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Abstract-In this paper, a Hamilton-Jacobi-Bellman (HJB)
equation based optimal control algorithm is proposed for a
bilinear system. Utilizing the Lyapunov direct method, the
controller is shown to be optimal with respect to a cost
functional, which includes penalty on the control effort and
the system states. In the proposed algorithm, Neural
Network (NN) is used to find approximate solution of HJB
equation using least squares method. Proposed algorithm
has been applied on bilinear systems. Necessary theoretical
and simulation results are presented to validate proposed
algorithm.

I. INTRODUCTION

Linear models frequently utilized to approximate the
dynamical behavior of nature’s nonlinear processes.
Though linear approximations are convenient, they are
inadequate for many processes. There is a particular form
of nonlinear systems, which is quite common in nature
and some interesting properties have been obtained for it.
These systems are termed as a bilinear system and they
are linear in state and linear in control, but not jointly
linear in both. In the recent years, bilinear systems have
been fairly exhaustively studied. This interest is
essentially due to the fact that numerous real-world
dynamical plants enjoy a bilinear structure. Various
applications of bilinear modeling found in the engineering
area like nuclear, thermal and chemical processes.
Important satisfactory results on the structural properties
of bilinear systems are available in the literature.
However feedback control and stability of these systems
are not explored much. From the practical point of view
there is a need for the application oriented controller
design technique for bilinear systems. For a bilinear
system with a standard quadratic cost functional, it is not
possible to express the optimal control in the feedback
form except for simple cases. The obtained optimal
controls have problems with global stabilization of the
closed-loop system. Gutmann [3] and Longchamp [20]
derived stabilizing feedback controls for bilinear systems.
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Hofer and Tibken [17] proposed an approximation
procedure of optimal control which can be solved by
considering the quadratic bilinear regulator problem as a
sequence of linear regulator solutions. Leitmann at. Al.
[7] proposed an optimal control of bilinear systems using
well known Hamilton-Jacobi-Bellman (HJB) equation,
which is difficult to solve. Zijad and Zoran proposed the
successive approximation procedure for optimal control
of bilinear systems using riccati equation. Recently
similar concept extended with successive galerkin
approximation method by kim and Lim [16]. In all the
above mentioned algorithms, constraint on the control
input was not taken into account. However, in practical
systems one should consider it due to limitation of the
actuators. On the other hand, finding the solution of the
HIB equation for constrained optimal control is a
challenging task. HJB based optimal controller design for
linear and nonlinear system has been explored by many
researchers [9], [10], [13]. Neural Network (NN) based
optimal control [2] uses a technique to approximate value-
function, which gives approximate solution of HJB
equation. However, to design an NN based constrained
optimal control using HIB solution, is not much explored
for bilinear system. An alternative approach is to obtain
approximate solution of HJB equation using NN for
feedback controller design for bilinear systems with
constraints on the inputs.

In this paper the constrained optimal control
problem proposed for bilinear systems by properly
choosing cost functional. The cost functional is modified
to account for constraints on the input. Our main
contribution is to realize this approach with necessary
theoretical justifications and implementation of it through
NN. We have used least squares method to find tuning
law of neural network, which is used to approximate the
solution of HJB equation. In addition to this we also
explored proposed algorithm on two bilinear systems to
ensure asymptotic stability of the closed loop system.
Furthermore it is shown that the Lyapunov function
guaranteeing stability is a solution to the HJB equation for
the nominal system. Convergence proof in present work is
supplemented by necessary theoretical and simulation
results.

The paper is organized as follows: In section 2,
optimal control framework has been described for bilinear
systems using necessary theoretical results. In section 3
NN based HJB solution is used to find optimal control.
Stability issues with this formulation are discussed.
Theoretical results are presented in the form of a lemma
and a theorem. Solution of NN based HIB equation found
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by least squares method in section 4. Numerical examples
are given in section 5 for the validity of the approach
explained in section 3. Proposed work is concluded in
section 6.

