
3d Yoga Pose Estimation & Correction

Submitted By

Bhupinder Kaur Punjabi

(21MCED09)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2023

3d Yoga Pose Estimation & Correction

Major Project - II

Submitted in partial fulfilment of the requirements

for the degree of

Master of Technology in Computer Science and Engineering (Data Science)

Submitted By

Bhupinder Kaur Punjabi

(21MCED09)

Guided By

Prof. Jitali Patel

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2023

Certificate

This is to certify that the major project entitled “3D Yoga Pose Estimation & Correction”

submitted by Bhupinder Kaur Punjabi (Roll No: 21MCED09), towards the partial fulfilment

of the requirements for the award of degree of Master of Technology in Computer Science and

Engineering (Specialization in Data Science) of Nirma University, Ahmedabad, is the record

of work carried out by him under my supervision and guidance. In my opinion, the submitted

work has reached a level required for being accepted for examination. The results embodied in

this major project part-II, to the best of my knowledge, haven’t been submitted to any other

university or institution for award of any degree or d iploma.

Prof. Jitali Patel

Guide & Associate Professor,

CSE Department,

Institute of Technology,

Nirma University, Ahmedabad.

Dr. Madhuri Bhavsar Dr R. N. Patel

Professor and Head, Director,

CSE Department, Institute of Technology,

Institute of Technology, Nirma University, Ahmedabad

Nirma University, Ahmedabad.

Statement of Originality
——————————————————————————————————

I, Bhupinder kaur Punjabi, Roll. No. 21MCED09., give undertaking that the Major

Project entitled “3D Yoga Pose Estimation & Correction” submitted by me, towards

the partial fulfilment of the requirements for the degree of Master of Technology in

Computer Science & Engineering (Data Science) of Institute of Technology, Nirma

University, Ahmedabad, contains no material that has been awarded for any degree or

diploma in any university or school in any territory to the best of my knowledge. It is

the original work carried out by me and I give assurance that no attempt of plagiarism

has been made. It contains no material that is previously published or written, except

where reference has been made. I understand that in the event of any similarity found

subsequently with any published work or any dissertation work elsewhere; it will

result in severe disciplinary action.

Signature of Student

 Date:

 Place:

Endorsed by

Prof. Jitali Patel

 (Signature of Guide)

v

 Acknowledgements

It gives me immense pleasure in expressing thanks and profound gratitude to Prof. Jitali Patel,

Associate Professor, Computer Engineering Department, Institute of Technology, Nirma

University, Ahmedabad for his valuable guidance and continual encouragement throughout

this work. The appreciation and continual support he has imparted has been a great motivation

to me in reaching a higher goal. His guidance has triggered and nourished my intellectual

maturity that I will benefit from, for a long time to come.

 It gives me an immense pleasure to thank Dr. Sanjay Garg, Hon’ble Head of Computer

Engineering/ Information Technology Department, Institute of Technology, Nirma University,

Ahmedabad for his kind support and providing basic infrastructure and healthy research

environment.

A special thank you is expressed wholeheartedly to Dr R. N. Patel, Hon’ble Director, Institute

of Technology, Nirma University, Ahmedabad for the unmentionable motivation he has

extended throughout course of this work.

I would also thank the Institution, all faculty members of Computer Engineering Department,

Nirma University, Ahmedabad for their special attention and suggestions towards the project

work.

- Bhupinder Kaur Punjabi

 (21MCED09)

vii

Abstract

 The ancient times, during 5000 years ago, the Indus-Sarasvati culture in

ancient India created the yoga practise. The term "yoga" refers to a close connection

and integration of the mind and the body. Through asana, meditation, and other

practises, it is utilised to keep the body and mind in balance throughout all of life's ups

and downs. Due of the growing stress levels in the modern lifestyle, yoga has recently

attracted interest on a global scale. There are several ways to practise yoga. Many

people choose self-learning in fast-paced environments because the aforementioned

resources might not always be accessible. In our method, as input, we use the

personalised yoga dataset.

The system uses various deep learning techniques to determine whether the input

yoga stance image is correct or incorrect. Results display metrics for performance

including accuracy, error rate, and comparison graph. There are several ways to

accomplish this; however, the method I employ begins by using a CNN to process the

incoming image and ANN classifier that has been trained to seek for humans. The

pose estimation network looks for limbs and joints with training when it recognises

human body positions. The user can then view the image on the computer using

markers that designate various bodily components.

However, we did the implementation with the above mentioned CNN and ANN

Machine learning algorithm the 2d detection of yoga poses by giving feedback to

improve position of the body parts and detect the pose with classification.

 We need a design and implementation on the basis of real-time detection and

classification of the Yoga pose performed by the user. Hence, we will inculcate the

previous algorithm and work on the real-time 3d pose estimation and correction by

implementing yoga pose detection System which is designed and developed to

recognize yoga stances and respond with a customized response to help users improve

their postures. Our system will detect various yoga poses, namely Chair pose

(Utkatasana), Cobra pose (Bhujangasana), Dog Pose (Adho Mukha Svanasana),

Shoulder Stand Pose (Sarvangasana), Triangle Pose (Trikonasana), Tree Pose

(Vrikshasana), Warrior Pose (Virbhadrasana) and No Pose.

Abbreviations
 CNN Convolutional Neural Network

 ANN Artificial Neural*Network

 LBP Local*Binary*pattern

 XAMP Cross Platform Apache MySQL PHP

———————————————————————————————————

Table of Contents
 Certificate .. iii

Statement of Originality ... iv

 Acknowledgements ... v

 Abstract ... vi

 Abbreviation ... viii

 List*of*Figures .. xi

 1*Introduction.. 1

 1.1 General*Introduction .. 1

 1.2 Scope and*Objective ... 2

 2*Literature*Survey ... 3

 2.1 Techniques: Literature Survey………………………………………………………………………………………………3

 2.2 Summary .. 6

 3 Chapter -3 .. 7

 3.1 Existing System .. 7

 3.1.2 Proposed System .. 7

 3.2 Dataset Overview ... 9

 4 Chapter -4

 4.1 Testing Techniques for Real-Time Implementation …………………… .. 10

 4.1.1 Testing on CNN-ANN Algorithm... 10

 4.2 The Flow diagram of the Proposed Testing ... 19

 4.3 Comparison Graph ... 19

 4.3.1 Testing Concluded .. 20

 5 Chapter -5 .. 22

 5.1 Implementation Strategy .. 22

 5.2 Proposed System Overview ... 24

 5.3 Project Design ... 25

 5.4 Data Flow ... 26

 5.4.1 The Explanation on Data Flow of Project Implementation ... 26

v

 5.5 Algorithm of the Implementation ... 28

 5.5.1 Explanation of the Algorithm .. 31

 5.5.2 The main parameters ... 32

 5.6 Generic Uniqueness Table .. 33

 5.7 Briefing Output generation ... 34

 5.8 Experimental study ... 35

 6 Chapter -6 .. 39

 6.1*Conclusion* ... 39

 6.2*Future work* ... 39

 7 Bibliography .. 40

xi

List*Of*Figures

 4.1 Input Data – 1 Image .. 10

 Input Data – 2 Image ... 10

 CNN Output Image ... 14

 ANN Output Image .. 15

 4.2 The Flow Diagram of Proposed work .. 19

 4.3 Comparison Graphs ... 20

 5.3.1 Sequence*Diagram .. 26

 5.3.2 Activity*Diagram .. 26

1

 Chapter*1

Introduction*

1.1 General*Introduction*

Yoga positions must be performed correctly, as with any workout, as any incorrect posture

