
Development of Embedded AI Applications &

Toolchain

Major Project Report
(7EC192)

Submitted in fulfilment of the requirements

for the degree of

Master of Technology

in

Electronics & Communication Engineering

(Embedded Systems)

By

Dhruvil Prajapati

(22MECE08)

Electronics & Communication Engineering Department
Institute of Technology

Nirma University

Ahmedabad-382 481

May 2024

Development of Embedded AI Applications &

Toolchain

Major Project Report

(7EC192)

Submitted in partial fulfilment of the requirements

for the degree of

Master of Technology

in

Electronics & Communication Engineering

By

Dhruvil Prajapati

(22 MECE08)

Under the guidance of

External Project Guide:

Internal Project Guide:

Mr. Swaraj Badhei Prof (Dr.) Yogesh Trivedi

Senior AML Specialist Professor, EC Department,

Infineon Technologies Institute of Technology,

Bangalore. Nirma University, Ahmedabad.

Electronics & Communication Engineering Department

Institute of Technology-Nirma University

Ahmedabad-382 481

May 2024

iii

Certificate

This is to certify that the major project entitled “Development of Embedded AI Applications

& Toolchain” submitted by PRAJAPATI DHRUVIL GAUTAM (Roll No: 22MECE08),

towards the partial fulfilment of the requirements for the award of degree of Master of

Technology in Electronics and Communication Engineering (Embedded Systems) of Nirma

University, Ahmedabad, is the record of work carried out by him under my supervision and

guidance. In my opinion, the submitted work has reached a level required for being accepted

for examination. The results embodied in this major project part-II, to the best of my

knowledge, haven’t been submitted to any other university or institution for award of any

degree or diploma.

Dr. Yogesh Trivedi Dr Nagendra Gajjar

Guide & Professor, PG Coordinator & Professor

Institute of Technology Institute of Technology

Nirma University, Ahmedabad Nirma University, Ahmedabad

Dr. Usha Mehta Director School of Technology,

Professor & HOD, Institute of Technology

ECE Department Nirma University Ahmedabad

Institute of Technology

Nirma University, Ahmedabad

iv

Statement of Originality

I, Prajapati Dhruvil Gautam, Roll. No. 22MECE08, give undertaking that the Major Project

entitled “Development of Embedded AI Applications & Toolchain” submitted by me, towards

the partial fulfilment of the requirements for the degree of Master of Technology in Electronics

& Communication Engineering (Embedded Systems) of Institute of Technology, Nirma

University, Ahmedabad, contains no material that has been awarded for any degree or diploma

in any university or school in any territory to the best of my knowledge. It is the original work

carried out by me and I give assurance that no attempt of plagiarism has been made. It contains

no material that is previously published or written, except where reference has been made. I

understand that in the event of any similarity found subsequently with any published work or

any dissertation work elsewhere; it will result in severe disciplinary action.

———————–

Signature of Student

Date:22/05/2024

Place: Ahmedabad

Endorsed by

Dr. Yogesh Trivedi

 ————————–

(Signature of Guide)

v

Acknowledgements

I would like to express my gratitude and sincere thanks to Prof (Dr.) N.P. Gajjar,

PG Coordinator of M. Tech Embedded Systems and Prof (Dr.) Sachin Gajjar for

guidelines during the review process.

I take this opportunity to express my profound gratitude and deep regards to Prof

(Dr.) Yogesh Trivedi, guide of my internship project for his exemplary guidance,

monitoring, and constant encouragement.

I would also like to thank Mr. Swaraj Badhei, external guide of my internship

project from Infineon Technologies Semiconductor Manufacturing Company, for

guidance, mentoring, and encouragement regarding the project.

- Dhruvil Prajapati

 22MECE08

vi

Infineon Technologies Company Profile

Infineon Technologies is a globally renowned semiconductor company at the forefront of

technological innovation. Established in 1999, Infineon has emerged as a key player in

the semiconductor industry, specializing in the development and manufacturing of

cutting-edge solutions for a wide range of applications. The company's commitment to

excellence and forward-thinking has positioned it as a leader in automotive, industrial,

and power electronics, as well as security and chip card solutions.

Semiconductors are crucial to solve the energy challenges of our time and shape the digital

transformation. This is why Infineon is committed to actively driving decarbonization and

digitalization. As a global semiconductor leader in power systems and IoT, we enable

game-changing solutions for green and efficient energy, clean and safe mobility, as well

as smart and secure IoT. We make life easier, safer, and greener. Together with our

customers and partners. For a better tomorrow.

Infineon's semiconductor products play a pivotal role in enabling advancements in smart

mobility, renewable energy, and digitalization. With a focus on addressing the world's

most pressing challenges, the company's research and development efforts have led to

groundbreaking solutions in power management, connectivity, and security.

Decarbonization the world must reduce carbon emissions and use energy much more

efficiently to secure quality of life for future generations. With our power system

solutions, we are a key enabler in the move to harness renewable energy resources and

deliver energy-efficient solutions along the entire electrical energy chain. Together with

our customers and partners, we make “more out of less” to actively shape a greener future.

Digitalization digital transformation is changing the way we live, work, produce, and

consume. With our smart IoT devices and systems solutions, we link the real and the

digital world, and play a key role in unleashing the full potential of digitalization. Our

products and solutions enable a net ecological benefit, equal to the average annual CO₂

emissions from electricity consumption of more than 179 million people living in Europe.

Our products and solutions cover a broad application spectrum including consumer

electronics, IoT devices, cloud security, IT equipment, home appliances, connected cars,

credit and debit cards, future payments, electronic passports, ID cards, and more. In close

alignment with our ecosystem partners, we create standard-setting solutions that inspire

lasting trust among customers.

vii

Infineon’s business segments and target applications

Automotive (ATV): The ATV division is shaping the future of mobility by enabling clean,

safe, and smart cars. Its product and solution offering is powering the decarbonization and

digitalization of vehicles.

Green Industrial Power (GIP): The GIP division delivers leading semiconductor

solutions for the smart, green, and efficient conversion of electrical energy, covering all

steps in the energy chain from generation through transmission to storage and

consumption.

Power & Sensor Systems (PSS): The PSS division powers decarbonization and

digitalization with a wide range of energy-efficient and digital solutions.

Connected Secure Systems (CSS): The CSS division is driving robust connections,

reliable computing, and seamless security for a digitalized, decarbonized world.

As a hub for innovation, Infineon Technologies has consistently pushed the boundaries of

semiconductor technology. Their commitment to sustainability is evident through

initiatives that prioritize energy efficiency and eco-friendly practices. Collaborative

partnerships with industry leaders and a global presence further underscore Infineon's

influence in shaping the future of technology.

viii

Abstract

The relentless advancement of Artificial Intelligence (AI) is revolutionizing numerous

industries, notably the embedded systems domain. This report sheds light on the development

and deployment of cutting-edge, embedded AI applications and an efficient toolchain, focusing

on gesture recognition using radar sensor, developing machine learning models, and r&d on

neural architecture search algorithm.

