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Abstract 

        Malaria has been a deadly illness transmitted to people by Anopheles mosquitoes, and 

it can be prevented in two ways, like averting mosquito bites and using medication to prevent 

the malaria. The development of resistance to anti-malarial medications has caused the poor 

patient compliance for the treatment of malaria. Hence, there has been a strong need for the 

design and identification of new chemical entities acting against novel promising malarial 

targets. Falcipain-2, a cysteine protease, has been such novel target for the investigation of 

anti-malarial drugs being involved in heme metabolism during the erythrocytic stage. The 

current state of resistance to malaria treatments has made it imperative to find new anti-

malarial drugs using in silico tools driven by computer aided drug design. Using AutoDock 

Vina, 91,001 ligands from the Asinex Elite Synergy 2021-01 library were docked in search 

of falcipain-2 (PDB ID: 3BPF) inhibitors, which confirmed the discovery of hits (1-20) with 

superior binding energy than the natural ligand, E64. Moreover, studies for bioavailability 

and ADMET for better oral bioavailability and druggability have been employed. Further, 

the dynamics simulation test of the top two hits (1 and 2) were performed through 

GROMACS 2023.4 for 100 ns, revealing their stability in the docked complex. These 

findings represent an important start-up in the design and identification of hits against 

falcipain-2 as anti-malarial agents. 
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CHAPTER 1: Introduction 

 

Malaria, means bad air and caused by Plasmodium falciparum, has afflicted people 

for ages as these little intruders manage a complicated existence cycle, moving with amazing 

plasticity between female Anopheles mosquitoes and human hosts. There is a chance that 

50% of the world’s population might be infected with plasmodium species. According to 

estimates from the World Health Organization (WHO), there has been 249 million cases in 

2022 and 0.61 million deaths, however due to corona virus disease 2019 (COVID-19), these 

numbers may be hampered or not be reported accurately. Approximately 76% of malaria 

fatalities occurred in children younger than five. The goals of ongoing research are to 

comprehend the processes underlying resistance, create novel antimalarial medications, and 

determine the most effective means of avoiding mosquito bites. As a result, it has been 

making matters worse, which has exacerbated the worldwide crisis.  

(https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021)   

 

Malaria can cause a number of symptoms, such as fever, chills, sweating, headache, 

malaise, weakness, gastrointestinal trouble, dizziness, confusion, and disorientation 

(Siqueira-Neto et al. 807). The life cycle of a parasite consists of two phases: the endogenous 

or asexual phase in the human host and the exogenous sexual phase in the mosquito (Figure 

1.1). The female Anopheles mosquito carrying malarial parasites bites healthy human beings, 

suspending sporozoites during the blood meal. Sporozoites enter the circulation, go to the 

liver, and infect hepatocytes there. Repetitive asexual fission of sporozoites (pre-erythrocytic 

/sporozoite /liver stage) within the hepatocyte gives rise to schizonts, which in turn create 

thousands of merozoites. Sporozoites in P. vivax and P. ovale infections mature into 

hypnozoites in hepatocytes, which lie latent for weeks or months before reawakening to cause 

malaria relapses. Merozoites are released by schizonts as they break open and penetrate red 

blood cells. Here, after ingesting hemoglobin, merozoites develop and undergo many asexual 

phases of self-replication (erythrocytic stage). The parasite develops into a trophozoite and 

then a schizont. The clinical signs of malaria are caused by newly released merozoites that 

infect additional erythrocytes in the circulation when the erythrocytic schizont ruptures. 
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Through the process of gametocytogenesis, certain merozoites develop into sexually 

dimorphic gametocytes. In uninuclear versions of the parasite that enter the circulation, 

gametocytes have undergone specialization. Male and female gametes are formed after they 

consume the mosquito blood meal. During the sexual cycle, both male and female gametes 

produce a zygote that matures into an ookinete and then in the oocyst's shape. The nucleus 

of the oocyst splits often, producing a large number of sporozoites that go to the mosquito's 

salivary glands where they infect more hosts and begin the subsequent cycle.(Aly et al. 195) 

The failure of currently used anti-malarial drugs and the rise of resistant malaria have led to 

the design and development of new anti-malarial agents acting against novel promising drug 

targets. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 The life cycle of malaria parasites. 

In an acidic food vacuole, malaria parasites hydrolyze hemoglobin in the free amino 

acids needed for protein synthesis and perhaps to preserve osmotic stability. Proteases that 

hydrolyze hemoglobin have been among the possible targets for anti-malarial agents. In this 

context, falcipain-2 has been the desirable target in search of anti-malarial agents, as they 
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have been the class of cysteine proteases that play a role in the metabolism of heme during 

the erythrocytic stage. Since 1988, cysteine protease inhibitors have demonstrated anti-

malarial efficacy. The inhibitors of falcipain-2 are crucial to plasmodium because they block 

the breakdown of hemoglobin. Because of their crucial involvement in the pathophysiology 

of malaria, the existence of druggable pockets, and the availability of crystal structures for 

structure-aided drug design, they have been promising drug targets.(Patra et al. 115299 ) 

The only way to control and prevent malarial illness in the absence of a viable 

vaccination is to utilize antimalarial drugs therapeutically. Numerous investigations revealed 

that the development of drug-resistant Plasmodium species hampered the effectiveness of 

most antimalarial drugs. The fact that resistance has been documented for almost all 

antimalarial drugs in use highlights the urgent need to both find new targets and create new 

antimalarial drugs that can target validated ones now in use. It is critically necessary to create 

a new antimalarial drug that targets intraerythrocytic proliferative asexual parasites, 

particularly those of resistant species, as well as transmissible gametocyte stages. Promising 

novel targets for the development of new antimalarial drugs against rapidly mutating malarial 

parasites include a number of enzymes, ion channels, transporters, interacting molecules in 

red blood cell (RBC) invasion, and molecules responsible for oxidative stress in the parasite, 

lipid metabolism, and haemoglobin degradation. A new antimalarial agent's potential is 

evaluated based on a number of criteria, including its ability to treat malaria in single doses, 

have unique mechanisms of action that do not cross-resipate with existing antimalarial drugs, 

and be effective against both the gametocytes and asexual blood stages that transmit malaria. 

In addition, the novel antimalarial drug ought to be effective in preventing infection 

(chemoprotective compounds) and eliminating Plasmodium vivax hypnozoites from the 

liver. 

There are several methods used in traditional drug development to find a novel anti-

malarial medication to fight malaria. These strategies include improving on current dosage 

schedules and formulations, changing the antimalarial medications already in use, screening 

natural products, identifying compounds that reverse resistance, combining chemotherapy 

with other treatments, and taking use of medications that are prescribed for different 

purposes. The knowledge of Plasmodium cell biology and genome has proven to be a 

powerful tool for identifying mechanisms of resistance and has great potential to design novel 
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drugs with both high antimalarial activity and transmission-blocking potential to end malaria 

forever, in addition to the traditional drug discovery methods for the identification of new 

ant-malarial agents. 

Globally, the Greater Mekong subregion and other African countries, including 

Eritrea, Rwanda, and Uganda, have been found to have parasite resistance to artemisinin. 