is counterproductive and can even be harmful. This promotes doing yoga with a

teacher*nearby. Modern living makes it difficult to regularly practise yoga with a teacher or

enrol in classes.

Recognising yoga postures is made easier with the use of AI technology, which also

provides feedback and suggestions to practitioners. Using these recommendations, users may

ensure that their postures are beneficial rather than detrimental. The project's hurdles include

the need to identify important locations without any gaps and the need for models to function

correctly even when body components are overlapping.

Since even small changes can have negative effects, suggestions should be made

precisely. Experts should do the postures in the datasets used for this research. Even though

they are practically identical positions with a small variation, models should classify poses

appropriately. Athletes' performance and danger of injury can both be reduced by automated

self-training methods. Many researchers have built computational methods to rank athletes in

various sports and evaluate their performances in areas including football, handball, volleyball,

sprinting, and leaping.

The article presented the "Yoga Tutor" initiative, which use accelerated robust qualities

(SURF) to differentiate between a novice and an expert practitioner's yoga poses. introduced

intelligent yoga systems that used pictures and text but didn't take the practitioner's posture into

account.It developed a self-training system that recognised yoga poses using a features-based

approach. It uses a Kinect to produce a body map by capturing the user's body contour. The

2

human skeleton was quickly modelled after a star skeleton so that a description of human

posture could be generated..

 Related research on yoga stance recognition and classification has been done recently.

OpenPose, PoseNet, and PifPaf are employed as keypoint detection techniques. Many aspects,

including the environment, interactions between people, and differences in apparel, will be

taken into account when determining human pose. They employed deep learning techniques

such multilayer perceptrons, recurrent networks, long short-term memories (LSTMs), and

convolutional NNs to classify postures. Both the absence of scaled characteristics (key points)

and the failure to discover a pattern for human postures at varying distances from the camera

are problems with the aforementioned research. Traditional approaches that use joint angles as

characteristics have the property of rotational invariance, which asserts that the angles of the

joints do not vary regardless of how the joints are rotated.

1.2 Scope and Objective:

 The scope of a Yoga Pose Detection System is to analyze images or videos of a person

practising yoga and accurately identify the pose they are performing. The objective is to

provide real-time feedback and guidance to the practitioner to improve their form and

alignment, prevent injuries, and enhance their overall yoga experience.

 A Yoga Pose Detection System can be useful for yoga practitioners at all levels, from

beginners who are just learning the basics of yoga to experienced practitioners who want to

refine their technique. The system can also be used by yoga teachers to monitor their student’s

progress and provide personalized feedback and corrections.

3

Chapter 2

Literature Survey

2.1 Techniques :- Literature Survey and Survey Table

2.1.1 “Yoga*Pose*Estimation*and*Feedback Generation*Using Deep*Learning”, 2022.

The rising stress levels associated with the contemporary way of life have contributed to yoga's

recent surge in popularity throughout the world. There are several ways to practise yoga. Yoga

can be acquired independently using resources including books, the Internet, and recorded

videos, and personal tutors as well as in yoga studios and one-on-one settings. Many people

choose self-learning in fast-paced environments because the aforementioned resources might

not always be accessible. However, one might not discover an improper position when self-

learning. Poor posture can have a negative impact on one's health because it can lead to both

short-term acute discomfort and long-term chronic issues. In this study, methods

based*on*deep*learning are created to identify improper yoga*posture.

 The*user*pose is transmitted to*models*that are being trained to output any aberrant

angles between the client present and the genuine posture. These results permit the framework

to train the client on the most proficient method to perfect their yoga posture by drawing

attention to any flaws in their form. While the suggested technique required less computational

complexity than a few best in class strategies, it in any case accomplished an exceptional

exactness of 0.9958. (Vivek*Anand Thoutam,1 Anugrah*Srivastava,1 Tapas*Badal,1 Vipul

Kumar*Mishra,1 G. R. *Sinha,2 Aditi*Sakalle,3 Harshit*Bhardwaj,3 and Manish*Raj)

2.1.2 “AI*Human*Pose*Estimation: *Yoga*Pose*Detection*and*Correction”, 2022.The

most significant yoga stance is well-known on a global scale and supports the health advantages

advocated by the ancient sages. Yoga faces the following significant difficulties as it gains

popularity: Using computer vision technology, it is possible to evaluate how people are

positioned. There are no explicit references or initiatives, and these methods are hardly ever

employed in the contexts of fitness and health. Yoga-inspired in name. In accordance with how

user-friendly your Android app application is, this white paper summarises the best ways to

employ the various Pose estimation tools and technologies.

4

The next sections detail the method used to allow yoga posture prediction in

Android*applications, the modelling of the software, and the operation of its constituent parts.

The topic of computer vision known as "pose estimation" is dedicated to figuring out where

different portions of a body (usually a human body) are. This may be done in a few different

ways; the one I use involves first running the input picture through a convolutional neural

network (CNN) classifier that has been trained to identify human faces. The posture estimation

network searches for previously taught joints and limbs when it recognises human body poses.

Once the picture has been captured, the user may examine it on a computer with the use of

markers that indicate certain anatomical features (Rutuja, Gajbhiye, Snehal Jarag, Pooja,

Gaikwad, Shweta, Koparde)

2.1.3 “Yoga*pose*perfection*using*Deep*Learning: An*Algorithm*to*Estimate*the

error*in*Yogic*Poses”, 2021 The recognition of human body poses remains challenging

despite significant efforts in the areas of computer vision and artificial intelligence. Human

pose detection has several uses, including public security and health monitoring. This essay

focuses on yoga, a discipline that has been practised for more than 2,000 years. Yoga has

become a popular form of exercise in contemporary society, which has led to a desire for

guidelines on how to do yoga correctly. Because practising some yoga postures incorrectly

could lead to fatigue and injury, having a trainer there is essential.