The first major achievement was the development and deployment of a radar gesture

classification model on the Infineon XENSIV™ kit. This innovative model could identify four

distinct gestures in real-time, serving as a testament to the power of embedded AI in enhancing

interaction between humans and machines. With the ability to recognize and interpret specific

gestures, the model provided a foundation for creating more intuitive and interactive user

interfaces for a wide range of applications. In addition to radar gesture recognition, the

internship involved the development of various machine learning models. These models were

designed to harness the power of AI for solving complex tasks, demonstrating the capacity of

machine learning in improving the efficiency of embedded systems. This work further

highlighted the potential of machine learning models to advance data-driven solutions in the

field of embedded AI. Lastly, the report delves into the research, exploration, and development

of "Neural Architecture Search". This groundbreaking work involved the design of neural

networks that are aware of the hardware they run on, potentially revolutionizing the way

machine learning models are developed and deployed in real-world settings. By taking into

consideration the hardware constraints during the design of neural networks, this research

could pave the way for more efficient and practical AI solutions.

In summary, the work chronicled in this report underscores the transformative potential of AI

in the realm of embedded systems. It offers valuable insights and contributions in radar gesture

recognition, machine learning models, and hardware-aware neural architecture search,

showcasing a promising future for the integration of AI into everyday devices.

ix

Declaration iii

Disclaimer iv

Certificate v

Acknowledgements vii

Abstract xiv

Abbreviation Notation

and Nomenclature

 xv

1 Introduction 1

 1.1 Motivation 1

 1.2 Problem Statement 1

 1.3 Scope of work 2

 1.4 Outline of Thesis 2

2 Literature Review 3

 2.1 Overview 3

 2.2 M. L Architecture in Embedded

Systems

4

 2.3 Optimization Techniques 4

 2.4 Framework and Tools 5

3 Journey into Embedded AI

Development

6

 3.1 Introduction to Embedded AI 6

 3.2 Advantages of Embedded AI 7

 3.3 Hardware and Software Selection 8

 3.4 Software Consideration 10

 3.5 Challenges in Embedded AI 11

Index

x

 3.6 Future of Embedded AI 12

4 Work done at Infineon 14

 4.1 Research & Exploration 14

 4.2 ML Model Development 15

 4.3 Exploration ML Optimization

Techniques

17

 4.4 Voice detection at edge 19

 4.5 Radar Gesture Classification 21

5 Research & development of Neural

Architecture search algorithm

24

 5.1 Introduction to Neural Architecture

Search

24

 5.2 The Need for HW-Aware NAS 25

 5.3 Neural Network / Hardware Co-

optimization

26

 5.4 Architecture of HW-NAS 27

 5.5 Aging Evolution in NAS 28

 5.6 Evaluation Metrics for NAS 28

 5.7 Advantages of NAS 29

 5.8 Future Prospect of NAS 30

6 Conclusion 31

 References 32

xi

List of Figures

Fig 2.1 Modus Technical Flow 5

Fig 3.1 XMC800 Board v2 9

Fig 3.2 CY8CKIT-064BOS2-4343W PSoC 64 kit 9

Fig 4.1 Development Flow 15

Fig 4.2 Speech Recognition Model 16

Fig 4.3 Pruning Network 17

Fig 4.4 Quantized Network 18

Fig 4.5 Weight Sharing Matrix 18

Fig 4.6 CYCPROTO-062-4343W PSoC 6 19

Fig 4.7 Voice recognition flow 19

Fig 4.8 Technical flow diagram 20

Fig 4.9 Results of Voice Recognition model 21

Fig 4.10 FMCW 60 Ghz Working 21

Fig 4.11 Gesture Classification Model 21

Fig 4.12 Design Flow of gesture classification 23

 Fig 5.1 The General Framework for NAS 25

Fig 5.2 NAS Architecture 27

xii

List of Tables

Table 3.1 ML tools and Description 11

xiii

Abbreviation Notation and Nomenclature

AI Artificial Intelligence

ML Machine Learning

IoT Internet of Things

Edge AI Edge Artificial Intelligence

RTOS Real-Time Operating System

CMSIS Cortex Microcontroller Software Interface Standard

DSP Digital Signal Processor

CNN Convolutional Neural Network

MCU Microcontroller Unit

FPGA Field-Programmable Gate Array

NN Neural Network

DNN Deep Neural Network

FMCW Frequency Modulated Continuous Wave

MTB Modus Toolbox

NAS Neural Architecture Search

1

Chapter 1

Introduction

1.1 Motivation

Imagine a typical day in a modern society using artificial intelligence technology. People

wake up in the morning, they use their smartwatches to check if they slept well. Then I

asked the voice assistant how long it took to choose the outfit. They activate their

smartphones with Face ID scanners and check their daily schedules. Finally, he arrives at

the office in a car on autopilot. Artificial intelligence (AI) has become ubiquitous... An

internship as an applied machine learning engineer at Infineon Technologies offers the

opportunity to translate theoretical knowledge into tangible real-world applications. The

prospect of delving into the dynamic intersection of embedded systems and artificial

intelligence, honing my skills and contributing to innovative projects further increased my

enthusiasm. The philosophy of continuous learning and problem solving ingrained in the

corporate environment aligns perfectly with my own values, motivating me to view

challenges as opportunities for growth.

1.2 Problem Statement

The convergence of embedded systems, artificial intelligence (AI), and sensor

technologies has introduced unprecedented opportunities for innovation, particularly in

the realm of Infineon microcontrollers (MCUs). However, this integration poses a series

of challenges that demand meticulous attention. The development of embedded AI

applications using Infineon MCUs and sensors necessitates a seamless fusion of hardware

and software, demanding a delicate balance between computational efficiency and model

accuracy.

Furthermore, the optimization of machine learning (ML) models in this embedded

environment requires the establishment of a robust toolchain. Challenges lie in tailoring

the ML model to the constraints of Infineon MCUs, maximizing performance while

minimizing resource utilization. Ensuring real-time responsiveness, energy efficiency, and

effective utilization of limited resources emerges as a critical concern.

The problem statement aims to address the intricate interplay between embedded AI

application development on Infineon MCUs, sensor integration, and the establishment of

an efficient ML model optimization toolchain. Solving these challenges is imperative for

unlocking the full potential of embedded AI systems, ensuring their seamless integration

into a variety of applications while meeting the stringent resource constraints imposed by

the embedded environment. The report will delve into these challenges, proposing

innovative solutions and contributing to the advancement of embedded AI technology.

2

1.3 Scope of Work

The scope of this project encompasses a comprehensive exploration and development of

embedded AI applications utilizing Infineon microcontrollers (MCUs) and sensor

technologies. The primary focus developing a Radar Gesture Classification ML model

capable of accurately classifying radar generated gesture patterns a NN architecture is

developed and optimized for real time performance and accuracy ensuring reliable gesture

recognition across diverse scenarios. Deploying the trained NN model on FMCW 60 GHZ

RADAR SENSOR address challenges related to sensor data synchronization,

preprocessing, and real-time model inference on the XENSIV platform.

1.4 Outline of Thesis

A comprehensive exploration of the development and implementation of a machine

learning model for radar gesture classification, specifically designed for integration with

the XENSIV 60Ghz radar sensor suite. With a focus on model efficiency and real-time

applicability, the project not only addresses the nuances of radar-based gesture recognition

but also delves into the complexities of optimization, modelling and machine learning for

deployment in resource-limited environments. The report continues with an introduction,

briefly presenting the phase, establishing the context, motivation and overall objectives of

the project. From there, the literature review will examine existing research, shedding light

on radar gesture classification and the technological landscape surrounding the XENSIV

suite. Key insights from previous solutions will guide subsequent development efforts.

