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Abstract: In this study, an optimal control algorithm based on Hamilton—Jacobi—Bellman (HJB) equation, for the
bounded robust controller design for finite-time-horizon nonlinear systems, is proposed. The HIJB equation
formulated using a suitable nonquadratic term in the performance functional to take care of magnitude
constraints on the control input. Utilising the direct method of Lyapunov stability, we have proved the
optimality of the controller with respect to a cost functional, that includes penalty on the control effort and
the maximum bound on system uncertainty. The bounded controller requires the knowledge of the upper
bound of system uncertainty. In the proposed algorithm, neural network is used to approximate the time-
varying solution of HJB equation using least squares method. Proposed algorithm has been applied on the
nonlinear system with matched and unmatched system uncertainties. Necessary theoretical and simulation
results are presented to validate proposed algorithm.

1 Introduction

The design of a constrained optimal control using the
solution of Hamilton—Jacobi—Bellman (HJB) equation is a
challenging problem. Attempts have been made to find
constrained control law using non-quadratic performance
functional [1-3]. Similar work has been reported with
finite horizon system in [4]. Time-varying HJB solution
has been explored for optimal control problem in [5]. All
these HJB-based optimal controller designs need exact
information about the system model and nominal model.
However, all practical control systems have to be robust
with respect to model uncertainty such as unknown or
partially known time-varying process parameters, exogenous
disturbances etc. So model uncertainty needs to be
considered during the time of controller design process to
avoid the deterioration of closed-loop
performance. In other words, we need to design robust
feedback control law to tackle the system uncertainty.

nominal

Although there exist many methods [6—9] to address the

robust control problems, it has been recognised that the

Lyapunov concept and the Hamilton—Jacobi theory are the
major analytic paradigms for designing and analysing
uncertain systems [10, 11]. Even though above mentioned
works provide systematic method for robust controller
design, they do not in general lead to controllers that are
optimal with respect to a meaningful cost. Lin [12, 13]
proposed a method to find robust control using the
solution of well known HJB equation which is difficult to
solve in practice. In these papers, existence of the solution
of HJB equation is assumed, without mentioning any
procedure to find it. An algorithm is also developed to find
robust control law without any constraint (or bound) on
the control input. An alternative realistic approach is to
obtain approximate time-varying solution of HJB equation
using NN, for feedback controller design for finite time
horizon non-linear uncertain system having constrained
input. However, fixed-final-time-constrained  robust
controller design using NN-based HJB solution has not
been explored in the literature.

In this paper, the robust control problem is formulated into
an optimal control problem by properly choosing cost
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functional. The solution of optimal control problem becomes
a solution to the robust control problem with bounded
control input. The cost functional is modified to account
for system uncertainties and constraints on the input.
Hence it can be referred as a bounded robust—optimal
control design approach. The main contribution is to
realise this approach with necessary theoretical justifications
and implementation of it through neural network (NN).
The least squares method is used to find tuning law of
NN, which is used to approximate the time-varying
solution of HJB equation. In addition to this we also
explored proposed algorithm on the non-linear uncertain
systems (with matched and unmatched type system
uncertainties) to ensure asymptotic stability of the closed-
loop system. Moreover it is shown that the time-varying
Lyapunov function guaranteeing stability is a solution to
the HJB equation for the nominal system. Convergence
proof of the present work is supplemented by necessary
theoretical and simulation results.

The paper is organised as follows: in Section 2, robust—
optimal control framework has been described for system
with matched and unmatched uncertainties and bounded
input. In Section 3, NN-based HJB solution is used to find
constrained robust—optimal control law. Stability issues
with this formulation are also discussed and the theoretical
results are presented in the form of a lemma and theorems.
Solution of NN-based HJB equation found by least squares
method is given in Section 4. Numerical examples are
given in Section 5 for the validity of the approach.
Proposed work is concluded in Section 6.

2 Robust-optimal control
framework

Consider a non-linear system
% = A(x) + B(x)u

where x € R” is the state vector, and # € R” is the control
input. Each component of # is bounded by a positive
constant A, i.e.

| <AER; i=1,2,...,m (1)

Suppose that the function A(x) is known only up to an additive
perturbation which is bounded by a known function, and this
perturbation is in the range of B(x), i.e. A(x) can be written as
Alx) = A(x) + B(x)f (x) with unknown f(x). The condition
that unknown perturbation be in the range space of B(x) is
called the matching condition, and can be incorporated by
expressing the system as

% = A(x) + B(x)u + B(x)f (x) 2)

The function B(x)f(x) models matched uncertainty in the

system dynamics. The nominal model A4(x) and B(x) are
known with A4(0) =0 and f(0) =0. This assumption

ensures that the origin is the equilibrium point of system (2).
It is assumed that function f(x) is bounded by a known
function, £ .. (%):

@] = frnax() 3)

It is also assumed that the nominal system dynamics
A(x) + B(x)u is Lipschitz continuous on a set () C R”
containing the origin and that the nominal system is
stabilisable in the sense that there exists a continuous control
on ) that asymptotically stabilises the nominal system. In
this paper we seek a constrained optimal control that will
compensate for the perturbation, both for matched and
unmatched system uncertainties.

2.1 System with matched uncertainty

In this section, design of an optimal control law is proposed

to ensure global asymptotic stability of the system (2).

2.1.1 Robust control problem: For the open-loop
system (2), find a feedback control law # = K (x) such that
the closed-loop system is globally asymptotically stable for

all admissible uncertainties f'(x).

This problem can be formulated into an optimal control of
the nominal system with appropriate cost functional.