Many individuals cannot afford to hire a yoga instructor or guide, so AI may step in and provide

advice on which positions to take. The primary focus of research on position estimate for yoga

right now is the taxonomy of yogic poses. In this study, we offer a method for*detecting posture

errors in real time and allowing people to repair them using the Tensorflow MoveNet Thunder

model(Satyam Goyal1 and Animesh Jain).

2.1.4 “Deep*Learning*Models*for*Yoga*Pose*Monitoring”, 2022. Continuously

tracking a person's movement and activity is known as activity recognition. A*self-guidance

practise that enables people to learn and practise yoga poses without assistance from others can

be built using human posture recognition. We offer a method for the quick and accurate

identification of different yoga poses using deep learning algorithms. The 85 films in the

selected dataset, which includes 6 yoga poses carried out by 15 people, were used to extract

key user points using the Mediapipe library. A deep learning model including Convolutional

Neural Network (CNN) and Long Short-Term Memory (LSTM) has been used to detect yoga

postures in live-streamed movies. Those involved (Debabrata,Swain,1, Santosh, Satapathy,1,

5

Biswaranjan, Acharya 2, Madhu*Shukla 3. Vassilis C. Gerogiannis 4. Andreas Kanavos 5.

Dimitris Giakovis 6.).

2.1.5 “Human Yoga pose estimation”,In the beginning, *Iskakov*et al.* (2019) provide a

base methodology that provides all created views' 2D locations and joint confidences in 2

dimensions using the algebraic triangulation module and the 2D posture detector, you can

produce the 3D position. The disadvantage of this approach is the independent processing of

images from various cameras. Consequently, a more potent they suggest a triangulation

approach. Processing involves the 3D volumes from feature maps are not projected, and the

volumes from a 3D CNN gathers and analyses various viewpoints to produce 3D heatmaps.

2.1.6 “Recognition and detection of yoga pose estimation”, challenges as per research paper

“CVPR 2018 for 3d pose estimation includes”.As we know that the humans consists of

differences and variety in appereances and also the images comes in all kinds of different

appreances and also the algorithm has to deal with many kinds of occlusions.2d pose estimation

can be inaccurate particularly in complex motions or scene.Occlusions: Consisting of the frame

issues , the background noise, interperson occlusion, out of frame.Limited Data: Limited no.

of posesBad input data:: Blurry, low resolution, small scale, low contrast, low light, noisy.

Multi-person pose estimate would be further complicated by a number of elements, including

but not limited to the topics covered so far in this poll backdrop, lighting, overlapping figures,

etc.

6

2.2 Summary:

Title Year Research Gaps Methodology

“Deep*Learning

Models*for

Yoga *Pose

Monitoring”

2022 Lack of Integration and

customisation of Specific

Libraries.

 Convolutional Neural Networks

(CNNs) and Long Short-Term Memories

(LSTMs) have been combined for the

task of recognising yoga postures.

“Yoga*pose

perfection using

Deep*Learning:

An*Algorithm to

Estimate the

Error*in*Yogic

Poses”

2021 Dependency on large-scale

annoted datasets. Less

effective and training time

is high.

Using the Tensorflow MoveNet Thunder

model, we propose a system that can

identify posture issues in real time and

provide users the opportunity to correct

them..

“AI*Human

Pose*Estimation:

Yoga Pose

Detection*and

*Correction”

2022 Limited focus on real-time

Performance. No, Except

for training time interval

duration is much higher

My method, on the other hand, first

processes the input picture using a

convolutional neural network classifier

that has been specifically trained to look

for people..

“Yoga*pose

Estimation and

*Feedback

*Generation

*Using*Deep

*Learning”

2022 The process is implemented

without removing unwanted

data.

Graphical Convolutional Network and

Deep Reinforcement Neural Network

“Human Yoga

pose estimation”.

2021 Lack of Personalised

feedback generation

techniques.

Tensorflow*movenet Thunder model

“Recognition and

detection of yoga

pose estimation”

2018 It basically deals with only

the depth, color and the

body tracking.

Kinect V2 Technology and adaboost

algorithm is used

7

Chapter 3

3.1 Existing System:

The most significant yoga stance in the current system is well-known on a global scale and

supports the health advantages advocated by the ancient sages. Yoga faces the following

significant difficulties as it gains popularity: Using computer vision technology, it is

possible to evaluate how people are positioned. There are no explicit references or

initiatives, and these methods are hardly ever employed in the contexts of fitness and health.

Yoga-inspired in name. In accordance with how user-friendly your Android app application

is, this white paper summarises the best ways to employ the there are numerous

technologies available for pose estimation. The next sections detail the method used to

allow yoga-pose prediction in Android apps, the modelling of the software, and the

operation of its many components. Pose estimation is a branch of computer vision

concerned with determining where on a body (often a human body) certain objects are

located. The traditional approach didn’t provide real-time detection opportunities. The

existing system mainly includes Convolutional Neural network with Long short Term

methodology, Graph convolutional Network, Recurrent neural network, with Tensorflow

and other backstaged libraries which do not support good integration with the real-time

prediction as accurate and shows less indulgence strategically in 3d.

3.1.2 Proposed System:

The dataset of yoga poses was used as input*for this*system. The source of the*input

data*was a dataset repository like Github. The preprocessing phase can then be

implemented. We can resize the original image*and*convert it to*grayscale in this step.

Then, we can extract features such as mean, variance, median, and local binary pattern from

the pre-processed image (LBP). After that, we can separate the images into train and test

sets, with the latter being utilised for evaluation. After that, numerous deep learning

techniques, such as a Convolutional Neural Network (CNN) or an Artificial Neural

8

Network (ANN), may be used. The findings of the experiment demonstrate the accuracy

and effectiveness of predicting whether the input image of yoga is correct or incorrect.

However for our future scope of implementation we have triggered towards the system,

Our Yoga Pose Detection System consists of 1 module: User. They can either upload a

picture of a Yoga pose or pose directly on camera and the system will automatically detect

and show the name of the yoga pose. The correction of poses will be done by giving the

user a confidence score of how accurately they are performing the pose.

The system will detect 8 types of Yoga poses Chair, Cobra, Dog, Shoulder Stand, Triangle,

Tree, Warrior and No Pose. OpenCV, dlib, OpenPose, and MediaPipe are the libraries

utilised in this project. OpenPose is the main ongoing group oriented framework that can

perceive the human body, foot, hand, and face key points in a single picture.

The framework used in project is Django. The Front End uses JavaScript, CSS, and HTML.

The MySQL database is used in the back end. Python serves as the back end language.

