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Abstract-- There are many dynamic systems that can be 

characterized  better by  using non-integer order dynamic 

model based on fractional calculus or, differentiation or 

integration. Traditional calculus is based on integer order 

differentiation and integration. In this paper, we have 

represented comparative study of different fractional 

order systems using different realization methods. Basic 

definitions of fractional calculus and fractional order 

dynamic systems are presented first. Additionally, 

different fractional order systems are introduced and 

commented. Numerical methods for simulating fractional 

order systems are given in detail. Also Discretization 

techniques for fractional order operators are explained in 

details. Both digital and analog realization methods of 

fractional order systems are introduced. Comparative 

study has been carried out for the time response analysis 

of fractional order system using various approximation 

methods. Finally, remarks on future research efforts in 

fractional order control are given. 
  

Index Terms–Fractional calculus, fractional order system, 

realization methods.   

I. INTRODUCTION 

 

Fractional calculus was first come in existence about more 

than 300 years ago. In the year 1823 the fractional calculus 

was first applied by Abel. Now a day’s fractional calculus has 

been widely used in many applications. By using these 

mathematical phenomena a real object can be described more 

accurately than the classical “integer-order” methods []] - [2]. 
Earlier peoples were using the integer-order models because 

of  the absence of solution methods for fractional differential 

equations but now there are so many  methods available for 

approximation of fractional derivative and integral. From 

some real world examples we can say that fractional order 

control can be used everywhere provided that the dynamic 

system has distributed parameters.  

II. FRACTIONAL CALCULUS 

 

The fractional calculus has been in existence since the 

development of integer-order calculus was done. It was first 

founded by Leibniz and L’Hˆopital probably in 1695 when 

the question of half-order or fractional order derivative was 

raised. Fractional calculus is a generalized form of integration 

and differentiation of non-integer order fundamental operator 

aDr
t, where a and t represents the limits of the operation. The 

basic definition of continuous integro-differential operator is 

given as follows: 

 

aDr
t = {

   
dr 

dtr        , ℜ(r) > 0 

   1         , ℜ(r) = 0

∫ (dτ)−rt

a
, ℜ(r) < 0

 

 

 

Where r denotes the order of the operation, mostly r ∈ R but 

it can be a complex number also [3]. 
 

A. BASIC PROPERTIES OF FRACTIONAL CALCULUS  

 

         The main properties of fractional derivatives and    

fractional integrals are listed as below [4]-[5]. 

a) The fractional order derivative 0Dα
t f (t) is an analytical 

function of z and α If f (t) is an analytical function of t. 

b) The result of operation 0Dα
t f(t) for noninteger order is 

same as result of differentiation of integer order n, when 

α = n, where n indicates an integer.    

c) The operation 0Dα
t f (t) is the identity operator when α = 

0.                   0D0
t f(t)  =  f(t)   

d) Noninteger order differentiation and integration are two 

linear operations. 

               0Dα
t a f (t) +b g (t) = a 0Dα

t f (t) +b 0Dα
t g (t). 

e) For the fractional-order integrals of arbitrary order, as 

mentioned earlier ℜ (α) > 0 and ℜ (β) > 0, it holds the 

additive law or in other words we can say semi group 

property.    0Dβ
t + 0Dα

t = 0Dα+β
t  

 
III. FRACTIONAL ORDER SYSTEMS AND STABILITY 

CRITERIA 
 

A continuous fractional-order system can be described by 

the following fractional order differential equation [6]. 

anDαny(t) + an−1Dαn−1y(t) +  … … … +  a0Dα0y(t) =
 bmDβmu(t) + bm−1Dαm−1u(t) + … +  bDβ0u(t)…. (1)  

             Where, Dα = 0Dα
t , Dβ= 0Dβ

t  

                         an (n = 0, ··· N) and  

                         bn (n = 0, ··· m) are constants;  

                         αk (k =0, ··· n) and  

                         βk (k =0, ··· m) are arbitrary real numbers.        

Now to get the discrete model of the same fractional-order 

system as shown in equation (1), we have to use discrete 

approximations of the fractional-order operators so that we 

can obtain a general equation for the discrete transfer 

function of the proposed system [7]. 

G(z) =
bm (w(z−1))βm + … …  + b0 (w(z−1))β0

an (w(z−1))αn +  … …  +  a0 (w(z−1))α0
    … . (2) 

Where, w(z−1)  indicates the discrete equivalent of the 

Laplace transform of s. 

A. Now the stability criteria for step and impulse responses 

for time domain are as follows[8]: 
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 If |arg (λk)| ≥ απ then the response would be 

monotonically decreasing.  

 If απ/2 < |arg (λk)| < απ, then the response would be 

oscillatory with decreasing amplitude. 

 If |arg (λk)| = απ/2 then the response would be oscillatory 

with constant amplitude. 

 If |arg (λk)| < απ/2 or |arg (λk)| ≠ 0 then the response 

would be oscillatory with increasing amplitude.  

 If |arg (λk)| = 0 then the response would be 

monotonically increasing.                                           

B. Now the basic equations and stability criteria for step and 

impulse responses for frequency domain are as 

follows[8]: 

For the commensurate order systems the frequency    

response can be obtained by the addition of the individual 

terms of order α, which is the result of factorization of the 

specified function. Consider the equation given below. 

G(s) =  
P(sα)

Q(sα)
=  

∏  (sα+ zk )m
k=0   

∏  (sα+ λk )m
k=0

   ,  zk ≠ λk. 

