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Infineon Technologies Company Profile 

 

 
 

Infineon Technologies is a globally renowned semiconductor company at the forefront of 

technological innovation. Established in 1999, Infineon has emerged as a key player in 

the semiconductor industry, specializing in the development and manufacturing of 

cutting-edge solutions for a wide range of applications. The company's commitment to 

excellence and forward-thinking has positioned it as a leader in automotive, industrial, 

and power electronics, as well as security and chip card solutions. 

 

Semiconductors are crucial to solve the energy challenges of our time and shape the digital 

transformation. This is why Infineon is committed to actively driving decarbonization and 

digitalization. As a global semiconductor leader in power systems and IoT, we enable 

game-changing solutions for green and efficient energy, clean and safe mobility, as well 

as smart and secure IoT. We make life easier, safer, and greener. Together with our 

customers and partners. For a better tomorrow. 

 

Infineon's semiconductor products play a pivotal role in enabling advancements in smart 

mobility, renewable energy, and digitalization. With a focus on addressing the world's 

most pressing challenges, the company's research and development efforts have led to 

groundbreaking solutions in power management, connectivity, and security. 

 

Decarbonization the world must reduce carbon emissions and use energy much more 

efficiently to secure quality of life for future generations. With our power system 

solutions, we are a key enabler in the move to harness renewable energy resources and 

deliver energy-efficient solutions along the entire electrical energy chain. Together with 

our customers and partners, we make “more out of less” to actively shape a greener future. 

 

Digitalization digital transformation is changing the way we live, work, produce, and 

consume. With our smart IoT devices and systems solutions, we link the real and the 

digital world, and play a key role in unleashing the full potential of digitalization. Our 

products and solutions enable a net ecological benefit, equal to the average annual CO₂ 

emissions from electricity consumption of more than 179 million people living in Europe. 

Our products and solutions cover a broad application spectrum including consumer 

electronics, IoT devices, cloud security, IT equipment, home appliances, connected cars, 

credit and debit cards, future payments, electronic passports, ID cards, and more. In close 

alignment with our ecosystem partners, we create standard-setting solutions that inspire 

lasting trust among customers. 
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Infineon’s business segments and target applications 

Automotive (ATV): The ATV division is shaping the future of mobility by enabling clean, 

safe, and smart cars. Its product and solution offering is powering the decarbonization and 

digitalization of vehicles. 

 

Green Industrial Power (GIP): The GIP division delivers leading semiconductor 

solutions for the smart, green, and efficient conversion of electrical energy, covering all 

steps in the energy chain from generation through transmission to storage and 

consumption. 

 

Power & Sensor Systems (PSS): The PSS division powers decarbonization and 

digitalization with a wide range of energy-efficient and digital solutions. 

 

Connected Secure Systems (CSS): The CSS division is driving robust connections, 

reliable computing, and seamless security for a digitalized, decarbonized world. 

 

As a hub for innovation, Infineon Technologies has consistently pushed the boundaries of 

semiconductor technology. Their commitment to sustainability is evident through 

initiatives that prioritize energy efficiency and eco-friendly practices. Collaborative 

partnerships with industry leaders and a global presence further underscore Infineon's 

influence in shaping the future of technology. 
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Abstract 

The relentless advancement of Artificial Intelligence (AI) is revolutionizing numerous 

industries, notably the embedded systems domain. This report sheds light on the development 

and deployment of cutting-edge, embedded AI applications and an efficient toolchain, focusing 

on gesture recognition using radar sensor, developing machine learning models, and r&d on 

neural architecture search algorithm.  

The first major achievement was the development and deployment of a radar gesture 

classification model on the Infineon XENSIV™ kit. This innovative model could identify four 

distinct gestures in real-time, serving as a testament to the power of embedded AI in enhancing 

interaction between humans and machines. With the ability to recognize and interpret specific 

gestures, the model provided a foundation for creating more intuitive and interactive user 

interfaces for a wide range of applications. In addition to radar gesture recognition, the 

internship involved the development of various machine learning models. These models were 

designed to harness the power of AI for solving complex tasks, demonstrating the capacity of 

machine learning in improving the efficiency of embedded systems. This work further 

highlighted the potential of machine learning models to advance data-driven solutions in the 

field of embedded AI. Lastly, the report delves into the research, exploration, and development 

of "Neural Architecture Search". This groundbreaking work involved the design of neural 

networks that are aware of the hardware they run on, potentially revolutionizing the way 

machine learning models are developed and deployed in real-world settings. By taking into 

consideration the hardware constraints during the design of neural networks, this research 

could pave the way for more efficient and practical AI solutions. 

 

In summary, the work chronicled in this report underscores the transformative potential of AI 

in the realm of embedded systems. It offers valuable insights and contributions in radar gesture 

recognition, machine learning models, and hardware-aware neural architecture search, 

showcasing a promising future for the integration of AI into everyday devices. 
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Chapter 1  

Introduction 

1.1 Motivation 

Imagine a typical day in a modern society using artificial intelligence technology. People 

wake up in the morning, they use their smartwatches to check if they slept well. Then I 

asked the voice assistant how long it took to choose the outfit. They activate their 

smartphones with Face ID scanners and check their daily schedules. Finally, he arrives at 

the office in a car on autopilot. Artificial intelligence (AI) has become ubiquitous... An 

internship as an applied machine learning engineer at Infineon Technologies offers the 

opportunity to translate theoretical knowledge into tangible real-world applications. The 

prospect of delving into the dynamic intersection of embedded systems and artificial 

intelligence, honing my skills and contributing to innovative projects further increased my 

enthusiasm. The philosophy of continuous learning and problem solving ingrained in the 

corporate environment aligns perfectly with my own values, motivating me to view 

challenges as opportunities for growth. 

1.2 Problem Statement 

The convergence of embedded systems, artificial intelligence (AI), and sensor 

technologies has introduced unprecedented opportunities for innovation, particularly in 

the realm of Infineon microcontrollers (MCUs). However, this integration poses a series 

of challenges that demand meticulous attention. The development of embedded AI 

applications using Infineon MCUs and sensors necessitates a seamless fusion of hardware 

and software, demanding a delicate balance between computational efficiency and model 

accuracy. 

Furthermore, the optimization of machine learning (ML) models in this embedded 

environment requires the establishment of a robust toolchain. Challenges lie in tailoring 

the ML model to the constraints of Infineon MCUs, maximizing performance while 

minimizing resource utilization. Ensuring real-time responsiveness, energy efficiency, and 

effective utilization of limited resources emerges as a critical concern. 

The problem statement aims to address the intricate interplay between embedded AI 

application development on Infineon MCUs, sensor integration, and the establishment of 

an efficient ML model optimization toolchain. Solving these challenges is imperative for 

unlocking the full potential of embedded AI systems, ensuring their seamless integration 

into a variety of applications while meeting the stringent resource constraints imposed by 

the embedded environment. The report will delve into these challenges, proposing 

innovative solutions and contributing to the advancement of embedded AI technology. 
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1.3 Scope of Work 

The scope of this project encompasses a comprehensive exploration and development of 

embedded AI applications utilizing Infineon microcontrollers (MCUs) and sensor 

technologies. The primary focus developing a Radar Gesture Classification ML model 

capable of accurately classifying radar generated gesture patterns a NN architecture is 

developed and optimized for real time performance and accuracy ensuring reliable gesture 

recognition across diverse scenarios. Deploying the trained NN model on FMCW 60 GHZ 

RADAR SENSOR address challenges related to sensor data synchronization, 

preprocessing, and real-time model inference on the XENSIV platform.  

1.4 Outline of Thesis 

A comprehensive exploration of the development and implementation of a machine 

learning model for radar gesture classification, specifically designed for integration with 

the XENSIV 60Ghz radar sensor suite. With a focus on model efficiency and real-time 

applicability, the project not only addresses the nuances of radar-based gesture recognition 

but also delves into the complexities of optimization, modelling and machine learning for 

deployment in resource-limited environments. The report continues with an introduction, 

briefly presenting the phase, establishing the context, motivation and overall objectives of 

the project. From there, the literature review will examine existing research, shedding light 

on radar gesture classification and the technological landscape surrounding the XENSIV 

suite. Key insights from previous solutions will guide subsequent development efforts. 