 ADVANTAGES:

o It works well with a lot of datasets.

o When compared to the current system, the experimental outcome is excellent.

o To increase the performance metrics results.

9

3.2 Dataset Overview:

• Here we’re creating our own dataset repository by collecting the various from different

google 3d images.

• It consists of wrong 3d pose yoga images and correct poses.

• We have taken some random poses mostly it consists of plank pose and downdog pose

to train the dataset and get the correct output with predictions on it with two different

algorithm ,i,.e CNN and ANN.

• Eg., of the dataset division is as follow:

• Dataset Created Manually Using google 3d Image set and github posenet repository:

Total Number of instances: 3123

Images with training and testing ratio of 70:30.

The dataset consist of Training and testing data split for Men and Women both equally,

with 7 different poses in several different angles.

Chair pose (Utkatasana): Women Image:568 Instances

Cobra pose (Bhujangasana): 632 Instances

Dog Pose (AdhoMukho Svanvasana): 580 Instances

Shoulder Stand Pose (Salamba Sarvagasana): 60 Instances

Triangle Pose (Trikonasana): 55 Instances

Tree Pose (Vrikshasana) 610 Instances

Warrior pose (Virbhadrasana) : 618 Instances

• Input Images:- For random selection which consist of all the given mixed data input

images.

• Some of the dataset Images taken from github Repository dataset Reference:

https://www.github.com/datasets/github/posenet and some created manually as in

downloaded from the google images.

10

Chapter 4: Testing Techniques for Real-Time Implematation

4.1 Testing On CNN and ANN models :

 We will test the output for both CNN and ANN on the basis of two Input data i.e., Input

data-1, Input data-2 to test which algorithm would give best performance result for real-time

implementation so as we can incorporate, it learns complex patterns and we will use both the

data one for correct image accuracy and one for incorrect image and feedback generating

capacity.

Step :1 IMPORT PACKAGES

Step :2 READ INPUT IMAGE

For Input data: 1

For Input data: 2

11

Step :3 IMAGE*PREPROCESSING*

• As part of our procedure, we must downsize the image and turn it into grayscale.

• Resize an image by using its resize () function and passing it a two-integer tuple

argument with the new width and height.

• Instead of modifying the original picture, the method returns a copy of the image with

the new dimensions.

• Transform a colour picture into grayscale in Python using the Matplotlib Library and

the Conversion Formula.

• We may likewise switch a picture over completely to grayscale utilizing the standard

RGB to grayscale change strategy, imgGray = 0.2989 * R + 0.5870 * G + 0.1140 * B.

For Input Data-1:

 For Input Data-2:

12

Step :4 Feature Extraction

• Alongside the standard deviation (which is only the square base of the change), it is the

most considered normal utilized proportion of scattering.

• The variance is calculated by taking the square root of the average distance from the

centre of the distribution to each individual data point.

• Labelling pixels in an image by thresholding the region surrounding them and then

processing the outcome as a paired whole number is the occupation of the Nearby

Twofold Example (LBP) finishing administrator.

For Input Data-1:

For Input Data-2:

13

Step :5 Image Splitting

• Data are required for machine learning to function, and not only for training purposes

but also for testing the algorithm's results and gauging its efficacy.

• We split the input dataset in two: 70% was used for training, and 20% was used for

testing.

• In order to use a cross-validator, it is common practise to divide the available data in

half.

• Information is parted into two sections: The first is used to construct a prediction model,

and the second is used to assess how well the model worked.

• A crucial first step in evaluating data mining techniques is to divide the data into a

training set and a testing set.

For Input Data-1: For Input Data-2:

14

Step :4 *Classification*:

• We can use various deep learning algorithms, such CNN and ANN, in our method.

• Convolutional neural networks (CNNs) are used in image recognition and other pixel-

intensive applications because they are a specialised network design for deep learning

methods.

• Although many different types of neural networks are used in deep learning,

convolutional neural networks (CNNs) are the top choice when it comes to object

recognition and id.

• Classification An ANN's goal, given a set of inputs, is to assign an observation to one

of many possible classes. Categories are required for the dependent variable, whereas

numbers are acceptable for the input characteristics (independent variables).

For*Input Data-1:

 CNN Algorithm Output

15

ANN Algorithm output:

16

For Input Data-2:

CNN Output:

ANN output:

17

Step :4 Prediction and Performance :

 For Input data 1:

 PERFORMANCE ---------> (CNN)

• Accuracy = 95.01048739254475 %

• Error Rate = 4.989512607455254

 PERFORMANCE ---------> (ANN)

• Accuracy = 84.02333840727806 %

• Error Rate = 15.976661592721939

• Prediction Result: Here the Input image show the correct yoga posture with the

excellent accuracy including the pose detected as: Downdog

 For Input data 2:

PERFORMANCE ---------> (CNN)

• Accuracy = 95.01019039750099 %

• Error Rate = 4.989809602499008

 PERFORMANCE ---------> (ANN)

• Accuracy = 84.02247586846352 %

• Error Rate = 15.977524131536484

• Prediction Result: Here the Input image show the Incorrect yoga posture with the

excellent accuracy including the pose justification as for why is it predicted as wrong

pose: wrong plank pose

18

4.2 The*Flow*Diagram*of the*proposed*Testing:

3d Image Yoga

 Dataset

Input image

Preprocessing

Image Resize

Gray Scale

Mean, Median

Variance

LBP

ANN

CNN

Accuracy

Precision

Recall

F Score

Feature

Extraction

Image Spilitting

Classification

Prediction

Performance

Analysis

Test

Train

Correct

Wrong

19

 In Accordance to Fig 4.2 the flow diagram Explains:

• Firstly, we need to import the packages, the packages that we require in our project.

• Then we need to read the input images.

• Resizing the images.

• Gray scale conversion

• Then we can extract the features from every images as every images have unique

features by using the LBP

• After that splitting the images from total number of images into train and test images.

• Then we’ve implemented the two different algorithms ie., CNN and ANN.

• Thus,by using both the algorithms with the help of the trained data we can estimate the

performance.

• Then finally we can predict the pose that we have given as input and also to know

whether the image is in correct posture and if not then by giving the justification that

why is it a wrong image and the pose is incorrect to perform in real-time.

• Then finally,we can conclude with the comparison graph of ANN and CNN.

4.3 :- Comparison Graph:

20

Explanation:

Here, the comparison graph Fig 4.3 shows two best fitted algorithm to detect the 3d yoga pose

image with the prediction up to 93-95% and shows high accuracy in both the terms with the

minimal amount of error rate but as compared to ANN, the CNN algorithm shows higher

accuracy in aspects of low error rate and higher accuracy. Hence, these shows the solution to

the good and efficient prediction in future prediction as the dataset will be improved in higher

amount capacity, as compared to now as shown in the implementation.