Resistance to both artemisinin and the partner medication in ACT medication regimens can 

result in high rates of treatment failure, but resistance to artemisinin alone is rarely the cause 

of treatment failure. This has been observed in recent years in several areas of the Greater 

Mekong subregion. Africa has not yet shown evidence of ACT partner medication resistance, 

and the treatment is still very effective. There are, however, some concerning signs: statistics 

are missing for a number of nations, and conflicting conclusions regarding the effectiveness 

of ACT should be carefully investigated. Considering how heavily ACTs are used in Africa, 

a full-blown treatment failure could have dire repercussions. Dr. Dorothy Achu, the newly 

appointed Team Lead for Tropical and Vector Borne Diseases for the WHO African Region, 

observes, "We don't have that many options for malaria drugs."  For simple malaria, the only 

available treatments are combination medicines based on artemisinin. We certainly want to 

prevent many cases and deaths, so any danger to these medications might have that effect," 

she continued. In 2016, Imperial College London researchers used a model to simulate the 

possible effects of widespread resistance in Africa to both artemisinin and a companion 

medication. An estimated 16 million extra cases of malaria and over 360 000 more severe 

cases needing hospitalization would occur annually under this scenario. 

In the search for effective therapeutic agents, computational methods are being 

rapidly explored in the design, discovery, and development of drugs. The introduction of any 

drug to the market has been a labor-intensive, expensive, and time-consuming process with 

a lot of risks. The process of finding and developing new drugs typically takes 10 to 14 years 

and requires more than $1 billion in funding overall. Therefore, the computer-assisted drug 

design (CADD) technique has been a revolutionary drug design strategy being extensively 

employed to reduce time, cost, and risk-borne elements. The adoption of these techniques cut 

down the cost of drug discovery and makes it cheaper and easily available.(Surabhi and Singh 

504; Talele et al 127; Ooms 141)  
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Towards the on-going research endeavour from this laboratory using computational 

tools (Salaria et al. 99; Pande et al. 8; Vegad et al. 221; Dhameliya et al. 1847; Dhameliya et 

al. 1361; Sureja et al. e202202069; Bhakhar et al. e202202069; Dhameliya at al. c–2792) for 

the discovery of anti-malarial agents,(Dhameliya and Patel, et al. e202303982;  Dhameliya 

and Vekariya, et al. e202303982; Dhameliya et al. 753) we have performed the virtual 

screening of 91,001 ligands from Asinex Elite Synergy 2021-01 against falcipain-2 in the 

hunt of anti-malarial agents followed by the assessment of the in silico pharmacokinetic 

profile and evaluation of the stability of identified hits using molecular dynamics (MD) 

simulations for 100 ns in the active site of falcipain-2. 
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CHAPTER 2 

2.0 Literature Review 

          Significant progress has been made in recent years to alleviate the extreme suffering 

that malaria causes all around the world. Notably, there has been a significant impact from 

the use of artemisinin-based combination treatment (ACT) for treating malaria and 

insecticide-treated mosquito nets for malaria prevention. However, the emergence of 

resistance to both current and historical anti-malarial medications emphasize the necessity of 

ongoing research to stay ahead of the game. There is a need for new medications, especially 

ones with novel modes of action. Numerous more natural and artificial chemicals have been 

created since quinine, the first chemically pure and successful therapy for malaria, was 

isolated in 1820. However, the parasite strains developed resistance to these medications over 

time, which decreased their efficacy. As a result, they are no longer used or are only used in 

specific circumstances.(Tse et al. 93) Malaria infection is a leading cause of sickness and 

death in Sub-Saharan Africa, especially in Nigeria. In cases when a parasitological test is not 

possible, the World Health Organization (WHO) has explicitly approved presumptive 

diagnosis as the first-line therapy for uncomplicated malaria. This program reduces treatment 

delays, particularly for people who live far from formal healthcare facilities, by allowing 

village health professionals, merchants, and family members to treat simple malaria illnesses 

in the patient's home. Over 70% of people with symptomatic malaria in most African regions 

do not seek medical attention from healthcare facilities; instead, they self-diagnose and treat 

their illness at home with conventional medications or antimalarial drugs obtained from local 

pharmacies or drug stores. Such symptomatic malaria patients only seek medical attention 

after self-medication with conventional or traditional treatments fails, reducing the efficacy 

of different malaria diagnostic and therapeutic procedures. A cross-sectional randomized 

study was conducted with 1000 voluntary outpatients from a tertiary hospital in Nigeria to 

evaluate the validity of clinical malaria diagnosis in contrast to microscopy and rapid 

diagnostic test kits (RDTs).(Wogu 4)  

 

Almost half of the world's population lives in areas at danger from malaria, which 

claims the lives of over 400,000 people annually. The necessity for creating innovative 

treatments is highlighted by the recent stalling in the fight against malaria. The parasite 
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hemoglobin degradation pathway is a well-known treatment target, as it is active throughout 

the blood stage of the disease, when death and malaria symptoms occur. The papain-type 

protease falcipain-2 is an important enzyme in this pathway.(Machin et al. 1) Given their 

considerable potential as anti-malarial drugs, we have screened alkaloids in this investigation 

to find putative inhibitors against FP-2. Through the use of many computational pipelines, 

340 alkaloids in total were taken into consideration for the study. Initially, screen chemicals 

were subjected to toxicity risk assessment criteria and pharmacokinetics. Molecular docking 

techniques were then employed to comprehend the alkaloids' binding effectiveness against 

FP-2. Additionally, the pkCSM tool was used to predict oral toxicity, and the PharmaGist 

server was used to analyze 3D pharmacophore characteristics.(Nema et al. 1; Pandey and 

Dixit 345195) 

 

Although computer-aided drug development (CADD) has been a practice for many 

years, academics and pharmaceutical companies have recently experienced a seismic change 

in their use of computational tools. Ample computer power, a wealth of information on ligand 

characteristics and binding to therapeutic targets and their three-dimensional structures, and 

the development of virtual libraries of drug-like small compounds available on demand in 

billions are the main factors defining this change. To fully utilize these resources, efficient 

ligand screening necessitates quick computational techniques. Fast iterative screening 

technologies further assist structure-based virtual screening of gigascale chemical regions. 

Advances in deep learning predictions of target activities and ligand characteristics instead 

of receptor structure are highly synergistic. In this article, we examine the most recent 

developments in ligand discovery technologies, their potential to completely transform the 

drug discovery and development process, and the difficulties they face. We also talk about 

how the drug discovery process may be made more accessible and affordable by quickly 

identifying highly powerful, varied, target-selective, and drug-like ligands to protein targets.  

This will open up new possibilities for the creation of safer and more efficient small-

molecule therapeutics.(Sadybekov and Katritch 673; Yu and Mackerell 85) 
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2.1 Problem Statement 

Malaria remains one of the most devastating infectious diseases, with millions of new 

cases annually leading to significant morbidity and mortality worldwide. Despite ongoing 

efforts, the emergence of drug-resistant strains of the malaria parasite, Plasmodium 

falciparum, poses a continuous challenge to existing therapeutic strategies. A critical enzyme 

implicated in the parasite's lifecycle is Falcipain-2, a cysteine protease that plays a pivotal 

role in hemoglobin degradation, an essential process for the parasite's survival and growth. 

Recent advances in silico molecular modeling offer promising avenues for the rapid 

and cost-effective screening of potential inhibitors that target key biological pathways, such 

as those mediated by Falcipain-2. However, the complexity of accurately modeling 

interactions at the molecular level and predicting the efficacy and safety of these inhibitors 

remains a significant barrier. There is a pressing need to enhance computational models that 

predict how potential drug molecules interact with Falcipain-2, to identify novel compounds 

that can be developed into effective anti-malarial agents. 