The core of the report focuses on machine learning model development, providing insight 

into the chosen architecture, the complexity of the training data, and the validation process 

with a comprehensive understanding of  neural network construction, ensuring 

transparency in the decision-making process The actual implementation takes centre stage 

in the “Integration with the XENSIV Toolkit” section, where the report examines the steps 

taken to seamlessly integrate the machine learning model with the XENSIV Toolkit. 

The important aspect of the report is in the “ML Model Optimization Toolchain” section, 

which explores the development of flexible toolchains capable of optimizing machine 

learning models for deployment on platforms have limited resources. 

Overall, the report serves as a valuable resource, providing not only technical information 

but also practical considerations for future efforts in similar fields. 
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Chapter 2  

Literature review 

2.1 Overview 

The problem of excessive energy consumption and poor compatibility while deploying 

artificial intelligence models and networks on embedded devices has been manageable due to 

advancements in artificial intelligence algorithms and models and embedded device support. 

This report presents three approaches to implementing artificial intelligence technologies on 

embedded devices in response to these issues: neural network compression, acceleration 

techniques for embedded devices, artificial intelligence models and algorithms on hardware 

with limited resources, and existing embedded AI application models. This report finishes with 

future directions for embedded AI and a summary of the topic, after comparing pertinent 

literature and highlighting the study's merits and drawbacks. 

Embedded Intelligence is currently building a foundation that includes AI support delivery 

platforms such design of hardware accelerators for neural networks, network structure design, 

network model optimization including quantization, pruning, and weight reduction methods, 

and improvement of the underlying hardware algorithms [2]. All the above technologies 

contribute to the deployment of AI to resource-constrained devices, but further development is 

needed in the following areas: Efficient algorithms and lightweight models, optimization of 

hardware acceleration techniques., optimization of deployment methods and compatibility. 

 Advances in artificial intelligence algorithms and models and support for embedded devices 

have made it possible to overcome the problems of high-power consumption and poor 

compatibility when deploying artificial intelligence models and networks to embedded devices. 

 In response to these issues, present in artificial intelligence algorithms and models for 

embedded devices on resource-constrained hardware, including methods for accelerating 

embedded devices, neural network compression, and current application models. In this report 

present aspects of methods and applications for deploying intelligent technologies on 

Embedded devices [17]. Application such as Voice recognition and Radar Gesture 

Classification such are developed and deployed on embedded devices are mentioned alongside 

in report, In order to know the development status of radar gesture recognition and predict the 

future development trend, the research and development of gesture recognition based on radar 

technology has been studied in recent years. Classification algorithms for gesture recognition 

are summarized, focusing on key techniques such as dynamic recognition of gesture 

information, preprocessing of gesture echo signals, and feature extraction in radar gesture 

recognition technology. System performance is analysed and evaluated. Clarify the issues to 

be solved in the direction of research and predict the direction of future research. This result 

shows that Radar's gesture recognition technology has made a significant advance in human-

computer interaction applications. With the deepening of related research, the gesture 

recognition system based on radar technology will develop towards intelligence. 
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2.2 ML Architecture used in Embedded Systems: 

Below are some pre-trained ML architecture  

• MobileNet: MobileNet is designed for mobile and embedded image processing 

applications and provides a lightweight architecture with depth-separable convolutions 

[4]. It balances accuracy and computational efficiency, making it suitable for use on 

devices with limited resources. 

• TensorFlow Lite Micro (TFLite Micro) Models: TensorFlow Lite Micro includes a 

variety of optimized models suitable for embedded systems.[21] These models are 

designed to run efficiently on microcontrollers and other edge devices for everything 

from image classification to keyword detection. 

• TinyML Models: TinyML refers to the deployment of very lightweight machine 

learning models on resource-constrained devices [6]. These models are often based on 

simplified architectures, such as fully connected neural networks or support vector 

machines and are tailored to minimize storage and computational requirements. 

• Quantized Neural Network (QNN): A quantized neural network uses low-precision 

representations for weights and activations to minimize memory usage [3].This 

category includes binary neural networks (BNNs) and ternary weighting networks that 

optimize models for use on devices with limited memory. 

• Lightweight Convolutional Neural Networks (LCNN): LCNNs are designed with a 

focus on lightweight and efficient convolution operations, making them suitable for 

real-time image processing on embedded devices [3]. 

 

2.3 Optimization Techniques 

Machine learning optimization is the process of adjusting hyperparameters in order to minimize 

the cost function by using one of the optimization techniques. It is important to minimize the 

cost function because it describes the discrepancy between the true value of the estimated 

parameter and what the model has predicted. 

 

• Compact model: Design a smaller model from scratch that can achieve acceptable 

performance for the task at hand. This requires a thoughtful design process and selection 

of model components based on downstream (embedded or mobile) performance 

requirements [3]. 

• Tensor Decomposition: Simplify large tensors or matrices into smaller matrices or 

tensors to reduce model storage space and computational cycles. One way to accomplish 

this is to cluster the model parameters. Clustering groups the weights of each layer into a 

predefined number of clusters and provides the centroid of each cluster for calculation. 

• Data quantization: Reduces the precision of model parameters [19]. This is one of the 

most common and simple ways to optimize machine learning models for use on edge 

devices [3]. 

• Network sparsification: reduce the number of connections/neurons in the network to 

obtain a smaller and more sufficient model. Pruning allows you to make your network 

thinner. Cleaning removes parameters in the model that have little impact on performance. 

An important part of pruning is choosing which parameters to remove. A simple heuristic 

is to remove parameters whose values are close to zero. 
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Combining these techniques can significantly optimize machine learning models and make 

them suitable for use on edge devices. But that's easier said than done. Optimizations typically 

reduce model performance, but the performance degradation varies by model. 

 In rare cases, optimization may improve model performance. Therefore, it is up to the system 

developer to decide which optimization technique to use and how much to compromise model 

performance [19]. 

 

2.4 Framework and Tools 

The development of embedded AI has led to a variety of frameworks and tools that facilitate 

the use of machine learning models in resource-constrained embedded systems. 

 Here are some notable  

Frameworks:  

• TensorFlow Lite: Developed by Google, TensorFlow Lite is a popular software 

specifically designed for mobile and embedded devices. A lightweight version of the 

TensorFlow framework. Provides model transformation, quantization, and optimization 

tools for efficient deployment to edge devices [21]. 

• PyTorch Mobile: PyTorch is known for its flexibility and dynamic computational 

graphs, and has a mobile version designed for deploying models to devices with limited 

resources. PyTorch Mobile supports model transformation and optimization techniques 

to ensure efficient execution on edge devices [22]. 

• ONNX (Open Neural Network Exchange): ONNX is an open-source format for 

representing machine learning models. This allows models to be trained in one 

framework and then transferred and deployed to another, making it a versatile tool for 

cross-framework compatibility in embedded systems [20]. 

• CMSIS-NN: ARM's CMSIS (Cortex Microcontroller Software Interface Standard) 

includes CMSIS-NN, a library specifically tailored to optimize neural network 

implementations on ARM Cortex-M processors. It provides the ability to operate on 

neural network layers and allows efficient execution on microcontrollers [22]. 

Tools: 

• Modus Toolbox™: Software is a modern, extensible development environment 

supporting a wide range of Infineon microcontroller devices, including PSoC™ Arm® 

Cortex® Microcontrollers, TRAVEO™ T2G Arm® Cortex® Microcontroller, XMC™ 

Industrial Microcontrollers, AIROC™ Wi-Fi devices, AIROC™ Bluetooth® devices, 

and USB-C Power Delivery Microcontrollers. The ML solution in Modus Toolbox also 

provides a configurator for importing pre-trained machine learning models and 

generating embedded models (as C code or binary). This generated model can be used 

in your ML library along with your target device's application code. This tool also 

allows you to customize selected pre-trained models and evaluate their performance 

[10]. 
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• ML Configurator: The Modu Toolbox™ Machine Learning (ML) tuner is used in ML 

applications to adapt a pre-trained learning model to the target Infineon platform. The 

tool accepts a pre-trained ML model and creates an embedded model (like a library) 

that can be used with application code on the target device. With the Modu Toolbox™ 

ML Tuner, you can also adapt the selected pre-trained model to the target device with a 

set of optimization parameters [10]. 