2.1.2 Optimal control problem: For the nominal

system
x = A(x) + B(x)u 4)

find a feedback control # = K(x) that minimises the cost

functional

r (fnix(x) + xTQx + M(u)) ds

Q)

where

M(u) = 2J A tanh™" (v/A)Rdo = 2AuR tanh™" (#/A)
0
+ MR In(1-4/A%) >0 (5)
is non-quadratic term expressing cost related to constrained
input. The matrices Q and R are positive definite matrices
showing the weightage of system states and control inputs,
respectively.

In this paper, we address the following problems:

1. Solution of the robust control problem (2.1.1) and
optimal control problem (2.1.2) are equivalent.

2. Solve the optimal control problem using NN. More
specifically, HJB equation is solved using NN.
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To solve the optimal control problem, let
V(xo, 29) = Plxlte), )
3
+ min J () + 5" Qe+ M) dt - (6)
u tO
be the minimum cost of bringing system (4) from initial
condition x; to equilibrium point 0. The HJB equation gives

min ( F2 (%) 4 & Qe+ M) + V4 VI (A(x) + Bx)w) = 0
(7)
where

v oV (x, £)

x Ox

WV (x, 2)
Y

and 7,

This is a time-varying partial differential equation (PDE) with
V (x, t) being the cost function for any given » and it is solved
backward in time from # = #. By setting #, = # in (6), its
boundary condition is seen to be V(x(z), #) = P(x(%), #).
If u = K(x) is the solution to the optimal control problem
then according to Bellman’s optimality principle [14], it can
be found by solving the following HJB equation

HIB(V (x, £) = f2.(%) + &7 Qx + M(u) + V, + V. (A(x)
+ B(x)u) =0 (8)

The optimal control law is computed by solving dH]JB
(V(x, £))/0u=0

= %(“) + V) Bx) =0
U

Using (5) the above equation can be written as

2AR tanh™! (u/A) + V) B(x) = 0 9)

= 2AR tanh™ (— »/A) = V' B(x)

R . (10)
=u=K(x) =—-A tanh(i Vv, B(x))

Definition 1 (admissible controls): A control u, defined
to be admissible with respect to (6) on (), denoted by
u € I'(Q) with # continuous on , #(0) = 0, stabilises (4)
on (), and Vx;, € Q, V(x(z), #,) is finite.

With this basic introduction, following result is stated to
show the equivalence of the solution of robust and optimal
control problems.

Theorem 1: Consider the nominal system (4) with the
performance function (5). Assume that there exists a
function V(x, #), the solution of HJB equation (8). Using
this solution, bounded control law (10) ensures global
asymptotic closed-loop stability of uncertain non-linear
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system (2) if the following condition is satisfied

Froax®@) = VI B(x) (11)

Proof' Here u = K (x) is an optimal control law defined by (10)
and V' (x, £) is the optimum solution of HJB equation (8). We
now show that # = K(x) is a solution to the robust control
problem, ie. the equilibrium point x =0 of system (2) is
globally asymptotically stable for all possible uncertainties
f(x). To do this it is shown that V(x, #) is a Lyapunov
function. Clearly, V' (x, #) is a positive definite function, i.e.

V(x,2) >0, x # 0and # # 0 and V(0) =0
So

V(x, £) =V /dx) " (dx/de) + 9V /0t
=V, (%) (A(x) + B)K (x) + B(x)f (x)) + V' /3¢
=V} (x)(A(x) + B)K (%)) + 3V /¢ + V] (x)Blx)f ()

Using (8), one can write

= —f2.(%) — xT Qx — M(w) + V. () Bx)f (%)

= =" Qx = M)~ (fu®) = VI WB(:)frn))
Using (11), one can write
V(x, t) < —xTQx <0

Thus conditions for Lyapunov local stability are satisfied.
Consequently, there exists a neighbourhood Z = {x:]|x|| < p}
for some p>0 such that if «x(#) enters Z, then
lim,_, ., x(#) = 0. But x(#) cannot remain forever outside Z.
Otherwise, ||x| > p forall # > 0.

Now define a scalar quantity o =inf (x" Ox) >0
such that [|x] > p.

Therefore V(x(2), £) — V(x(0), 0) = Jg V(x(7), 1) dr <
—féad’r: —af(;d’r: —at

So we have, V(x(z),#) < V(x(0),0) — at — —oc0 as
t — oo which contradicts the fact that V(x, ) > 0 for
Vx # 0and # # 0. Therefore lim, ,,, x(#) =0 no matter

where the trajectory begins. O

Hence by knowing exact solution of HJB equation, one
can find robust control law in the presence of matched
uncertainties. In the next section, this approach is extended
to the system having unmatched uncertainties.
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2.2 System having unmatched
uncertainties

To generalise the robust—optimal control approach for
handling the unmatched uncertainty, consider a non-linear
system

% = A(x) + Bx)u + C(x)f (x) (12)

where C(x) is a matrix of dimension 7 x ¢ and C(x) # B(x).
It is assumed that #(0) = 0 and 4(0) = 0; so that x = 0 is an
equilibrium point of (14). It is also assumed that the nominal
dynamics A(x) + B(x)u is Lipschitz continuous on set
Q) CR" containing the origin. It is required to find a
bounded optimal control law, which ensures the closed-loop
stability of the system (12) for unmatched uncertainties f'(x).
Similar to Section 2.1, one can formulate this problem as

2.2.1 Robust control problem: For the open-loop
system (12), find a feedback control law # = K(x) such that
the closed-loop system is globally asymptotically stable for

all uncertainties ' (x) satisfying the following conditions:

i. f(x) is bounded as defined in (3), i.c.

ii. There exists a non-negative function g, . (x) > 0 such
that

|B)" Cle)f )| < ) (13)

where + denotes the (Moore—Penrose) pseudo-inverse.
Decomposition of the uncertainty term C(x)f(x) can be
done as the sum of matched and an unmatched component

by projecting C(x)f(x) onto the range of B(x). It can be

written as

Clx)f (%) = B()B(x)" C(x)f (x) + (I — B(x)B(x) ") C(x)f (x)
(14)

The above mentioned robust stabilisation problem can be
formulated as the following optimal control problem.

