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Abstract 

 
Inverse kinematics is difficult in computation and 

can result in significant delays in real time. For a 

redundant robot, additional computations are 

required for the inverse kinematic solution through 

optimization schemes. Getting inverse kinematics 

result using equation would be considered under 

expensive efforts. So this optimization can be done 

efficiently by fuzzy logic. Based on the fact that 

exact inverse kinematics cannot be calculated by 

human, but can do defined positioning from trial 

and error. The implementation of the projected 

scheme has established that it is practical for both 

redundant and non redundant cases, and that it is 

very computationally efficient. The result provides 

sufficient precision. This paper discusses (1) the 

automatic generation of the Fuzzy Inverse 

Kinematic Mapping (FIKM) from specification of 

the Denavit-Hartenberg parameters 

(2)Programming that in microcontroller and 

implementation on hardware. 

 

1. Introduction 
People who work efficiently in complex, 

unstructured environments acquire their skills through 

various kinds of learning. It may be necessary to 

implement similar abilities in robots to enable them to 

work in the same kinds of environments. The task of 

calculating all of the joint angles that would result in a 

specific position/orientation of an end effecter of a 

robot arm is called the inverse kinematics problem[4]. 

An inverse kinematics solver using fuzzy mapping 

that learns the inverse kinematics system of a robot 

arm has been used in much research. In the case of 

redundant manipulators and non redundant 

manipulators in singular configurations, the problem is 

compounded by the fact that throughout the 

workspace of the manipulator, multiple solutions 

exist. The inverse kinematics of redundant 

manipulators therefore requires that a choice be made 

among the set of all possible solutions. Arriving at 

such a decision through some optimization scheme is 

difficult and the lengthy computations can result in 

However, Humans do not have to calculate exact 

inverse kinematics every time we move an arm or a 

leg. Experience and knowledge, rather than complex 

computations, allow humans to effectively move with 

ease. In this paper, we propose to characterize this 

human knowledge by proposing a general method of 

computing the inverse kinematics for an arbitrary n-

DOF manipulator through a fuzzy logic approach[5]. 

Firstly, this paper, presents an algorithm which 

automatically generates the fuzzy model for an 

arbitrary manipulator based only on the Denavit- 

Hartenberg (DH) parameter. Second we use this 

parameter to implement real robotic arm which is 

designed using servo motors and controlled by 

PIC18f4550 chip. To obtain a precise inverse 

kinematics model of a robot with fewer degrees of 

freedom, some modifications are necessary. We 

modified the Gauss-Newton method for finding the 

joint angle vector trajectory from the initial posture of 

the arm to the given desired end-effecter 

position/orientation. By the modifications proposed in 

this paper, the fuzzy logic mapping system can obtain 

a precise inverse kinematics model of a general 

robotic arm. Numerical experiments of the inverse 

kinematics learning were performed in order to 

evaluate the performance of the improved system. 

2.FUZZY MAPPING 

 

2.1 Overview  
      As shown in Fig. 1, our fuzzy inverse kinematic 

mapping (FIKM) takes as input the actual and desired 

locations of the end-effector, and the current joint 

variable values. From these inputs, the fuzzy 

controller generates as output the necessary 

trajectories for the joint variables, so that the actual 

and desired end-effector locations  onverge to zero 

steady-state error.      

 

The Jacobian matrix relates the differential Cartesian 

rates dr to the differential joint rates , such as 

    (1) 

but we want to solve inverse problem 
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-1

dr    (2) 

 

Consider each Jij term in the Jacobian separately 

along with dri  the ith component of the dr vector. We 

define a new variable dij which relates dri and Jij.  

 

Jijd ij=dr     (3) 

 

 

 

Fig. 1  signal flow for fuzzy controller. 

           
 

Therefore, dij relates how much d j contributes todri . 

This relationship gives a good understanding of which 

joints will contribute more to reducing dri and which 

ones will contribute less. Thus  with proper scaling of 

each of the d is the fuzzy mapping can arrive at an 

intelligent set of joint angles that will drive the end-

effector to the desired position. The function that we 

will actually apply the fuzzy mapping to is given by, 
 

d ij =     (4) 

 

2.2 JACOBIAN CALCULATION AND RANGE 

DETERMINATION 

 

There are many computationally-efficient methods for 

calculating the forward Jacobian [6]. Orin and 

Schrader present several methods, one of which 

requires (30n - 55) multiplications, (15n - 38) 

additions, and (2n -2) 

sine/cosine evaluations for both position and 

orientation tracking. Here and the twist angle_ in the 

DH parameters is restricted 0 or 90. In order to 

minimize the inference error of the fuzzy model, we 

want to fuzzify relationship over the full range of 

values thatJij may assume. Therefore it is useful to 

determine, before the fuzzy mapping, the range for 

each element Jij i of 1,2,3..... , , in J( ) . Each Jij will 

be of the form, 

Jij = l1f1(ɵ1,............ ɵn) + = l2f2(ɵ1,............ ɵn)+.... 

      + lkfk(ɵ1,............ ɵn)+ d1fk+1(ɵ1,............ ɵn)+...... 

        +dmfk+m(ɵ1,............ ɵn) 

2.3 ANFIS ARCHITECTURE 

This section introduces the basics of ANFIS network 

architecture and its hybrid learning rule. Adaptive 

Neuro- 

Fuzzy Inference System is a feedforward adaptive 

neural network which implies a fuzzy inference 

system through its structure and neurons. Jang was 

one of the first to introduce ANFIS[11]. He reported 

that the ANFIS architecture can be employed to model 

nonlinear functions, identify nonlinear components 

on-line in a control system, and predict a chaotic time 

series. It is a hybrid neuro-fuzzy technique that brings 

learning capabilities of neural networks to fuzzy 

inference systems. The learning algorithm tunes the 

membership functions of a Sugeno-type Fuzzy 

Inference System using the training input-output data. 