 

• Netron: Netron is a viewer for neural network, deep learning, and machine learning 

models. Netron supports ONNX, TensorFlow Lite, Core ML, Keras, Caffe, Darknet, 

MXNet, PaddlePaddle, ncnn, MNN and TensorFlow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.1 
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Chapter 3  

Journey into Embedded AI Development  

3.1 Introduction to Embedded Artificial Intelligence 

The advent of artificial intelligence (AI) in recent years has truly revolutionized our industries 

and our personal lives, offering unprecedented opportunities and capabilities. But while cloud-

based processing and cloud AI have been on the rise over the past decade, they have faced 

issues such as latency, bandwidth limitations, and security and privacy concerns, to name  a 

few. Here, the arrival of the Embedded AI greatly increased the value of his and changed the 

AI landscape. 

This chapter introduces the field of embedded AI and reveals the complexities and innovations 

that define this emerging field. Embedded AI goes beyond traditional computing paradigms by 

building intelligence into devices ranging from microcontrollers to specialized hardware the 

impact will be significant, creating a paradigm shift in the way we perceive and interact with 

the myriad smart devices around us. We explore the unique challenges and opportunities that 

characterize the development of AI in embedded systems. From complex hardware 

considerations to the use of advanced machine learning models, embedded AI requires a 

delicate balance between computing power and resource limitations. Navigate sensor 

integration, real-time processing, and security considerations to uncover the complexities that 

shape the development and deployment of AI at the edge. The real-world applications and case 

studies that demonstrate the transformative potential of embedded AI across a variety of 

industries[6]. As we move beyond this, we will also consider optimization strategies beyond 

simple quantization, such as model compression and pruning, and evaluate the delicate trade-

offs between model accuracy and resource efficiency. Essentially, this chapter serves as an 

entry point into the realm of embedded AI and invites us to witness the convergence of 

intelligence and embedded systems. There, innovations combine to redefine the functionality 

of devices that have become an integral part of modern society. 

 

3.2 Advantages of Embedded AI 

Following are the advantages of Embedded: 

• Reduced latency: Embedded AI applications limit the amount of data sent over the 

wide area network because processing occurs close to the data source rather than in the 

cloud. Therefore, data processing is faster and Embedded AI application latency is 

reduced. Additionally, sending and executing instructions from AI applications to the 

field significantly reduces latency. This is important for several classes of low latency 

AI applications, such as applications based on industrial robots and automated guided 

vehicles. Several other video-based applications that need to send data to the cloud can 

now not only be processed at the edge, but also assess in near real-time what will happen 

in situations such as: Because it's important, it's now handled at the edge. security case. 

• Real-time performance: The low latency of Embedded AI applications makes them 

suitable   for implementing features that require real-time performance. For example, 

machine learning applications that detect events in real time (e.g., fault detection in 
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production lines, abnormal behaviour detection in security applications) may tolerate 

delays associated with transmitting and processing connected data. 

 •  Improved security and data protection: Embedded AI applications significantly 

reduce the exposure of data outside the organization that creates or owns the data. This 

reduces the attack surface and minimizes opportunities for malicious security attacks and 

data breaches. For this reason, Embedded AI applications tend to be much more secure than 

those in the cloud [6]. 

 • Improved privacy controls: Many AI applications process sensitive data, such as: Data 

related to security, intellectual property, patients, and other forms of his personal data. 

Embedded AI deployments create a trusted data management environment. All these 

applications offer more robust privacy controls than traditional AI applications in the cloud. 

This is because Edge AI applications limit the amount of data transferred or shared outside 

of organizations that create or process sensitive data sets. 

 • Energy Efficiency: Cloud Data Transfer and Cloud Data Processing is a highly energy 

efficient operation. Cloud I/O (input/output) functionality is associated with significant 

CO2 emissions. Most importantly, Cloud AI is not green overall, as very large amounts of 

data are typically processed by GPUs (Graphics Processing Units) and TSUs (Tensor 

Processing Units). Edge AI alleviates  environmental performance issues for cloud AI 

applications. It reduces the number of I/O operations and processes data in an edge device 

or edge data centre. Therefore, it leads to an improvement in the overall carbon footprint 

of AI applications. 

 • Cost-effective: Edge AI applications transfer and process much less data than cloud 

computing applications, saving network bandwidth, and computing resources. 

Additionally, it consumes less energy than cloud AI applications. This allows edge AI 

applications to be deployed and operated at significantly lower costs than cloud AI 

deployments. 

 • On-device learning: Certain Edge AI applications can run within a single device, such 

as an IoT device or a microcontroller. This enables the development of powerful and 

intelligent devices such as system-on-chip (SoC) devices. One of the key features of is on-

device learning. This is the basis for giving his machine intelligence capabilities that are 

largely not based on cloud processing. 

 

3.3 Hardware & Software Selection 

Hardware Considerations: Hardware Considerations To ensure that the hardware you select 

meets the requirements of your Embedded AI system, you must consider several factors. A 

key consideration is processing power, because Embedded AI applications require 

hardware that can process data quickly and accurately. The processing power and clock 

speed of hardware play a critical role in achieving the real-time processing that is essential 

for Embedded AI systems. Another important consideration is the amount and type of 

memory available on your hardware. Embedded AI applications require sufficient memory 

to store and process large amounts of data, focusing on the 's fast real-time processing 

capabilities. There is a race in the hardware industry for the highest TOPS (Terra operations 
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per second), but this is not a 1-to-1 comparison. Power consumption is also an important 

consideration, especially for devices with limited power resources, such as IoT devices. 

Optimizing the hardware for the 's power consumption is important to ensure long-term 

operation of the device without frequent replacement or recharging of the battery. 

Technologies such as the use of low-power chips, hardware accelerators, and the and 

intelligent power management system help achieve the 's low power consumption in 

Embedded AI systems. 

Seamless connectivity is also important for AI systems that require hardware that enables 

seamless communication with other devices and cloud-based platforms. The hardware must 

offer various connectivity options such as Wi-Fi, Bluetooth, and mobile networks to enable 

efficient communication and data processing with your other devices. This connection 

ensures fast and efficient data processing and analysis, contributing to the overall 

performance of the Edge AI system. 

Some Infineon’s Hardware Compatible to run AI Algorithms 

 

Fig 3.1 

Fig 3.2  
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CY8CKIT-064B0S2-4343W PSoC 64 “Secure Boot” Wi-Fi BT Pioneer Kit shown in Fig 3.2 

a true programmable embedded system-on-chip, integrating a 150-MHz Arm® Cortex®-M4 

as the primary application processor, a 100-MHz Arm Cortex-M0+ that supports low-power 

operations, pre-configured with a root-of-trust and secure processing environment, up to 2 MB 

Flash and 1 MB SRAM, Secure Digital Host Controller (SDHC) supporting SD/SDIO/eMMC 

interfaces, CapSenseTM touch-sensing, and programmable analogy and digital peripherals that 

allow higher flexibility, in-field tuning of the design, and faster time-to-market[8]. 

3.4 Software Considerations 

When it comes to edge AI systems, it is important to choose software with specific 

characteristics to make the work optimally. By analysing various factors, verifies that the 

selected software meets the requirements of the Edge AI system. Compatibility is an important 

consideration when selecting software. The software must run efficiently on the hardware and 

enable real-time data processing. Additionally, the ensures compatibility with other software 

components used on the system, including B. Operating Systems, Libraries, and Frameworks, 

Seamless Compatibility Integration and Features. Scalability of the  is another important aspect 

that the must consider when designing edge AI systems. Considering that edge AI systems often 

process large amounts of data, the software must be able to handle the  real-time processing 

and analysis requirements associated with such data  Scalable  software enables the system to 

handle increasing  data volumes, processing requirements, and user requests without impacting 

performance. The accuracy of the software used in edge AI systems is critical. These systems 

rely heavily on accurate data analysis and processing  to provide meaningful insights and  

support decision making. Therefore, the software must have high accuracy and reliability in 

analysing and processing data. interpretability, or the software’s ability to explain results in an 

understandable way, plays a key role in the design of the Edge AI system. interpretability allows 

the user to understand the decision-making process of her system and provides insight into data 

analysis. This aspect is especially important in applications where decisions made by edge AI 

systems have a significant impact, such as healthcare and finance [14]. 

 Software used in edge AI systems must prioritize interpretability and present results in a  clear 

and understandable manner. 

