
System Health Monitoring
(Based on Android Platform)

 Major Project Report

Submitted in fulfillment of the requirements

for the degree of

Master of Technology in

Electronics & Communication Engineering
(Embedded Systems)

By

Hemadri Upadhyay

(21MECE13)

Electronics & Communication Engineering Department Institute of

Technology
Nirma University

Ahmedabad-382 481

System Health Monitoring
(Based on Android Platform)

Major Project Report

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology

in

Electronics & Communication Engineering

By

Hemadri Upadhyay
(21MECE13)

Under the guidance of

External Project Guide: Internal Project Guide:

Yakasiri Jayachadra Mr. Jayesh Patel

Principal Software Engineer Assi. Professor, EC Department,

Vantiva Institute of Technology,

Chennai. Nirma University, Ahmedabad.

Electronics & Communication Engineering Department Institute of

Technology-Nirma University

Ahmedabad-382 481

iii

Declaration

This is to certify that

a. The thesis comprises my original work towards the degree of Master of Tech-

nology in Embedded Systems at Nirma University and has not been submitted

elsewhere for a degree.

b. Due acknowledgment has been made in the text to all other material used.

 -Hemadri Upadhyay

 (21MECE13)

iv

Disclaimer

“The content of this report does not represent the technology, opinions, beliefs, or

positions of Vantiva-Pushing the Edge Private Limited, its employees, vendors,

customers, or associates.”

v

Certificate

This is to certify that the Major Project entitled “System Health Monitoring (Based

on Android Platform)” submitted by Hemadri Upadhyay (21MECE13), towards the

partial fulfillment of the requirements for the degree of Master of Technology in

Embedded Systems, Nirma University, Ahmedabad is the record of work carried out by

him under our supervision and guidance. In our opinion, the submitted work has

reached a level required for being accepted for examination. The results embodied in

this major project, to the best of our knowledge, haven’t been submitted to any other

university or institution for award of any degree or diploma. Date: Place: Ahmedabad

Assi. Prof. Mr. Jayesh Patel Prof (Dr.) N.P. Gajjar

 Internal Guide Program Coordinator

Prof. (Dr.) Usha Mehta Dr. Rajesh Patel

Section Head, EC Director, IT

vi

Certificate

This is to certify that the Major Project entitled “System Health Monitoring (Based on

Android Platform)” submitted by Hemadri Upadhyay (21MECE13), towards the partial

fulfillment of the requirements for the degree of Master of Technology in Embedded

Systems, Nirma University, Ahmedabad is the record of work carried out by her under

our supervision and guidance. In our opinion, the submitted work has reached the level

required for being accepted for examination.

 Mr. Yakasiri Jayachandra

 Principal Software Engineer

Vantiva

Pushing the Edge

Chennai

vii

Acknowledgements

I would like to express my gratitude and sincere thanks to Prof (Dr.) N.P.Gajjar, PG

Coordinator of M.Tech Embedded Systems for guidelines during the review process.

I take this opportunity to express my profound gratitude and deep regards to

Assi. Prof. Mr. Jayesh Patel, guide of my internship project for his exemplary guidance,

monitoring and constant encouragement.

I would also like to thank Mr. Yakasiri Jayachandra, external guide of my

internship project from Vantiva-Pushing the Edge, for guidance, monitoring and

encouragement regarding the project.

- Hemadri Upadhyay

 (21MECE13)

Contents

Declaration iii

Disclaimer iv

Certificate v

Acknowledgments vii

Abstract xii

Abbreviation Notation and Nomenclature xiii

1 Introduction 13

1.1 Motivation .. 13

1.2 Problem Statement ... 13

1.3 Approach ... 14

1.4 Scope of Work ... 14

2 Literature Survey 15

2.1 Overview ... 15

2.2 Parameters to validate application .. 18

3 System Health Monitoring 21

3.1 Working Methodology ... 21

viii

CONTENTS

3.2 Implantations .. 22

3.3 Output ... 24

3.4 Live Graph Plotting tool for system performance analysis…………………………… 25

4 Third party app Validation tool 26

4.1 Third party apps .. 26

4.2 Block diagram of GUI for third party app validation tool 27

4.3 Output .. 31

5 Conclusion 33

5.1 Conclusion... 33

References 34

List of Figures

2.1 Step by Step explanation of working of Perfetto ... 15

2.2 Trace Visualization .. 17

3.1 Basic block diagram of live graph plotting and analysis 21

3.2 Step by step implementation ... 22

3.3 Steps for implementation…………………………………………………………………………….23

3.4 Graph Plotting ... 23

3.5 Result ... 24

3.6 Live graph Plotting Tool GUI .. 25

4.1 Front-End Design of App Validation Tool .. 27

4.2 Memory Leak... 28

4.3 Memory Footprint ... 29

4.4 CPU Footprint .. 29

4.5 Number of Threads ... 30

4.6 Front-End of Tool……………………………………………………………………………………….31

4.7 App Validation Tool output for CPU Footprint and Number of Threads 31

4.8 App Validation Tool output for CPU Footprint and Memory Footprint......... 32

xi

 Abstract

Performance testing is the process of determining how well a system responds and remains
stable under a specific demand. Performance tests are often carried out to evaluate application
size, robustness, and speed. The method includes "performance" indicators like:

• periods for processing server requests

• acceptable volumes of concurrent users

• usage of processor memory; possible app problems, their frequency and nature

Performance testing encapsulates all evaluations that confirm the responsiveness,
dependability, robustness, and appropriate sizing of an application. It looks at several
parameters, including browser, page, and network response times, server query processing
times, the number of concurrent users that may be supported by the architecture, CPU
memory consumption, and the quantity and type of errors that may occur when using an
application.

Your software will satisfy the expected levels of service and deliver a great user experience if
you execute performance tests to make sure. Before your applications are put into production,
they will indicate enhancements you should make to them in terms of performance, reliability,
and scalability. Applications that are distributed to the public without being tested may have a
variety of issues that, in some situations, permanently harm a brand's reputation.

Performance testing needs to be done correctly if applications are to be adopted, successful,
and productive.