The core of the report focuses on machine learning model development, providing insight

into the chosen architecture, the complexity of the training data, and the validation process

with a comprehensive understanding of neural network construction, ensuring

transparency in the decision-making process The actual implementation takes centre stage

in the “Integration with the XENSIV Toolkit” section, where the report examines the steps

taken to seamlessly integrate the machine learning model with the XENSIV Toolkit.

The important aspect of the report is in the “ML Model Optimization Toolchain” section,

which explores the development of flexible toolchains capable of optimizing machine

learning models for deployment on platforms have limited resources.

Overall, the report serves as a valuable resource, providing not only technical information

but also practical considerations for future efforts in similar fields.

3

Chapter 2

Literature review

2.1 Overview

The problem of excessive energy consumption and poor compatibility while deploying

artificial intelligence models and networks on embedded devices has been manageable due to

advancements in artificial intelligence algorithms and models and embedded device support.

This report presents three approaches to implementing artificial intelligence technologies on

embedded devices in response to these issues: neural network compression, acceleration

techniques for embedded devices, artificial intelligence models and algorithms on hardware

with limited resources, and existing embedded AI application models. This report finishes with

future directions for embedded AI and a summary of the topic, after comparing pertinent

literature and highlighting the study's merits and drawbacks.

Embedded Intelligence is currently building a foundation that includes AI support delivery

platforms such design of hardware accelerators for neural networks, network structure design,

network model optimization including quantization, pruning, and weight reduction methods,

and improvement of the underlying hardware algorithms [2]. All the above technologies

contribute to the deployment of AI to resource-constrained devices, but further development is

needed in the following areas: Efficient algorithms and lightweight models, optimization of

hardware acceleration techniques., optimization of deployment methods and compatibility.

 Advances in artificial intelligence algorithms and models and support for embedded devices

have made it possible to overcome the problems of high-power consumption and poor

compatibility when deploying artificial intelligence models and networks to embedded devices.

 In response to these issues, present in artificial intelligence algorithms and models for

embedded devices on resource-constrained hardware, including methods for accelerating

embedded devices, neural network compression, and current application models. In this report

present aspects of methods and applications for deploying intelligent technologies on

Embedded devices [17]. Application such as Voice recognition and Radar Gesture

Classification such are developed and deployed on embedded devices are mentioned alongside

in report, In order to know the development status of radar gesture recognition and predict the

future development trend, the research and development of gesture recognition based on radar

technology has been studied in recent years. Classification algorithms for gesture recognition

are summarized, focusing on key techniques such as dynamic recognition of gesture

information, preprocessing of gesture echo signals, and feature extraction in radar gesture

recognition technology. System performance is analysed and evaluated. Clarify the issues to

be solved in the direction of research and predict the direction of future research. This result

shows that Radar's gesture recognition technology has made a significant advance in human-

computer interaction applications. With the deepening of related research, the gesture

recognition system based on radar technology will develop towards intelligence.

4

2.2 ML Architecture used in Embedded Systems:

Below are some pre-trained ML architecture

• MobileNet: MobileNet is designed for mobile and embedded image processing

applications and provides a lightweight architecture with depth-separable convolutions

[4]. It balances accuracy and computational efficiency, making it suitable for use on

devices with limited resources.

• TensorFlow Lite Micro (TFLite Micro) Models: TensorFlow Lite Micro includes a

variety of optimized models suitable for embedded systems.[21] These models are

designed to run efficiently on microcontrollers and other edge devices for everything

from image classification to keyword detection.

• TinyML Models: TinyML refers to the deployment of very lightweight machine

learning models on resource-constrained devices [6]. These models are often based on

simplified architectures, such as fully connected neural networks or support vector

machines and are tailored to minimize storage and computational requirements.

• Quantized Neural Network (QNN): A quantized neural network uses low-precision

representations for weights and activations to minimize memory usage [3].This

category includes binary neural networks (BNNs) and ternary weighting networks that

optimize models for use on devices with limited memory.

• Lightweight Convolutional Neural Networks (LCNN): LCNNs are designed with a

focus on lightweight and efficient convolution operations, making them suitable for

real-time image processing on embedded devices [3].

2.3 Optimization Techniques

Machine learning optimization is the process of adjusting hyperparameters in order to minimize

the cost function by using one of the optimization techniques. It is important to minimize the

cost function because it describes the discrepancy between the true value of the estimated

parameter and what the model has predicted.

• Compact model: Design a smaller model from scratch that can achieve acceptable

performance for the task at hand. This requires a thoughtful design process and selection

of model components based on downstream (embedded or mobile) performance

requirements [3].

• Tensor Decomposition: Simplify large tensors or matrices into smaller matrices or

tensors to reduce model storage space and computational cycles. One way to accomplish

this is to cluster the model parameters. Clustering groups the weights of each layer into a

predefined number of clusters and provides the centroid of each cluster for calculation.

• Data quantization: Reduces the precision of model parameters [19]. This is one of the

most common and simple ways to optimize machine learning models for use on edge

devices [3].

• Network sparsification: reduce the number of connections/neurons in the network to

obtain a smaller and more sufficient model. Pruning allows you to make your network

thinner. Cleaning removes parameters in the model that have little impact on performance.

An important part of pruning is choosing which parameters to remove. A simple heuristic

is to remove parameters whose values are close to zero.

5

Combining these techniques can significantly optimize machine learning models and make

them suitable for use on edge devices. But that's easier said than done. Optimizations typically

reduce model performance, but the performance degradation varies by model.

 In rare cases, optimization may improve model performance. Therefore, it is up to the system

developer to decide which optimization technique to use and how much to compromise model

performance [19].

2.4 Framework and Tools

The development of embedded AI has led to a variety of frameworks and tools that facilitate

the use of machine learning models in resource-constrained embedded systems.

 Here are some notable

Frameworks:

• TensorFlow Lite: Developed by Google, TensorFlow Lite is a popular software

specifically designed for mobile and embedded devices. A lightweight version of the

TensorFlow framework. Provides model transformation, quantization, and optimization

tools for efficient deployment to edge devices [21].

• PyTorch Mobile: PyTorch is known for its flexibility and dynamic computational

graphs, and has a mobile version designed for deploying models to devices with limited

resources. PyTorch Mobile supports model transformation and optimization techniques

to ensure efficient execution on edge devices [22].

• ONNX (Open Neural Network Exchange): ONNX is an open-source format for

representing machine learning models. This allows models to be trained in one

framework and then transferred and deployed to another, making it a versatile tool for

cross-framework compatibility in embedded systems [20].

• CMSIS-NN: ARM's CMSIS (Cortex Microcontroller Software Interface Standard)

includes CMSIS-NN, a library specifically tailored to optimize neural network

implementations on ARM Cortex-M processors. It provides the ability to operate on

neural network layers and allows efficient execution on microcontrollers [22].