2.2.2 Optimal control problem: Define an auxiliary
system having unmatched uncertainty component of (14)

& = A(x) + Blx)u + (I — B(x)B(x)")C(x)v (15)
where (z, v) is the control input.

Find a feedback control (#, v) that minimises the
performance cost

J'f (&) + P20 + Bl +M () + p?llol|?) dz

)

where p and 8 are some positive constants that serve as design
parameters. Note that, the optimal control of system (15) has
two components: z € R” and v € R?. It is very difficult to
design a control law for system with unmatched
uncertainties. To support control #, an augmented control
v is added in the system to tackle the unmatched
component of uncertainties defined by (14). However, in
the actual system (12), only # component is used. An
augmented control v plays an important role for proving
asymptotic closed-loop stability of the system (14). It will
be discussed in Theorem 2.

To solve optimal control problem, let

3

Vo 1) = Bt 1)+ min | () + 21200
wo  Jo
+B1x1°+M () + p’l|l”) d (16)
to be the minimum cost of bringing the system (15) from
initial condition x, to equilibrium point 0. The HJB
equation gives us
min (g, (%) + P ) + B x> +-M ) + p 0]
+ ¥+ VI (AG) + B+ (I = B@B () C(x)2)) = 0
where

v v (x, £)

X ox

_ WV («, 1)
Y

and 7V,

This time-varying PDE is solved backward in time from
¢t = # with boundary condition V(x(#), #) = ¢(x(%), ). If
u = K(x) is the solution to the optimal control problem,
then according to Bellman’s optimality principle [14], it can
be found by solving the following HJB equation

HIB(V (x, £)) = g2 o (0) + 022 (%) + BPllx 1>+ M () + p? || 0]
+ V4 V. (A(x) + B(x)u
+(I —B(x)BT (x))C(x)v) =0 (17)

which gives the optimal control
R
4= K(x) = —Atanh (2—/\ VxTB(x)) (18)

and
1
2p?

Not that, both controls admissible with respect to cost (16).

VI -BBY)C (19)

U=

Following theorem proves that the control law (18) is the
solution of the robust control problem.
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Theorem 2: Consider the nominal system (15) with
performance function (16). Assume that there exists a
function V(x, #), the solution of HJB (17), by properly
choosing p and B. Using this solution, control law (18)
ensures global asymptotic closed-loop stability of uncertain
non-linear system (12) for some B* such that |B*| < |B|, if
following conditions are satisfied

20% 10l < B2 ||xlI?, Vx € R (20)
Gowe = VIB, Vx € R” 21)

Prooﬁ It is proved here that using control law defined in (18)
and (19), the system (12) remains globally asymptotically
stable for all possible f(x). To do this, we show that
V(x, t) is a Lyapunov function.

Clearly, (0) = 0 and V(x, #£) > 0 for Vx # 0 and # # 0.

The time derivative of V(x, £) is shown to be negative
definite

Vix, £) = 3V /ox) " (dx/dt) + 3V /ot
= V. (A(x) + Bx)u + Cx)f () + OV /3¢
= V1 (A(x) + Bx)u+ (I — B(x)B* (x)) C(x)v)

+ BB (%) C(x)f (%) + (I — B(x)B* ()
Cl)(f (x) — v)) + oV /or

= V.1 (A(x) + B(x)u + (I — B(x)B* (x))C(x)v))
+ 8V /3 + V) B(x)B" (x) C(x)f (x)
+ V(I — B(x)B™(x)) C(x)(f () — v)

Using (17) and (19), we have

V(x, £) = — ghn(x) — pfizn (@) — BPllxl>~M () — p* |0l

+ VI B(x) BT (x) Cx)f (%) — 2p*0" (f (%) — ©)
(22)

Since —20"0"/ () < *(Ilol*+] £)[*)
Using (13) one can write
Vi, ) < =M ~ (ghoe = VI BE)gna)
= (o = | @) + 20% 01—
< M)~ (g = VI Bgn ()
= 0 (fow = |7 @) + 2000
— B2~ (8 — Bl

Using conditions (20) and (21)
Vix, 2) < —(B = B?)lxI’< 0

Thus, the conditions of the Lyapunov stability theorem are
satisfled. Using this result one can prove global stability
similar to theorem 1. O

Theorems 1 and 2 are valid if we know the exact solution
of HJB equation, which is a difficult problem. In the next
section, NN is used to approximate value-function ¥ which
is the solution of HJB equation.