This system was proposed for efficient yoga pose detection using deep learning algorithms

CNN and ANN. Analysis of the experimental data revealed that, when compared to the state

of the art, our proposed strategy is effective and can, on average, produce better performance

results. Additionally, the CNN performance was examined, and the comparison graph

demonstrates CNN's superior accuracy.

Thus by these techniques we’re able to predict the poses and eliminate the incorrect postures

in which the body can’t relax and we should not perform the certain pose in a particular wrong

manner.

4.3.1 Testing Concluded:

● Hence as per the testing methodology on two different deep-learning models CNN and

ANN algorithms , we have concluded that CNN is best giving resolution on accuracy of

the Input data. So we will Incorporate CNN Algorithm with the Mediapipe Library and

Dlib for the Real time 3d Implementation in chapter 5.

● As CNN in deep learning was specifically designed for its image data working which

excels in recognition of patterns from image dataset.
● It also possess parallel computing feature best suited model for human pose estimation.

● By doing away with manual feature engineering, the development process is made simpler.

21

• It reduces our need from doing it from scratch as it incorporates many pretrained popular

features in architectures such as Resnet , mobilenet, imagenet, etc.

• CNN and ANN models are very much compatible as compared to other models in deep

learning for integration and customise the output as per our need.

• CNN and ANN have been employed successfully in a variety of pose estimation

applications such as human pose estimation, facial landmark identification, and body

keypoint localization.

• CNNs have showed greater performance in these domains when compared to other

algorithms, making them a reliable choice for our purpose.

22

Chapter 5

5.1 Implementation Strategy:

 Hence, in conclusion to chapter-4 testing our model, combining a CNN model with

OpenCV, Dlib, and Mediapipe combines the benefits of deep learning, computer vision

techniques, and optimised frameworks to enable precise and effective stance prediction in real-

time yoga scenarios.

*Project*Implementation*Technology

 The Django Framework is used to design and develop the project. The project's coding

was done using the Django Framework. We created and maintained all databases on the

MySQL Server, writing queries to store data and keep track of projects.

I. *Hardware*Requirement*

i. *Laptop*or*PC

• *Windows 7 or higher

• *I3 processor*system or higher

• *4 GB RAM*or higher

• *100 GB*ROM or*higher

II. *Software *Requirement

i. *Laptop*or*PC

• Python*

• Sublime*text*Editor*

• XAMP*Server*

23

XAMPP: Cross Platform Apache MySQL PHP

Cross-Platform: Different local systems have various operating system installation

configurations in them. Cross-platform has been included to this package of Apache

distributions in order to expand its functionality and user base. It supports a number of

operating systems, including versions of Windows, Linux, and Mac OS.

An open-source web server solution package is called XAMPP. It mostly serves as a local host

webserver for testing web applications.

Django documentation :*

 Django is a Python web framework written at a higher level that encourages rapid iteration

and clean, sensible code. It was created via prepared software engineers and deals with a ton

of the dreary work engaged with Web improvement, so you can zero in on making your

application as opposed to wasting time. Free and open-source.

Features*of*Django

o Rapid*Development*

o Secure*

o Scalable*

o Fully loaded*

o Versatile*

o Open Source

o Vast*and*Supported*Community*

❑ Modules*and*their*Description*

❖ User:

• Upload:

 The algorithm will recognise the yoga stance based on the user's uploaded photo of

the pose.

• *Real-time*:

24

 The system will recognise a yoga posture if the user strikes it in front of the laptop

camera and display the appropriate label.

 The correction of poses will be done by giving the user a confidence score of how

accurately they are performing the pose.

• Drawback :

 The accuracy of existing Yoga Pose Detection Systems is tilted depending on the

complexity of the pose.

5.2 Proposed System Overview:

• Our Yoga Pose Detection System consists of 1 module: User. They can either upload a

picture of a Yoga pose or pose directly in*front*of a *camera and the*system*will

automatically detect and show the name of the yoga pose. The correction of poses will

be done by giving the user a confidence score of how accurately they are performing

the pose.

• The system will detect 8 types of Yoga poses Chair, Cobra, Dog, Shoulder Stand,

Triangle, Tree, Warrior and No Pose. This undertaking makes use of the OpenCV, dlib,

OpenPose, and MediaPipe libraries. OpenPose is the first multi-person system that

works in real-time and can recognise key locations on the human body, foot, hand, and

face characteristics in a single picture.

• The framework used*in this*project is Django. The Front End uses JavaScript, CSS,

and HTML. The MySQL database is used in the back end. The Back End Language is

Python.

• We may utilise the strength of deep learning models, take advantage of established

libraries and their capabilities, and benefit from earlier triumphs in pose estimation

tasks by selecting CNNs and ANNs and integrating them with Mediapipe, Dlib, and

OpenCV. This combination enables us to create a dependable, accurate, and efficient

system for 3D yoga pose estimation and feedback.

25

5.3 PROJECT DESIGN

*Sequence*Diagram*

Fig 5.3.1*Sequence*Diagram*of*User*

 *Activity*Diagram*

Fig. 5.3.2*Activity*Diagram*of*User*

All the Fig., 5.3.1, 5.3.2, are made for a better visual representation of the Proposed system

outlook. Overall, these diagrams play a crucial role in understanding the project's functionality,

26

system behavior, user interactions, data model, and overall structure. They provide a visual

representation that aids in effective communication, requirement analysis, system design, and

development of the 3D yoga pose estimation and feedback system.

5.4 Data Flow:

5.4.1 The Explanation on the Data flow of the Project Implementation:

User Image Upload: The user uploads an image of themselves performing a yoga pose

through the user interface.

Image Processing: The uploaded image is processed using libraries like OpenCV, Dlib,

and Mediapipe. These libraries enable pose estimation and feature extraction from the image.

Pose Estimation: The system applies computer vision techniques, such as CNN-based

models, to estimate the user's pose based on the processed image. The pose estimation

algorithm identifies key body joints and their positions in 3D space.

Pose Comparison: The estimated pose is compared to a reference database or model that

contains predefined or ideal yoga poses. The system calculates a confidence score to assess

how accurately the user is performing the pose.

Feedback Generation: Based on the comparison and confidence score, the system

generates feedback for the user. The feedback can be in the form of a pose name, visual cues,

or textual instructions, indicating how well the user is executing the pose.

Real-Time Pose Detection: If the system operates in real-time mode, in front of the laptop

camera, the user can strike the desired position. The*system * continuously processes the

camera feed, detects the user's pose using similar techniques as in the image processing stage,

and provides real-time feedback accordingly.