This research aims to address these challenges by: 

 

1. Developing and refining computational models that can accurately simulate and 

predict the binding affinities of potential drug candidates to Falcipain-2. 

2. Evaluating the effectiveness of newly identified compounds in silico, thus paving the 

way for further empirical testing and development. 

This thesis will focus on the integration of computational biology and pharmacological 

insights to discover and optimize novel inhibitors of Falcipain-2, potentially offering a new 

class of anti-malarial drugs. 

2.2 Aim 

The aim of this research is to use in-silico molecular modelling method  against Falcipain-2 

in search of potent anti-malarial agents. 
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2.3 Objective 

 

1. Virtual screening of 91,001 ligands of Asinex Elite Synergy 2021-02 against 

Falcipain-2 using AutoDock Vina in search of anti-malarial agents. 

2. Analysis of the  interactions of top 20 identified ligands with falcipain-2. 

3. To characterize ADMET profile of the top 20 identified hits and to study their  

bioavailability using rules of bioavailability. 

4. Molecular dynamic simulations to check the stability of ligand at the binding site in 

ligand-receptor complex and to study the energies of complex of top 2 compounds 

with falcipain-2. 
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CHAPTER 3 

 

3.0 Materials and Methods 

3.1 Data Collection and Preparation  

After downloading the 3-D structure of falcipain-2 (PDB: 3BPF)(Kerr et al. 852) from 

RCSB protein data bank,(Protein Data Bank) the co-crystallized ligand (E64) was removed 

from the protein and essential chain A of interest was extracted with the help of 

PyMOL.(DeLano WL (2002). The PyMOL Molecular Genetics Graphics System, DeLano 

Scientific LLC, San Carlos, CA.) The protein for molecular docking was prepared by 

removing water, adding the polar hydrogens, Kollman and Gasteiger-Hückel charges and 

was saved in .pdbqt format using AutoDock Vina.(Trott and Olson 455) The 91,001 ligands 

from Asinex Elite Synergy 2021-01 library(Asinex) were downloaded and were subjected to 

optimization using Open Babel by their conversion to .pdbqt files.(O’Boyle et al. 33) 

3.2 Molecular Docking 

The anchor point of the 3BPF for the resulting receiver grid box was set to size_x = 

22.0, size_y = 22.0, and size_z = 22.0 for the ligand using the trial-and-error method with the 

help of AutoDock Vina. After finding the grid parameters and coordinates for the grid box 

for the docking and binding sites of E64 molecular docking using AutoDock Vina, the 

validity of docking protocol was attained through the comparison of the docking pose of the 

docked E64 with that of the co-crystallized E64. It was found to be co-aligned with the pose 

of co-crystallized E64. Next, 91,001 optimized ligands of Asinex Elite Synergy 2021-01 

including natural product and synthetic molecules were virtually screened against the 

predicted binding site using AutoDock Vina. The top twenty compounds with highest binding 

energies (1-20) ranging from -10.0 to -9.7 kcal/mol were shortlisted for further studies. 
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3.3 Assessment of Physicochemical Parameters, Drug-likeliness, and ADMET 

Characteristics 

The numerous physicochemical characteristics, drug-likeliness and ADMET profile 

of the identified hits (1-20) were calculated in silico via pkCSM (Pires et al. 4066) and 

SwissADME using the online web tools.(Daina et al. 42717) 

3.4 MD Simulation 

Using the GROMACS version-2023.4 package, MD simulations were run on an 

NVIDIA Corporation RTX A2000 graphics card running Ubuntu 22.04.3 to verify the 

stability of the chosen ligand-protein complexes.  The CHARMM27 all-atom force field was 

used to build the protein topology. To build the ligand topologies, the SwissParam server was 

used. The protein and ligand-protein complexes were solved within a cubic box of 10 Å with 

SPC216 water model. Using the gmx genion tool, twelve sodium ions were added to the 

solvated system to neutralize the charged protein. The MD simulation was carried out in three 

phases, all heavy atoms restrained to keep the original protein folding by utilizing a force 

constant of 1,000 kJ/mol.nm2. Using the steepest descent algorithm, energy is minimized in 

the first step. The system proceeded through two phases of equilibration in the next step, each 

of which was conditioned for 100 ps. During the first stage of equilibration, the temperature 

inside the three-dimensional cubic box was controlled using the Berendsen thermostat 

coupling method at constant number of particles, volume, and temperature (NVT) ensemble. 

The second equilibration stage was performed at a constant number of particles, pressure, 

and temperature (NPT) ensemble at 1 atm and 300 K under the guidance of the Parrinello-

Rahman barostat. Finally, long-range electrostatic interactions predicted using the Particle 

Mesh Ewald approach were used in 100 ns MD simulations. Further, the MD trajectories was 

analyzed using GROMACS tools to compare the data, including root mean square deviation 

(RMSD), radius of gyration (RoG), solvent accessible surface area (SASA), root mean square 

fluctuation (RMSF), and number of hydrogen bonds (H-bond). 
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CHAPTER 4 

 

4.0 Results and Discussion 

4.1 Preparation of Protein 

Protein was prepared before docking with the help of AutoDock tools.(Morris et al. 

2785; Trott and Olson 455) The crystal structure of 3BPF (falcipain-2) protein obtained from 

RCSB protein data bank.(Protein Data Bank) Protein molecules are generated by appropriate 

extraction, deleting molecules of water, reduction of energy and unnecessary chains, and in 

this study, the  chain A was determined to be essential. By identifying essential amino acid 

residues, a receptor grid is created around the cavity of the unenergized protein molecule. 

Co-crystal ligand (E64) of the corresponding protein molecule is selected to identify amino 

acid residues used to predict the binding site. 

4.2 Virtual screening 

Virtual screening has been recognized as a computer-based method used in drug 

discovery which is used to screen large libraries of small molecules to find the structures that 

have the highest probability of binding to a target of the drug, usually an enzyme or protein 

receptor. It is highly useful to identify the ligands that would be most effective without having 

to test them all out in a lab setting. The drug discovery phase may be expedited and cost-

effectively lowered with this technique.(Kaczor et al. 73) A total of 91,001 ligands from the 

Asinex Elite Synergy 2021-01 library have been selected for docking against falcipain-

2.(Asinex) These downloaded ligands were subjected to optimization using Open Babel for 

geometrical bond angle, distance or tetrahedral angle.(O’Boyle et al. 33) 

SBVS makes use of the target protein's three-dimensional structure, which can be 

found via techniques like NMR spectroscopy or X-ray crystallography. Using a variety of 

scoring methods, molecules are docked into the target protein's binding site to predict their 

interaction and binding affinity. When a target's crystal structure is known, SBVS is 

frequently employed to enable accurate ligand-receptor interaction investigations. LBVS can 

be used when the biological target's three-dimensional structure is unclear. This approach 

depends on your understanding of other molecules that bind to the desired target. Methods 
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like pharmacophore modeling and quantitative structure-activity relationships (QSAR) are 

frequently used. 