3 NN-based robust-optimal
control

In this section we use NN to find approximate solution of HJB
equation, which is utilised to find robust—optimal control. It is
well known that an NN can be used to approximate smooth
time-invariant functions on prescribed compact sets [15,
16]. It can be used to approximate a non-linear mapping.
Let R denote the real numbers. Given x, € R, define
T T .
2,1 y=1[y0 %1 >V, and weight
- wL]T. Then the ideal NN

output can be expressed as y = W o7, (x) with the vector of
NN activation function o7 (x) = [07(x), o5(x), ..., O'L(x)]T.
It is assumed to be orthonormal and satisfy the NN
approximation property [3]. In [17], it is shown that NN
with time-varying weights can be used to approximate
uniformly continuous time-varying functions. We assume
that V(x, #) is smooth and so uniformly continuous on a
compact set.

x =[xy, %1, - ..

matrices W, = [wy, w,, ..

Let the NN structure to approximate the value function

V(x, ¢) for t € [4,, #] be defined as
L
Vi ) =) wi®ox) = W Doy () (23)
=1

which gives

e, =20 = Wi _ i ovey0 @)
and
5 14 w,
A B AR 25)

where W;(#) = [wy(2), wy(2), ..., ZUL(Z‘)]T is the set of NN
weights. o(x) is selected such that 7(0) = 0 and ¥V(x, #£) > 0
for Vx # 0and # # 0. It is assumed that L is large enough
so that V(x(z), ) = Wr()0,(5) = o (x(t), %), i.e.
there exist weights W, (%) that exactly satisfy the
approximation at #=+¢. The set oy(x) is selected to
be independent. Then, without loss of generality, they can
be assumed to be orthonormal, i.e. select equivalent basis
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functions to o(x) that are also orthonormal [18]. The
orthonormality of the set {a’i(x)}:o on ) implies that, for a
real-valued function 1(x, £) € R

n(x, =3 (nlx, 1), 7,()0;(x)
j=1

where (f, £)g = Jo&f T dx is an outer product, fand g are
continuous functions, and the series converges pointwise [19],
i.e. for any u > 0 and x € (), one can choose N sufficiently
large to guarantee that Z;OZN 11 (n(x, 2), O'j(x)>00'j(x) <u
for all time # € [, #].

Note that, since one requires 3V (x, £)/9¢ in (8) and (17),
the NN weights are selected to be time varying [5]. This is
similar to the method of selecting o(x) used for optimal
control in [4]. For infinite time case, the NN weights are
constant. The NN weights will be selected to minimise a
residual error in least squares sense over a set of points
sampled from a compact set (), inside the region of
stability (RAS) of the initial stabilising control [4].This
method will be discussed in Section 4 for solving robust
control problem. With this background, we propose the
robust—optimal control framework based on NN in the
next section.

3.1 System with matched uncertainties

For the matched uncertainties case, the HJB equation with

(23)—(25) can be written as

HIB(7 (x, £)) = f2,. () + %" Qx + M(3) + ¥, + VT (A(x)
+ B(x)n) = ¢ (26)

e represents an approximation error. If ¢ is negligible, then
(26) becomes similar to HJB (8) i.e.

HIB(7(x), £) = f2,(x) + x" Qx + M(@) + V, + VX (A(x)
+ B ~0 27)

The optimal control law can be found by taking derivative of
(27) w.r.t. &. It can be found as

-1
#(x) = —Atanh (IE—A B)" ffx(;>>
R p T
= —Atanh KB(x) W()Vo (x) (28)

We introduce a lemma to show the existence of NN-based HJB
solution for optimal control using modified performance
functional. Theorem 3 shows the relationship between the
robust control and the optimal control for NN-based HJB

solution.

Lemma 1: Given u € T(Q), let V(x, 1) = Zj 1 ](z‘) oi(x)

satisfy <H]B(V(x £)), o(x))q = 0 and <V(tf), o(x)q = 0 on
a compact set ) C R” and let Vix, £) =3 74 h ( Vo (x) and
C = [¢1(8), 5(2), . CL(t)] satisfy H]B(V(x t)) = O and
V(x(2), t) = P« (tf), #). If © is compact, (fmax(x)—i— x x) is
continuous on ) and is in the space span {a’ ¥, and if the
coefficients |w; (#)| are uniformly bounded for all L, then
|H]B(V(x z‘))| — 0 uniformly on ) as L increases.

Proof Cheng et al. [4] proposed a lemma for the existence of
NN-based HJB solution for the optimal control problem.
The existence of NN-based HJB solution for optimal

control using modified performance functional can be
proved on similar lines.

The hypothesis implies that H]B(ﬁ(x), £) are in L,(Q)).
Note that

L
(HJB(V (%, 2)), o)y = Y dwy(eX (), o),
k=1

L

+ ) w (Vo ()A(x), 7,(2),,

k=1
L

+ > w ()M (@),

k=1

0N + (o + 7 Q) 0
L
- Z<wk(f)vo-/e(x)8(x))\
k=1

X tanh (%BT (x)VO'L (X)W, L(z‘)) O'j(x))n 29)

Since set {0_]}('1)0 is orthogonal, {0y (x), 0;(x))q = 0.