User Interface: The user interface, developed using HTML, CSS, and JavaScript, presents

the feedback and other relevant information to the user. It allows users to interact with the

system, upload images, view real-time feedback, and access additional features.

27

Creating the dataset manually implies capturing images or videos and labeling them with the

corresponding pose names. The CNN-based model for pose estimation is then trained using

these labelled instances. Framework: Django is utilized for the web application development,

providing a structure and components to handle user interactions, backend processing, and

database integration.

In summary, the system enables users to upload images or perform poses in front of a camera,

detects the poses using pose estimation techniques, compares them to reference poses,generates

feedback based on the comparison, and stores relevant data for analysis and future reference.

28

5.5 Algorithm of the Implementation:

Import necessary libraries

import cv2

import dlib

import mediapipe

Image Upload Mode

def processUploadedPoseImage(image):

 processedImage = preprocess(image)

 estimatedPoses = []

 for pose in processedImage:

 estimatedPose = estimatePose(pose)

 estimatedPoses.append(estimatedPose)

 confidenceScores = comparePose(estimatedPoses)

 feedback = generateFeedback(confidenceScores)

 displayFeedback(feedback)

Real-Time Mode

def processRealTimePoseFrames(frames):

 processedFrames = preprocess(frames)

 estimatedPoses = []

 for frame in processedFrames:

 estimatedPose = estimatePose(frame)

 estimatedPoses.append(estimatedPose)

 confidenceScores = comparePose(estimatedPoses)

 feedback = generateFeedback(confidenceScores)

 displayFeedback(feedback)

29

Preprocessing

def preprocess(data):

 processedData = []

 for item in data:

 # Apply necessary preprocessing steps to item (e.g., image stabilization, noise reduction,

segmentation)

 processedItem = preprocessItem(item)

 processedData.append(processedItem)

 return processedData

Pose Estimation

def estimatePose(item):

 # Use computer vision techniques or pre-trained pose estimation models (e.g., using

OpenCV, Dlib, Mediapipe)

 # Extract key body joints and estimate their positions in 3D space

 estimatedPose = estimatePoseItem(item)

 return estimatedPose

Pose Comparison

def comparePose(poses):

 confidenceScores = []

 for pose in poses:

 # Compare the pose with a reference database or model

 confidenceScore = comparePoseWithReference(pose)

 confidenceScores.append(confidenceScore)

 return confidenceScores

Feedback Generation

def generateFeedback(confidenceScores):

 feedback = []

 for score in confidenceScores:

30

Based on the confidence score, generate feedback for each pose

 poseFeedback = generatePoseFeedback(score)

 feedback.append(poseFeedback)

 return feedback

Display Feedback

def displayFeedback(feedback):

 # Display the feedback to the user through the user interface

 # This can be done using HTML, CSS, JavaScript, and the chosen front-end framework

Main function

def main():

 # Perform image upload mode

 images = # Load or acquire images

 processUploadedPoseImage(images)

 # Perform real-time mode

 frames = []

 cap = cv2.VideoCapture(0) # Initialize camera capture

 *while*True:

 ret, *frame =*cap.read()*

Read*frame*from*camera**

 frames.append(frame)

 if len(frames) >= 10: # Process a batch of frames

 processRealTimePoseFrames(frames)

 frames = []

 if cv2.waitKey(1) & 0xFF == ord('q'): # Exit loop on 'q' key press

 break

 if len(frames) > 0: # Process any remaining frames

 processRealTimePoseFrames(frames)

31

 cap.release() # Release camera capture

 cv2.destroyAllWindows() # Close all windows

Entry point of the program

if __name__ == '__main__':

 main()

5.5.1 Explanation of the Algorithm:

• In both the image upload mode and real-time mode, the processUploadedPoseImage()

and processRealTimePoseFrames() functions are called, respectively.

• In the processUploadedPoseImage() function, a loop is added to process multiple

images. Each image is passed through the preprocessing, pose estimation, and pose

comparison steps, and the estimated poses and confidence scores are collected.

• Similarly, in the processRealTimePoseFrames() function, a loop is added to process

multiple frames. A batch of frames is accumulated, and when the batch size reaches a

certain threshold (in this case, 10 frames), they are passed through the preprocessing,

pose estimation, and pose comparison steps. The estimated poses and confidence scores

are collected.

• The preprocess() function now takes a list of data (images or frames) and applies the

necessary preprocessing steps to each item in the loop.

• The estimatePose() function now operates on individual items (image or frame) and

returns the estimated pose.

• The comparePose() function now processes a list of poses and collects the confidence

scores for each pose.

• The generateFeedback() function generates feedback for each confidence score in the

loop and collects the feedback for all poses.

• Finally, the displayFeedback() function can be used to display the collected feedback

to the user through the user interface.

32

5.5.2 The main parameters used are:

Image/Frame: The input data, either an image or a frame captured from a camera, containing

the user's pose.

Processed Image/Frame: The image or frame after undergoing preprocessing steps, such as

image stabilization, noise reduction, and segmentation.

Estimated Pose: The estimation of the user's pose based on the processed image or frame. It

includes the positions of key body joints in 3D space.

Confidence Score: A numerical value indicating how accurately the user is performing the

pose. It is calculated by comparing the estimated pose with a reference database or model.

Feedback: The output generated by the system based on the confidence score. It provides

information to the user about their performance, such as the pose name, visual cues, textual

instructions, or any other relevant feedback.

Dataset: The manually created dataset consisting of labeled examples of individuals

performing different yoga poses. The pose estimation model is trained using this dataset.

Libraries/Frameworks: The technologies used in the implementation, including OpenCV,

Dlib, and Mediapipe for computer vision tasks, Django for the web framework, HTML, CSS,

and JavaScript for the user interface, and MSSQL for the database.

These variables are essential to the system's data and information flow since they allow for

posture estimate, comparison, feedback creation, and user interface interaction.

33

5.6. Generic Uniqueness Table:

Methods Implemented

before:

Uniqueness of our Project

Various Machine Learning

Algorithms such as CNN

(Convolutional Neural

Network)

Our project combines OpenCV, Dlib and mediapipe for

improved accuracy and real-time performance.

RNN (Recurrent Neural

Network)

Utilizes the manually created dataset specifically tailored for

yoga poses

GCN(Graph Convolutional

Network)

Integrates real-time perception capabilities from mediapipe for

efficient pose estimation.

DRL(Deep Reinforcement

Learning)

Implements customized feeback generation techniques tailored

for yoga poses.

Description:

Several studies have investigated the potential of machine learning techniques, such as

Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Graph

Convolutional Networks (GCNs), and Deep Reinforcement Learning (DRL), for 3D yoga pose

estimation and feedback. These algorithms have been used to train models on annotated

datasets, enabling the estimation of yoga poses and providing feedback to users.