For each of these terms, referred to as (sα +  γ)±1 , the 

magnitude curve will have a slope which starts at zero and for  

higher frequencies it will tends to ±α20 dB/dec and the phase 

plot will tends to 0 to ±απ/2.  

 

IV. DIFFERENT TYPES OF REALIZATION METHODS AND 
THEIR COMPARISION. 

 

There are different approximation methods available for 

continuous and discrete time implementation of fractional 

order operator as given below [9]-[10]. 

A. Continuous time approximation methods are as follows: 

1) Low-frequency continued fraction expansion 

2) High-frequency continued fraction expansion 

3) Carlson’s method 

4) Matsuda’s method 

5) Oustaloup recursive approximation 

6) Modified oustaloup approximation 

B. Discrete time approximation methods are as follows: 

1) Zoh - zero order hold  

2) Foh - linear interpolation of  

3) Tustin - bilinear approximation 

4)  Prewarp - tustin approximation with frequency 

prewarping 

 

Now we will see the continuous time implementation of 

different fractional order systems. All simulations are 

performed in using MATLAB software .   

 

1. Using low frequency CFE, High frequency CFE, 

Carlson’s and Matsuda’s approximation method. 

A. For transfer function  
1

s0.5 , corresponding frequency 

responses, using nid( ) function of  N-integer toolbox in 

MATLAB is as follows[08]: 

 
Figure 1.1 Comparisons of different methods [08] 

 

2. Using oustaloup recursive method [11]. 

1) For transfer function  
1

s1.45 , corresponding time and 

frequency responses are as follows: 

Figure 2.1.1 frequency responses of a fractional order integrator of order 1.45 
with the Oustaloup approximation, solid lines for G1(s), dashed lines for 

G2(s). 

 
Figure 2.1.2 Time response of a fractional order integrator of order 1.45 with 

the Oustaloup approximation, solid lines for G1(s), and dashed lines for 
G2(s). 

 
 

2. Using modified oustaloup method [12] 
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1) For transfer function  
1

s1.45 , corresponding time and 

frequency responses are as follows: 

 
Figure 3.1.1 Frequency response of a fractional order integrator of order 1.45 

using modified oustaloup approximations, solid lines for G1(s), and dashed 
lines for G2(s). 

 

 
Figure 3.1.2 Time response of a fractional order integrator of order 1.45 
using modified oustaloup approximations, solid lines for G1(s), and dashed 

lines for G2(s). 

 

From the above simulation results we can observe that in the 

results of low frequency CFE, high frequency CFE, Carlson 

and Matsuda’s methods, the fitting ranges are rather small 

and the quality of fit is not satisfactory. Whereas fitting 

quality of oustaloup method is highly superior and modified 

oustaloup is good for frequency range of interest. From this it 

is clear that oustaloup gives better performance than other 

approximations.  

 

Now we will see the discrete time implementation of 

different fractional order systems using oustaloup and 

modified oustaloup method. 

 

A. Using zoh, foh, methods and oustaloup approximation 

for transfer function  
1

s1.45 , corresponding time and 

frequency responses are as follows [13]-[14]: 

 
Figure 2.1 Frequency response of a fractional order integrator of order 1.45 

using oustaloup approximations with zoh (H2) and foh (G2) methods. 

 

 
Figure 2.2 Time response of a fractional order integrator of order 1.45 using 

oustaloup approximations with zoh (H2) and foh (G2) methods. 

 

Using Tustin, prewarp and matched methods and oustaloup 

approximation for transfer function  
1

s1.45 , corresponding time 

and frequency responses are as follows: 

 

 
Figure 2.3 Frequency response of a fractional order integrator of order 1.45 
using oustaloup approximations with Tustin (F2), prewarp(X2) and matched 

(Y2) methods. 

 

 
Figure 2.4 Time response of a fractional order integrator of order 1.45 using  

oustaloup approximations with Tustin (F2), prewarp(X2) and matched (Y2) 

methods.  

Rise time for tustine method is 110s and rise time of prewarp 

and matched method is 120s.  

 
 

B. Using zoh, foh method and modified oustaloup 

approximation for transfer function  
1

s1.45 , corresponding 

time and frequency responses are as follows: 
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Figure 3.1 Frequency response of a fractional order integrator of order 1.45 

using modified oustaloup approximations with zoh (H2) and foh (G2) 

methods  
 

 
Figure 3.2 Time response of a fractional order integrator of order 1.45 using 

modified oustaloup approximations with zoh (H2) and foh (G2) methods 
 

Using Tustin, prewarp and matched method and modified 

oustaloup approximation for transfer function  
1

s1.45 , 

corresponding time and frequency responses are as follows 

 

 
Figure 3.3 Frequency response of a fractional order integrator of order 1.45 

using oustaloup approximations with Tustin (F2), prewarp(X2) and matched 
(Y2) methods

 
Figure 3.4 Time response of a fractional order integrator of order 1.45 using 

modified oustaloup approximations with Tustin (F2), prewarp(X2) and 
matched (Y2) methods.  

Here for the modified oustaloup approximation methods the 

rise time is 650s for matched method,940s for prewarp 

method and 90s for tustin method.  

V. CONCLUSION 

From these comparative studies we can conclude that 

different approximation methods for the discretization of 

fractional order system gives different type response 

behavior. Also the rise time of the system varies and it is 

highly depended on types of filter and approximation 

methods. One should practically implement the fractional 

order equations and carry out the actual study using DSP 

processor to check the validity of simulation results for the 

different fractional order systems.  
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