 Based on the characteristics and actions of existing binders, LBVS is helpful in the 

identification of novel ligands. The drug discovery phase may be expedited and cost-

effectively lowered with this technique.(Kaczor et al. 73) A total of 91,001 ligands from the 

Asinex Elite Synergy 2021-01 library have been selected for docking against falcipain-

2.(Asinex) These downloaded ligands were subjected to optimization using Open Babel for 

geometrical bond angle, distance or tetrahedral angle.(O’Boyle et al. 33) The steps which are 

involved in Virtual screening, First Preparation of the desired protein which is prepared  by 

aligning the charges states of the amino acids, remove water molecules, and add hydrogen 

atoms to prepare the protein structure  and compilation of the ligand data by preparing ligand 

libraries by machining sure their geometries are optimized and charges are assigned, among 

other correct formats. The 2nd step, which is Docking, the fit and binding affinity of the small 

molecules, or ligands, against the proteins active site are evaluated computationally. After 

the docking process we evaluate the Rank and Score of the possibility for each docked 

position to interact with the target protein that is assigned a score. There are three types of 

scoring function: empirical, knowledge-based, or based on force field calculations. Scoring 

functions are the heart of the virtual screening according to which the complexes are assigned 

a score, regression models generated from empirically measured binding affinities of protein-

ligand complexes serve as the foundation for Empirical Scoring Functions. The binding 

affinity is determined using empirical scoring functions as the sum of weighted terms 

representing several interaction types, including ionic interactions, hydrophobic effects, 

hydrogen bonding, and entropic contributions. A coefficient that is tuned against a set of 

known protein-ligand complexes is assigned to each of these interaction types. SCORE, 

ChemScore, and X-Score are a few examples. Knowledge-based, the statistical analysis of 

known protein-ligand complexes from structural databases such as the Protein Data Bank 

(PDB) is the source of Scoring Functions. These functions operate under the assumption that 

interactions between specific sorts of atoms in proteins and ligands, which are frequently 

observed, are energetically beneficial. Usually, the frequency of these interactions in relation 

to a reference state determines the score. Examples are DrugScore and Potential of Mean 

Force (PMF). In-depth mathematical models are used by Force Field-Based Scoring Function 

to explain how the complex of protein and ligand interacts. Potential energies are usually 
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computed using molecular mechanics force fields, which contain terms for electrostatic 

interactions, bond stretching, torsional strain, angle bending, and van der Waals forces.MM-

PBSA (Molecular Mechanics Poisson-Boltzmann Surface Area), CHARMM, and GROMOS 

are a few examples, now at last the compounds with the highest scores are potentially 

reassessed or put through additional testing and verification processes like MD or 

experimental validation. Some benefits of virtual screening are that it allows you to assess 

huge compound libraries fast, which minimizes the number of candidates that require 

laboratory testing and synthesis, less costly than high-throughput screening since fewer 

physical chemicals and related laboratory supplies are required and depending on the data 

available, can be applied using various methodologies (ligand-based vs. structure-based). 

The docking was performed using AutoDock vina, which is a software tool for 

molecular docking, a process that predicts how small molecules will bind to receptors. The 

top 20 molecules with the greatest receptor-ligand complex binding affinity have been 

determined via scoring and evaluated the docked postures based on their RMSD values 

(Table ). The binding energy of the ligands was compared with the docking results of the co-

crystal ligand. The highest binding energy was found to be -10.0 kcal/mol with the 

quinazolinone derivative (1). With considerable variance, the binding affinities of the top 

twenty compounds were quite comparable and next, we also examined the ligand-protein 

interactions in detail. 

Table 4.1 Top 20 ligands identified from the virtual screening. 

Comp. 

code 

Mol ID Structure 

Binding 

energy 

(kcal/mol) 

1  Mol2250 

 

-10.0 
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2  Mol2560 

 

-9.9 

3  Mol7633 

 

-9.9 

4  Mol45370 

 

-9.9 

5  Mol2273 

 

-9.8 

6  Mol2333 

 

-9.8 
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7  Mol2628 

 

-9.8 

8  Mol2720 

 

-9.8 

9  Mol39117 

 

-9.8 

10  Mol45403 

 

-9.8 
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11  Mol47626 

 

-9.8 

12  Mol47630 

 

-9.8 

13  Mol2348 

 

-9.7 

14  Mol3378 

 

-9.7 

15  Mol3380 

 

-9.7 
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16  Mol18215 

 

-9.7 

17  Mol31549 

 

-9.7 

18  Mol33789 

 

-9.7 

19  Mol59032 

 

-9.7 

20  Mol23317 

 

-9.7 

21  E64 

 

-5.8 
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Compound 1 was determined to have the highest docking score of -10.0, exhibiting 

conventional hydrogen bond (HB) interaction with His174, carbon hydrogen bond with 

Leu172 and Ser149 ( 

Figure). It also shows Pi-anion, Pi-sigma, Pi-Pi T-shaped and Pi-alkyl interaction 

with Asp234, Leu84, Tyr78 and Ile85, respectively. Compound 2 was found to interact with 

Leu84, Ile85 and Ala175 through Pi-alkyl interactions and Pi-Sulfur with Cys42, 

conventional H-bond with Trp206. Compound 3 was found to be involved in π-π interactions 

with Leu84, Ile85, Phe236 and Asn173 and hydrogen bond interactions with Gln171, His174 

and Gln36 and van der Waals non-polar interactions with Ala175. Compound 4 showed π-

anion and π-sigma interaction with Asp234 and Leu84, respectively and π-alkyl interaction 

with Cys42, hydrogen bond interaction with Ile85 and Asn173. Compound s5 interacted with 

His174, Gln36 and Trp206 through hydrogen bond, π-anion, and π-sigma interactions with 

Asp234 and Leu84, respectively. 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. The poses representing the identified hits 1 (a), 2 (b), 3 (c), 4 (d), 5 (e), and 6 
(f), through AutoDock Vina. The poses for the ligands with the protein have been generated 

and visualized with PyMOL. 
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Compounds 6 and 7 have been found interacting with Asn86, Leu84, Asp234 and Ile85 

through conventional hydrogen bonds and π interaction, for compound 7 conventional 

hydrogen bonding with Gly83, Gln171 and His174, and π-sigma and alkyl interaction with 

Leu84, Ile85, Phe236 and Ala175. Compound 8 has been reported to interact with Gly83 

through conventional hydrogen bond and different types of π interaction with Trp43, Ala175, 

Cys42, Trp206. Isoxazole derivative, 9 has been found to interact with various amino acids 

like Asp234, Cys42, Trp43, Leu84, Ile85, Gly82 and Gln36, wherein Gly82 and Gln36 

formed the hydrogen bonds with the oxygen atoms of isoxazole and piperidinol. Quinoline 

derivative, compound 10 formed two hydrogen bonds with Gly83 and Trp43 with the 

carbonyl oxygen of spiro heterocyclic ring, rest all interaction is seen with different π bonds 

with amino acids like Leu84, Ile85 and Phe236. Compound 11, being an indole derivative, 

exhibited the unique interaction with Tyr78 through π-π stacking and all almost similar 

interactions as seen in the case of the above compounds. Compound 12 showed the hydrogen 

interaction with Gly83, Ser149 and π interaction with Ile85, Leu84, Asp234 with the aromatic 

rings of indoles. 
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Figure 4.2 The poses representing the identified hits 7 (g), 8 (h), 9 (i), 10 (j), 11 (k), and 12 
(l), through AutoDock vina. The poses for the ligands with the protein have been generated 

and visualized with PyMOL.
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Figure 4.3 The poses representing the identified hits 13 (m), 14 (n), 15 (o), 16 (p), 17 (q), 
and 18 (r), through AutoDock vina. The poses for the ligands with the protein have been 

generated and visualized with PyMOL. 