The implementation of a continuous optimization performance testing approach is essential to
the achievement of an effective overarching digital strategy, even though fixing production
performance issues can be very expensive.

xii

Abbreviation Notation and Nomenclature

ADB ... Android Debug Bridge

 Apps …………………………………………………………………………………………… Applications
 STB……………………………………………………………………………………………. Set Top Box
 PSS……………………………………………………………………………………………. Proportional Set Size
 RSS……………………………………………………………………………………………. Resident Set Size

xiii

13

Chapter 1

Introduction

1.1 Motivation

Before making a system available to the end user, performance testing involves determining

if it will function as planned under various performance indicators and imagining what the

user will experience. As a result, system performance testing guarantees that system

functionalities operate as intended by locating and fixing faults as well as locating and

removing any performance bottlenecks. The objective is to gain understanding of a system's

characteristics, such as its robustness, scalability, optimal sizing, and speed. Without

performance testing, your end customers can face subpar system responsiveness, user

experience, and device usability.

1.2 Problem Statement

To improvise the performance of the Android TV Set Top Box along with maintaining the

upgrades brought previously with the use of a new tool. Functional testing is crucial, but

there are other aspects of the user experience that are just as important and should be

checked automatically in every build. Performance is one of these other dimensions.

Performance is essentially a measure of how responsive your system is to users, and it

can take many different forms, from CPU and memory consumption to network request

times.

14

1.3 Approach

Customer happiness depends heavily on performance testing; if your application's performance falls

short of their expectations, they will switch to a rival. Performance testing is intricate and necessitates

expert test design. Understanding the difficulties of performance testing, as well as the procedure and

tools available to construct an efficient performance test, is crucial for developing a thorough test

strategy.

With the aid of the Android Debug Bridge and the tool called Perfetto, you may gather performance

data from Android devices (ADB). Use the ADB shell Perfetto- command to launch the Perfetto utility.

Performance traces from your device are gathered by Perfetto using a variety of sources, including:

Atrace for user-space annotation in services and apps

ftrace for information from the kernel

Information on services' and apps' native memory utilization may be found at heapprofd.

Apart from this, we can plot graph from live data collection and analyze the performance of system.

1.4 Scope of Work

Apart from Android system performance, Android Apps’ performance is also an important

process to be considered. There are some parameters which are to be tested for app

validation before integrating apps into the Set-Top Boxes.

15

Chapter 2

Literature Survey

2.1 Overview

Perfetto - System profiling, app tracing and trace analysis

An open-source stack for performance instrumentation and trace analysis is called

Perfetto. It provides services and libraries for tracing system- and app-level activity,

native + java heap profiling, a library for SQL tracing analysis, and a web-based UI for

visualizing and exploring multi-GB traces.

 Fig. 2.1: Step by step explanation of working of Perfetto

16

Recording traces:

A revolutionary userspace-to-userspace tracing protocol based on direct protobuf serialisation

onto a shared memory buffer is the primary innovation of Perfetto. Internally, the built-in data

sources employ the tracing protocol, and C++ apps can access it via the Tracing SDK and the

Track Event Library.

Through an extensible protobuf-based capability announcement and data source configuration

mechanism, this novel tracing protocol enables dynamic setup of every aspect of tracing.

Multiplexing several data sources onto various user-defined buffer subsets enables the

streaming of arbitrary lengthy traces onto the filesystem.

Trace analysis:

Beyond the trace recording features, the Perfetto codebase has a dedicated project called

Trace Processor for importing, parsing, and querying both new and old trace formats. A

portable C++17 library called Trace Processor offers column-oriented table storage, was created

on the fly to retain hours' worth of trace data in memory and exposes a SQL query interface

based on the well-liked SQLite query engine. To examine the trace data, the trace data model is

transformed into a collection of SQL tables that can be queried and linked in a variety of

incredibly powerful and flexible ways.

A trace-based metrics subsystem made up of pre-built and customizable queries that may

produce strongly typed summaries about a trace in the form of JSON or protobuf messages is

also included in the Trace Processor.

Trace visualization:

Additionally, Perfetto offers a brand-new trace visualizer that can be accessed at

ui.perfetto.dev for accessing and searching hours-long traces. The brand-new visualizer benefits

from contemporary web platform technology. The UI is constantly snappy thanks to its multi-

threading design and Web-Workers; using Web-Assembly, the analytical capability of Trace

Processor and SQLite is completely accessible in-browser. Once it has been opened once, the

Perfetto UI can be used entirely offline. The browser processes any traces that are opened

through the UI locally; server-side interaction is not necessary.

17

 Fig.2.2: Trace Visualization

18

2.2 Parameters to Validate Android Applications

2.2.1 Memory Leak/ Memory Footprint:

When a program allocates memory for an object but forgets to release the
memory when the object is no longer needed, a memory leak occurs. Leaky
memory builds up over time, causing subpar program performance and even
crashes.

Memory Leak depends upon PSS, RSS, Heap Allocation.

PSS: The Proportional Set Size (PSS), which Android calculates when assessing
your app's heap, takes both dirty and clean pages that are shared with other
processes into account—but only to the extent that it is proportional to the
number of apps that share that RAM.

RSS: The amount of memory used by a process while it is being held in main
memory is known as resident set size (RSS) in computing (RAM). Because some
of the occupied memory was paged out or because some portions of the
executable were never loaded, the remaining memory is either in the swap
space or file system.

 Heap Allocation: For dynamic memory allocation, use the Heap.
 Android imposes a strict limit on the heap size for each running application in

order to ensure a smooth user experience. The maximum heap size varies from
device to device and depends on the RAM capacity.

 Every application on Android has a maximum heap size limit (which varies
depending on the device) denoted by the term "largeHeap." By using the
getMemoryClass() API of the ActivityManager service, you may determine the
maximum heap size that is accessible for your application. Most Android 2.3 or
later devices may return this size as 24MB or greater, however the maximum
value is 36 MB (depending on the specific device configuration).

 Your software will crash and throw an OutOfMemoryError if it reaches this
heap limit and tries to allocate more memory. Object allocation takes place in
heap memory. An object is always created in the heap whenever you create
one. Since the heap differs from the stack, the objects won't be automatically
released after the function is finished. Garbage Collector is a superhero we
gave virtual machines like JVM (Java Virtual Machine), DVM (Dalvik Virtual
Machine), or ART (Android Runtime) to take care of finding and recovering
such unneeded items to free up additional memory. If there is an item in the
heap that doesn't contain any references to other objects, the garbage
collector will search for those.

