proceeding
of the IEEE, Vol. 78, NO. 9, November 1990.

[4] Haykin Simon,” Neural Networks: Comprehensive Foundation”,
Second Edition

[5] Anderson J.A.,” An Introduction to Neural Networks”, PHI
[6] Zurada J.M,” Introduction to Artificial Neural Systems”, Jaico

Publishing House
[7] Minsky M, Papert S.,”Perceptrons” (Chapter 1,4), Cambridge, MIT

Press, 1969