For identified hit 13, it was found to interact with His174 and Gln36 via conventional 

hydrogen bond with the nitrogen of quinoxaline, and along with the π interactions with 

Cys42, Asp234, and Leu84. Piperidine derivative compound 14 interacted with Asp234 

through π-anion, Ile85 and Cys42 through π-alkyl, Leu84 with π-sigma interactions. Ligand 

15 with binding energy of -9.7 kcal/mol interacted with Cys42, Ile85, Asp234 and Leu84 

through, π-anion, π-sigma, π-sulfur and alkyl interactions. Further, the oxygen of tetrahydro 

furan of 15 formed the conventional hydrogen bond with Gyl83. Piperidine ring of the 

compound 16 formed π-π stacked interactions with Ile85 and Ala175 of chain A and both 

1,2,3,4-tetrahydroquinoxaline and spiro piperidine ring interacted through alkyl interactions. 

In compound 17, the oxygen of pyrimidone derivative formed three conventional hydrogen 

bonding interactions with Gln36, Ser41, Cys42 and also the pyrimidone ring interacted via 

π-π T-shaped interactions with His174. Further, the nitrogen of piperidine ring in 17 formed 

a similar conventional hydrogen bonding interaction with Gly83. Now, the phenylpiperidine 

part interacts with Asp234, Leu84, Ile85, Ala175 through π-anion, π-sigma, alkyl and π-alkyl 

interactions. For compound 18 the oxygen and nitrogen of the piperidin-1-yl(pyridin-2-yl) 

methanone interacted with His174 and Gln36, respectively via conventional hydrogen bonds, 

the rest half of the molecule i.e. N-phenyl acetamide derivative interacts with Cys42, Leu84, 

Ala175 through π-sulfur and π-alkyl interactions. 
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Figure 4.4 The poses representing the identified hits 19 (s), and 20 (t), through AutoDock 
Vina. The poses for the ligands with the protein have been generated and visualized with 

PyMOL. 

 

The oxygen of pyridazin-3(2H)-one of 19 interacted with His174 through 

conventional hydrogen bond, the other three interactions of compound 19 such as π-anion, 

π-sigma, π-alkyl were observed with Asp234, Leu84 and Ile85. The last most active 

compound 20 with a binding energy of -9.7 kcal/mol was found to interact through different 

π-π interactions like π-anion with Asp234, π- π T-shaped with Tyr78, π-alkyl with Lys76, 

Phe236 and Ile85 and π-sigma interaction with Leu84. The conventional hydrogen bond 

interaction was observed with His174 between hydroxyl oxygen and His174. In summary, 

most of the molecules have shown conventional hydrogen bond with His174, Gln36, and 

Asp234. Cys42 has been the most common amino acid residue at the active site of protein 

which was found to interact with most of the identified hits. 

4.3 Evaluation of ADMET Parameters and Physicochemical Properties 

The hits that were subjected to evaluation of physicochemical parameters (Table 4.2), 

including molecular weight (MW) refers to the mass of a molecule is known as its molecular 

weight (MW), and it is commonly given in atomic mass units (amu) or daltons (Da). It is 

computed as the total of each atom's atomic weight within a molecule. A molecule's 

molecular weight is a key feature that influences its distribution, metabolism, and excretion 

in biological systems. Compounds with extremely high or low molecular weights may have 
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poor bioavailability and absorption in medication design., hydrogen bond donors (HBD) are 

Atoms in a molecule that are capable of donating a hydrogen atom to form a hydrogen bond 

are known as hydrogen bond donors. These are usually nitrogen or oxygen atoms bound to 

hydrogen atoms in biological situations. For molecular interactions to occur, hydrogen bonds 

are essential, especially when it comes to the stability of protein structures and the binding 

of medications to their target proteins. The solubility and penetration of a molecule through 

cell membranes can be affected by the quantity of hydrogen bond donors present in it, 

hydrogen bond acceptors (HBA) are atoms or groups in a molecule that have the ability to 

receive a hydrogen bond from a hydrogen bond donor are known as hydrogen bond acceptors. 

These are typically atoms that are electronegative, like nitrogen, fluorine, or oxygen. The 

quantity of acceptors affects the molecule's solubility and membrane permeability in a similar 

way as hydrogen bond donors do. When assessing the pharmacokinetic characteristics of 

medication candidates, donors and acceptors are taken into account., number of rotatable 

bonds (RB) are any single bonds between two non-terminal atoms, with the exception of 

amide bonds, which have a partial double-bond nature because to resonance. Stated 

differently, these bonds permit unrestricted rotation around the bond axis. One measure of a 

molecule's flexibility is the number of rotatable bonds in it. Higher flexibility is often 

associated with more rotatable bonds, and this might affect a molecule's capacity to bind to 

an enzyme or receptor site. However, because the molecule may adopt different 

conformations, increasing flexibility may also result in less predictable features related to 

absorption and metabolism., and partition coefficient (LogP) A measure of a substance's 

hydrophobicity, the partition coefficient, or LogP, shows how well a chemical distributes 

itself between a hydrophilic phase (water) and a hydrophobic phase (such lipids or fats). The 

ratio of a compound's concentrations in a combination of two immiscible phases at 

equilibrium is how it is expressed logarithmically. This ratio is usually found between water 

and an organic solvent (octanol). Given that it influences a medication's absorption, 

distribution, and capacity to cross cell membranes, logP is a crucial metric in drug design. 

Drugs that have a LogP that is too high could be excessively lipophilic, which could result in 

poor solubility and possible buildup in fatty tissues. Conversely, drugs that have a LogP that 

is too low could be poorly absorbed due to inadequate interaction using SwissADME (Daina 

et al. 42717) and pkCSM (Pires et al. 4066). According to the rule of five, the compound can 

be considered a more promising candidate for drug development if it possesses certain 
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desirable features.(Lipinski et al. 3) All the compounds 1-20 have a molecular weight less 

than 500 Daltons, a logarithm of the partition coefficient (LogP) less than 5, rotatable bonds 

(RB) ≤ 5, a maximum of 5 hydrogen bond donors (HBD), and a maximum of 10 hydrogen 

bond acceptors (HBA). Hence, all the compounds satisfy the minimum requirements of 

Lipinski rule. The Lipinski criterion was not broken by any hits, indicating their high oral 

bioavailability. Thus, it can be speculated that these compounds can be suitable drug 

candidates with respect to their bioavailability. 

In pharmaceutical research, the notion of "drug-likeness" is crucial, especially in the 

initial phases of drug development. It describes the characteristics of a chemical molecule, 

such as its pharmacokinetics, bioavailability, and capacity to reach its biological target, that 

render it appropriate for use as a medication. A number of scholars have put out criteria and 

recommendations to aid in determining drug-likeness; the ones created by Ghose, Veber, 

Egan, and Muegge are among the most often cited. When sorting through vast libraries of 

chemicals to find the ones that have the best chance of becoming oral medications, these 

guidelines are especially helpful. 

Table 4.2 The essential properties of identified hits (1-20) as per Lipinski’s rule of five.  

Comp 

No. 