 

Tool Description 

 ModusToolbox™ is a set of tools to 

help you develop applications for 

Infineon devices. These tools include 

GUIs, command-line programs, 

software libraries, and third-party 

software that you can use in just about 

any combination you need.. It provides 

ML tools , libraries, middleware for ML 

applications[11]. 

 



11 
 

 

Imagimob AI is a leading platform for 

Machine Learning (ML) solutions for 

edge devices, providing an end-to-end 

machine learning toolchain that is 

highly flexible and easy to use with a 

strong focus on delivering production-

grade ML-models for a wide range of 

use cases building on Infineon’s 

advanced sensors and comprehensive 

IoT solutions, such as audio event 

detection, voice control, predictive 

maintenance, gesture recognition, 

signal classification as well as material 

detection[16]. 

 

Edge Impulse are a cloud-based 

Machine Learning training platform 

that is deployable to TinyML devices. 

With Edge Impulse’s partner ecosystem 

and expansive training content, 

deploying machine learning models to 

embedded microcontrollers is made 

easier[15]. 

 

SensiML are an AutoML training 

platform designed to speed up machine 

learning deployment with their ease-of-

use tools[15]. 

Table 3.1 ML Tools & Description  

3.5 Challenges in Embedded AI 

Latency Challenges Latency is a critical issue that can significantly affect the performance of 

AI systems. These systems have three types of latency problems: input delay, processing delay 

and output delay. Input latency is the delay between the time the edge device stores a data 

sample and the time the AI model processes it. This may be due to his factors such as slow 

sensor response time, data transmission delay, and additional data processing costs. Input lag 

affects the accuracy and timeliness of AI predictions and can lead to lost opportunities to make 

real-time decisions. Processing latency, on the other hand, refers to the delay between the time 

an AI model receives a data sample and the time it generates a prediction. 

 Delays may be caused by factors such as the complexity of the AI model, the size of the input 

data, and the processing power of the Edge device. This affects the real-time responsiveness of 

AI predictions and can cause delays in critical applications such as medical diagnostics and 
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autonomous driving [6]. Output delay is the delay between generating an AI prediction and 

sending it to the user or downstream system. Several factors can cause this problem, including 

network congestion, communication protocol overhead, and synchronization between devices. 

Printing delays can affect the usability and effectiveness of AI predictions and cause delays in 

decision making and action. 

Power Consumption Consumption issues EdgeAI systems can also face challenges related to 

high power consumption, which can limit deployment and impact, especially in remote and 

harsh environments such as industrial plants, farmland, and highways. The high energy demand 

is due to the need for efficient computing resources to process and analyse data in real time. 

Edge devices often require powerful processors, memory and storage devices that consume a 

lot of power [9]. This makes it difficult to operate such systems in power-constrained 

environments. In addition, always-on connectivity and data transfer between peripherals and 

the cloud can increase energy consumption even more. 

Scalability Challenges Edge AI systems can face significant scalability challenges that can 

affect efficiency, reliability, and flexibility. Scalability is the ability of a system to handle 

increasing amounts of data, users, or devices without reducing performance. These challenges 

can be divided into three categories: computational scalability, data scalability, and system 

scalability [21]. Compute scalability is the ability of edge AI systems to process increasingly 

large amounts of data without exceeding the processing power and storage capacity of edge 

devices. Limited processing power, memory and storage space in peripherals limit the size and 

complexity of AI models, which can hinder accuracy and responsiveness. Data scalability, on 

the other hand, is the ability of edge AI systems to process increasing amounts. of data without 

sacrificing performance. Processing large amounts of data in real time on edge devices can be 

difficult due to limited data transfer capacity and unreliable connections, which can limit the 

amount and quality of data that can be transferred and processed. 

  

3.6 Future of Embedded AI 

Neuromorphic Computing: Improving AI Intelligence by Imitating the Human Brain The 

future of Embedded AI will also be shaped by new AI paradigms such as neuromorphic 

computing. This approach mimics the structure and function of the human brain and emulates 

the neural networks and synaptic connections within our brains. It is based on a new 

neuromorphic chip that processes information more efficiently while adapting to new situations 

more quickly and effectively. The neuromorphic chip consists of many artificial neurons and 

artificial synapses that can mimic the functionality of the brain tip. 

 Research on neuromorphic computing therefore brings us one step closer to understanding, 

deciphering, and using the human brain's code in AI applications [6]. 

 The neuromorphic computing chip is well-suited to deliver Embedded AI benefits at scale. 

This is because the uses less power and is faster than traditional processors. Most importantly, 

the Embedded AI system is equipped with thinking capabilities like the human brain. 

 This is very useful in many ubiquitous applications (obstacle avoidance, robust auditory 

recognition, etc.). As neuromorphic computing matures, this technology will enable a new 

generation of AI-based edge devices that can learn and adapt in real time[9]. 
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In-Memory Computing for Embedded AI In-memory computing is another technology trend 

that will impact the future of Embedded AI. This involves storing and processing data directly 

in the device's memory, rather than relying on traditional storage systems (such as hard drives). 

This approach aims to significantly reduce data access time and accelerate the computing speed 

of Embedded AI systems [16]. This further improves the Embedded AI system 's real-time 

analysis and decision-making capabilities. In the future, Embedded AI applications will need 

to process larger amounts of data quickly. Therefore, in-memory computing becomes 

increasingly important to optimize performance and Embedded AI efficiency. Specifically, 

Embedded AI enables devices to process complex algorithms and extract valuable insights 

from data at unprecedented speeds [9]. 

Data-efficient AI: Maximizing the value of in the absence of Ongoing research into data-

efficient AI involves expanding and using pre-trained models with domain knowledge, e.g. 

Many technologies are being considered, ranging from transfer learning (transfer learning) 

Extensions to the paradigm include humans and characterize processes (such as active learning) 

as part of human-AI interactions. There are also moderate quality, popular data-efficient 

techniques to reduce the size of AI models[17]. Data One of the key challenges with AI is that 

large amounts of data are required to effectively train machine learning algorithms (e.g.deep 

learning).There is often a lack of sufficient high-quality data to train such algorithms. This 

issue applies to Embedded AI systems and applications. Additionally, Embedded AI systems 

face computational and storage limitations that prevent them from taking full advantage of 

large AI models and  large numbers of data points. Data-efficient AI techniques aim to 

overcome the above limitations by allowing AI models to learn from limited data samples[6]. 

 

. 
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Chapter 4  

Work done at Infineon 

At Infineon I am interning in Applied Machine Learning team a one stop solution for AI/ML 

activities. AML team mission is to provide state of the art AI methods develop AI based 

applications with focus on R&D in EDA also engage in development of safe and secure low 

power HW/SW IP for AI. The team operates in four different landscapes which are AI in SoC 

Development, AI in Software Solutions, AI in Products, AI Infrastructure & Data Mesh in 

which my work contributes to AI in products to develop hardware compatible AI models by 

providing support with applications & services. Vision of the team is to continuously drive 

innovation and business value using cutting-edge machine learning techniques. Our team's goal 

is to utilize the latest advancements in the field of artificial intelligence to create intelligent 

systems that can learn from data and make predictions, automate processes, and derive insights 

that can drive competitive advantage for our company. 

 

4.1 Research and Exploration 

Model development is a key area of research in the field of Machine Learning. Machine 

Learning models are used to learn patterns from data and make predictions or classify new 

observations. The performance of these models depends on several factors [9], including the 

quality of the data, the choice of algorithm, and the selection of hyperparameters. 

In recent years, there has been significant research in the development of new Machine 

Learning models and techniques. One of the most exciting areas of research is deep learning, a 

technique that uses artificial neural networks to learn complex patterns from data. Deep 

learning has been used to achieve state-of-the-art performance in a variety of tasks, including 

image recognition, speech recognition, and natural language processing. 

Another area of research is reinforcement learning, a technique that involves training an agent 

to make decisions based on feedback from the environment [7]. Reinforcement learning has 

been used to develop intelligent systems that can play games, control robots, and optimize 

processes. 

There has also been research in the development of specialized Machine Learning models for 

specific tasks. For example, there are models designed specifically for time series analysis, text 

classification, and anomaly detection. These models are optimized for their respective tasks 

and have been shown to outperform general-purpose models in certain scenarios. 