Also, using (27) one can write

HJB(7 (s, )| = 3 (HIB( (5, ), 0, (900,
j=1

0 L
=1y (ngv@(xm(x), crj(x»ﬂ) ()

j=L+1 \i=1

+ i <(fr3ax<x>+xTQx),aj<x>> a,()
Q

J=L+1

w© /L
+ Z (Z wy(M (), 0}'(90»9) o;(x)

j=L+1 \ /=1
0 L
-y (Z(kaUk(x)B(x))\ tanh
J=L+1 \ /=1

1
(ZABT(W)V T WL), q(x») o,(x)
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L 0
<Y w3 (Vo (), o) ,0)

=1 j=L+1

+ Z<<fmax +470x)o, (x)>Qo,~(x)

J=L+1

L ©
+ <Z‘wk > (M@, o >Qa(x))‘

= J=L+1

L o
+ (wa,e Z <Va’k(x)B(x))\ tanh
=1

j=L+1

( TCARMAD) WL> oj(x)> aj(x)) ‘
Hence

\HJB(m), t)‘ <P Q)+ R S(x) + P T(x)

+ Z <(fmax(x)+x Qx)(r(x)> ()
J=L+1
where
P= 1<k< L| k|
- sup L d
Ox) = c0 Z( Z (Vo (x) A(x), o;(x)>0) ()
=1 \j=L+1
R=1
; SUP | (G o s
S@= (Z > (M@, aj<x)>naj.(x))
X =1 j=I+1

su L 00
T(x) = . EPQ (Z 3 <Va'/z(x)B(x))\ tanh

k=1 j=L+1
1
< B @V () WL> aj(x)>aj<x)) ‘

Suppose Vo, (x)A(x), M(5), Vo, (x)Bx)A tanh(—BT(x)Va'L

(x)W;) and ( Fr () + xl Qx) are continuous on () and are

in L,(Q), and co-efficient |fwj(t)| are uniformly bounded
for all L, so the orthogonality of the set {a’ }¥ implies that
Q(x) and second and third terms on the r1ght -hand side

can be made arbitrarily small by an appropriate choice of L.

Therefore P- Q(x) + R - S(x) + P - T(x) > 0

and

o0

2 <(fr§ax<x> + " Qx), oj<x>>ﬂoj<x>

J=L+1

— 0

So, H]B(IA/(x), z‘)‘ — 0 uniformly on () as L increases. The
details of justifying these arguments along with the necessary
assumptions can be found in [2, 4, 20].

Lemma 1 shows the existence of NN-based H]B solutlon for
the optimal control using cost functional jo ( fmax x) + x1 Ox

+M(u)) dr. Also approximate value function V(x) satisfies
HJB equation (7) and it ensures ¢ — 0. O

Since Lemma 1 shows the existence of NN-based HJB
solution, (26) can be written as (27). In the next theorem,
equivalence of the NN-based solution of optimal control
problem and robust control problem is proved.

Theorem 3: Assume that the NN-based HJB solution to
the optimal control problem exists. Then control law
defined by (28) ensures closed-loop asymptotic stability of
non-linear uncertain system (2) if the following condition
is satisfied:

S = VIB(x) (30)

Eroof? Here #(x) is an optimal control law defined by (28) and
V («, £)is the solution of the HJB equation (27). We now show
that with this control, the system remains asymptotically stable
for all possible f(x). Using definition (23) and from the
selection of o(x), V(0,0) =0 and V(x, £) > 0 for Vx # 0.
Also V(x, t) = dV/df <0 for x #0 can be proved
similarly as Theorem 1 by replacing V' (x, £) by V(x, £).

ie.

AN T
A v d 8V

= VX () (A() + Bx)i + Bx)f (x) + 4

o
5T Y
=V, (0)(A(x) + Blx)u) + o TV (2)B(x)f (x)
Using (27), one can write

= —f (@) — %" Qx — M) + V] (x) B(x)f (x)

< =" Qx = M) — (f2ul® — 7T (0B
Using (30), one can write
AV(x, t) < —xTQx <0

Thus conditions for Lyapunov local stability are satisfied.
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Closed-loop global stability can be proved using similar
argument mentioned in Theorem 1. O

From the above theorem, it can be proved that instead of
solving the robust control problem, one can solve the
optimal control problem. It is shown that this procedure
always leads to a control which stabilises the system having
matched uncertainty. In the next section, similar concept is
explored for the system having unmatched uncertainties.

3.2 System having unmatched
uncertainties

As described in Section 3.1 one can find robust—optimal
control for the system with matched uncertainties using
NN-HJB approach. In this section similar framework is
extended for the system having unmatched uncertainties.

Using the structure (23) of NN-based approximate value

function the HJB equation can be written as

HIB(V (%, 2)) = g () + P fones () + B 11>+ M (@) + 9121
+ P+ VI (A(x) + B(x)i
+ (I — B(x)B*(x))C(x)2) = ¢ 31)
Here NN is used to approximate value function V(x, #).
Approximation error is represented by e. If e is negligible,
then (31) becomes similar to (17). One can show the
existence of NN-based HJB solution for the above

performance functional by the similar kind of proof as in
Lemma 1.

As ¢ — 0, we can write (31) as

HIB(V (%), £) = gl (%) + P22 () + B2 1]
+ M) + PIDIPHV, + V(A + Bx)i
+ (I — B@B* (%)C(x)?) ~ 0 (32)

Approximate optimal control can be found by taking
derivative of (32) w.r.t. z and ©

-1
ii(x) = —\ tanh (1;\ B(x)" ﬁx@) = —\ tanh

x R—_IB(x)T W (Vo' (x) (33)
21

and

1
20

The relationship between robust control and optimal control
for NN-based HJB solution can be defined similar to
Theorems 2 and 3 for the unmatched uncertainty case.
It can be observed for unmatched uncertainty case that,

(I -BBHOY'C"W(H)Va'(x)  (34)

() = —

the robust control problem can be solved by solving
corresponding optimal control problem. We have shown
that this procedure always leads to a control law that
stabilises the uncertain system. Next section is about the
utilisation of the least squares method [21] for finding a
HJB solution.

4 HJB solution by least-square
method

Method of weighted residuals [4] was explored for optimal
control problem. The unknown weights are determined by
projecting the residual error ¢ onto de/dW and setting the
result to zero using the inner product, i.e.