34

While research papers have contributed valuable insights, our project stands out due to its

unique approach. We combine specific libraries, namely OpenCV, Dlib, and Mediapipe, to

improve accuracy and achieve real-time performance. Unlike the research papers that may lack

integration and customization, our project leverages the capabilities of these libraries,

integrating Dlib's feature detection and shape prediction with real-time perception from

Mediapipe.

Moreover, our project addresses the limitations identified in research papers. We utilize a

manually curated dataset that specifically focuses on yoga poses, ensuring its relevance and

diversity. Additionally, we implement customized feedback generation techniques tailored for

yoga poses, enabling personalized feedback to users based on their pose accuracy and specific

needs.

5.7 Briefing on Output Generation:

Pose Detection: When a user uploads an image or performs a*pose*in front of

the*laptop*camera, the code uses the computer vision libraries (OpenCV, Dlib, and

Mediapipe) to detect and estimate the user's pose. It identifies the position and orientation of

key body joints or keypoints such as the hips, knees, ankles, shoulders, elbows, and wrists.

Pose Recognition: Once the pose is detected, the code matches it against a predefined set

of*yoga*poses. Based*on*the positions and orientations of the key-points, the system

identifies the closest matching pose from the available set.

Confidence Score: The code calculates a confidence score that indicates how accurately the

user is performing the recognized pose. This rating is determined by contrasting the user's pose

with the recommended pose for that specific yoga posture. It measures the alignment, angles,

and other relevant parameters to evaluate the accuracy of the user's pose execution.

Feedback Generation: Using the confidence score, the code generates customized feedback

for the user. The feedback may include suggestions for improving the pose, highlighting areas

where the user needs to adjust or align their body, and providing tips to enhance the overall

pose execution. This feedback aims to guide the user towards better alignment, balance, and

posture during yoga practice.

35

5.8 Experimental Study:

Table :1 On 3d Images

Model Tested Input Data-1

Correct Input Yoga Pose

Input Data-2

Incorrect pose with feed back

 Accuracy Error Rate Accuracy Error Rate

CNN

95.0104873925 %

4.98951260745 95.01019039 %

4.9898096024

ANN

84.0224758684 %

15.9775241

84.023338407 %

15.976661592

The Experimental study as per table:1 concludes that the deep learning models are excellent

for the pose estimation with features and key-points detection but CNN gives only minimal

amount of error rate in the detection of our pose. Thus, we will use CNN model to further

implement our project in real-time with Mediapipe Library.We will use CNN Model for the

real-time Implementation. Also tested the two effective Machine Learing Models namely

Logistic Regression and Ridge Classifier for testing and verifying that whether the deep

learning model fits best to according to our dataset used . But only in Real Time not

experimented for the 3d Input Data Images.

Table-2: For Real-Time Only:

Models Tested Accuracy Error Rate

Logistic Regression

(LR)

75.00235597% 25.9876253

Ridge Classifier (RF) 80.22978652% 20.8803652

CNN 99.35879 0.65

ANN 97.22356 2.78

36

Table :3 The Model Used for Implementation: Evaluation Metrics

Model Implemented Deep Learning Model-CNN

Key-points Detected 33 Landmarks Mediapipe Library

Accuracy on Real-Time 0.9723577235772358

Precision 0.9791590385576141

Recall 0.9179271708683474

F1 Score 0.9420719931783191

Error Rate 0.027642276422764178

Our result in Table:3 describes the precision_score, recall_score, f1_score,

and accuracy_score functions from the sklearn.metrics module to calculate

the evaluation metrics.

Precision: Precision is a measure of the accuracy of the positive predictions made by a model.

It calculates the ratio of true positive predictions to the sum of true positive and false positive

predictions. Precision indicates how well the model identifies true positives while minimizing

false positives.

In this experiment , the actualValue represents the actual class labels of the samples, and the

predictedValue represents the predicted class labels by the model.The precision is calculated

using the precision_score function with the average='macro' parameter. It computes the

precision for each class and then averages them.

precision = precision_score(actualValue, predictedValue, average='macro')

Recall: Recall, also known as sensitivity, measures the model's ability to correctly identify

positive instances out of all the actual positive instances. It calculates the ratio of true positive

predictions to the sum of true positive and false negative predictions. Recall indicates how well

the model captures all the relevant positive instances.

The recall is calculated using the recall_score function with the average='macro' parameter. It

computes the recall for each class and then averages them.

recall = recall_score(actualValue, predictedValue, average='macro')

37

F1 Score: The F1 score is the harmonic mean of precision and recall. It provides a balanced

measure of a model's performance by considering both precision and recall. The F1 score is

useful when the dataset is imbalanced or when both precision and recall are important. It ranges

between 0 and 1, where a higher value indicates better model performance.

The F1 score is calculated using the f1_score function with the average='macro' parameter. It

computes the F1 score for each class and then averages them.

f1 = f1_score(actualValue, predictedValue, average='macro')

Accuracy:

The accuracy is calculated using the accuracy_score function. It compares the actual and

predicted values and returns the ratio of correctly classified samples to the total number of

samples.

accuracy = accuracy_score(actualValue, predictedValue)

Error Rate: The error rate is calculated by subtracting the accuracy from 1. It represents

the fraction of misclassified samples.

error_rate = 1 – accuracy

The average='macro' parameter is used to calculate the metrics for each class and then average

them. You can modify it based on your specific requirements. The code will output the

precision, recall, F1 score, accuracy, and error rate metrics based on the provided actual and

predicted values.

Description on Table:1 and Table:2

The experimental study conducted on 3D images and in real-time using the CNN model

showed promising results for our project of 3D yoga pose estimation and correction.

In the analysis of 3D images, the CNN model achieved an accuracy of 95.01%, with an error

rate of 4.99%. This indicates that the model was able to accurately classify the correct input

yoga poses with a high degree of accuracy. The low error rate demonstrates the robustness and

effectiveness of the CNN model in accurately estimating the poses from the input data.

Comparing the CNN model with the ANN model, the CNN model outperformed in terms of

accuracy, achieving 95.01% compared to the 84.02% accuracy of the ANN model. This

indicates that the CNN model is more effective in capturing the complex features and

relationships in the input data, resulting in better pose estimation performance.

38

In the real-time implementation, the CNN model achieved an accuracy of 97.24%. This means

that the model successfully recognized and classified the yoga poses performed by the user in

real-time with a high level of accuracy.

The precision score of 0.9792 indicates a high percentage of correctly classified positive

instances (correct poses), while the recall score of 0.9179 demonstrates a good ability to

identify all relevant positive instances. The F1 score of 0.9421 represents a balanced measure

of precision and recall, indicating a good overall performance of the CNN model in real-time

pose estimation.