II. OPTIMAL CONTROL OF BILINEAR SYSTEMS
Consider a bilinear system

X =A(x)+ B(x)u+{xN}u (1)
where xeR" is the state vector, constant matrix
NeR"and ueR"is the control input bounded by
lu|<w eR.A(x) and B(x)are known with 4(0)=0.In
this paper we seek a constrained optimal control from the
HIB equation.
Problem Statement:
Find a feedback control u = K(x) that minimizes the
cost functional

TG Ox + M(uyd .

M(u)=2{ytanh” (v/ ARy
where ) JW v/ 2)
=2puRtanh™ (u/y)+y’ Rin(l-u’ [y ) > 0
is nonquadratic term expressing cost related to
constrained input, QO and R are positive definite
matrices. In this paper, we addressed the following
problems:
1.To find an optimal control using HJB equation for
bilinear system.
2.Solve the optimal control problem using NN. More
specifically, HJB equation is solved using Neural
Network.
To solve the optimal control problem, let

V(x,) = min [(x" Ox+ M (u))dt
“oo
be the minimum cost of bringing the system (1) from
initial condition x, to equilibrium point 0. Assuming

V(x) is only function of x, HIB equation gives

min(x’ Qv+ M(u)+V, (Ax)+ B(u+ {xNju)) =0 (©)
where V, = 4] .
0x

If u=K(x) is the solution to the optimal control
problem then according to the Bellman’s optimality
principle [18], it can be found by solving following HIB
equation:
HIB(V(x)) = x" Qx + M)+ V] (A(x) @
+B(x)K(x)+{xN}u))=0

The optimal control can be found by solving
OHIB(V (x))
BV X) o

ou

+V,(B(x)+Nx) =0

_ M)
8

u

Using definition of M (u) in (2) one can write above
equation as
2 Rtanh™ (u/y)+V, (B(x)+Nx) =0 )

= 2wRtanh™ (~u/y) =V, (B(x)+ Nx)T
Su=K(x)=—y tanh[lzil V. (B(x)+ Nx)Tj (©6)
W

Here V(x) is the optimum solution of HJB equation (3).
With this basic introduction, following results stated to
show the existence of an optimal control.
Theorem 1: If u=K(x) is satisfies the HIB equation (3)
then it is an optimal control of the bilinear system (1).
Proof: Here u=K(x) is an optimal control defined by
equation (6) and V(x) is the optimum solution of HIB
equation (3). We have to show that the equilibrium point
x =0 of system (1) is globally asymptotically stable for
the control u = K(x) . To do this, we show that V'(x) is a
Lyapunov function. Clearly,

V(x)>0, x#0

V(x)=0, x=0
Also, V(x)=0V /ot <0 for x #0, because

V(x) =8V [ox)" (dx/dt)
=V (x)(A(x)+ B(x)K (x) +{xN}u)

=V ()(AX) + B)K (x) + V] (x)B(x) f (x)
Using equation (6) and (7),
V(x)=—x"Ox—M@u)<—x"x<0
Here Q =1 (Identity matrix) assumed for the simplicity.
Thus conditions for Lyapunov local stability theory are
satisfied. Consequently, there exists a neighborhood
Z={x:|x|<p} for some p>0 such that if x(r)

entersZ, then limx(r)=0 But x(¢) cannot remain
o

forever outside Z . Otherwise,
|x|= p forall 0.

Letx"x=a >0. It is some scalar quantity.

V() -V (x(0) = [V (x(z))dr

Therefore ,

< —Iadr =—a Jdr =-at
0 0

Let ¢— o, wehave, V(x(t)) <V(x(0))—at - -
Which contradicts the fact that V(x)>0 forVx=0.