Exploration in model optimization involves finding the best set of hyperparameters that 

maximize the model's performance [10]. Hyperparameters are parameters that are set before 

training and affect the learning process. Examples of hyperparameters include learning rate, 

batch size, and regularization strength. By tuning these hyperparameters, we can improve the 

accuracy and speed of the model. Optimization can also involve preprocessing and feature 

engineering to improve the quality of the data. For example, we might remove outliers or 

missing values, scale the data, or perform feature selection to remove irrelevant or redundant 

features. These techniques can help to improve the model's accuracy and reduce its 

computation time. 

Deploying models on edge devices can be challenging due to the limited resources available 

on these devices, such as memory, processing power, and battery life. To overcome these 

challenges, we need to optimize the model for deployment on edge devices. This may involve 
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reducing the size of the model, using more efficient algorithms, or using specialized hardware, 

such as GPUs or MCUs. 

In addition to optimization, we also need to consider the security and privacy implications of 

deploying Machine Learning models. We need to ensure that the model and the data it 

processes are protected from unauthorized access and misuse. This may involve using 

encryption, access controls, or anonymization techniques. 

In summary, model optimization and deployment are critical components of Machine Learning 

development. By optimizing our models for performance, reliability, and efficiency, and by 

deploying them on edge devices or cloud-based environments, we can make Machine Learning 

applications more accessible and useful to end-users. 

4.2 Machine Learning Model Development  

A speech command classification model is developed on TensorFlow’s speech command 

dataset which has 8 different voice commands which are pre-processed then fed to CNN model 

for a classification task. The model is developed to deploy on the PSoC-6 from where the 

speech commands will be detected in real time. Other than these various models were 

developed for learning purpose [6].  

Flow of the Development: 

Fig 4.1 

1. Data Preprocessing: The step involves gathering, cleaning, and preprocessing the data. 

In your case, you have used TensorFlow's Speech Command Dataset, which contains 

thousands of audio samples of commands. You need to transform the audio signals into 

numerical features that can be used by a machine learning algorithm. This process 

involves techniques such as Fourier transforms and Mel-frequency cepstral coefficients 

(MFCC). 

2. Model Selection: In this step, you need to select an appropriate machine learning 

algorithm for your task. Since you are working with audio data, you might consider 

using a convolutional neural network (CNN) or a recurrent neural network (RNN). 

TensorFlow provides pre-built models that can be used as a starting point, or you can 

build your own model from scratch. 

3. Training: Once you have selected a model, you need to train it on the data. This involves 

splitting the data into training, validation, and testing sets. During training, the model 

learns to recognize patterns in the audio data, and its performance is evaluated on the 

validation set. You can adjust the hyperparameters such as batch size, learning rate, and 

optimizer during the training process to achieve better result 
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4. Deployment: Once you have a trained and evaluated model, you need to deploy it to a 

production environment. This might involve optimizing the model for deployment, 

such as reducing its size or using more efficient algorithms.  

            Design of Developed Model 

 

                     Fig 4.2 

 

 

1. Input Shape: The model takes an input tensor of 

shape (16, 5, 1), which represents a 1D audio 

signal with 16 frequency bands and 5 time steps. 

2. Conv2D Layer: The first layer of the model is a 

2D convolutional layer with a certain number of 

filters and kernel size. This layer applies a set of 

learnable filters to the input signal, extracting 

features that are relevant to the classification 

task. 

3. Batch Normalization: After the convolutional 

layer, a batch normalization layer is applied to 

normalize the output of the convolutional layer. 

4. Average Pooling 2D: The output of the batch 

normalization layer is passed through a 2D 

average pooling layer, which performs down-

sampling of the output by taking the average of 

a small window of features. 

5. Conv2D Layer: Another 2D convolutional layer 

is applied to extract more complex features from 

the down-sampled output of the previous layer. 

6. Batch Normalization: The output of the second 

convolutional layer is again normalized using a 

batch normalization layer. 

7. Average Pooling 2D: Another 2D average 

pooling layer is applied to down-sample the 

output of the second batch normalization layer. 

8. Flatten: The output of the second average 

pooling layer is then flattened into a one-

dimensional vector, ready to be passed to a fully 

connected layer. 

9. Dropout: A dropout layer is applied to the 

flattened output to prevent overfitting. Dropout 

randomly removes a certain percentage of the 

neurons in the layer, forcing the network to learn 

more robust features. 

10. Dense Layer: Finally, a fully connected dense 

layer with a certain number of units is applied to 

the output of the dropout layer, producing the 

final output tensor. 

11. Output: The output of the dense layer is the 

model's prediction for the input audio signal. 

In summary, speech command classification model uses 

a sequence of convolutional and pooling layers, 

followed by a fully connected layer, to learn features 

from the input audio signal and produce a prediction for 

the classification task. 
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4.3  Exploration:  ML Optimization Techniques  

In the fields of computer vision, natural language processing, video analytics, etc., deep neural 

networks are being used in innovative and impressive ways. However, the computational 

resources required to implement neural networks are on the higher side. In addition, the energy 

consumption of these architectures is also high, while the heat they dissipate into the 

environment is extremely harmful. The implementation of such feature rich DNNs in Internet 

of Things (IoT) edge devices is full of technical challenges and concerns due to the limited 

hardware and power resources of the edge devices. Therefore, DNN models should be 

optimized to significantly reduce the use of huge computational resources. Clipping: Larger 

models require more memory and energy, are difficult to partition and consume a lot of 

computation. Cropping creates models that are smaller in size for inference. Due to its smaller 

size, the model becomes both memory and energy efficient, and reasoning is faster and with 

minimal loss [3]. Pruning is done by removing unimportant connections or neurons, as in figure 

4.3.  

Fig 4.3 

Quantization: Basically, quantization means reducing the accuracy of weights, parameters, 

biases, and activations so that they occupy less memory and reduce the size of the model. In 

an artificial neural network, the weights are 32-bit floating point values. Consider a neural 

network with millions of parameters. Here, the memory required to store millions of 32-bit 

floating point values is too large to accommodate peripherals. Thus, 32-bit floating-point 

values are usually converted to 8-bit integers. During quantization, the range of parameters or 

weights must be scaled to an 8-bit integer range (ie -127 to +127). This process is called scale 

quantization. In addition to scale quantization, quantization data must be grouped, which is 

called quantization granularity. This means whether quantization is applied per channel (in 3D 

input) or per row or column (in 2D input). Figure 4.4 shows how PTQ is called weight loss 

[19]. 
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Fig 4.4 

Weight Sharing: There is much redundancy among the weights of a neural network, and this 

proves that a small number of weights are enough to reconstruct a whole network. In the 

weight-sharing method, the number of effective weights that are required to be stored is 

reduced by having multiple connections in a neural network share the same weight [9]. The 

weight sharing may be based on a random method or Hashed Net in which the weights are 

grouped according to a Hash function [17,16]. The concept of weight sharing is exemplified in 

Fig 4.5. 

 

Fig 4.5 
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4.4 Voice Detection at Edge 

As seen earlier a speech command model is being developed which is now been deploy on 

PSoC-6 MCU for real time voice detection. Before beginning let’s have a look at PSoC-6 

PSoC™ 6 Wi-Fi BT Prototyping Kit provides [13]: 

o Snappable peripherals: Capacitive-sensing CapSense™ slider and buttons, Digilent 

Pmod interface, 512Mb QSPI NOR flash, uSD card, PDM-PCM microphone, 

thermistor 

o Bread-board compatible form-factor 

o Murata LBEE5KL1DX-TEMP Module (CYW4343W) that provides IEEE 

802.11a/b/g/n WLAN + Bluetooth [18]. 

 

 

Fig 4.6 

Objective:  

o Neural Networks (NN) on microcontrollers to run offline speech recognition. End-to-

end system development, from audio detection and acquisition, NN model training, 

deployment of the trained model on to the MCU, integration and testing 

o The speech recognition model is aim at understanding and comprehending WHAT is 

spoken and according to that performing the task. 

o In this project it is showed ML algorithms and their implementation on Infineon low 

power Wifi-BLE prototyping kit. 

 

 Fig 4.7 
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Technical Flow: 
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1. Model conversion: The first step in implementing voice 

detection on edge using PSoC involves converting a pre-

trained machine learning model into a format that can be 

used on the PSoC. This might involve converting the 

model to a format such as TensorFlow Lite, ONNX, or 

Caffe2. 