The low error rate of 0.0276 further emphasizes the accuracy of the CNN model, with a small

proportion of misclassifications or pose estimation errors.

Overall, these results highlight the effectiveness and superiority of the CNN model for 3D yoga

pose estimation and correction, making it the preferred choice for implementing the project.

39

Chapter 6

6.1 Conclusion:

 The 3D yoga pose estimation and feedback system described above aims to provide users

with accurate feedback on their yoga poses. The system allows users to either upload an image

of a yoga pose or perform poses in real-time using their laptop camera. The system utilizes

computer vision techniques, pose estimation algorithms, and pose comparison methods to

estimate*the*user's*pose and generate*feedback*based on*the accuracy of their performance.

 By incorporating technologies such as OpenCV, Dlib, and Mediapipe, the system can detect

and estimate the positions of key body joints in 3D space. These estimated poses are then

compared with a reference dataset or model to calculate confidence scores. Based on the

confidence scores, personalized feedback is generated and presented to the user through the

user interface.

6.2 Future work:

Real-Time Feedback Improvisation: Currently, the system provides feedback after the user

has completed the pose. Future iterations could include real-time feedback, where users receive

immediate guidance and corrections as they perform the pose.

User Progress Tracking: Implementing a user profile and progress tracking feature would

enable users to monitor their improvement over time. This could include tracking metrics such

as pose accuracy, consistency, and overall performance.

Gamification and Challenges: Introducing gamification elements, such as challenges,

achievements, or virtual rewards, can enhance user engagement and motivation to practice

yoga regularly.

Mobile Application: Creating a mobile application version of the system would allow users

to access pose estimation and feedback on their smartphones or tablets, enabling them to

practice yoga anytime and anywhere.

Integration with Smart Devices: Integration with smart devices, such as wearable fitness

trackers or smart mirrors, could provide additional data and insights to enhance the accuracy

and effectiveness of pose estimation and feedback.

Machine Learning Advancements: Incorporating advanced machine learning techniques,

such as deep learning models, potentially enhance pose estimation's precision and resilience,

leading to more accurate feedback.

40

Bibliography

1. L. Sigal. “Human pose estimation”, Ency. of Computer Vision, Springer 2011.S.

Yadav, A. Singh, A. Gupta, and J. Raheja, “Realtime yoga recognition using deep

learning”, Neural Computer and Appl., May 2019. [Online].

2. U. Rafi, B. Leibe, J.Gall, and I. Kostrikov, “An efficient convolutional network for

human pose estimation”, British Mach. Vision Conf ., 2016.

3. S. Haque, A. Rabby, M. Laboni, N. Neehal, and S. Hossain, “ExNET: deep neural

network for exercise pose detection”, Recent Trends in Image

4. Process. and Patter Recog., 2019.

5. M. Islam, H. Mahmud, F. Ashraf, I. Hossain and M. Hasan, ”Yoga posture

recognition by detecting human joint points in real time using microsoft kinect”, IEEE

Region 10 Humanit. Tech. Conf., pp. 668-67, 2017.

6. H. Sidenbladh, M. Black, and D. Fleet, “Stochastic tracking of 3D human figures

using 2D image motion”, Proc 6th European Conf. Computer Vision, 2000.

7. “Deep 3D human pose estimation: A review”, by Jinbao Wang a,1 , Shujie Tan a,1 ,

Xiantong Zhen b,e, 2021.

8. ”A simple yet effective baseline for 3d human pose estimation”, by Julieta Martinez1

, Rayat Hossain1, University of British Columbia, Vancouver, Canada, CVPR 2017.

9. “Can 3D Pose be Learned from 2D Projections Alone?” by Dylan Drover, Rohith

MV, Ching-Hang Chen, Amit Agrawal, Ambrish Tyagi, , Sunnyvale, CA, USA,

CVPR 2018.

10. “Yoga-82: A New Dataset for Fine-grained Classification of Human Poses”, by

Manisha Verma, Sudhakar Kumawat, CVPR 2020,April.

41

11. “Yoga pose estimation and feedback generation using deep learning”, by Tapas

Badal, Vipul kumar Mishra, Anurag Srivastava, Vivek Anand Thoutam , March 2022

on Research gate.

12. “Yoga pose Monitoring system using Deep Learning”, by Santosh Satapathy,

Debabrata Swain, Pramoda Patro, Aditya kumar Saho, 27 June, 2022.

13. “ AI Human Pose Estimation”, by Rutujha Gajbhiye, Pooja Gaikwad, Sweta kaporde,

Volume-7, May 2022, Issue 5 in International Journal.

14. “Deep learning based yoga pose classification, by Abhishek Desai, Shakti Kinger,

Sarvarth patil, Hrishikesh Sinalkar, IEEE 2022 International Conference.

15. “Real Time yoga pose detection using deep learning, by Khushi Sidana, NMIMS,

Nov 2022, International Journal Volume-7 , Issue 7.

16. “ A Survey on Yogic Posture Recognition”, by Arun Kumar Rajendran, Sibi

Chakravarthy Sethuraman, by IEEE Vol 11.

17. “Visual feedback for core training with 3d human shape and pose”, by Haoron Xie,

Atsushi, Kazunori Miyata, IEEE 2019.

18. “Pose Estimated yoga monitoring system”, by Sreeja KA , Sarath Sajan, Ardra

Anikumar, IEEE coference , Jul 2021.

19. “ A self Learning Yoga Monitoring system based on pose estimation, by prahitha

Movva, Himangshu Sharma, Hemanth Pasupuleti, June 2022.

20. “A Comprehensive survey on Real Time human pose estimation”, by Apoorva Pravin

Datir, Nikita Tanaji, Snehal Shivaji Funde, Pallavi Dhade , IEEE 2023

9%
SIMILARITY INDEX

7%
INTERNET SOURCES

4%
PUBLICATIONS

5%
STUDENT PAPERS

1 1%

2 1%

3 1%

4 <1%

5 <1%

6 <1%

7 <1%

8 <1%

9 <1%

21Mced09_Thesis_09_removed (1)_removed.
ORIGINALITY REPORT

PRIMARY SOURCES

www.researchgate.net
Internet Source

Submitted to Sreenidhi International School
Student Paper

Submitted to The Robert Gordon University
Student Paper

www.hindawi.com
Internet Source

ijisrt.com
Internet Source

Submitted to University of Greenwich
Student Paper

www.mdpi.com
Internet Source

Submitted to Birla Institute of Technology and
Science Pilani
Student Paper

Submitted to Cranfield University
Student Paper