Molecular 

Weight (Da) 

HB Donors 

HB 

Acceptors 

Rotational 

Bonds 

Log 

P 

No. of 

violations 

1 446.5 2 5 3 3.95 0 

2 448.51 2 4 4 2.99 0 

3 406.48 1 5 3 3.69 0 

4 437.88 2 4 2 2.9 0 

5 420.5 3 4 4 3.07 0 

6 448.94 2 4 2 3.24 0 

7 449.5 1 5 4 3.3 0 

8 433.5 3 4 4 2.57 0 
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9 419.52 1 5 5 3.53 0 

10 443.5 3 4 4 2.57 0 

11 442.55 3 4 3 3.5 0 

12 442.55 2 4 3 3.07 0 

13 449.93 2 5 2 3.04 0 

14 431.5 1 3 3 3.82 0 

15 439.55 1 2 3 4.02 0 

16 444.57 1 3 4 4.28 0 

17 448.6 0 4 5 4.02 0 

18 430.5 1 5 7 3.65 0 

19 423.51 0 4 3 3.74 0 

20 441.52 1 7 5 3.34 0 

Ideal 

Value 
≤500 ≤5 ≤10 ≤10 ≤5 ≤1 

 

To ensure the drug-likeliness of compounds 1–20, the additional drug-likeness rules 

proposed by Ghose, Veber, Egan, and Muegge have been examined for these identified hits. 

The Ghose filter, created in 1999 by Ajay K. Ghose and associates, comprises standards 

derived from the distribution of physicochemical characteristics noted in recognized 

medications. The guidelines established by Ghose are weight in molecules: 160–480 Daltons, 

the range of the log P (octanol-water partition coefficient) is -0.4 to +5.6, molar refractivity: 

a molecule's electronic polarizability measured in the range of 40 to 130. Between 20 and 70 

atoms total (including hydrogen atoms) and these criteria aim to maximize the chance of 

adequate oral bioavailability and were generated from a dataset of 678 known medicines. 

Daniel Veber and colleagues (2002) determined the characteristics that impact oral 

bioavailability, concentrating on polar surface area and molecular flexibility. Veber has the 

following rules: Ten or fewer bonds are rotatable. Because the molecule is less flexible, fewer 



Institute of Pharmacy, Nirma University                           27 | P a g e  

 

rotatable bonds are often correlated with improved membrane permeability, area of the polar 

surface: 140 Å² or less. All atoms (apart from hydrogen) that have the ability to establish 

hydrogen bonds fall under this category; permeability is often improved by smaller regions. 

These guidelines were created by analyzing 1100 molecules from drug development 

initiatives, which revealed a direct link between these characteristics and high oral 

bioavailability. The Egan rule, developed by Pharmacia Corporation's Joseph P. Egan, aims 

to forecast a compound's likelihood of being well-absorbed in humans. It combines 

characteristics of polar surface area and lipophilicity: 

The polar surface area should be 75 Å² or fewer, the total number of atoms that can form 

hydrogen bonds (both donors and acceptors) should not exceed 10, and the log P (octanol-

water partition coefficient) should be between -1.0 and +5.5. This guideline was developed 

as a result of research on 805 substances having established oral bioavailability in humans. 

B. Muegge modified Ghose's criteria based on his research for Pfizer, although they were 

nonetheless comparable to those of Ghose. Muegge's criteria cover the following: molecular 

weight: 200–500 Daltons; log P: -2–+5; number of donors and acceptors of hydrogen bonds: 

0–5; topological polar surface area: less than 75 Å² or 140 Å² (two thresholds taken into 

consideration); and number of rotatable bonds: less than 8. Muegge's criteria are often 

employed in virtual screening to enhance the efficacy of the drug development procedure. 

While each set of guidelines has advantages and disadvantages, they are all typically 

useful as heuristics when evaluating compound libraries. When combined, these guidelines 

can aid in the ranking of compounds that strike a balance between the essential drug-like 

qualities and enough novelty to support additional research. All of the hits complied with the 

minimum requirements proposed by Veber, (Veber et al. 2615) Egan, (Egan et al. 3867) 

Muegge,(Muegge et al. 1841) The hits (3, 4, 5, 8, 9, 14, 18, and 20) met the criterion of 

Ghose(Ghose et al. 55) and other could not. Therefore, only a subset of compounds violated 

the Ghose rule. In summary, these compounds that were identified as hits may have the 

potential to be excellent candidates for drug development in the future, as they adhere to the 

criteria for being suitable for drug development and resembling existing drugs. 

Next, we studied different parameters for absorption and distribution using pKCSM 

(Table 4.2) It is an advanced computational platform that forecasts the pharmacokinetics and 

toxicity of small molecules. pkCSM is a useful tool during the early stages of the 
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development of drugs since it uses machine learning techniques to forecast a wide range of 

pharmacokinetic parameters, pharmacological efficacy, and potential toxicity. It was 

developed by researchers at the University of Cambridge, through a web-based interface, 

users can immediately acquire predictions for various attributes by inputting chemical 

structures (in formats like SMILES or uploading files like SDF) into pkCSM. This approach 

is designed to be user-friendly so that even people without a strong experience in 

computational chemistry can take advantage of this useful tool. All the compounds have met 

the requirements for solubility (Ali log S) compound's solubility is determined by how well 

it dissolves in a given solution. Aqueous solubility is a key factor in pharmacokinetics 

because it influences the body's ability to absorb drugs when taken orally. A prediction 

methodology for calculating the logarithm of a compound's solubility in water is called Ali 

log S. It is based on an approach by Ali et al. that uses computer algorithms to forecast a 

chemical's ability to dissolve in water based on its structure. A medicine's bioavailability is 

influenced by its solubility; in order to be absorbed efficiently, a drug must be sufficiently 

soluble in the digestive tract, molar refractivity (MR) i.e. molecule's polarizability, or its 

capacity to adjust its electron density in reaction to outside electric fields, is measured by its 

molar refractivity. It is derived from the molar volume and molecular refractive index and is 

associated with molecular electronic characteristics. Molar Refractivity (MR) describes how 

light interacts with a molecule's electrons by taking into consideration the contribution of 

each atom within the molecule. Understanding molecular characteristics like size, shape, and 

electron distribution—which influence a drug's interaction with its biological target—is 

useful in the drug development process, topological polar surface area (tPSA) it is a 

descriptor used to calculate the area of a polar molecule. It is specifically the surface total of 

all polar atoms, mostly nitrogen and oxygen, along with any hydrogen atoms that are bonded. 