19

The term "memory footprint" describes how much of the system's main memory
a running software utilizes or refers to. The term "footprint" typically relates to
how much space an object takes up physically, indicating its size. The memory
footprint of a software program in computing represents the amount of runtime
memory needed to run the program. In addition to the memory needed to hold
any additional data structures, such as symbol tables, debugging data structures,
open files, shared libraries mapped to the current process, etc., that the program
might require while executing and will be loaded at least once throughout the
entire run, this also includes the code segment containing the program's
instructions, the data segment (both initialized and uninitialized), the heap
memory, the call stack, and memory required to hold any additional data
structures.

2.2.2 CPU Footprint:

 Each processor has a finite amount of processing power that it can use to carry

out commands and run different programs. More jobs can be successfully
completed at once with a better CPU. No matter how powerful the CPU is,
every chip ultimately reaches its limit and starts to slow down. Depending on
how much CPU you are currently using: In other words, the quantity of
simultaneous tasks that are placed on your CPU. Your CPU utilization should be
low when you are not using numerous applications, and in a perfect world,
everything should go without a hitch. However, if you launch a CPU-
demanding application (such a game or video editing software), you could
observe that response times grow longer as your CPU utilization rises. CPU use
fluctuations are common and not cause for concern if your computer keeps
functioning efficiently. Checking your PC's CPU use is the first thing you should
do if you're not happy with its performance.

2.2.3 Number of Threads:

The priority given to the threads in your program relies in part on where it is in
the lifecycle. Setting a thread's priority as you establish and maintain it will
ensure that the right threads receive the right priorities at the appropriate
times. If it's set too high, your thread can interfere with the UI thread and the
RenderThread, resulting in frame drops in your program. If it is too low, async
processes (such loading images) may take longer than necessary to complete.

20

2.2.4 Sluggishness:

 Motion events use an action code and a series of axis values to represent
movements. The action code describes the state change, such as a pointer
going up or down, that took place. The location and other movement aspects
are described by the axis values.

For instance, when a user first touches a screen, the system sends a touch
event with the action code ACTION_DOWN and a collection of axis values to
the appropriate View. These values contain the touch's X and Y coordinates as
well as details about the pressure, size, and direction of the contact area.

 Some devices can report multiple movement traces at the same time. Multi-
touch screens emit one movement trace for each finger. The individual fingers
or other objects that generate movement traces are referred to as pointers.
Motion events contain information about all the pointers that are currently
active even if some of them have not moved since the last event was
delivered.

The number of pointers only ever changes by one as individual pointer go up
and down, except when the gesture is canceled.

2.2.5 CPU Footprint during Background Video Streaming:

This parameter testing is only possible in secured STBs, as we can directly feed
such STBs with live video streaming. It will check the level of CPU utilization on
launcher along with live video streaming in background.

2.2.6 OnTrimMemory Callbacks:

 To incrementally release memory based on current system limits, you need

implement OnTrimMemory(int). By allowing the system to keep your process
running longer, using this callback to release your resources not only
contributes to a more responsive system overall but also directly improves the
user experience for your app. The system is more likely to kill your process
while it is cached in the least-recently used (LRU) list if you don't reduce your
resources based on memory levels provided by this callback, which would
force your app to restart and restore all data when the user returns to it.

Instead of representing a single linear development of memory restrictions,
the values returned by OnTrimMemory(int) give you a variety of hints
regarding memory availability:

21

• When app is running:

1. TRIM_MEMORY_RUNNING_MODERATE
The memory of the device is getting low. Your app is open and
cannot be stopped.

2. TRIM_MEMORY_RUNNING_LOW
The system is using a lot less memory. Please free up
unneeded resources to enhance system efficiency (which
directly affects the performance of your app, even though it is
currently running and cannot be killed).

3. TRIM_MEMORY_RUNNING_CRITICAL
The system is running out of RAM quickly. You should release
non-critical resources right once to avoid performance
deterioration even though your program is not yet regarded as
a killable process. If apps do not release resources, the system
will start killing background processes.

• When app’s visibility changes:

1. TRIM_MEMORY_UI_HIDDEN
Now that your app's user interface (UI) is hidden, it's a good
idea to release sizable resources that are exclusively needed
by your UI.

• When app's background LRU list process is active:

1. TRIM_MEMORY_BACKGROUND
Your process is located close to the start of the LRU list, and
the system is running low on memory. Although the system
may already be killing processes in the LRU list, your app
process is not at a high danger of being killed. As a result, you
should release resources that are simple to recover so your
process will stay in the list and resume soon when the user
returns to your app.

2. TRIM_MEMORY_MODERATE
Your process is located close to the middle of the LRU list,
and the system is running low on memory. Your process may
be terminated if the system's memory requirements
increase.

3. TRIM_MEMORY_COMPLETE
If the system does not recover memory right away, your
process will be among the first ones to be killed. The system
is now low on memory. Release everything that isn't
necessary for restarting your app state.

22

2.2.7 Memory Leak during App Switching:

It is very important for the system to support multiple app access at a same
time for which app switching should work smoothly. If memory profiler is
indicating sudden increase in memory usage, then chances are high of memory
leakage occurrence. That is why it is very important to check whether memory
is leaking during app switching or not.

2.2.8 Quick Navigation Scripts:

Navigation is the basic requirement for any Set-Top Box Launcher. Quick
navigation scripts check how smoothly launcher is working or how much time
it is taking to navigate throughout the launcher screen. It checks the
responsiveness of Set-Top Box.

23

Chapter 3

System Health Monitoring

3.1 Working Methodology

As shown in fig. 2.3, Stop Box is connected to PC through ADB shell. Through ADB
commands, we can trace the data from STB to PC. (i.e. using Push/Pull commands).
After collecting data through ADB Push/Pull commands We need to segregate
important information plotting which into the graphical format, we can analyze
system performance.

To segregate important information from collected data we are using SQL Queries.