< de >20f0rvxengw (35)
dW, e

where (a, b) = fﬂ abdx is a Lebesgue integral.

This method can be applied to solve robust—optimal control
problem for the system having matched uncertainties.
According to this method, by using definitions (24)—(26), we

can write (35) as

de(x, 2)
W) o(x) (36)

It can be written as

(=L (O, o, +H=W OV, (AR, 0,
= () + o7 Q) 0 (KM@, 0, (g

WL (Vo (x)B(x)A tanh

(338 VLI ). 0 =0 7
Hence weight updating law for the matched uncertainty case is
W 1(2) = — (0, (%), 07, (0))0 (Vo ()A(x), o, () W] (2)

— (o (%), O'L(x)>51<<fjax(x) + xTQx), O'L(x)>

Q
—(o(x), 0@ (M@, o7 ()

+ (o (x), aL(x)>51< W (£)Va, (x)B(x)A tanh

-1
X (f;\BT(x)VO{(x) WL(1)> ) 0'L<x)> (38)
Q

The NN weights can be determined by integrating (38)
backwards in time. Control law (29) can be found using these
weights, which is the solution of robust control problem
having matched uncertainties. Similar HJB solution can be
found for unmatched uncertainties. Equation (34) can be
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written using (24), (25) and (29) as

(— W1 ()0, (), o, H— WL (Vo (AW, o,
H—(goax®) + P o) + BlIx1), o (%)

N (MG) + P 191), oy (g + <WLT (e, (DB

tanh (%BT(xWa{(x) WL(¢)>, O'L(x)> =0 (39)
Q

Hence weight updating law is

Wi () = (o), o)) (VoL ()A(), 0 (x))o W, (2)
—(0,(%), 0, ()0 {(ghn () + P fir (@)
+ B 1?0 () — (o (), o ()"
(M) + P 1211%), o (x)g
+ (07 (x), 01 (W] (£)Vo,(x)B(x)) tanh

-1
x (ﬁ—ABT@)VUE(x) WL&)), o7(*)q (40)

By solving this equation, one can find control law using (33)
which is the solution of robust control problem for the
systems having unmatched uncertainties. In the next section
proposed algorithm has been described.

4.1 Algorithm

Solving integration in (37) and (39) is computationally
difficult, since evolution of the L,inner product over ), is
required. This can be addressed using collocation method
[4, 20]. The integral can be well approximated by
discretisation. A mesh of points of size Ax over integration
region can be introduced on (). The terms of (38) and
(40) can be rewritten as follows

- T
Al = _o-L(x)|x1 ......... UL(x)|xp] ;

- T
A2 = Vo AW, oo VO'L(x)A(x)|xp] ;

- qT
A3 =M@, ... M(u)|xp]

(for matched uncertainties case)

- T
A3 = [ (M@ + P12y oo (M@ + p151P)1,, |

for unmatched uncertainties case

R
A4 = | Vo (x)B(x)A tanh(

21

B' (x)Va (x) WL@) lay

www.ietdl.org

45 = [(f2@ + 7)o (R + )1, ]

(for matched uncertainties case);

A5 = [ (g + Pt ) + By oo

(o) + PA0 )+ B, |

for unmatched uncertainties case

where p represents number of points in the mesh. Reducing
the mesh size, one can get the following results

(W1 (Do, (%), 07 () = Jim — (41" A41) W, (¢) Ax;
(WL OV, (A6, oy (g = lim —(A1742) W, (0) Ax;
(=M (51), o7 (%)) = im —(A1743) Ax

(for matched uncertainties case)
(~(M@+p"1217), 0 (g = lim —(A1743) Ax

(for unmatched uncertainties case)

T 1 7 T

(Wr, (£)Vory,(x)B(x)Atanh <2_/\B (x)Var ()W, L(f)) , o7 (x)q

= dim O(AlTA4) W, (£)Ax

(—(fon)+47Qx), 0, = Jim ~(417A5)A

(for matched uncertainties case)

(— (g2 () + P22 )+ B2 lIxl1?), o ()

= lim —(41745)Ax
[|Ax|[—0

(for unmatched uncertainties case)
It implies that (37) and (39) can be written as
— AN, () — (AT A) W () — (417 43)
+ AT aHwl () — (417 45) =0 (41)
It gives
W, (2) = —(A1T A1) (1T 42w, (£) — (417 41) (417 43)

+ 1A A An W (£) — (417 41) N (A17 45)
(42)

One can find the weights of NN by backward integrating
(42) using final condition W(¢). It gives control law (29)

= (matched uncertainties case) and (33) (matched
R1 T uncertainties case), which is the solution of the robust
Vo (x)B(x)A tanh HBT(x)VUE(x)WL(t) pr control problem for non-linear system with finite time
horizon. In the next section, simulation experiments carried
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out on three systems to validate proposed algorithm are

described.

5 Simulation experiments
5.1 Matched uncertainties case

In this section, we have explored proposed algorithm on a
non-linear uncertain system.

Consider the non-linear system

Xy =% +xy —x; (x% + x%) )
Xy = —x; +xy — xl(x% + x%) + u + px; sinx,

where p is the unknown parameter and control input is
bounded by |#| < 1. For simplicity let us assume that
p €[ —1,1]. Itis in the matched uncertainty form, i.e.

x = A(x) + B(x)u + B(x)f (x) with f(x) = px; sin x,.

Cleatly, | f(x)| < |x;| = frax(®)

Here our aim is to find the robust control law that will

stabilise the system for all possible p.