2. Code Header Generation: Once the model has been 

converted, the next step is to generate C header files that 

describe the model's architecture and parameters. These 

files will be used to compile the model into the PSoC 

firmware. 

3. Code Integration: The next step is to integrate the 

generated C header files into the PSoC firmware. This 

might involve writing C code to load the model, allocate 

memory for input and output tensors, and perform 

inference on new input data. 

4. Sensor Interfacing: To perform voice detection, the PSoC 

needs to be connected to a microphone or other audio 

sensor. This might involve interfacing with the sensor 

using protocols such as I2S or PDM, configuring the 

sensor's sampling rate and resolution, and buffering the 

input data. 

5. Feature Extraction: Once the audio data has been 

acquired, it needs to be pre-processed and converted into 

features that can be used as input to the machine learning 

model. This might involve applying a windowing 

function to the audio data, performing a Fourier transform 

or other signal processing techniques, and computing 

features such as Mel-frequency cepstral coefficients 

(MFCCs). 

6. Inferencing: Once the input features have been computed, 

they are passed to the machine learning model for 

inferencing. The model performs a series of matrix 

multiplication and activation functions to produce a 

prediction for the input data. The output of the model 

might be a binary classification (voice vs. non-voice) or a 

probability score indicating the likelihood of voice. 

 

In summary, the technical flow for voice detection on edge using 

PSoC 6 involves converting a pre-trained model, generating C 

header files, integrating the model into the PSoC firmware, 

interfacing with an audio sensor, preprocessing the input data, 

and performing inferencing on the model. This flow can be 

customized depending on the specific requirements of the voice 

detection application. 
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Results: 

As shown in Fig 4.9 the model is able to detect the speech command the predicted class is being 

output to terminal with its confidence score.   

   Fig 4.9 

4.5 Radar Gesture Classification  

Radar gesture classification is a technique that uses radar signals to detect and classify different 

hand gestures based on the movement of the hand. This technique is becoming increasingly 

popular due to its ability to work in low-light or complete darkness, and its ability to operate 

in harsh environments where cameras or other sensors may not be effective. 

One example of a radar gesture classification system is a machine learning model that is 

deployed on an FMCW RADAR SENSOR. The FMCW 60 GHZ RADAR SENSOR is a 

hardware platform that includes a radar sensor, a microcontroller, and other components needed 

to interface with the sensor and perform machine learning tasks [2]. 

To deploy a machine learning model on the FMCW RADAR SENSOR, the first step is to 

collect data using the radar sensor. This data includes information about the position, velocity, 

and other characteristics of the hand gestures. Once the data is collected, it is pre-processed 

and used to train a machine learning model [5]. 

 

 

Fig 4.10 



22 
 

Gesture classification model 

A convolutional neural network (CNN) model consists of two convolutional blocks and two 

fully connected layers. Each convolution block contains convolution operations including 

smoothed linear unit (ReLU) and maximum pooling with a group normalization layer added 

after the first block. Convolution layers act as feature separators and 

provide abstract representations of input sensor data in feature maps. 

They reflect the short-term dependencies (spatial relationships) of the 

data. In CNN, features are extracted and then used as inputs to a fully 

connected network using softmax activation for classification. 

 

 

  

The Netron model for Radar Gesture Classification is a sequential 

model that uses different layers to extract relevant features from the 

input data. It takes an input shape of (128, 6, 1) and follows the below 

steps: 

1. Input layer: This is the first layer in the model. It takes in the 

input data with a shape of (128, 6, 1). 

2. Convolutional layer (Conv2D): The input data is passed to the 

Conv2D layer, which applies filters to the input data to capture 

important features. It has 8 filters, a kernel size of (3, 3), padding 

of "same," and uses the "relu" activation function to introduce 

non-linearity in the output. 

3. Max Pooling layer (MaxPooling2D): The output from the 

Conv2D layer is then passed to a MaxPooling2D layer which 

reduces the spatial dimensions of the output by taking the 

maximum value of a (3, 3) pooling window. This reduces the 

dimensionality of the data and helps in preventing overfitting. 

4. Batch Normalization layer: This layer normalizes the activations 

of the previous layer, reducing the internal covariate shift and 

improving the training speed and performance of the model. 

5. Dropout layer: This layer randomly sets a fraction of the input 

units to 0 at each training update, which helps to prevent 

overfitting of the model. 

6. Another Conv2D layer: The output from the Dropout layer is 

passed through another Conv2D layer that uses 16 filters, a 

kernel size of (3, 3), padding of "same," and again uses the "relu" 

activation function Conv2D layer is passed to another 

MaxPooling2D layer with a pool size of (3, 3). 

7. GlobalAveragePooling2D layer: This layer computes the 

average value of each feature map in the previous layer. This 

reduces the dimensionality of the data and helps in preventing 

overfitting. 

8. Output Dense layer: This is the final layer of the model and has 

4 units with a "softmax" activation function. This layer outputs 

the predicted probabilities for each of the 4 possible gesture 

classes. 

The resulting output of the final Dense layer has a shape of (128, 4), 

which represents the predicted probabilities for each of the 4 possible 

gesture classes as shown in Fig 4.11 Model Diagram 

 

Fig 4.11 



23 
 

Block diagram of Design Flow: 

 

Fig 4.12 

The design flow for the Radar Gesture Classification model deployed on a FMCW 60 GHz 

RADAR SENSOR involves multiple components that work together to accurately classify a 

user's gestures form Fig 4.12. These components include a Timer Interrupt Handler, Gesture 

Task, NN Inference, and Control Function [11]. 

The Timer Interrupt Handler is responsible for triggering the data acquisition process and 

analysing the radar signals. It runs on a timer and is triggered at predefined intervals to initiate 

the radar system and collect new data from the environment. The radar system captures the 

reflected signals from the user's hand and provides a time-domain representation of the hand 

movement. 

The Gesture Task is responsible for preprocessing the raw radar data, which includes filtering, 

normalization, and feature extraction. This preprocessing is critical to ensure that the input data 

is of high quality and contains only relevant information. The pre-processed data is then passed 

to the NN Inference component. 

The NN Inference component is responsible for classifying the gesture being performed by the 

user. It uses a trained machine learning model to accurately identify the gesture. The machine 

learning model has been trained on a dataset of labelled radar data and is capable of accurately 

identifying the gesture being performed by the user. 

The Control Function is responsible for translating the classification result into a desired action. 

For example, if the user performs a gesture to increase the volume of a device, the classification 

result is used to trigger the volume to be increased. The Control Function is also responsible 

for sending feedback to the user regarding the success or failure of the desired action. 

Overall, the design flow for the Radar Gesture Classification model deployed on a FMCW 60 

GHZ RADAR SENSOR involves the Timer Interrupt Handler triggering the data acquisition 

process, the Gesture Task preprocessing the raw radar data, the NN Inference component 

classifying the gesture being performed by the user, and the Control Function translating the 

classification result into a desired action. This allows for an accurate and efficient system for 

gesture recognition and control [12]. 
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Chapter 5  

Research & Development of Neural Architecture Search 

Algorithm 

5.1 Introduction to Neural Architecture search (NAS) 

Deep Neural Networks (DNN), the cornerstone of deep learning, have shown great 

success in various real-world applications, including image classification [23], [25], 

natural language processing, speech recognition [24] to name just a few. The promising 

performance of DNNs has been widely documented due to their deep architecture [1], 

which can learn important features directly from raw data with almost no special features. 

In general, the performance of DNNs depends on two aspects: their architecture and their 

associated weights. Only when both reach the optimal state at the same time, the 

performance of DNNs can be promising. Optimal weights are often obtained through 

learning: a continuous loss function is used to measure the differences between the actual 

output and the desired output, and then gradient-based algorithms are often used to 

minimize the loss. Once the termination condition is satisfied, which is usually the 

maximum number of iterations, the algorithm can often find a good set of weights. Such 

processes have been very popular in practice due to their efficiency and have become the 

dominant practice in weight optimization [26], although they are mainly local search 

algorithms. On the other hand, obtaining optimal architectures cannot be directly 

formulated by a continuous function, and there is not even any explicit function that 

measures the process of finding optimal architectures. To this end, promising DNN 

architectures are designed by hand and with great expertise. This can be demonstrated by 

prior art such as VGG, ResNet and DenseNet. These promising Convolutional Neural 

Network (CNN) models are hand-designed by researchers with extensive knowledge of 

both neural networks and image processing. 