 Fig. 3.1 Basic block diagram of live graph plotting and analysis

24

3.2 Implementation

 Fig. 3.2 Step by step Implementation

As mentioned in above figure, first of all, using ADB shell commands we will trace the data and store it
into the STB. After that we will pull the data into our system. For further analysis we will segregate the
information and plot it into a graphical representation which will be more useful in further analysis.
Step by step implementation is mentioned in below figures.

25

3.3 Output

 Fig. 3.5 Result

From above mentioned figure, you can see the final output of lie graph plotting. Through this

graph plotting we can easily analysis the performance of any android system. Here you can see

the graph is indicating how much memory is available with system with current usage.

26

3.4 Live Graph Plotting Tool for System Performance Analysis

 Fig. 3.6 Live Graph Plotting Tool GUI

To combine all the above mentioned steps, we have developed one tool which we perform all the tasks
step by steps. As shown in above diagram, first of all we need to enter an IP address of the available
STB. After connecting to IP Address we have to choose the config file using which ADB commands
through we can collect data and store it into STB. Through Start and Stop Tracing button we can collect
and store trace file into STB as well as we can pull that file into our system. Last step is Graph Plotting,
which we can do based on the parameter available with us. This tool is designed using Python Tkinter
and for backend development we have used Python Language.

27

Chapter 4

Third Party App Validation Tool

4.1 Third Party Apps

A software program created by a party other than the creator of a mobile device's
operating system is referred to as a third-party app. For instance, several programs
are made for Apple's or Google's operating systems by app development businesses
or individual developers. The owner of the device or website may approve or
disapprove of third-party apps. For instance, Apple developed the Safari web
browser app that is a first-party, built-in program for the iPhone, but there are other
web browser apps available in the App Store that Apple only authorized for use on
the iPhone. They are third-party applications. Some apps that Facebook didn't create
are allowed to operate on its social media platform. These are independent apps.

 Types of Third-Party Apps

 The phrase "third-party app" may appear in several distinct contexts.

o Third-party applications are those developed for official app stores by
developers other than Google (Google Play Store) or Apple (Apple App Store),
and that adhere to the development standards necessary for those app shops. A
third-party app is one that has been approved by a developer for a service like
Facebook or Snapchat. A first-party app is one that is created by Facebook or
Snapchat.

o Third-party apps are those that are distributed through unofficial third-party app

stores or websites and are made by organizations independent from the
hardware or operating system. To avoid infection, exercise caution when
downloading programs from any source, but especially from unlicensed app
stores or websites.

o A third-party app is one that establishes a connection with another service (or its

app) in order to offer better functionality or access profile data. An illustration of
this is the quiz app Quizzstar, which requests authorization to access specific
areas of a Facebook profile. No one downloads third-party apps of this type.
Instead, through its link to the other service or app, the app is given access to
potentially sensitive data.

28

How First-Party Apps differ from Third-Party Apps

Applications developed and delivered by the hardware or software developer are referred to as
first-party apps. Music, Messages, and Books are a few first-party iPhone apps as examples.

These apps are referred to as "first-party" since they were developed by a manufacturer
specifically for their line of mobile devices, frequently using proprietary source code. For
instance, a first-party app is one that Apple develops for an Apple device, such as an iPhone.
Examples of first-party apps for Android devices include Gmail, Google Drive, and Google
Chrome for mobile devices because Google developed the Android mobile operating system.

There may be a version of an app accessible for various sorts of devices even though it is a first-party
app for one type of device. For instance, the Apple App Store offers a version of Google apps that is
compatible with iPhones and iPads. On iOS devices, those are regarded as third-party apps.

4.2 Block diagram of GUI for Third Party App validation Tool

 Fig. 4.1 Front-End design of App Validation Tool

As per mentioned in above figure, it is featuring the GUI of App Validation Tool in which, first, we must
enter the IP address of the given STB so that we can connect STB to PC or system. As we are connecting
to STB we will get the list of packages available with STB from which we have to choose one to validate.
There are six test cases or parameters and two testing scenarios which this tool validates to test the
performance the App.

29

4.3 Flowchart for Third Party App validation Tool

 Fig. 4.2 Flowchart for App validation Tool

As shown in the flowchart above, in order to connect to a device's IP address, we must keep both
devices connected to the same network. Once connected to the specified IP address, we can access the
STB packages and select the desired package. After selecting the package, we must decide the
parameters we want to test for the package for a specific period of time. At the conclusion of the
validation, we will receive the output in graphical style along with one analysis report.

30

4.3 Parameters and Scenarios for App Validation

4.3.1 Six parameters are:

1. Memory Leak/ Memory Footprint
2. CPU Footprint
3. Number of Threads
4. OnTrimMemory Callbacks
5. CPU Footprint during Background Video Streaming

1. Memory Leak / Memory Footprint:

 Fig 4.2 Memory Leak/Memory Footprint

 From above mentioned figure, we can see that memory information is given for Netflix, through which
we can get memory profile. From this we must monitor Native Heap, Dalvik Heap, Java Heap for PSS and
RSS as well as Total PSS. We can Access this data through ADB shell Dumpsys Meminfo.

Two key ideas in relation to how much memory Android apps use are memory leak and memory

31

footprint.

The term "memory footprint" describes how much memory an Android app needs to function. The size
of the app's code, the number of features it provides, and the volume of data it processes all have an
impact on how much memory the app uses. The app may utilize more system resources, such as CPU
time and battery life, if it has a large memory footprint.

A memory leak, on the other hand, happens when a software allocates memory but forgets to release it
after it is no longer required. This may cause the app to utilize more memory over time, which may
potentially result in performance problems and app crashes. Programming flaws, poor resource
management, and ineffective memory usage are just a few of the causes of memory leaks.

2. CPU Footprint

 Fig. 4.4 CPU Footprint

From above figure, it is defined that at an average, CPU utilization for mediashell package is 3.2%. To collect the CPU
usage information ADB shell’s Top -n 1 -b command was used. CPU utilization is important factor to test the system
performance as we are working with multitasking and multithreading technologies.

The amount of processing power needed by an Android app to function on a device is referred to as the app's CPU
footprint. The complexity of the app's code, the number of features it provides, and the volume of data it processes can

32

all have an impact on how much computational work an app must do, which is directly proportional to the CPU footprint.