Therefore limx(#) =0 no matter where the trajectory
t—x

begins. [

Hence by knowing exact solution of HJB equation we can
find optimal control of bilinear system. To find the
solution of HJB equation is very difficult problem. In the
next section NN is used to approximate value-function
V' which is the solution of HIB equation.
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III. NN BASED OPTIMAL CONTROL

In this section we used NN to find approximate solution
of HIB equation, which is utilized to find optimal control
of bilinear system. It is well known that a NN can be used
to approximate the function on a prescribed compact set
[19]. It can be used to approximate a nonlinear mapping.
Let R denote the real numbers. Given x, € R, define

=g %1 ]
W=[w w...w;]". Then the ideal NN output can be

y:[yo,yl,..‘ym]rand weight matrices

expressed as y=W'o(x) with the vector of NN
activation functions o(x)=[o,(x),0,(x),...,0,(x)]. It is
assumed to be orthonormal and satisfy the NN
approximation property [15]. With this background we
proposed the optimal control framework based on NN.
Let the structure of NN based approximate value function
can be defined as

P(x)= i w0, (x) =W o(x) @)

where W=[w w,...w,] is the set of NN weights. o(x) is

selected such that I}(O) =0 and I}(x) >0for Vx=#0. So,

V.(x)= —V =w'Vo(x) 8)
HIJB equation w1th thlS assumption is as follows:
HIB(V (x)) = x" Ox + M (&) + VT (A(x)
+B(x)i+{xN}u)=e

Here NN is used to approximate value function V(x).

©)

Approximation error is represented by e. If e is
negligible, then (9) becomes similar to (4).

With reference to the problem defined in section 2, we
have introduced supporting theoretical results in the form
of a lemma and a theorem. Lemma 1 is introduced to
show the existence of NN based HJB solution proved for
optimal control using modified performance functional.
Theorem 2 shows the existence of the optimal control
using NN based HIB solution for bilinear systems.

L
V(x)= Zw/aj (x) satisfy
j=1

<HJB(I}(X)),G(X)> =0 and <I}(x),0'(x)> =0 on a

compact set QcR”, and let V(x)= ZCO'(X) and

Lemma 1: Let

C=[¢ ¢y, ] satisfy HIB (¥ (x)) =0.
If Q is compact, x"Ox is continuous on Q

and are in the space span{c;};, and if the coefficients

‘w,‘ are uniformly bounded for all L, then

‘HJB(I}(X))‘ — 0 uniformly on Q as L increases.

Proof: Khalaf et. al. [14] proposed theorem for the
existence of NN based HJB solution for the optimal
control problem of nonlinear systems. The existence on

NN based HIJB solution for optimal control of bilinear
systems can be proved in the same line of it. The

hypothesis implies that HJB(I}(x)) are in L, (QY) .
(HIB (.0, (0)y = £ (Vo (940,07 9)
+2 (M@,0,9), (¥ )., ),
WY, () BO) + (N
_Z | r
p=i tam(g—w(za(x)+{zvx}) Vo! (x)VI/L),Of/(x) )

Also,

‘HJB(V(x))‘

<HJB(V(x)) o,(x), -0, ()|,

using (10) one can write,

(B0 = [Zm (Vo (94,5, (x) J o)

k=1

+Z<(# @).0,9) -0, + Z(Zvvk (M@, 0,), ] o (x)
, [ Vo, ()(BO)+{Ne)y
;ﬂ — tanh[zw(B(x)HMc}) Vo](x)Wj s |7

IN

2 i (Vo ()409.0,(9) -0;(x)

k=l j=L+ Q

+

2<(x @-0,9), -0,

=L+

| £ Siino), a,.ooJ

J=L+

L

+

(Vo Bu Ny
W

=Ry tar]]q[z%/(B(x)+{]\5c})T VGLT (x)[/[{j’q ) O',(X)

‘HJB(I;(x))‘ <D-E(x)+F-G(x)+D-H(x)

Hence, "
+ Z <(xTQx)-O'j ()(:)>Q 'O'j(x)
where,
D= Igmkang Wkl
E(x)= ::gz i[ i <V‘7k (x)- A(x), g; (X)>QJ~O'/ (x)
F=1
Gx)= [i > (M@)0,w), o, (x)J