Neural Architecture Search Components Neural Architecture Search (NAS) is an 

emerging field in deep learning research that aims to improve model performance and 

applicability. Despite all its potential, setting up a NAS can be difficult. Specifically, NAS 

can be divided into three main components: search space, search strategy/algorithm, and 

evaluation strategy. These elements can be manipulated in several ways to maximize the 

search for efficient neural network designs. Understanding the interaction of these 

components is important for using NAS to improve the performance and capability of 

deep learning models and applications [22]. These components are: 

- Search space: The search space of Neural Architecture Search defines the set of possible 

neural network architectures that the algorithm explores to find the optimal model. 

- Search Strategy: The search strategy of a neural architecture specifies the method or 

algorithm used to navigate the specified search space and find optimal neural network 

architectures. 
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- Evaluation Strategy: The evaluation strategy of Neural Architecture Search 

involves evaluating the performance of candidate neural network architectures in 

the search space to determine their performance against predefined criteria or 

goals. 

 

Fig 5.1 The general framework for NAS 

5.2 The Need for Hardware-Aware NAS 

The need for efficient implementation of DNN networks is increasing as they are 

increasingly used in many industries. However, this is a difficult task that requires unique 

engineering skills and a lot of resources. NAS allows you to[26]: 

-  Automated design: NAS automates the neural network architecture design process, 

reducing the need for manual intervention. This allows you to explore simple and effective 

architectures. 

-  Best performance: NAS aims to find the best architecture for specific tasks and data 

sets. These requirements improve model performance compared to manually generated 

architectures. 

- Complexity of Neural Network Design: Designing an optimal neural network 

architecture is a complex task that requires a deep understanding of the problem, 

significant machine learning expertise, and significant computing resources. A NAS 

automates this process, reducing complexity and increasing accessibility. 

-  Efficiency and Efficiency: NAS algorithms help identify the optimal neural network 

architecture that provides the best performance for a task, improving the efficiency and 

accuracy of predictions. 

-  Prototyping: As the volume and complexity of data increases, the NAS can perform 

prototyping to better handle this growth, creating larger and more complex architectures 

without manual correction. 
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5.3 Neural Network & Hardware Co-optimization 

Cooperative optimization uses a block-based search space for the neural network 

architecture. The search for accelerated architecture configurations and objective neural 

networks is carried out as an evolutionary multi-objective optimization. As shown in 

Algorithm 2, the first search selects random neural networks with their hardware 

configurations from the common search space. S. The neural network is trained with 

quantile learning and the trained neural network is evaluated with a validation set to obtain 

accurate measurements [23]. After the optimization phase, architectural parameters and 

performance metrics are added to the search history. Once the initial population size s is 

reached, a new architecture is derived from the existing population through elementary 

mutations. During the search, NAS was randomly selected from among the following 

variables. 

1. Add/Remove Blocks: This involves adding or removing entire blocks (or layers) 

from the neural network architecture. Since each block contributes to the 

complexity and power of the model, this has a significant impact on the 

performance and computational requirements of the model. 

 

2. Change the block type between residual and feed forward: This involves changing 

the block type from a feed forward block (information flows in one direction, from 

input to output) to a rest block (shortcuts or connections that allow the information 

flows between layers). This can affect the learner's ability to learn complex 

patterns and handle cases where the gradient is missing.  

3. Convolutional layers can remove features from the input data, and adding or 

removing features can change the model's ability to learn from the data.Rotate Size  

4. Increase/Decrease: Refers to adjusting the spatial extent of the rotation filter. 

Increasing the size allows the model to capture larger patterns in the data, while 

decreasing the size allows the model to overestimate local subsamples. 

5. Increase/Decrease Key Block Element: The step is the step size, or amount of 

movement, that the rotary filter makes when moving the input data. Increasing the 

step can reduce the computer load and output size, and decreasing it makes the 

model more sensitive to the details of the input data. 

6. Increase/decrease measurement word width: Neural network measurement 

reduces the accuracy of weights and biases, thereby reducing memory 

requirements and computational complexity. Adjusting the measurement term 

width affects the balance between model accuracy and computational efficiency. 

7. Multiple Accumulation (MAC) element size increase/decrease: In hardware 

design, MAC operations are central to many machine learning algorithms. 

Changing a set affects the parallelism and output of calculations and the overall 

performance of the neural network. 

8. Increase/decrease the number of output channels: This involves changing the 

number of feature maps created by the convolutional layer. Upscaling allows the 

model to learn more complex features, and downscaling can reduce computing 

requirements. 
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5.4 Architecture of Hardware-Aware NAS 

NAS architecture is a complex technique designed to automatically find the optimal neural 

network architecture. It uses data, hardware information, and search methods to integrate 

various components into connected systems. Complete the process and create a perfect neural 

network ready for deployment [24]. 

 

1. Data and target hardware: The first phase includes the data used to train and validate 

the NN and the target hardware on which the nn is deployed. This includes the selection 

of appropriate data sets and the hardware constraints that the neural network must meet. 

Hardware limitations may vary based on factors such as computer power, memory 

capacity, power consumption, and storage requirements. It is important to consider 

these factors so that the neural network works well on the selected device.  

2. NAS Algorithm: The core of the NAS architecture. 

o Search Space: NAS algorithms first define a search space, usually a set of 

possible neural network architectures. For a hardware compatible NAS, this 

search field will be adjusted according to the hardware requirements. This 

means that the NAS algorithm only considers architectures that can run 

efficiently on the target devices and ensures that the product architecture is 

optimized for the device.o  

o Optimization: Once the search space is defined, the NAS algorithm uses 

optimization techniques to select the best architecture in the search space. This 

may include techniques such as reinforcement learning, developmental 

transitions, or gradient-based techniques. The optimization process considers 

many metrics such as model accuracy, computational cost, effort, etc. to 

determine the most efficient and effective architecture.  

3. Constructed neural network: Once the NAS algorithm finds the optimal architecture, it 

generates the corresponding neural network to be used in real applications. These 

networks are designed to provide the best performance on the target devices, taking into 

account the constraints and requirements specified during the search. The resulting 

template can be expanded or edited as needed. 

 

 

 

 

 

 

 

 

Fig 5.2 NAS Architecture 
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5.5 Aging Evolution in NAS 

Aging evolution is a powerful strategy used in hardware-aware neural network 

architecture (NAS) research. Inspired by the principles of biological evolution, this 

strategy aims to optimize the design of neural networks, fostering a balance between the 

exploration of new architectures and the use of known successful architectures. In the 

context of a hardware-aware NAS, legacy evolution plays an important role in ensuring 

that the evolution process is aware of the hardware limitations of the target device. The 

goal is to identify an architecture that not only performs well in terms of predictive 

accuracy, but also meets the specific resource constraints of the selected device. 

Working of NAS algorithm: 

Initial Population: The aging evolution starts with an initial population of neural network 

architectures, each of which is randomly generated. The size of this population is 

determined. 

Assessment: Each architecture in the population is evaluated on its "baseline", which 

measures how well the architecture performs its intended task and respects hardware 

constraints. This physical measure usually considers factors such as prediction accuracy, 

computational complexity, effort, and duration. 

Selection and Modification: Based on physical evaluation, certain architectures are 

selected for the next generation. The selection process favors architectures with more 

relevant points, but also includes less efficient architectures to maintain diversity. The 

selected architecture receives a modification function to slightly change its configuration. 

This may include changing the number of layers, layer types, connection patterns, etc. 

Ageing: An ancient method is implemented so that the population is not dominated by a 

few successful architectures at the beginning and promotes diversity. In this process, body 

art symbols gradually disappear over time, due to the continuous search for new and 

possibly better architectures in the evolutionary process. 

Iteration: Physical evaluation, selection, modification, and aging are performed in several 

iterations until the optimal architecture is found. 