Tools:

• Modus Toolbox™: Software is a modern, extensible development environment

supporting a wide range of Infineon microcontroller devices, including PSoC™ Arm®

Cortex® Microcontrollers, TRAVEO™ T2G Arm® Cortex® Microcontroller, XMC™

Industrial Microcontrollers, AIROC™ Wi-Fi devices, AIROC™ Bluetooth® devices,

and USB-C Power Delivery Microcontrollers. The ML solution in Modus Toolbox also

provides a configurator for importing pre-trained machine learning models and

generating embedded models (as C code or binary). This generated model can be used

in your ML library along with your target device's application code. This tool also

allows you to customize selected pre-trained models and evaluate their performance

[10].

6

• ML Configurator: The Modu Toolbox™ Machine Learning (ML) tuner is used in ML

applications to adapt a pre-trained learning model to the target Infineon platform. The

tool accepts a pre-trained ML model and creates an embedded model (like a library)

that can be used with application code on the target device. With the Modu Toolbox™

ML Tuner, you can also adapt the selected pre-trained model to the target device with a

set of optimization parameters [10].

• Netron: Netron is a viewer for neural network, deep learning, and machine learning

models. Netron supports ONNX, TensorFlow Lite, Core ML, Keras, Caffe, Darknet,

MXNet, PaddlePaddle, ncnn, MNN and TensorFlow.

Fig 2.1

7

Chapter 3

Journey into Embedded AI Development

3.1 Introduction to Embedded Artificial Intelligence

The advent of artificial intelligence (AI) in recent years has truly revolutionized our industries

and our personal lives, offering unprecedented opportunities and capabilities. But while cloud-

based processing and cloud AI have been on the rise over the past decade, they have faced

issues such as latency, bandwidth limitations, and security and privacy concerns, to name a

few. Here, the arrival of the Embedded AI greatly increased the value of his and changed the

AI landscape.

This chapter introduces the field of embedded AI and reveals the complexities and innovations

that define this emerging field. Embedded AI goes beyond traditional computing paradigms by

building intelligence into devices ranging from microcontrollers to specialized hardware the

impact will be significant, creating a paradigm shift in the way we perceive and interact with

the myriad smart devices around us. We explore the unique challenges and opportunities that

characterize the development of AI in embedded systems. From complex hardware

considerations to the use of advanced machine learning models, embedded AI requires a

delicate balance between computing power and resource limitations. Navigate sensor

integration, real-time processing, and security considerations to uncover the complexities that

shape the development and deployment of AI at the edge. The real-world applications and case

studies that demonstrate the transformative potential of embedded AI across a variety of

industries[6]. As we move beyond this, we will also consider optimization strategies beyond

simple quantization, such as model compression and pruning, and evaluate the delicate trade-

offs between model accuracy and resource efficiency. Essentially, this chapter serves as an

entry point into the realm of embedded AI and invites us to witness the convergence of

intelligence and embedded systems. There, innovations combine to redefine the functionality

of devices that have become an integral part of modern society.

3.2 Advantages of Embedded AI

Following are the advantages of Embedded:

• Reduced latency: Embedded AI applications limit the amount of data sent over the

wide area network because processing occurs close to the data source rather than in the

cloud. Therefore, data processing is faster and Embedded AI application latency is

reduced. Additionally, sending and executing instructions from AI applications to the

field significantly reduces latency. This is important for several classes of low latency

AI applications, such as applications based on industrial robots and automated guided

vehicles. Several other video-based applications that need to send data to the cloud can

now not only be processed at the edge, but also assess in near real-time what will happen

in situations such as: Because it's important, it's now handled at the edge. security case.

• Real-time performance: The low latency of Embedded AI applications makes them

suitable for implementing features that require real-time performance. For example,

machine learning applications that detect events in real time (e.g., fault detection in

8

production lines, abnormal behaviour detection in security applications) may tolerate

delays associated with transmitting and processing connected data.

 • Improved security and data protection: Embedded AI applications significantly

reduce the exposure of data outside the organization that creates or owns the data. This

reduces the attack surface and minimizes opportunities for malicious security attacks and

data breaches. For this reason, Embedded AI applications tend to be much more secure than

those in the cloud [6].

 • Improved privacy controls: Many AI applications process sensitive data, such as: Data

related to security, intellectual property, patients, and other forms of his personal data.

Embedded AI deployments create a trusted data management environment. All these

applications offer more robust privacy controls than traditional AI applications in the cloud.

This is because Edge AI applications limit the amount of data transferred or shared outside

of organizations that create or process sensitive data sets.

 • Energy Efficiency: Cloud Data Transfer and Cloud Data Processing is a highly energy

efficient operation. Cloud I/O (input/output) functionality is associated with significant

CO2 emissions. Most importantly, Cloud AI is not green overall, as very large amounts of

data are typically processed by GPUs (Graphics Processing Units) and TSUs (Tensor

Processing Units). Edge AI alleviates environmental performance issues for cloud AI

applications. It reduces the number of I/O operations and processes data in an edge device

or edge data centre. Therefore, it leads to an improvement in the overall carbon footprint

of AI applications.

 • Cost-effective: Edge AI applications transfer and process much less data than cloud

computing applications, saving network bandwidth, and computing resources.

Additionally, it consumes less energy than cloud AI applications. This allows edge AI

applications to be deployed and operated at significantly lower costs than cloud AI

deployments.

 • On-device learning: Certain Edge AI applications can run within a single device, such

as an IoT device or a microcontroller. This enables the development of powerful and

intelligent devices such as system-on-chip (SoC) devices. One of the key features of is on-

device learning. This is the basis for giving his machine intelligence capabilities that are

largely not based on cloud processing.

3.3 Hardware & Software Selection

Hardware Considerations: Hardware Considerations To ensure that the hardware you select

meets the requirements of your Embedded AI system, you must consider several factors. A

key consideration is processing power, because Embedded AI applications require

hardware that can process data quickly and accurately. The processing power and clock

speed of hardware play a critical role in achieving the real-time processing that is essential

for Embedded AI systems. Another important consideration is the amount and type of

memory available on your hardware. Embedded AI applications require sufficient memory

to store and process large amounts of data, focusing on the 's fast real-time processing

capabilities. There is a race in the hardware industry for the highest TOPS (Terra operations

9

per second), but this is not a 1-to-1 comparison. Power consumption is also an important

consideration, especially for devices with limited power resources, such as IoT devices.

Optimizing the hardware for the 's power consumption is important to ensure long-term

operation of the device without frequent replacement or recharging of the battery.

Technologies such as the use of low-power chips, hardware accelerators, and the and

intelligent power management system help achieve the 's low power consumption in

Embedded AI systems.

Seamless connectivity is also important for AI systems that require hardware that enables

seamless communication with other devices and cloud-based platforms. The hardware must

offer various connectivity options such as Wi-Fi, Bluetooth, and mobile networks to enable

efficient communication and data processing with your other devices. This connection

ensures fast and efficient data processing and analysis, contributing to the overall

performance of the Edge AI system.

Some Infineon’s Hardware Compatible to run AI Algorithms

Fig 3.1

Fig 3.2

10

CY8CKIT-064B0S2-4343W PSoC 64 “Secure Boot” Wi-Fi BT Pioneer Kit shown in Fig 3.2

a true programmable embedded system-on-chip, integrating a 150-MHz Arm® Cortex®-M4

as the primary application processor, a 100-MHz Arm Cortex-M0+ that supports low-power

operations, pre-configured with a root-of-trust and secure processing environment, up to 2 MB

Flash and 1 MB SRAM, Secure Digital Host Controller (SDHC) supporting SD/SDIO/eMMC

interfaces, CapSenseTM touch-sensing, and programmable analogy and digital peripherals that

allow higher flexibility, in-field tuning of the design, and faster time-to-market[8].