Drug transport characteristics, such as the capacity to pass the blood-brain barrier or absorb 

drugs through the intestines, can be effectively predicted by tPSA. Better permeability of the 

membrane is often indicated by a lower tPSA, which is especially important when 

determining a drug's likelihood of penetrating the brain or spinal cord., and Caco2 cell 

permeability A type of epithelial cells called Caco-2 cells is derived from colon cancer in 

humans. They are often employed in modelling the intestinal epithelium, a portion of the 

human gut, in pharmacological research. In Caco-2 cell permeability testing, a compound's 

capacity to pass through the monolayer of the cell is measured. An established in vitro 
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method for forecasting intestinal absorption of oral medications is this test. In the human 

digestive tract, high permeability in Caco-2 cells often implies good absorption while low 

permeability indicates poor absorption. Most compounds that were shown to have adequate 

absorption in the human intestine also demonstrated improved oral absorption. The 

requirements for Vd were satisfied by all the compounds and inhibition of P-glycoprotein 

substrates was found not possible by compounds (1, 8 and 17). In addition, the predicted 

properties pertaining to toxicity, excretion, and metabolism have been summarized in Table 

1. With the exception of compounds 6, 11, 12, and 15, most of the compounds had medium 

renal clearance and inhibited CYP2D6 but not CYP3A4. Except 1 and 4, all compounds had 

a moderate renal clearance. All of the hits-aside from hits 9, 11, 12, 14, and 20 were 

discovered to inhibit uptake transporter substrates in the proximal convoluted tubule 

(OCT2). Based on acute and chronic toxicity (LD50) estimates in rats experiments are 

intended to evaluate a substance's effects following extended exposure, which might last 

anywhere from a few weeks to the whole life of the experimenter. These tests assist in 

identifying the lowest dose at which detectable side effects are present (LOAEL - Lowest 

seen Adverse Effect Level) and the dose at which no adverse effects are seen (NOAEL - No 

Observed Adverse Effect Level), all of the discovered compounds were anticipated to be 

safe if administered orally and had no cytotoxic effects on the hERG cell line. Additionally, 

AMES toxicity testing revealed that none of the compounds were mutagenic, and none of 

them caused skin sensitivity. As a result, these compounds (1–20) could prove to be effective 

treatment candidates in the future. 

Table 4.3 Absorption and distribution profile of compounds (1-20). 

Comp. 

Code 

Ali log 

Sa
 

MRb 

tPSA 

(Å2) c 

log 

Pappd 

(10-6 

cm/s) 

Intestinal 

absorptione 

(%) 

VDssf 

(log L/kg) 

Fraction 

unboundg 

P-gp 

inhibitionh 

1 -3.079 132.56 101.38 0.844 86.689 0.176 0.016 no 

2 -3.121 137.71 90.98 1.224 96.775 0.427 0.059 yes 

3 -3.627 123.89 82.44 0.915 97.121 0.935 0.209 yes 
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4 -3.819 128.37 91.65 0.829 93.993 0.234 0.055 yes 

5 -3.064 129.67 82.7 1.15 88.824 0.862 0.22 yes 

6 -4.113 135.67 66.49 0.968 93.642 1.219 0.079 yes 

7 -3.993 131.96 88.18 1.259 96.722 -0.097 0.011 yes 

8 -3.172 129.81 103.43 1.165 80.25 -0.166 0.187 no 

9 -3.772 127.48 69.81 0.991 89.101 1.069 0.055 yes 

10 -3.48 136.55 103.43 0.926 87.111 0.454 0.038 yes 

11 -3.839 135.31 68.72 0.893 91.626 0.93 0.111 yes 

12 -4.371 135.24 57.86 1.11 91.683 0.744 0.086 yes 

13 -4.162 133.47 79.38 0.842 93.882 0.754 0.103 yes 

14 -4.49 127.55 46.5 1.185 94.566 0.218 0.001 yes 

15 -4.14 134.98 46.5 1.187 95.687 0.728 0.032 yes 

16 -4.225 140.51 53.65 1.039 94.182 1.079 0.22 yes 

17 -4.602 138.96 58.44 1.085 96.155 1.179 1.179 no 

18 -4.009 126.43 84.42 1.198 92.56 0.028 0.079 yes 

19 -5.123 130.04 63.91 0.586 100 0.277 0.262 yes 

20 -3.115 129.92 88.17 1.376 93.758 0.857 0.099 yes 

Optimum 

values 

≤0 ≤155 ≤150 >0.09 >30 

low 

(<−0.15), 

high 

(>0.45) 

- - 

asolubility in water, bmolar refractivity, ctopological polar surface area, dCaco-2 cell permeability, 
eabsorption, fvolume of distribusstion (human), gfraction unbound, and hability to inhibit the P-

glycoprotein. 

 

 

 

 



Institute of Pharmacy, Nirma University                           31 | P a g e  

 

 

Table 1.4 Metabolism, excretion and safety profile of compounds (1-20).  

Comp. 

Code 

CYP2D6a CYP3A4b 

CLTc 

(mL/min/kg) 

OCT2 

substrated 

AMESe 

hERG 

If 

LD50g LOAELh 

Dermal 

toxicityi 

1 no Yes 0.018 no no no 2.186 2.267 no 

2 no Yes 0.41 no o no 2.092 1.839 no 

3 no Yes 0.877 no yes no 2.858 1.327 no 

4 no Yes -0.086 no no no 2.17 1.688 no 

5 no Yes 0.959 no no no 2.423 1.7 no 

6 yes Yes 1.02 no no no 2.867 1.397 no 

7 no Yes 0.453 no no no 2.188 1.758 no 

8 no Yes 0.479 no no no 2.181 0.837 no 

9 no Yes o.74 yes no no 2.811 0.263 no 

10 no No 0.314 no no no 2.387 2.23 no 

11 yes Yes 0.895 yes yes no 2.53 1.653 no 

12 yes Yes 0.761 yes yes no 2.693 0.779 no 

13 no Yes 0.965 no no no 2.809 1.185 no 

14 no Yes 0.239 yes no no 2.872 0.933 no 

15 yes Yes 0.195 no no no 3.064 0.759 no 

16 no Yes 0.954 no no no 3.003 -0.408 no 

17 no Yes 0.849 no no no 2.57 0.134 no 

18 no Yes 0.636 no no no 2.911 1.04 no 

19 no Yes 0.556 no yes no 2.861 0.644 no 

20 no Yes 0.5 yes no no 3.116 1.297 no 

Optimum 

values 

- - 
high (>1), 

medium 
- - - - - - 
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(>0.1 to <1), 

low (≤0.1) 

Inhibition of aCYP2D6 and bCYP3A4, ctotal renal clearance, dinhibition of renal OCT2 substrate; 
eAMES and fhERG I toxicity; gacute and hchronic toxicity in rats; isensitivity to skin. 

 

Next, Brain Or Intestinal Estimated Permeation technique (BOILED-Egg) has been 

a computational approach used to estimate the ability of compounds to permeate through the 

gastrointestinal tract or blood-brain barrier(Daina and Zoete 1117). Therefore, we speculated 

the permeation profile using SwissADME (Daina et al. 42717) which demonstrated that all 

the identified compounds exhibited adequate gastrointestinal absorption and effective 

inhibition of the P-glycoprotein (Figure ). A few hits (6, 9, 11, 12, 14, 15, 16, 17, and 19) 

were discovered to have the lowest likelihood of causing CNS neurotoxicity and the highest 

likelihood of penetrating the BBB.  