Since the design and functionality of an Android app can greatly affect its CPU footprint, there is no set CPU footprint for
Android apps. However, there are several approaches to lessen an Android app's CPU footprint, including:

Code optimization: By improving the code, programmers can limit the number of instructions that the CPU must
execute, resulting in a smaller CPU footprint.

Keeping the program's background activity to a minimum: An app that stays active in the background even when it's not
being used can burn up a lot of CPU power. By making the most of Android's activity lifecycle techniques and optimizing
background processes, developers can reduce the amount of background activity in their apps.

lowering the app's memory consumption: A memory-hungry app can increase the CPU footprint by making the system
swap memory to the disc.

3. Number of Threads

 Fig. 4.5 Number of Threads

As mentioned in above figure, every time, the number of threads for each individual package must be verified.
Although more threads equate to faster execution, running more than a predetermined number of threads
concurrently can impact CPU use. Virtual memory is needed by each software thread for its stack and personal
data structures. Time slicing hinders speed because it forces threads to compete for real memory, like how caches
do. To collect the data related to threads we have used proc/status command of ADB shell.

An Android app's design and the tasks it must complete determine how many threads it needs. A thread is a quick
process that may function independently and concurrently with other threads, enabling an application to carry out
several activities at once.

Generally speaking, the majority of Android apps may run on just one thread, which is the main UI thread in charge
of managing user interface interactions. However, certain applications need more threads to handle background

33

operations like network operations, file I/O, or sophisticated calculations.

Developers must consider several criteria, such as the following, when deciding the number of threads necessary
for an Android app:

Task complexity: To avoid blocking the main UI thread, an app may need additional threads if it needs to complete
difficult or time-consuming tasks.

The number of concurrent tasks: To prevent performance lag, a program may need numerous threads if it must
carry out several tasks at once.

The available system resources: An app shouldn't create too many threads because doing so can result in the
program using up too much memory and CPU time.

In order to manage threads in Android apps, it is generally advised to use a thread pool as this can help to improve
performance and minimize resource exhaustion.

4. OnTrimMemory Callbacks

 4.6 OnTrimMemory Callbacks

When there is not enough memory available, the Android system calls the onTrimMemory() function,
which is a callback method. Beginning with Android API level 14 (Ice Cream Sandwich), this callback is
accessible.

Apps may be asked to release some of their resources when the system is short on memory in order to
clear up space. The onTrimMemory() method is used to alert apps about low memory conditions and to
request that they relinquish any non-essential resources they own.

An integer parameter that specifies the degree of memory pressure the system is under is passed along

34

when the onTrimMemory() function is invoked. One of the following values can represent the degree of
memory pressure:

TRIM_MEMORY_COMPLETE: The application needs to free up all unused resources since the system's
memory is running low.

TRIM_MEMORY_MODERATE: The application needs to free up some non-essential resources since the
system's memory is getting low.

TRIM_MEMORY_BACKGROUND: The application should free up whatever non-essential resources it can
because the system's memory is getting low.

TRIM_MEMORY_UI_HIDDEN: The user cannot see the app's user interface (UI), thus it should free up
any resources that are not required for state maintenance. The system's memory is at a critical low
point, so any resources that may be released, including those that are vital, should be done so.

TRIM_MEMORY_RUNNING_LOW: The system's memory is running low; therefore, the software has to
free up whatever non-essential resources it can.

TRIM_MEMORY_RUNNING_MODERATE: The application needs to release some non-essential resources
since the system's memory is running low.

The app should release any resources that are not required to retain its state when the
onTrimMemory() method is called. This may entail terminating background processes, releasing cached
data, and releasing unused resources. An app can assist the system by releasing resources in response to
the onTrimMemory() callback, allowing the system to free up memory and enhance speed.

5. CPU usage during Background Video Streaming

Since we may stream live video straight to such STBs, this parameter testing is only possible with
secured STBs. It will monitor the launcher's CPU usage while also broadcasting live video in the
background. Total CPU Usage can be considered as the difference between total CPU usage and Idle
CPU usage.

The CPU consumption for Android TV apps while streaming video in the background varies based on a
number of variables, including the particular program, the video codec being used, the hardware of the
device, and any additional processing being done by the app.

The CPU use of an Android TV app should typically be lower when it is streaming a video in the
background than when it is actively playing the video on the screen. This is because rendering the video
on the display requires no additional processing from the device.

The majority of the video decoding work is often offloaded to specialized video processing units thanks
to hardware acceleration found in modern Android handsets and Android TV platforms. This decreases
CPU utilization, even in the background, while playing back videos.

Developers can use hardware acceleration, design effective video decoding methods, and make sure
that other background operations aren't unduly using system resources to optimize CPU use while
background video streaming in Android TV apps.

35

4.3.2 Two testing Scenarios are:

1. Quick Navigation Script
2. Memory Footprint during App Switching

1. Memory Leak during App Switching

The system must allow users to access many apps simultaneously and moving between them must be
seamless. The likelihood of memory leaking is high if a memory profiler shows a sudden increase in
memory usage. Because of this, it's crucial to determine whether RAM is being lost when switching
between apps. For Memory Leak data collection, we have used Dumpsys command of ADB shell.
Android apps may experience memory leaks if adequate memory management procedures are not
followed, notably when moving between apps. To avoid memory leaks and excessive memory
utilization, it's critical that resources and memory needed by the preceding app be appropriately
released when switching apps.

Here are a few typical reasons why Android memory leaks happen when moving between apps:

Static references: If an app maintains references to resources or objects that are never supposed to be
garbage collected, it could result in memory leaks. Make sure that when static references are no longer
required, they are correctly nullified or cleared.

Memory leaks can be caused by holding onto references to Android Context objects (such Activity or
Context Wrapper) after they have outlived their intended usefulness. Context object references should
not be kept indefinitely, especially within static or singleton instances.

Callbacks and listeners: Failure to deregister callbacks or listeners when a component (such as an
Activity) is deleted might result in leaks. To free up related resources, make sure to deregister any
callbacks or listeners in the relevant lifecycle functions (such as onDestroy()).

huge object allocations: Allocating huge objects, like bitmaps or other demanding resources, without
properly releasing them might result in excessive memory utilization and possible leaks. Utilize
strategies like resource release or bitmap recycling when no longer required.