3.4 Software Considerations

When it comes to edge AI systems, it is important to choose software with specific

characteristics to make the work optimally. By analysing various factors, verifies that the

selected software meets the requirements of the Edge AI system. Compatibility is an important

consideration when selecting software. The software must run efficiently on the hardware and

enable real-time data processing. Additionally, the ensures compatibility with other software

components used on the system, including B. Operating Systems, Libraries, and Frameworks,

Seamless Compatibility Integration and Features. Scalability of the is another important aspect

that the must consider when designing edge AI systems. Considering that edge AI systems often

process large amounts of data, the software must be able to handle the real-time processing

and analysis requirements associated with such data Scalable software enables the system to

handle increasing data volumes, processing requirements, and user requests without impacting

performance. The accuracy of the software used in edge AI systems is critical. These systems

rely heavily on accurate data analysis and processing to provide meaningful insights and

support decision making. Therefore, the software must have high accuracy and reliability in

analysing and processing data. interpretability, or the software’s ability to explain results in an

understandable way, plays a key role in the design of the Edge AI system. interpretability allows

the user to understand the decision-making process of her system and provides insight into data

analysis. This aspect is especially important in applications where decisions made by edge AI

systems have a significant impact, such as healthcare and finance [14].

 Software used in edge AI systems must prioritize interpretability and present results in a clear

and understandable manner.

Tool Description

 ModusToolbox™ is a set of tools to

help you develop applications for

Infineon devices. These tools include

GUIs, command-line programs,

software libraries, and third-party

software that you can use in just about

any combination you need.. It provides

ML tools , libraries, middleware for ML

applications[11].

11

Imagimob AI is a leading platform for

Machine Learning (ML) solutions for

edge devices, providing an end-to-end

machine learning toolchain that is

highly flexible and easy to use with a

strong focus on delivering production-

grade ML-models for a wide range of

use cases building on Infineon’s

advanced sensors and comprehensive

IoT solutions, such as audio event

detection, voice control, predictive

maintenance, gesture recognition,

signal classification as well as material

detection[16].

Edge Impulse are a cloud-based

Machine Learning training platform

that is deployable to TinyML devices.

With Edge Impulse’s partner ecosystem

and expansive training content,

deploying machine learning models to

embedded microcontrollers is made

easier[15].

SensiML are an AutoML training

platform designed to speed up machine

learning deployment with their ease-of-

use tools[15].

Table 3.1 ML Tools & Description

3.5 Challenges in Embedded AI

Latency Challenges Latency is a critical issue that can significantly affect the performance of

AI systems. These systems have three types of latency problems: input delay, processing delay

and output delay. Input latency is the delay between the time the edge device stores a data

sample and the time the AI model processes it. This may be due to his factors such as slow

sensor response time, data transmission delay, and additional data processing costs. Input lag

affects the accuracy and timeliness of AI predictions and can lead to lost opportunities to make

real-time decisions. Processing latency, on the other hand, refers to the delay between the time

an AI model receives a data sample and the time it generates a prediction.

 Delays may be caused by factors such as the complexity of the AI model, the size of the input

data, and the processing power of the Edge device. This affects the real-time responsiveness of

AI predictions and can cause delays in critical applications such as medical diagnostics and

12

autonomous driving [6]. Output delay is the delay between generating an AI prediction and

sending it to the user or downstream system. Several factors can cause this problem, including

network congestion, communication protocol overhead, and synchronization between devices.

Printing delays can affect the usability and effectiveness of AI predictions and cause delays in

decision making and action.

Power Consumption Consumption issues EdgeAI systems can also face challenges related to

high power consumption, which can limit deployment and impact, especially in remote and

harsh environments such as industrial plants, farmland, and highways. The high energy demand

is due to the need for efficient computing resources to process and analyse data in real time.

Edge devices often require powerful processors, memory and storage devices that consume a

lot of power [9]. This makes it difficult to operate such systems in power-constrained

environments. In addition, always-on connectivity and data transfer between peripherals and

the cloud can increase energy consumption even more.

Scalability Challenges Edge AI systems can face significant scalability challenges that can

affect efficiency, reliability, and flexibility. Scalability is the ability of a system to handle

increasing amounts of data, users, or devices without reducing performance. These challenges

can be divided into three categories: computational scalability, data scalability, and system

scalability [21]. Compute scalability is the ability of edge AI systems to process increasingly

large amounts of data without exceeding the processing power and storage capacity of edge

devices. Limited processing power, memory and storage space in peripherals limit the size and

complexity of AI models, which can hinder accuracy and responsiveness. Data scalability, on

the other hand, is the ability of edge AI systems to process increasing amounts. of data without

sacrificing performance. Processing large amounts of data in real time on edge devices can be

difficult due to limited data transfer capacity and unreliable connections, which can limit the

amount and quality of data that can be transferred and processed.

3.6 Future of Embedded AI

Neuromorphic Computing: Improving AI Intelligence by Imitating the Human Brain The

future of Embedded AI will also be shaped by new AI paradigms such as neuromorphic

computing. This approach mimics the structure and function of the human brain and emulates

the neural networks and synaptic connections within our brains. It is based on a new

neuromorphic chip that processes information more efficiently while adapting to new situations

more quickly and effectively. The neuromorphic chip consists of many artificial neurons and

artificial synapses that can mimic the functionality of the brain tip.

 Research on neuromorphic computing therefore brings us one step closer to understanding,

deciphering, and using the human brain's code in AI applications [6].

 The neuromorphic computing chip is well-suited to deliver Embedded AI benefits at scale.

This is because the uses less power and is faster than traditional processors. Most importantly,

the Embedded AI system is equipped with thinking capabilities like the human brain.

 This is very useful in many ubiquitous applications (obstacle avoidance, robust auditory

recognition, etc.). As neuromorphic computing matures, this technology will enable a new

generation of AI-based edge devices that can learn and adapt in real time[9].

13

In-Memory Computing for Embedded AI In-memory computing is another technology trend

that will impact the future of Embedded AI. This involves storing and processing data directly

in the device's memory, rather than relying on traditional storage systems (such as hard drives).

This approach aims to significantly reduce data access time and accelerate the computing speed

of Embedded AI systems [16]. This further improves the Embedded AI system 's real-time

analysis and decision-making capabilities. In the future, Embedded AI applications will need

to process larger amounts of data quickly. Therefore, in-memory computing becomes

increasingly important to optimize performance and Embedded AI efficiency. Specifically,

Embedded AI enables devices to process complex algorithms and extract valuable insights

from data at unprecedented speeds [9].

Data-efficient AI: Maximizing the value of in the absence of Ongoing research into data-

efficient AI involves expanding and using pre-trained models with domain knowledge, e.g.