L . [Va@(Bx)+HN)y-

Ho=5) >3,

Py narh[R‘ B+ Vil (x)Wj ) 50
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Suppose Vo, (x)- A(x), M @),
WV o, (x)B(x) tanh [%(B(x) +{Nx})' Vo! (x)WLj

and x"Qx are in L,(Q), the orthogonally of the set
{o;}; implies that E(x) and second and third term on

the right hand side can be made arbitrarily small by an
appropriate choice of L.
Therefore, D-E(x)+F-G(x)+D-H(x) >0

and Z <xTQx,0'/.(x)>Q 0;(x)| >0
Jj=L+1
So, HJB(I}(x)) — 0 uniformly on Q as L increases.

Above lemma shows the existence of NN based HIB
solution for the optimal control using cost functional

j(xTQx+M (u))dt . Also approximate value function
0

I}(x) satisfies HJB equation (6) it means e > 0. [0

In the next theorem we will prove that, this optimal
solution is valid for bilinear systems.

Theorem 2: If 1 is satisfies the HJB equation (9) then it
is an optimal control of the bilinear system (1).

Proof: Lemma 1 shows the existence of NN based HIB
solution.

So one can write equation (9) as

HIB(V (x)) = x" Ox + M(@2) + V7 (A(x) + B(x)id) = 0 (11)
Using above equation, approximate optimal control can
be found similarly as in (8) by following equation

. R 5
a(x)=-y¥ tanh(z—(B(x) + {Nx})T VX]

- (12)

=/ tanh [Z—(B(x) +{Nx}) Vo‘T(x)WJ
v

Using (12) one can prove system’s global stability,
similar to theorem 1 by replacing V' (x) by V(x).O
Hence by using NN one can approximate the solution of
the HIB equation. Next section is about the use of least
squares method to find solution of HJB equation using
NN.

IV. HJB SOLUTION BY LEAST-SQUARES METHOD

For the bilinear system, to solve equation (9), the method
of weighted residuals is used [14].The unknown weights
are determined by projecting the residual error e onto

de/dW and setting the result to zero for Vxe Q c R"
using the inner product, i.e.
(def/dW ,e)=0 (13)
where <a,b> = J‘abdx is a Lebesgue integral.
Q

According to this method, by using definitions in
equations (8) and (9), we can write (13) as

Vo(x)(A(x)+ B(x)i+ {xN}i), w
Vo (x)(A(x)+ B(x)i + {xN}i)

(14)
+<xTQx+M(ﬁ), >:
Vo (x)(A(x)+ B(x)i + (xN}i)
Hence weight updating law is
_— <Vo-(x)(A(x) +B(x)i + {xN}z;),>‘
Vo (x)(A(x)+ B(x)i + {xN}i) (15)

X Ox+ M®@),

Vo(x)(A(x)+ B(x)i+ {xN}i)
By solving this equation, one can find control using
equation (12).
Using above weight one can find control which is the
solution of constrained optimal control problem for the
bilinear system. In the next section two numerical
examples used to describe this proposed algorithm.

V. SIMULATION EXPERIMENTS

To justify proposed algorithm we have implemented it on
two bilinear systems.

(A) Consider a bilinear process for a continuously stirred
tank reactor with an exothermic reaction defined by

13 5 u .50 8

= —x,—ux,—— and X, =—x +—-x,

6 8 8 3 3
X =A(x)+ B(x)u+{xN}u
Here our aim is to find the optimal control law that will
stabilize the system. For the above system we have to find
a feedback control law u = K (x) that minimizes

Oj[(xTQx+M(u))dt = wj(lo)qz +10x,” +2(}tanh” (u)du)dt

It is in the form of

where,
®= —tanh[%(B(x) +{Nx})' VGT(x)WJ,
L I
0=l jo|MIR=

Now the problem is converted into linear quadratic
optimal control problem.