Improper management of background tasks: Background tasks might continue to use resources and
memory even when the app is not active if they are started during app switching and are not properly
handled or stopped. Make sure that background processes are properly controlled and terminated as
necessary.

Following Android's memory management best practices is crucial to preventing memory leaks when
moving between apps:

Retain objects only if necessary and avoid needless object retention.
Utilize the proper lifecycle methods to properly release resources, deregister callbacks, and cancel tasks.
To find and fix memory leaks during development and testing, use tools like the Android Profiler or
Memory Leak Detection libraries.

2. Quick Navigation Scripts

The fundamental necessity for any Set-Top Box Launcher is navigation. Quick navigation scripts measure
how quickly the launcher functions or how long it takes to move around the launcher screen. It

36

evaluates the Set-Top Box's responsiveness. Any Set-Top Box (STB) launcher must have navigation as a
basic component. Users can interact with the STB and access different programs, content, and settings
using the launcher, which serves as its user interface. The effectiveness of the launcher's response to
user input and the ease with which users can move across the launcher screen are evaluated using rapid
navigation scripts.

Any Set-Top Box (STB) launcher must have navigation as a basic component. Users can interact with the
STB and access different programs, content, and settings using the launcher, which serves as its user
interface. The effectiveness of the launcher's response to user input and the ease with which users can
move across the launcher screen are evaluated using rapid navigation scripts.

A smooth and seamless user experience depends on the STB launcher's quickness. Users anticipate
swift, seamless motions through the launcher with no discernible pauses or delays. By monitoring how
quickly interface elements and transitions are presented and how quickly the STB responds to user
input, quick navigation scripts can assess how responsive the launcher is performing.

These scripts often simulate user events, including button presses or directional movements, and track
how long it takes the STB launcher to carry out the related tasks. The scripts can evaluate a number of
navigational elements, including the response time when choosing and launching apps, the time it takes
to transition between launcher screens, and the speed at which lists, or menus scroll.

Quick navigation testing can help designers and producers find any performance hiccups or bottlenecks
in the STB launcher that might impede easy navigation. This enables them to enhance the launcher's
functionality, increase responsiveness, and give users a better experience.

All things considered, quick navigation scripts are useful resources for assessing the responsiveness and
effectiveness of a Set-Top Box launcher, assisting in making sure that users can easily navigate through
the interface and have a smooth contact with their STB.

4.3 Testcase Results:

We tested the X-set top box once to verify the tool's output. We carried out testing for an hour and
gathered the data for it. It is a good idea to gather test data for the X-set top box throughout a one-hour
run in order to assess its performance and spot any problems or areas that require development. We
have taken the following actions to fully utilize the test results:

Analyze the information gathered: Examine the test results and compile pertinent information, including
CPU utilization, memory usage, response times, and any other metrics that were tracked throughout the
test. For simpler analysis, arrange the data in an organized manner.

Find performance patterns: Scan the data for any discernible trends or patterns. Find any performance
issues, irregularities, or areas that need more research. For instance, increases in CPU or memory usage
may be a sign of trouble.

Compare test results to performance benchmarks: If you've defined performance benchmarks or goals
for the X-set top box, compare the test results to those targets. This aids in determining if the
performance satisfies the intended criteria or calls for improvement.

Take a closer look at any outliers or anomalies in the data and investigate them. These might point to
potential performance problems or strange behavior that needs more research. Investigate the
circumstances under which these outliers arose and make an effort to comprehend the underlying
causes.

37

Document observations, conclusions, and advice. Recommendations should be based on the test
results. Keep track of any performance problems you run across, any recommendations you have for
enhancements, and any prospective adjustments you might make to improve the X-set top box's
performance.

Continue with extra testing or optimizations: In light of your analysis, you can think about running
additional tests to confirm the findings or to assess the success of any adjustments you made to solve
performance issues.

The graphical presentation of all test results is described in the section below. Additionally, a PDF
version of the final analysis report has been created.

(1) Memory Leak/Memory Footprint Test:

 Fig. 4.6 App Validation Tool Output for Memory Leak Test of X-Set Top Box

This is the memory leak detection graph, as seen in the aforementioned figure, and it allows us to
determine whether a device has any memory leaks that have been discovered using this tool. We have
tracked the total proportional set size, or PSS, of memory in order to find memory leaks. The
Proportional Set Size (PSS) metric is used in Android to gauge how much memory an application or
process is using. It indicates the piece of memory that is assigned to a particular process, including both
shared and private memory (memory that is utilized by many processes concurrently).

Because it takes shared memory into account, the PSS value—which is an estimation—offers a more
realistic picture of memory utilization than the raw private memory usage (RSS, or Resident Set Size).
When several processes share resources, such system libraries or other shared components, it is
especially helpful.

38

The shared memory is divided by the quantity of processes sharing it to produce the PSS value, which is
then added to the private memory. It offers a more equitable distribution of memory consumption
among the associated processes. To track and retrieve memory-related data, including the PSS values of
active processes, Android offers the Android Profiler and command-line applications dumpsys and
procrank.

Finding memory-intensive components or potential memory leaks in an application can be facilitated by
tracking and comprehending the PSS values of processes. It enables developers to prioritize memory
optimization efforts, optimize memory utilization and guarantee effective memory management in
Android applications.

(2) CPU Footprint Test:

 Fig. 4.7 App Validation Tool Output for CPU Footprint Test for X-Set Top Box

As mentioned in above figure, we have used top command to measure the CPU usage through this tool.
In Android, CPU use is a term used to describe how much processing power the device's central
processing unit (CPU) uses while carrying out various operations and processes. Monitoring CPU
consumption can assist in locating performance bottlenecks, streamlining resource distribution, and
ensuring effective use of the device's processing power.

The Android Debug Bridge program offers command-line access to a number of device features,
including details about the CPU. The adb shell top and adb shell dumpsys cpuinfo commands can be
used to get information about the CPU use of active processes.

Third-party monitoring libraries: These libraries, which offer further information on CPU consumption
and performance profiling, include ACRA (Application Crash Reports for Android), LeakCanary, and
ProcessCpuTracker.

39

It's crucial to take the measurement's context into account while analyzing CPU utilization. The
efficiency of the software being run, the complexity of the processes that are active, background duties,
and the hardware capabilities of the device can all affect CPU utilization.