This problem can be formulated into the following optimal
control problem.

For the nominal system

. 2, .2

X =X+ %, — xl(xl + xl);

Xy = —x1 + %, —xl(x% +x%) +u
we have to find a feedback control law » = K(x) that
minimises
3

L () + e Mt = |

0

D
(Zx% + x% +2 J tanh ™! () du) d¢
0

where, ® = —tanh(1/2 WLT (#)Vo(x)B(x) ). This problem
can be solved by using the algorithm described in Section
4.1. Scalar parameter p =1 has been selected for the
purpose of simulating the plant. Here we have selected

I}(x, £)=w, (z‘)x% + w, (t)x% + wy (g x, + w4(z‘)xi + ws (z‘)x‘z1
+ fwé(t)x?xz + fw7(z‘)x%x% + wg (z‘)xlxg + wy (t)xfl’

6 5 4 2 3 3
+ wy o (£)ry + wyq (£)x7 2y + w15 (2)x) 5 + wy5(£)x) %

2 4 5 8 8
+ wi Oy ay + wis(Hxg ) + Wy ()27 + w1 (£)x

7 6.2 5.3 4 4
+ wig () 2y + w19 ()] x5 + W) (2)x7 x5 + W)y ()X %5

3.5 2.6 7
+ Wy (1)1 + w)3(£)x7 25 + W,y ()21 6)

This is a NN with polynomial activation function and hence
V(0) = 0. It is a power series NN of 24 activation functions
containing powers upto eighth order of the state variables of
the system. Selecting the NN structure for approximating
V(x) is usually a natural choice guided by engineering
experience and intuition. The number of neurons required is
chosen to guarantee the uniform convergence of the
algorithm. Neurons with eighth order power of the states
variables were selected because for neurons with sixth power
of the states, the algorithm did not converge. Higher-order
power terms were producing similar results without much
improvement. Hence to avoid computational complexity we
have taken activation function up to eighth order. The
activation functions for the NN selected in this paper satisfy
the properties of the activation function discussed in [2].
NN-based HJB solution can be found using least squares
method as described in the algorithm. All the weights are
determined by backward integrating (42). For that purpose
we have selected £ = 50 and W, (#) is selected as follows:

W; (¢;) =[30.046310.723021.0872 33.8288 1.3228 41.3044
28.20902.571219.8882 2.3689 40.8138 41.7514
10.0255 4.79804.9658 3.5467 0.4724 13.5306
20.649310.3097 0.0601 4.4958 3.5604 0.6157]

Required quantities 41, 42, A3, A4 and A5 are evaluated for
1000 points in £);. The states and control can be determined
by forward integrating (43) and using these weights in (29).

Response of the robust controller is shown in Fig. 1. As
shown in Fig. 1a, robust—optimal control approach shows
convergence of system states to the equilibrium point.
It can be observed from Fig. 1c that the time derivative
of Lyapunov function remains negative for all the
t €10, tf]andx € Q. It shows valid approximation of
the solution of HJB equation with NN. Variation in the
control signal is shown in Fig. 14. Here control signal
generated by NN remains bounded, ie. |#| <1. It also
shows that constrained robust—optimal control input
converges to zero when the system is stabilised. In Fig. 14,
condition (30) is verified.

5.2 Unmatched uncertainties case

Let the non-linear system be defined by

010 Sz [ i

1192
© The Institution of Engineering and Technology 2009

IET Control Theory Appl., 2009, Vol. 3, Iss. 9, pp. 1183-1195
doi: 10.1049/iet-cta.2008.0288

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY DELHI. Downloaded on November 11, 2009 at 04:47 from |IEEE Xplore. Restrictions apply.



www.ietdl.org

1 where
|~—x1
o —x2
1
o 5 Time(sec) 10 15 ® = —50tanh (— WLT VO'L(x)B(x)>
” a 100
. 1”_ AR x for all possible p; where i=1, 2, 3, 4
'"‘;n 5 Time (Sec) 10 15
R b It can be solved by using (42). Here we have
[ G selected the same 7 (x) as in the matched uncertainties case.
A/ For the simulation purpose we have selected, WL(zy) =
30 . T T % [4.364; 8.1335; 8.8854; 0; 0.0001; — 0.0002; — 0.0003; —
c 0.0002; 0; 0;0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0s]; Required
; P qu?nt1t.1esQA1, A2, A3, A4 and A5 are evaluated for 1000
-4'\,’”\!‘.’3(::, ) points in €.
0 5 Time(Sec) 10 15
d Response of the robust controller is shown in Fig. 24. All

the system states converge to equilibrium point. As shown in
T Fig. 24, the control input remains bounded, ie. |#| < 50.
a System states against time . . . . . .
b Variation of control input Simulation is carried out using time varying parameters
¢ Derivative of Lyapunov function Pl(l‘> = —0.095, Pz(l‘) =100 sin (z), Pg(l‘) =0.05 and
d Varification of condition (30) 24(2) = =50 sin (2¢). It can be observed from Fig. 2¢ that
?(x) <0 for all #€ [0, %] and x € Q, which ensures
V(x) is the Lyapunov function. It shows that approximated
value function is the solution of HJB equation. In Fig. 24
verification of condition (21) is shown using approximate
)+5p3x2 sin (pyx1x,) value function. The boundedness of control input and
convergence of the system state to the equilibrium point
validates proposed algorithm.