Many technologies are being considered, ranging from transfer learning (transfer learning)

Extensions to the paradigm include humans and characterize processes (such as active learning)

as part of human-AI interactions. There are also moderate quality, popular data-efficient

techniques to reduce the size of AI models[17]. Data One of the key challenges with AI is that

large amounts of data are required to effectively train machine learning algorithms (e.g.deep

learning).There is often a lack of sufficient high-quality data to train such algorithms. This

issue applies to Embedded AI systems and applications. Additionally, Embedded AI systems

face computational and storage limitations that prevent them from taking full advantage of

large AI models and large numbers of data points. Data-efficient AI techniques aim to

overcome the above limitations by allowing AI models to learn from limited data samples[6].

.

14

Chapter 4

Work done at Infineon

At Infineon I am interning in Applied Machine Learning team a one stop solution for AI/ML

activities. AML team mission is to provide state of the art AI methods develop AI based

applications with focus on R&D in EDA also engage in development of safe and secure low

power HW/SW IP for AI. The team operates in four different landscapes which are AI in SoC

Development, AI in Software Solutions, AI in Products, AI Infrastructure & Data Mesh in

which my work contributes to AI in products to develop hardware compatible AI models by

providing support with applications & services. Vision of the team is to continuously drive

innovation and business value using cutting-edge machine learning techniques. Our team's goal

is to utilize the latest advancements in the field of artificial intelligence to create intelligent

systems that can learn from data and make predictions, automate processes, and derive insights

that can drive competitive advantage for our company.

4.1 Research and Exploration

Model development is a key area of research in the field of Machine Learning. Machine

Learning models are used to learn patterns from data and make predictions or classify new

observations. The performance of these models depends on several factors [9], including the

quality of the data, the choice of algorithm, and the selection of hyperparameters.

In recent years, there has been significant research in the development of new Machine

Learning models and techniques. One of the most exciting areas of research is deep learning, a

technique that uses artificial neural networks to learn complex patterns from data. Deep

learning has been used to achieve state-of-the-art performance in a variety of tasks, including

image recognition, speech recognition, and natural language processing.

Another area of research is reinforcement learning, a technique that involves training an agent

to make decisions based on feedback from the environment [7]. Reinforcement learning has

been used to develop intelligent systems that can play games, control robots, and optimize

processes.

There has also been research in the development of specialized Machine Learning models for

specific tasks. For example, there are models designed specifically for time series analysis, text

classification, and anomaly detection. These models are optimized for their respective tasks

and have been shown to outperform general-purpose models in certain scenarios.

Exploration in model optimization involves finding the best set of hyperparameters that

maximize the model's performance [10]. Hyperparameters are parameters that are set before

training and affect the learning process. Examples of hyperparameters include learning rate,

batch size, and regularization strength. By tuning these hyperparameters, we can improve the

accuracy and speed of the model. Optimization can also involve preprocessing and feature

engineering to improve the quality of the data. For example, we might remove outliers or

missing values, scale the data, or perform feature selection to remove irrelevant or redundant

features. These techniques can help to improve the model's accuracy and reduce its

computation time.

Deploying models on edge devices can be challenging due to the limited resources available

on these devices, such as memory, processing power, and battery life. To overcome these

challenges, we need to optimize the model for deployment on edge devices. This may involve

15

reducing the size of the model, using more efficient algorithms, or using specialized hardware,

such as GPUs or MCUs.

In addition to optimization, we also need to consider the security and privacy implications of

deploying Machine Learning models. We need to ensure that the model and the data it

processes are protected from unauthorized access and misuse. This may involve using

encryption, access controls, or anonymization techniques.

In summary, model optimization and deployment are critical components of Machine Learning

development. By optimizing our models for performance, reliability, and efficiency, and by

deploying them on edge devices or cloud-based environments, we can make Machine Learning

applications more accessible and useful to end-users.

4.2 Machine Learning Model Development

A speech command classification model is developed on TensorFlow’s speech command

dataset which has 8 different voice commands which are pre-processed then fed to CNN model

for a classification task. The model is developed to deploy on the PSoC-6 from where the

speech commands will be detected in real time. Other than these various models were

developed for learning purpose [6].

Flow of the Development:

Fig 4.1

1. Data Preprocessing: The step involves gathering, cleaning, and preprocessing the data.

In your case, you have used TensorFlow's Speech Command Dataset, which contains

thousands of audio samples of commands. You need to transform the audio signals into

numerical features that can be used by a machine learning algorithm. This process

involves techniques such as Fourier transforms and Mel-frequency cepstral coefficients

(MFCC).

2. Model Selection: In this step, you need to select an appropriate machine learning

algorithm for your task. Since you are working with audio data, you might consider

using a convolutional neural network (CNN) or a recurrent neural network (RNN).

TensorFlow provides pre-built models that can be used as a starting point, or you can

build your own model from scratch.

3. Training: Once you have selected a model, you need to train it on the data. This involves

splitting the data into training, validation, and testing sets. During training, the model

learns to recognize patterns in the audio data, and its performance is evaluated on the

validation set. You can adjust the hyperparameters such as batch size, learning rate, and

optimizer during the training process to achieve better result

16

4. Deployment: Once you have a trained and evaluated model, you need to deploy it to a

production environment. This might involve optimizing the model for deployment,

such as reducing its size or using more efficient algorithms.

 Design of Developed Model

 Fig 4.2

1. Input Shape: The model takes an input tensor of

shape (16, 5, 1), which represents a 1D audio

signal with 16 frequency bands and 5 time steps.

2. Conv2D Layer: The first layer of the model is a

2D convolutional layer with a certain number of

filters and kernel size. This layer applies a set of

learnable filters to the input signal, extracting

features that are relevant to the classification

task.

3. Batch Normalization: After the convolutional

layer, a batch normalization layer is applied to

normalize the output of the convolutional layer.

4. Average Pooling 2D: The output of the batch

normalization layer is passed through a 2D

average pooling layer, which performs down-

sampling of the output by taking the average of

a small window of features.

5. Conv2D Layer: Another 2D convolutional layer

is applied to extract more complex features from

the down-sampled output of the previous layer.

6. Batch Normalization: The output of the second

convolutional layer is again normalized using a

batch normalization layer.

7. Average Pooling 2D: Another 2D average

pooling layer is applied to down-sample the

output of the second batch normalization layer.

8. Flatten: The output of the second average

pooling layer is then flattened into a one-

dimensional vector, ready to be passed to a fully

connected layer.

9. Dropout: A dropout layer is applied to the

flattened output to prevent overfitting. Dropout

randomly removes a certain percentage of the

neurons in the layer, forcing the network to learn

more robust features.

10. Dense Layer: Finally, a fully connected dense

layer with a certain number of units is applied to

the output of the dropout layer, producing the

final output tensor.

11. Output: The output of the dense layer is the

model's prediction for the input audio signal.

In summary, speech command classification model uses

a sequence of convolutional and pooling layers,

followed by a fully connected layer, to learn features

from the input audio signal and produce a prediction for

the classification task.

17

4.3 Exploration: ML Optimization Techniques

In the fields of computer vision, natural language processing, video analytics, etc., deep neural

networks are being used in innovative and impressive ways. However, the computational

resources required to implement neural networks are on the higher side. In addition, the energy

consumption of these architectures is also high, while the heat they dissipate into the

environment is extremely harmful. The implementation of such feature rich DNNs in Internet

of Things (IoT) edge devices is full of technical challenges and concerns due to the limited

hardware and power resources of the edge devices. Therefore, DNN models should be

optimized to significantly reduce the use of huge computational resources. Clipping: Larger

models require more memory and energy, are difficult to partition and consume a lot of

computation. Cropping creates models that are smaller in size for inference. Due to its smaller

size, the model becomes both memory and energy efficient, and reasoning is faster and with

minimal loss [3]. Pruning is done by removing unimportant connections or neurons, as in figure

4.3.