This problem can be solved by using equations (12) and
(15). Here we have selected

V(x) =WX + WX, + WX, X, + WX +wx)

F WX, +WXTXS WX X+ WX WX
This is a NN with polynomial activation function and
hence I}(O) =0. This is a power series NN of 10

activation functions containing power of the state variable
of the system upto 6" order. The no. of weights required
is chosen to guarantee the uniform convergence of the
algorithm. NN based HIB solution can be found using
least squares method. NN weights found from the (15) is
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W =[0.9993;-0.0124;-0.0088;0.0182;0.0074;
0.0233;0.0013;0.0115;0.0096;-0.0006].
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Fig. 1
Using these weights on can find optimal control from
equation (12). Results are shown in Fig.1. System states
converge to an equilibrium point. Variation in the control
signal for this approach is shown in the same figure. Here
control signal generated by NN remains bounded i.e.
‘u‘ <1. It shows that constrained optimal control

converges to zero when system stabilized. It shows valid
approximation of the solution of HIB equation with NN.

(B) Consider a paper making machine control problem
described by the following bilinear model
X = A(x)+ B(x)u+{xN}u

4140

where
[ -1.93 0 0 0
0394 —0426 0 0
=1 0 063 0 |
| 0.095 -0.103 0413 -0.426
(1274 1274 0 0
. 0 0 N 0 0
1.34  -0.65 -0.718 -0.718
| 0 0 0 0

Here our aim is to find the optimal control law that will
stabilize the system. For the above system we have to find
a feedback control law u = K (x) that minimizes

()]

j-(xTQx + M () Jdt = ?(xTQx +2 j tanh ™" (u)du)dt

@ = —tanh [E(B(x) +{Nx}) Vo' (x)W],

[\

1 0 013 0
0 1 0 0.09 10
0= and R =
013 0 01 O 01
0 009 0 02

Now the problem is converted into linear quadratic
optimal control problem.

This problem can be solved by using equations (12) and
(15). Here we have selected

where,

V(X) = W, +W,XT + WyXT +W,X; + WX, X,

+ WX, Xy + Wy XX, + WX, Xy 4 Wy X, X, T XX,
This is a NN with polynomial activation function and
hence/(0)=0. This is a power series NN of 10

activation functions containing power of the state variable
of the system upto 2" order. The no. of weights required
is chosen to guarantee the uniform convergence of the
algorithm. NN based HJB solution can be found using
least squares method. NN weights found from the (15) is
W =[0.9628;0.028;-0.0022;0.0318;-0.0553;0.0192;
0.0259;-0.2525;0.0574;0.0024];

Using these weights on can find optimal control
from equation (12). Results are shown in Fig. 2. System
states converge to an equilibrium point. Variation in the
both control signals for this approach is shown in the
same figure. Here control signal generated by NN remains

bounded i.e. ‘u‘sl. It shows that constrained optimal
control converges to zero when system stabilized. It

shows valid approximation of the solution of HJIB
equation with NN.
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VI. CONCLUSIONS

The contribution of this paper is a methodology for
designing bounded controllers for bilinear systems. In the
proposed frame work a constrained optimal control
problem of bilinear systems solved by modifying a cost
functional to account for constraint on the input. We have
proposed NN based HIB solution for constrained optimal
controller design. Modifications are done on the earlier
approaches to handle constraint on the input for the
bilinear systems. Least squares based method is used to
find the solution of NN based HIB equation. We have
achieved good results after modification of the
performance function. It is also observed that control
signal generated by NN remains bounded. Though there
are many direct techniques available for the optimal
control of bilinear systems, we have suggested an
alternate approach using NN based HJIB solution, for
solving  constrained  optimal  control  problem.
Furthermore, it is shown that the Lyapunov function
guaranteeing stability is the solution to the HIB equation
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for the given system. This approach may be extended for
other type of systems.
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