 

 

Figure 4.5 BOILED-Egg model of hits (1-20) retrieved using SwissADME. The yellow 
and white portions of egg designate the permeation capability to blood-brain barrier and 

enteric systems, respectively. The blue spheres speculate the inhibition of P-glycoprotein. 
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4.4 MD Simulation 

Molecular dynamics (MD) simulation have has been the simulation process that 

involve the examination of the atomic and molecular motions for the transient period of time, 

which have been extremely useful in the proteomics and drug discovery.(van Gunsteren and 

Berendsen 992; Hollingsworth and Dror 1129; Maricarmen et al. 3909) Recently, we have 

also provided the coverage of the applications of molecular dynamics simulations as an 

important tool for drug discovery in search of anti-malarial agents.(Dhameliya et al. 

e202302471) In MD simulation, the interactions between the atoms and molecules have been 

permitted for a while, providing an insight into the system's dynamic development. The 

measurement of root mean square deviation (RMSD) may reveal the information about the 

structure and conformation during stimulation, indicating that the stimulation has reached 

equilibrium and that any fluctuations during the stimulations have been centered around the 

thermal average. In molecular dynamics simulations, the paths of individual atoms are 

predicted using Newton's equations of motion. The potential energy, which is obtained from 

the molecular interactions represented by a selected force field, provides the basis for 

computing the forces exerted on each atom and their ensuing accelerations. The energies of 

bonds, angles, dihedrals, and non-bonded interactions (van der Waals and electrostatic 

forces) within the molecule are all described by mathematical functions that make up the 

force field. The steps involved in MD are: First, that is system setup in which a simulation 

box is filled with the starting structure of the molecule or molecules of interest, it is possible 

to add ions and water molecules to simulate physiological circumstances. Then the second 

step minimization in order to eliminate any undesirable connections and guarantee that the 

system begins with a stable configuration, the system is energetically minimized. Now 

equilibration using carefully calibrated simulations, the system is progressively brought to 

the required temperature and pressure which is the third step. In order to stabilize the system 

under study-specific conditions, this step is essential. 5th i.e. production run this is the real 

simulation phase in which data is gathered and the system is left to change over time. 

Depending on the biological process under study, this phase may last anywhere from 

picoseconds to microseconds or longer and the last is to investigate molecular dynamics, 

interactions, and structural changes over time, the resulting trajectory data is examined. Uses 

for MD Understanding how proteins fold, function, and interact with other molecules is 

known as protein dynamics. Drug design, on the other hand, focuses on examining how drugs 
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interact with their targets to maximize binding affinity and specificity. Finally, molecular 

properties of materials are studied. and investigating the dynamic mechanisms underlying 

the catalysis of enzymes.  

For small proteins, the changes in the range of 1 to 3 Å are quite normal and well 

accepted, but the parameters more than 3 Å suggested that the protein is experiencing a 

significant conformational change during the simulation run. The stability of the ligand in 

relation to the protein binding pocket is shown by the ligand RMSD. The root mean square 

fluctuations (RMSF) has been used to characterize local fluctuations of the protein-ligand 

complex. 

 

 

Figure 4.6 The schematic plots of MD simulations having RMSD (a), RoG (b), SASA (c) 
for MD run of compounds 1 (mol2250) and 2 (mol2560) with the complex of falcipain-2. 
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The plots of stability of ligand-receptor complex 1 with falcipain-2 has been 

presented in the Figure  indicating no discernible variation in the position of ligand 1 inside 

the complex. For protein, there is a slight fluctuation in RMSD at the end of the final 80 to 

100 ns (0.16 nm to 0.225 nm, average of 0.22 nm). The range of 1.77 nm to 1.81 nm, 1.79 

nm as the average has been represented as the least variation in the radius of gyration (RoG, 

Figure b), supporting the compactness of the structure of the complex without appreciable 

variations. This may indicate that falcipain-2 might have undergone the change in the 

conformation to better accommodate compound 1. The integrity of the structure and atomic 

flexibility of the complex are denoted by the RMSF (less than 0.35 nm) versus stimulation 

time plot in Figure 4.5c. The range of 112.5–128 nm2 has been sufficiently covered by the 

surface area (120.25 nm2 as the average, Figure d) and a maximum of four hydrogen bonds 

of ligand 1 with the protein over the simulation time of 100 ns (Figure 4.6a). In summary, 

these results indicate the stability of ligand 1 at the protein binding site of falcipain-2. 

Next, we analyzed the stability of ligand 2 complexed with falcipain-2 stability, we 

discovered that the ligand RMSD ranged from 0.08 to 0.55 nm (Figure 4.7a) and it can be 

speculated from these findings that the current complex of ligand 2 with falcipain-2 has been 

stable with very little recent change observed over the course of the 100 ns. An average 

RMSF value of 0.25 nm was obtained for the complex with the least changes in atomic 

flexibility and its structural stability (Figure c). With an average of 1.82 nm, the RoG has 

gone as high as 1.84 nm for the complex of ligand 2 with falcipain-2. An average of 124 nm2 

(114-134 nm2) was discovered to be the surface area within the site of action that solvents or 

molecules of water can reach vs the running time (Figure  4.7d). During the dynamics 

simulations of 100 ns, the ligand produced up to five HBs within the active region of the 

protein (Figure 4.7b). 
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Figure 4.7 The plots of number of hydrogen bonds (a and b) and protein-ligand interaction 
energy (c and d) for the compounds 1 and 2, respectively with the complex of falcipain-2 

during the MD simulation run. 

 With this stability endeavor, we also studied the Coulombic short-range and Lennard-

Jones short-range interactions of the complexes of 1 and 2 with the falciapin-2. For the ligand 

1 complexed with falcipain-2, the energy of Coulombic short-range interactions was found 

in the range of -75 KJ/mol to 25 KJ/mol and that of Lennard-Jones short-range interactions 

was found ranging from -130 KJ/mol to 25 KJ/mol. For identified hit 2 (mol2560), these 

energies were found in the range from -175 KJ/mol to 25 KJ/mol and -175 KJ/mol to -50 

KJ/mol. The higher energies of Lennard-Jones short-range interactions have suggested that 

the complexes of 1 and 2 with falciapin-2 have been well stabilized using hydrophobic van 

der Waals interactions rather than electrostatic interactions. 
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CHAPTER 5: Summary 

 

Malaria, a deadly disease transmitted by Anopheles mosquitoes, can be prevented 

through averting mosquito bites and using medication. However, resistance to anti-malarial 

medications has led to poor patient compliance. This has led to the need for new chemical 

entities acting against promising malarial targets, such as falcipain-2, a cysteine protease 

involved in heme metabolism during the erythrocytic stage. To address this issue, in silico 

tools driven by computer-aided drug design have been used. Using AutoDock Vina, 91,001 

ligands from the Asinex Elite Synergy 2021-01 library were docked to search for falcipain-

2 inhibitors. The top 20 compounds with superior binding energies were found to be potential 

inhibitors of falcipain-2. The hits were examined for their ADMET profile and compliance 

with Lipinski's rule of 5, revealing their drug-likeness without breaches of the rule of five. 

MD simulation confirmed the stability of the top two hits in the active site of falcipain-2, 

speculating the identification of anti-malarial agents against falcipain-2. This research 

represents an important start-up in the design and identification of hits against falcipain-2 as 

anti-malarial agents. 

Conclusion 

In fine, the in silico molecular modelling guided search of anti-malarial agents as 

falcipain-2 inhibitor was performed with the help of virtual screening of 91,001 ligands from 

Asinex Biodesign library 2021-02 at the binding site of co-crystallized ligand, E64. The top 

20 compounds (1-20) with the superior binding energies (ranging from -10.0 to -9.7 

Kcal/mol) were found to be potential inhibitors of Falcipain-2., The hits were examined 

further for their ADMET profile and compliance with the Lipinski’s rule of 5, which revealed 

their drug-likeness without any breaches of the Lipinski’s rule of five. Finally, the 

investigations using MD simulation confirmed the stability of the top two hits (1 and 2) in 

the active site of falcipain-2 speculating the identification of anti-malarial agents against 

falcipain-2. 
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