Monitoring CPU usage can assist in identifying situations when high CPU usage may result in degraded
performance, higher battery consumption, or overheating. Developers can optimize their apps to use
less CPU, respond more quickly, and improve overall device performance by recognizing certain
instances.

(3) OnTrimMemory Callbacks:

 Fig. 4.8 App Validation Tool Output for OnTrimMemory Callbacks Test for X-Set Top Box

Data from OnTrimMemory Callbacks is plotted, as seen in the above figure. The adb logcat
command is used to collect this data. The onTrimMemory() callback, which is a part of Android's
ComponentCallbacks2 interface, alerts an application when the system's total memory use is
approaching a critical level. To assist save memory and boost system performance, this callback enables
the program to react and remove any unused resources. Levels and constants for each level of
OntrimMemory Callbacks are mentioned below:

OnTrimMemory Levels Constants

TRIM_MEMORY_RUNNING_MODERATE 5
TRIM_MEMORY_RUNNING_LOW 10
TRIM_MEMORY_RUNNING_CRITICAL 15

40

TRIM_MEMORY_UI_HIDDEN 20
TRIM_MEMORY_BACKGROUND 40
TRIM_MEMORY_MODERATE 60
TRIM_MEMORY_COMPLETE 80

 Table.4.1 OnTrimMemory Callbacks levels

(4) Memory Footprint during App Switching:

Fig. 4.10 App Validation Tool Output for App Switching Scenario Test for X-Set Top Box

We have taken into consideration five apps for the App Switching Scenario, including
PrimeVideo, Netflix, Youtube, Google Games, and Google Videos. With this scenario, we are
able to simultaneously and with specified intervals gather all memory-related data for each
individual app. On an Android device, switching between several applications or tasks is
referred to as "app switching." The operating system controls the transition when a user
moves from one app to another, making the process seamless. An overview of Android's app
switching functionality is provided below:

Launching a new app: The operating system starts the launch procedure for the selected app
when a user chooses another one from the device's home screen, app drawer, or recent
applications list. It could entail launching the app, initializing the user interface, and carrying
out any setup procedures that are required.
The operating system signals to the presently running app that it is being halted in a series of
lifecycle callbacks before switching to the new app. These callbacks, such as onPause() and
onStop(), can be used by the app to save its state, release resources, or carry out any
necessary cleanup.

Animation of transition: Android shows an animation that seamlessly switches from the
currently open app to the just launched app in order to create a visual transition between
apps. Depending on the device and version of Android, the animation can have fading, sliding,
or zooming effects.
Resuming the newly opened app: After the transition animation is finished, the app comes to

41

the foreground. The new app receives lifecycle callbacks from the operating system (such as
onStart() and onResume()) informing it that it is now active and viewable by the user. The
program has the ability to reset its state and resume any active tasks.
Handling background apps: While the new app is active, the operating system handles any
background apps that were already open. In order to ensure effective system performance
and preserve battery life, it might modify resource allocations, pause background tasks, or
carry out other optimizations.
Returning to the previous app: The user can utilize the navigation buttons, gestures, or recent
applications list on the device to return to the previous app that was open. The operating
system resumes the preceding app's operation by bringing it back to the foreground and
calling the necessary lifecycle callbacks.

4.4 Final Result:

 At the conclusion of the tool's execution, an analysis report and all of the executed
parameters' graphs will be saved in a graph folder as an HTML Index file. The package

42

name for which the validation test was run, the scenario that was taken into
consideration during the test, the parameters that were taken into consideration for
validation, and the results for each parameter are all included in this analysis file.

 Fig. 4.11 App Validation Tool Graph Index HTML File

Using libraries like Plotly, Matplotlib, or Bokeh, one can generate an HTML file in Python
that contains 3–4 graphs. These libraries offer tools for creating different kinds of
graphs and save them as HTML files. The desired graphs were made using the Plotly
package. There are many different types of charts available, including bar, line, scatter,
pie, etc. Set the information, labels, and preferences unique to each graph.The graphs
were saved as an HTML file using the offline.plot() function from Plotly's offline module.
This will create a separate HTML file for every graph.

43

 Fig. 4.12 App Validation Tool Analysis Report

A well-liked Python library for producing PDF files is the fpdf package. It offers a simple user interface
for creating PDF files containing text, graphics, and several formatting choices. Here is a quick guide on
how to utilize the fpdf library:
Using ‘pip install fpdf’ we can install fpdf library then we have to import fpdf class from fpdf module
using command from fpdf import FPDF. To define athe PDF document, we have created a subclass of the
FPDF class. To change the PDF's header, footer, and main content, respectively, override the
corresponding methods in header(), footer(), and body().
To add text, photos, and other components to the PDF, use the different methods given by the FPDF
class inside the body() method. Several typical techniques include:

set_font(): Changes the font's style, size, and type.
cell(): Insert a text-filled cell.
image(): Adds a picture to the PDF.
Set the current location for text insertion using set_xy().
ln(): Go to the following line.
Add a new page to the PDF with add_page().

Python programmers can easily generate PDF documents by using the fpdf package. For more complex
usage and features, consult the library's documentation and examples.

Chapter 5

Conclusion

5.1 Conclusion

Hence it is concluded that, to ensure that your system meets the necessary service levels and
provides a positive user experience, you should run performance tests. Your applications will
highlight performance, reliability, and scalability improvements that need to be made before
they are put into production. Applications that are released to the public before they have been
thoroughly tested may contain several problems that, in certain cases, might permanently
damage a brand's reputation.

Conducting performance tests is essential to ensuring that your system fulfils the necessary

44

service levels and offers a satisfying user experience. Before deploying your applications in a
production environment, you can find out what has to be improved in terms of performance,
reliability, and scalability by running performance tests on them. Without adequate testing,
releasing applications to the public can lead to a number of problems that might harm a brand's
reputation.
Applications must undergo thorough performance testing in order to become popular,
profitable, and useful. It enables you to spot any performance-related problems and fix them,
guaranteeing that your apps can manage the anticipated workload and provide a positive user
experience. You may identify bottlenecks, improve resource usage, and fine-tune your
applications for optimum performance by conducting performance tests.