Figure 1 Response of system with matched uncertainties

where

S (xy, x9) = 5p1, cos<

X+ P

and p,(#) €[ —0.2,0.01], p,(#) € [ — 100, 100], p;(2) €
[—0.05,0.05], p,(5)€[—100,0] are timevarying 5.3 Optimal control of non-linear chained
uncertainties and the control input is bounded by |«| < 50. form system

It is in the unmatched uncertainty form, i.e. ¥ = A(x) + B

(WK (x) + Cla)f (x)

In this section we show that an optimal control problem can
be solved by the proposed algorithm. Consider a non-

holonomic system converted to chained form [4] as

Therefore || (%, x2)||2 < x% + x% =fnfax(x) and ||BY Ccf

2 A2
@y, )17 = 0 = g (). X, = wuy; %y = uy and 3 = xyu,

Also, Bt = (B'B)'B" = B" = [01] and (I — BB)C =

1 0][0.2 0.2 . ==
= = = b —x2
[O 0j||: 0 i| [ 0 ] p=1and B =1 selected for the - —x2|
purpose of the simulation. As per description in Sections 2 ¢ L £ 3"""";*““ ¥ £ !
and 3, the corresponding optimal control problem is as 50
follows: \
For the system ’ i Timstsee) ‘
5000
Pk
x| |0 1][x 0 0.2 15000
|:562i|_|:0 Oi||:x2i|+|:1 U+ o |? 0 1 2 3.““‘2{52”4 5 6 7
find a feedback control law that minimises the cost - ———1 ——L-v |
o 1 2 3 Time(Sec)4 5 6 7
d
£
Jf (friu(x) + p gfnax(x) + ,82||x||2+p2||‘v||2+M(u)) ds Figure 2 Response of system with unmatched uncertainties
0 a System states against time
£ ) b Variation of control input
= J (2x% + 2x§ +olo+ IOOJ tanh ™ (2/50) du) ds ¢ Derivative of Lyapunov function
0 0 d Verification of condition (21)
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It can be arranged in the matched uncertainty form, i.e.
% = A(x) + B(x)u + B(x)f (x)

withA(x) = [000; 000; 000]; B(x) = [10; 01; Ox; ] and /' (x) =
[0; 0; 0] Clearly, £, ..(x) = 0.

The optimal control problem can be solved by selecting Q
and R as identity matrices of appropriate dimensions.
Optimal control law can be found using (42). Here we
have selected

Vix, £) = w, (t)x% + ’wz(z‘)xg + w3(t)x§ + wy(Hxy x,
+ ws (E)yxc; + wy(£)x; 25 + wo(£)x] + wy(2)x)
+ wy (s + wy (Do + wy (ko
+ fwlz(t)xgxg + ww(t)x%xza% + fw14(t)x1x%x3
+ wis (i)xlxzxg + ‘wlé(t)xixz + ‘w17(t)x%x3
+ wig (D55 4 Wy (£)5;53 + wag(£)xy25

3

This is a NN with polynomial activation function and hence
V(0) = 0. It is a power series NN of 21 activation functions
containing powers upto fourth order of the state variables of
the system. Neurons with fourth-order power of the state
variables were selected because for neurons with second
power of the states, the algorithm did not converge.
Higher-order power terms were producing similar results
without much improvement. Hence to avoid computational
complexity we have taken activation function up to fourth
order. In this example, Wy (#) = [11; 4; 12.3784; 5.8192;
14.3095; 2.6897; 9.7010; 0.6699; 14.8043; 0; 12.7808; 0;
13.2514; 0.5419; 0; 13.2797; 0.7; 10; 5; 0; 7.4910] is
selected for the simulation purpose. Required quantities

A1, A2, A3, A4 and A5 are evaluated for 1000 points in £),.

\ —x1
0 —x2d
N— —x3
-
0 1 2 3 4 5 6 7
Time(sec)
a
2 [—u1
obow > — —u2
P S
.2 A AL A
0 1 2 5 6 7
Time(sec)
s00 /V”"
=1000}
1500
0 1 2 3 4 5 3 7
Time(sec)

c

Figure 3 Response of nonlinear chained-form system

a System states against time
b Variation of control input
¢ Derivative of Lyapunov function

It can be observed from Fig. 34 that robust—optimal
control approach shows convergence of system states to the
equilibrium point. It can be observed from Fig. 3¢ that the
time derivative of Lyapunov function remains negative for
all # € [0, #]andx € Q.It shows valid approximation of
the solution of HJB equation with NN. Variation in the
control signal is also shown in Fig. 34. It remains bounded,
ie. |u1| <1and |u2{ < 2. It also shows that constrained
robust—optimal control input converges to zero when the
system is stabilised.

6 Conclusions

The contribution of this paper is a methodology for designing
bounded controllers for non-linear uncertain systems. It
addresses a class of matched and unmatched uncertainties.
The proposed framework is based on the optimality-based
robust control approach. Specifically, a robust non-linear
control problem is transformed into a constrained optimal
control problem by modifying the cost functional to account
for a class of uncertainties. The exact information about
uncertainty is not required; some restrictive norm bound is
only needed. We have adopted NN-based time-varying HJB
solution to design robust—optimal control law that satisfies a
prescribed bound on uncertainties, taken care of constraints
on the input. Least squares-based method is used to find the
solution of NN-based HJB equation. Simulation results on
three different non-linear systems show a good agreement
with that of theoretical observations. It is also observed that
control signal generated by NN remains bounded.
Furthermore, it is shown that the Lyapunov function
guaranteeing stability is the time-varying solution of HJB
equation for the nominal system. The selection of basis
function of NN is guided by engineering experience and
intuition. The proposed approach may be extended for the
output feedback controller design.
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