Fig 4.3

Quantization: Basically, quantization means reducing the accuracy of weights, parameters,

biases, and activations so that they occupy less memory and reduce the size of the model. In

an artificial neural network, the weights are 32-bit floating point values. Consider a neural

network with millions of parameters. Here, the memory required to store millions of 32-bit

floating point values is too large to accommodate peripherals. Thus, 32-bit floating-point

values are usually converted to 8-bit integers. During quantization, the range of parameters or

weights must be scaled to an 8-bit integer range (ie -127 to +127). This process is called scale

quantization. In addition to scale quantization, quantization data must be grouped, which is

called quantization granularity. This means whether quantization is applied per channel (in 3D

input) or per row or column (in 2D input). Figure 4.4 shows how PTQ is called weight loss

[19].

18

Fig 4.4

Weight Sharing: There is much redundancy among the weights of a neural network, and this

proves that a small number of weights are enough to reconstruct a whole network. In the

weight-sharing method, the number of effective weights that are required to be stored is

reduced by having multiple connections in a neural network share the same weight [9]. The

weight sharing may be based on a random method or Hashed Net in which the weights are

grouped according to a Hash function [17,16]. The concept of weight sharing is exemplified in

Fig 4.5.

Fig 4.5

19

4.4 Voice Detection at Edge

As seen earlier a speech command model is being developed which is now been deploy on

PSoC-6 MCU for real time voice detection. Before beginning let’s have a look at PSoC-6

PSoC™ 6 Wi-Fi BT Prototyping Kit provides [13]:

o Snappable peripherals: Capacitive-sensing CapSense™ slider and buttons, Digilent

Pmod interface, 512Mb QSPI NOR flash, uSD card, PDM-PCM microphone,

thermistor

o Bread-board compatible form-factor

o Murata LBEE5KL1DX-TEMP Module (CYW4343W) that provides IEEE

802.11a/b/g/n WLAN + Bluetooth [18].

Fig 4.6

Objective:

o Neural Networks (NN) on microcontrollers to run offline speech recognition. End-to-

end system development, from audio detection and acquisition, NN model training,

deployment of the trained model on to the MCU, integration and testing

o The speech recognition model is aim at understanding and comprehending WHAT is

spoken and according to that performing the task.

o In this project it is showed ML algorithms and their implementation on Infineon low

power Wifi-BLE prototyping kit.

 Fig 4.7

20

Technical Flow:

 Fig 4.8

Model

conversion

Code header

generation

Code

integration

Sensor

interfacing

Feature

extraction

Inferencing

1. Model conversion: The first step in implementing voice

detection on edge using PSoC involves converting a pre-

trained machine learning model into a format that can be

used on the PSoC. This might involve converting the

model to a format such as TensorFlow Lite, ONNX, or

Caffe2.

2. Code Header Generation: Once the model has been

converted, the next step is to generate C header files that

describe the model's architecture and parameters. These

files will be used to compile the model into the PSoC

firmware.

3. Code Integration: The next step is to integrate the

generated C header files into the PSoC firmware. This

might involve writing C code to load the model, allocate

memory for input and output tensors, and perform

inference on new input data.

4. Sensor Interfacing: To perform voice detection, the PSoC

needs to be connected to a microphone or other audio

sensor. This might involve interfacing with the sensor

using protocols such as I2S or PDM, configuring the

sensor's sampling rate and resolution, and buffering the

input data.

5. Feature Extraction: Once the audio data has been

acquired, it needs to be pre-processed and converted into

features that can be used as input to the machine learning

model. This might involve applying a windowing

function to the audio data, performing a Fourier transform

or other signal processing techniques, and computing

features such as Mel-frequency cepstral coefficients

(MFCCs).

6. Inferencing: Once the input features have been computed,

they are passed to the machine learning model for

inferencing. The model performs a series of matrix

multiplication and activation functions to produce a

prediction for the input data. The output of the model

might be a binary classification (voice vs. non-voice) or a

probability score indicating the likelihood of voice.

In summary, the technical flow for voice detection on edge using

PSoC 6 involves converting a pre-trained model, generating C

header files, integrating the model into the PSoC firmware,

interfacing with an audio sensor, preprocessing the input data,

and performing inferencing on the model. This flow can be

customized depending on the specific requirements of the voice

detection application.

21

Results:

As shown in Fig 4.9 the model is able to detect the speech command the predicted class is being

output to terminal with its confidence score.

 Fig 4.9

4.5 Radar Gesture Classification

Radar gesture classification is a technique that uses radar signals to detect and classify different

hand gestures based on the movement of the hand. This technique is becoming increasingly

popular due to its ability to work in low-light or complete darkness, and its ability to operate

in harsh environments where cameras or other sensors may not be effective.

One example of a radar gesture classification system is a machine learning model that is

deployed on an FMCW RADAR SENSOR. The FMCW 60 GHZ RADAR SENSOR is a

hardware platform that includes a radar sensor, a microcontroller, and other components needed

to interface with the sensor and perform machine learning tasks [2].

To deploy a machine learning model on the FMCW RADAR SENSOR, the first step is to

collect data using the radar sensor. This data includes information about the position, velocity,

and other characteristics of the hand gestures. Once the data is collected, it is pre-processed

and used to train a machine learning model [5].

Fig 4.10

22

Gesture classification model

A convolutional neural network (CNN) model consists of two convolutional blocks and two

fully connected layers. Each convolution block contains convolution operations including

smoothed linear unit (ReLU) and maximum pooling with a group normalization layer added

after the first block. Convolution layers act as feature separators and

provide abstract representations of input sensor data in feature maps.

They reflect the short-term dependencies (spatial relationships) of the

data. In CNN, features are extracted and then used as inputs to a fully

connected network using softmax activation for classification.

The Netron model for Radar Gesture Classification is a sequential

model that uses different layers to extract relevant features from the

input data. It takes an input shape of (128, 6, 1) and follows the below

steps:

1. Input layer: This is the first layer in the model. It takes in the

input data with a shape of (128, 6, 1).

2. Convolutional layer (Conv2D): The input data is passed to the

Conv2D layer, which applies filters to the input data to capture

important features. It has 8 filters, a kernel size of (3, 3), padding

of "same," and uses the "relu" activation function to introduce

non-linearity in the output.

3. Max Pooling layer (MaxPooling2D): The output from the

Conv2D layer is then passed to a MaxPooling2D layer which

reduces the spatial dimensions of the output by taking the

maximum value of a (3, 3) pooling window. This reduces the

dimensionality of the data and helps in preventing overfitting.

4. Batch Normalization layer: This layer normalizes the activations

of the previous layer, reducing the internal covariate shift and

improving the training speed and performance of the model.

5. Dropout layer: This layer randomly sets a fraction of the input

units to 0 at each training update, which helps to prevent

overfitting of the model.

6. Another Conv2D layer: The output from the Dropout layer is

passed through another Conv2D layer that uses 16 filters, a

kernel size of (3, 3), padding of "same," and again uses the "relu"

activation function Conv2D layer is passed to another

MaxPooling2D layer with a pool size of (3, 3).