Implementing a continuous optimization performance testing technique is essential for the
success of your overall digital strategy, even if solving production performance problems can be
expensive and time-consuming. Delivering a top-notch user experience, upholding customer
contentment, and safeguarding your brand reputation can all be accomplished with the aid of
routine performance testing and optimization throughout the lifecycle of your apps.

You can proactively deal with performance issues, find areas for improvement, and make sure
that your apps run at their best under varied circumstances by investing in performance testing
and optimization. You can provide dependable and high-performing applications thanks to this
proactive strategy, which ultimately helps your digital initiatives succeed and remain
competitive.

Even though correcting production performance issues can be quite expensive, implementing a
continuous optimization performance testing technique is crucial to the realization of a
successful overall digital strategy.

References

[1] Xue, D. 2015. Design and Implementation mobile application performance monitoring
system based on Android. Xidian University of Electronic Science and Technology.

 [2] Chenhui Xie, Jian Zhou, ShanShan Li ,Lu Ying Jia , The Design and Implementation of Mobile
Monitring System of Transmitting Station based on Android Platform,[D] 2012 International
Conference on Mechnical and Electronics Engineering, Beijing,2012.

[3] Qi Luo, A. N. 2017. FOREPOST:findind performance problems automatically with feedback
directed learning software testing. Empir Software Eng (2017)22.6.

 [4] Wen, Design automation software for Android test system performance and
implementation Of [D], 2016.

45

 [5] Wei, Explore the development of automated software testing tools under Android platform
[J] , (2015) 30 (2): 155.

[6] Lukun, Research and Implementation Android smart phone performance automated test
system [D] Beijing, 2017.

[7] Yun, performance of key technology of software test platform research and application of
[D] Beijing, 2017.

[8] Xingnong, Android-based APP automated test platform design and implementation of [D]
Dalian , 2016.

 [9] Warren, I. and Meads, A. (2017) Towards a Technology Agnostic Approach to Developing
Mobile Applications and Services. Journal of Soft-ware Engineering and Applications, 10, 500-
528.

[10] Ashwaq A.Alotaibi, R. J. "Novel Framework for Automation Testing of Mobile Application
using Appium". International Journal of Modren Education annd Computer Science
(IJMECS),Vol.9,No.2,pp.34-40, 34-40.

[11] iTest. 2018. Testing Tool https://soft.shouji.com.cn/down/29068.html

[12] G. Eason, B. Noble, and I. N. Sneddon, "On certain integrals of
GT.(n.d.).TestingToolRetrievedfromhttps://blog.csdn.net/harryzzz/arti cle/details/81381920

[13] 2nd International Conference on Intelligent Computing, Instrumentation and Control

Technologies (ICICICT). (2019).

[14] Performance Testing of Android TV Applications Using Robotium and ADB Commands"

Authors: Sagarika Sahoo and Tapan Kumar Panda Published in: 2020 2nd International

Conference on Computing, Communication, and Security (ICCCS). (n.d.).

[15] Performance Testing and Analysis of Android TV Applications using Monkey and ADB

Commands

2020 International Conference on Innovations in Information, Embedded and Communication

Systems (ICIIECS)

[16] 2016 IEEE 15th International Symposium on Parallel and Distributed Computing (ISPDC)

Han R, Wang Y, Wang W

[18] Performance Evaluation of Android TV Applications" Authors: Hyeonjeong Jo

Ryu S, Kim M, Ko B

[19] Performance Testing of Android TV Applications using Monkey and AspectJ" Author:

Shweta Jain

[20] A Performance Testing Framework for Android TV Applications

Han R, Wang Y, Wang W

2016 International Conference on Networking, Architecture, and Storage

https://soft.shouji.com.cn/down/29068.html

46

[21] Performance Evaluation of Android TV Systems

Chen YH, Chen SW

IEEE International Symposium on Circuits and Systems (ISCAS), 2018

[22] Performance Testing of Android TV Apps: A Comprehensive Study" Authors: Jacek

Dominiak and Piotr Gawron Published in: 2019 6th IEEE International Conference on Data

Science and Advanced Analytics (DSAA)

[23] Performance Testing of Android TV Apps Using a Cloud-Based Testing Platform

2016 International Symposium on Consumer Electronics (ISCE)

[24] Performance Analysis and Testing of Android TV Apps in an IoT Environment" Authors:

Himanshu Gahlot, Mohit Yadav, and Rahul Johari Published in: 2018 International Conference

on Communication and Signal Processing

[25] Performance Testing and Analysis of Android TV Apps" Authors: Prasanta K. Jana and

Kalyani P. Poojary Published in: 2020 4th International Conference on Intelligent Computing

and Control Systems (ICICCS)

[26] Performance Testing and Analysis of Android TV Apps" Authors: Prasanta K. Jana and

Kalyani P. Poojary Published in: 2020 4th International Conference on Intelligent Computing

and Control Systems (ICICCS)

[27] Performance Testing of Android TV Applications: An Industrial Case Study

Toro M, Cubo J

2017 IEEE International Conference on Software Testing, Verification and Validation

Workshops

[28] 2017 IEEE 13th International Conference on Wireless and Mobile Computing, Networking

and Communications

[29] Performance Testing of Android TV Applications on Emulated and Physical Devices"

Authors: Mika Koskela, Teemu Kanstrén, and Casper Lassenius

[30] Performance Testing of Android TV Applications Using Robot Framework

IEEE 4th International Conference on Big Data Intelligence and Computing (DataCom), 2018.

[31] Authors: Wei Jin, Shangping Ren, and Yuke Zhang Published in

14th IEEE International Conference on Automatic Face & Gesture Recognition (FG), 2019

[32] Performance Evaluation and Optimization of Android-based Interactive TV Applications

2012 IEEE International Conference on Multimedia and Expo (ICME)

[33] Performance Testing and Evaluation of Android TV Applications" Authors:

Muthumariappan Ramkumar and Sundararajan Rajamanickam Published in: 2018 International

Conference on Advanced Computation and Telecommunication (ICACAT)

[34] Performance Testing of Android TV Applications Based on Resource Usage and User

Experience

2015 International Conference on Electronics Technology (ICET)

47

[35] Performance Testing of Android TV Applications using Monkey and Robolectric" Authors:

Abhilash Kulkarni and Ravindra Gad