A detailed coverage of ANFIS can be found in[1-2-3]. 

 

For a first order Sugeno type of rule base with two 

inputs x, y and one output, the structure of ANFIS is 

shown 

in Figure 1. The typical rule set can be expressed as, 

 

Rule 1: If x1 is A1 AND x2 is B1, THEN f1 = 

p1x+q1y+r1 

Rule 2: If x1 is A2 AND x2 is B2, THEN f2 = 

p2x+q2y+r2 

 

 
 

Fig. 1  ANFIS Architecture. 

 

 

In the first layer, each node denotes the membership 

functions of fuzzy sets Ai,Bi, i = 1,2 be 

μAi(x1),μBi(x2). In the second layer the T-norm 

operation will be done related to AND operator of 

fuzzy rules. Considering T-norm multiplication: 

 

wi = µAi(x1)* µBi(x2)                                        (4) 

 

In the third layer, the average is calculated based on 

weights taken from fuzzy rules, 

 

i  =  
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In the fourth layer, the linear compound is obtained 

from the input of the system as THEN part of Sugeno-

type 

fuzzy rules as, 

 

i *fi  = i  (pix1 + qix2  + ri) 

 

In the fifth layer, defuzzification process of fuzzy 

system (using weighted average method) is obtained 

by, 

 

f =  =  

 

This paper considers the ANFIS structure with first 

order Sugeno model containing 49 rules. Gaussian 

membership 

functions with product inference rule are used at the 

fuzzification level. Hybrid learning algorithm that 

combines least square method with gradient descent 

method is used to adjust the parameter of membership 

function. 

The flowchart of ANFIS procedure is shown in Figure 

3 

 

. 
Fig. 3  ANFIS procedure. 

 
 

 

3 CALCULATION OF  INVERSE KINEMATICS 

FOR THREE DEGREE OF FREEDOM.  

 

Out of 5 Degree of freedom 3 degree of freedom is 

used for elbow, shoulder and joint. 1 Degree of 

freedom is used for 3 dimensions and last degree of 

freedom is used for gripping purpose. 

So that’s why we will calculate inverse kinematics for 

3 dof and assume the 2 dimension plane is already 

given.  

 

Forward kinematics equations for calculation of 3 dof. 

 

x = l1cos(ɵ1) + l2cos(ɵ1+ ɵ2) + l3cos(ɵ1+ ɵ2+ ɵ3) 

 

y= l1sin(ɵ1) + l2sin(ɵ1+ ɵ2) + l3sin(ɵ1+ ɵ2+ ɵ2) 

ɸ = (ɵ1+ ɵ2+ ɵ2) 

 

From above equations we can find the coordinates for 

given constraint angles. After calculation, these all co-

ordinates can relate it with individual angles. This 

input/output table we can be used to train the data for 

ANFIS network.  

 

In verse Kinematics equations.  

 

ɵ2 = atan2(sin ɵ2, cos ɵ2) 

ɵ1= atan2(k1yn  - k2xn), (k1xn  - k2yn) 

ɵ3 = ɸ - (ɵ1+ ɵ2) 

 

where K1  = l2, sin ɵ2  cos ɵ2  =   , sin 

ɵ2 ,   Xn = x – l3cos ɸ  and  yn  = y – l3sin 

ɸ. For simulation, the length for three links are l1 =10, 

l2=7 and l3=5 with joint angle constraints 0< ɵ1<  , 0< 

ɵ2<  and  

0< ɵ3<π  the same procedure is repeated, Figure shows 

the training data of three ANFIS networks for three 

joint angles. Figure shows the difference in theta 

deduced analytically and the data predicted with 

ANFIS.  

 

 
 

Fig. 4 Angles Correspond to co-ordinates. 

4 IMPLEMENTATION OF ANFIS IN 

EMBEDDED SYSTEM. 

 

In the hazardous area it is not always possible to 

carry a computer and calculate the angles through 

matlab. So I have decided to make the system itself 

powerful such to calculate the angles on board without 

involvement of any computer. 
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To implement ANFIS in embedded, easiest while 

powerful membership function is triangle. Using line 

equation for given co-ordinates we can create a 

triangle membership function and from the training 

data gathered from the forward kinematics equations 

can be used for weighting the rules. Using centroid as 

defuzzification method I have finally achieved angles 

with least error than it is achieved from the matlab. 

 

The coding for implementation of ANFIS in 

embedded is developed in C for PIC 18f4550.  C18 

compiler is used to compile this code. The code is so 

efficient that it don’t use much memory of micro 

controller rather by means of only equations it solves 

the angles.  Figure below shows the comparison 

between matlab angles and embedded angles.  

 

 

Fig.5 VALIDATING EMBEDDED ANGLES WITH MATLAB 

ANGLES 
 

5 CONCLUSIONS 

Scheming exact inverse kinematics in real-time is 

computationally too heavy for all but the most simple 

kinematic configurations.  Here, we have presented a 

method of calculating inverse kinematics which has 

been shown to be robust to singular configurations, 

and is applicable to almost every manipulator. After 

calculating angles PIC micro controller can take end 

effecter to desire position. At last we achieved an 

embedded system with inbuilt code to calculate the 

angles using ANFIS algorithm.  
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