In essence, aging evolution in Hardware-Aware NAS provides a systematic and efficient 

approach to navigating the vast search space of potential neural network architectures. By 

incorporating hardware constraints into the evolution process, it ensures the identified 

architectures are not only effective in predictive performance but also feasible for the 

target device. 
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5.6 Evaluation Metrics for Hardware-Aware NAS 

The need for computational resources (GPU) is the main limitation for the development 

of new NAS algorithms for accuracy and performance evaluation. As a result, many NAS 

benchmarks have been published as LUTs/datasets of various networks and their 

accuracy/performance metrics. NAS-Bench-101 is the first large-scale NAS benchmark. 

The 423K cell-based architecture is trained using CIFAR-10 to record test accuracy and 

training time. NAS-Bench-201[25] extends the NAS-Bench-101 dataset by including 

four-node, five-task networks in three different datasets. NASBench-301 [15] initially 

generated 1018 unique neural structures in the ARROW search space. 60,000 sample 

networks as part of surrogate training. Independent NAS tests provide training times that 

do not measure the length of each network on the device. These specifications limit their 

use in developing HW-compatible NAS switches, especially for researchers unfamiliar 

with the hardware. LatBench[18] is a large dataset that measures the latency of the NAS-

Bench-201[25] sample on various devices, including desktop, mobile, CPU/GPU, TPU, 

and DSP. . HW-NAS-Bench[75] evaluates various networks based on cellular architecture 

(NAS-Bench-201) and layered networks (FBNet search space) using Jetson TX2 Edge 

GPU, Raspberry Pi 4. , EdgeTPU, Pixel 3, Eyeriss and XilinxZC706 FPGA  

5.7 Advantages of Hardware-Aware NAS 

  Neural Architecture Search (NAS) offers several advantages in the field of deep learning: 

- Hardware config part of guided architecture search: One of the key advantages of 

Hardware-Aware NAS is the inclusion of hardware configuration in the search 

process for the optimal neural network architecture. By taking hardware 

limitations into account when searching, NAS systems not only achieve better 

performance in terms of model accuracy but can also improve the efficiency of 

device-optimized search architecture. 

- Single OFA model can support diverse platforms: One of the main advantages of 

hardware-enabled NAS is the ability to develop single-factor authentication (OFA) 

that can be implemented on a variety of hardware platforms. This OFA model can 

be replicated on various hardware architectures without recycling, providing 

flexibility and efficiency in deploying AI models on a variety of hardware 

platforms. 

- Significantly reduced training resource and time: Hardware-aware NAS 

algorithms can significantly reduce training resources and time. By focusing on 

architectures that meet hardware limitations, the NAS system can avoid wasting 

resources on training architectures that may work well but are not feasible for the 

target hardware. This can significantly save computing resources and training 

time. 

- Smaller model footprint as compared to previous methods: Hardware-aware NAS 

often yields neural network architectures with a smaller model footprint compared 

to traditional methods. Optimizing for hardware limitations, these designs can be 

compact but offer comparable or even better performance. 
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- Hardware centric optimization: Focusing on the hardware during the optimization 

process results in models that are highly optimized for the specific target hardware. 

This can improve model performance, reduce power consumption, and reduce 

memory usage on the target hardware. This hardware-centric optimization makes 

hardware-aware NAS especially valuable for peripherals and mobile devices 

where resource constraints are critical. 

5.8 Future Prospect of NAS: 

In recent years, HW-NAS has completely transformed the way neural networks have 

traditionally been designed for various devices. HW-NAS provided the possibility to 

implement hybrid functions in a single network, which was not available in previous 

models such as ResNet50 [27]. In this paper, we have provided an overview and 

summary of several HW-NAS methods targeting resource-constrained devices in 

high-performance systems, followed by a general overview of several accelerators and 

algorithmic aspects. In designing robust and efficient architectures, we emphasize the 

importance of hardware-aware search space, search space construction, and hardware-

based multi objective search. Automatically designed networks are more efficient than 

manually constructed models, and the commonly searched accelerator-network pair 

outperforms manually constructed models in both accuracy and efficiency. We believe 

that further research is needed in the following areas. 

 (1) MCU-NAS: We are still in the early stages of NAS being able to make MCU 

inferences with reasonable accuracy. MCUNet is, to our knowledge, the only method 

that provides nearly 70% accuracy in ImageNet. More efficient algorithms and 

compiler designs are needed to improve the accuracy and efficiency of a limited 

computing system. 

(2) Efficient search space: search elements often constrain the NAS algorithm to find 

more efficient models. Most HW-NAS methods choose the mobile search mode 

(MobileNetV2, ShuffleNetV2) as the backbone, even in advanced devices. The 

accuracy of the models found in this search space is 72-76%, even in the mixed search 

space. More efficient spaces like EfficientNet can lead to the development of a more 

rigorous and efficient search space. Recently, convolutions have been used to replace 

traditional Circuits for Vision applications [26]. Transformer architecture and 

accelerator co-option can be very effective SOTA designs to achieve higher accuracy. 

(3) Algorithm and Accelerator Co-Design: Auto-NBA  targets architecture, precision, 

and accelerator micro-architecture, ignoring data flow. NAAS [24] targets the neural 

architecture and accelerator (microarchitecture and translator mapping) while still 

leaving the quantization aspect. Thus, the implementation of DNNs in many use cases 

requires efficient differential common search methods for all four dimensions, that is 

algorithm (architecture and accuracy) and accelerator (hardware architecture and 

translation routines).   
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(4) Sparse CNN and Accelerator Joint Search: Current HW-NAS methods only search 

regular/dense convolutional layers, ignoring sparse matrices, and do not consider the 

sparse Tensor Core hardware of the latest Nvidia A100 GPUs. Sparse CNN and sparse 

support booster search can be very powerful studies to achieve higher model 

compression and speedup than the currently searched conventional booster-CNN pair.  

(5) Benchmarks: There are multiple hardware such as MCUs, server-grade CPUs and 

multi-GPUs, core architectures such as MobileNetV3, EfficientNet and data to 

develop HW-NAS benchmarks. Since quantization is very important for real-time 

reasoning, HW-quantized NAS benchmarks should be preferred in the future, as 

current benchmarks do not include precision. NAS HW accelerator brands could be 

considered because the co-design process covers both dimensions. 

(6) NAS for other purposes: NAS algorithms were originally designed and focused only 

on finding efficient architectures. Later, when NAS became an accessible concept, it was 

used for other purposes such as pruning, quantization and Winograd search. Thus, the 

potential of NAS can be extended to other applications and use cases. 

(7) HW-NAS for other applications: Although HW-NAS has been used to develop 

latency efficient models for image classification tasks, little attention has been paid to 

hardware for other tasks, such as MobileDets [15] for object detection-aware 

Transformers [25] for NLP, SqueezeNAS [24] for semantic segmentation. Research to 

optimize and build custom DNN device designs for other vision applications is still an 

open challenge. 
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The report encapsulates the groundbreaking strides made in the integration of Artificial 

Intelligence (AI) into embedded systems. It demonstrates the transformative potential of 

AI, not merely as a theoretical concept but as a pragmatic tool that can be seamlessly 

integrated into everyday devices.  

The successful development and deployment of a radar gesture classification model on 

the Infineon XENSIV™ kit mark a significant stride in the field of embedded AI. The 

model's real-time identification of distinct gestures presents a leap towards creating more 

intuitive human-machine interfaces and interactive user experiences across a multitude of 

applications. This accomplishment underscores the potential of AI to elevate the 

interaction between humans and machines. 

Moreover, the development of various machine learning models throughout the project 

exhibits how AI can be harnessed to solve complex tasks, thereby enhancing the efficiency 

and effectiveness of embedded systems. It further amplifies the potential of data-driven 

solutions and machine learning models in revolutionizing the embedded AI landscape. 

The exploration and advancement in the area of "Neural Architecture Search" denote an 

innovative approach towards the design of neural networks. The emphasis on hardware-

aware design could indeed be a gamechanger in the way AI models are developed and 

deployed in real-world settings. By acknowledging the hardware constraints during the 

design process, the research opens avenues for creating more practical and efficient AI 

solutions. 

This report manifests the immense potential and promising future of AI in the sphere of 

embedded systems. Through tangible achievements in radar gesture recognition, the 

development of machine learning models, and the breakthroughs in hardware-aware 

neural architecture search, it provides a glimpse into the exciting possibilities that the 

confluence of AI and embedded systems hold for the future. 
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