7. GlobalAveragePooling2D layer: This layer computes the

average value of each feature map in the previous layer. This

reduces the dimensionality of the data and helps in preventing

overfitting.

8. Output Dense layer: This is the final layer of the model and has

4 units with a "softmax" activation function. This layer outputs

the predicted probabilities for each of the 4 possible gesture

classes.

The resulting output of the final Dense layer has a shape of (128, 4),

which represents the predicted probabilities for each of the 4 possible

gesture classes as shown in Fig 4.11 Model Diagram

Fig 4.11

23

Block diagram of Design Flow:

Fig 4.12

The design flow for the Radar Gesture Classification model deployed on a FMCW 60 GHz

RADAR SENSOR involves multiple components that work together to accurately classify a

user's gestures form Fig 4.12. These components include a Timer Interrupt Handler, Gesture

Task, NN Inference, and Control Function [11].

The Timer Interrupt Handler is responsible for triggering the data acquisition process and

analysing the radar signals. It runs on a timer and is triggered at predefined intervals to initiate

the radar system and collect new data from the environment. The radar system captures the

reflected signals from the user's hand and provides a time-domain representation of the hand

movement.

The Gesture Task is responsible for preprocessing the raw radar data, which includes filtering,

normalization, and feature extraction. This preprocessing is critical to ensure that the input data

is of high quality and contains only relevant information. The pre-processed data is then passed

to the NN Inference component.

The NN Inference component is responsible for classifying the gesture being performed by the

user. It uses a trained machine learning model to accurately identify the gesture. The machine

learning model has been trained on a dataset of labelled radar data and is capable of accurately

identifying the gesture being performed by the user.

The Control Function is responsible for translating the classification result into a desired action.

For example, if the user performs a gesture to increase the volume of a device, the classification

result is used to trigger the volume to be increased. The Control Function is also responsible

for sending feedback to the user regarding the success or failure of the desired action.

Overall, the design flow for the Radar Gesture Classification model deployed on a FMCW 60

GHZ RADAR SENSOR involves the Timer Interrupt Handler triggering the data acquisition

process, the Gesture Task preprocessing the raw radar data, the NN Inference component

classifying the gesture being performed by the user, and the Control Function translating the

classification result into a desired action. This allows for an accurate and efficient system for

gesture recognition and control [12].

24

Chapter 5

Research & Development of Neural Architecture Search

Algorithm

5.1 Introduction to Neural Architecture search (NAS)

Deep Neural Networks (DNN), the cornerstone of deep learning, have shown great

success in various real-world applications, including image classification [23], [25],

natural language processing, speech recognition [24] to name just a few. The promising

performance of DNNs has been widely documented due to their deep architecture [1],

which can learn important features directly from raw data with almost no special features.

In general, the performance of DNNs depends on two aspects: their architecture and their

associated weights. Only when both reach the optimal state at the same time, the

performance of DNNs can be promising. Optimal weights are often obtained through

learning: a continuous loss function is used to measure the differences between the actual

output and the desired output, and then gradient-based algorithms are often used to

minimize the loss. Once the termination condition is satisfied, which is usually the

maximum number of iterations, the algorithm can often find a good set of weights. Such

processes have been very popular in practice due to their efficiency and have become the

dominant practice in weight optimization [26], although they are mainly local search

algorithms. On the other hand, obtaining optimal architectures cannot be directly

formulated by a continuous function, and there is not even any explicit function that

measures the process of finding optimal architectures. To this end, promising DNN

architectures are designed by hand and with great expertise. This can be demonstrated by

prior art such as VGG, ResNet and DenseNet. These promising Convolutional Neural

Network (CNN) models are hand-designed by researchers with extensive knowledge of

both neural networks and image processing.

Neural Architecture Search Components Neural Architecture Search (NAS) is an

emerging field in deep learning research that aims to improve model performance and

applicability. Despite all its potential, setting up a NAS can be difficult. Specifically, NAS

can be divided into three main components: search space, search strategy/algorithm, and

evaluation strategy. These elements can be manipulated in several ways to maximize the

search for efficient neural network designs. Understanding the interaction of these

components is important for using NAS to improve the performance and capability of

deep learning models and applications [22]. These components are:

- Search space: The search space of Neural Architecture Search defines the set of possible

neural network architectures that the algorithm explores to find the optimal model.

- Search Strategy: The search strategy of a neural architecture specifies the method or

algorithm used to navigate the specified search space and find optimal neural network

architectures.

25

- Evaluation Strategy: The evaluation strategy of Neural Architecture Search

involves evaluating the performance of candidate neural network architectures in

the search space to determine their performance against predefined criteria or

goals.

Fig 5.1 The general framework for NAS

5.2 The Need for Hardware-Aware NAS

The need for efficient implementation of DNN networks is increasing as they are

increasingly used in many industries. However, this is a difficult task that requires unique

engineering skills and a lot of resources. NAS allows you to[26]:

- Automated design: NAS automates the neural network architecture design process,

reducing the need for manual intervention. This allows you to explore simple and effective

architectures.

- Best performance: NAS aims to find the best architecture for specific tasks and data

sets. These requirements improve model performance compared to manually generated

architectures.

- Complexity of Neural Network Design: Designing an optimal neural network

architecture is a complex task that requires a deep understanding of the problem,

significant machine learning expertise, and significant computing resources. A NAS

automates this process, reducing complexity and increasing accessibility.

- Efficiency and Efficiency: NAS algorithms help identify the optimal neural network

architecture that provides the best performance for a task, improving the efficiency and

accuracy of predictions.

- Prototyping: As the volume and complexity of data increases, the NAS can perform

prototyping to better handle this growth, creating larger and more complex architectures

without manual correction.

26

5.3 Neural Network & Hardware Co-optimization

Cooperative optimization uses a block-based search space for the neural network

architecture. The search for accelerated architecture configurations and objective neural

networks is carried out as an evolutionary multi-objective optimization. As shown in

Algorithm 2, the first search selects random neural networks with their hardware

configurations from the common search space. S. The neural network is trained with

quantile learning and the trained neural network is evaluated with a validation set to obtain

accurate measurements [23]. After the optimization phase, architectural parameters and

performance metrics are added to the search history. Once the initial population size s is

reached, a new architecture is derived from the existing population through elementary

mutations. During the search, NAS was randomly selected from among the following

variables.

1. Add/Remove Blocks: This involves adding or removing entire blocks (or layers)

from the neural network architecture. Since each block contributes to the

complexity and power of the model, this has a significant impact on the

performance and computational requirements of the model.

2. Change the block type between residual and feed forward: This involves changing

the block type from a feed forward block (information flows in one direction, from

input to output) to a rest block (shortcuts or connections that allow the information

flows between layers). This can affect the learner's ability to learn complex

patterns and handle cases where the gradient is missing.

3. Convolutional layers can remove features from the input data, and adding or

removing features can change the model's ability to learn from the data.Rotate Size

4. Increase/Decrease: Refers to adjusting the spatial extent of the rotation filter.

Increasing the size allows the model to capture larger patterns in the data, while

decreasing the size allows the model to overestimate local subsamples.

5. Increase/Decrease Key Block Element: The step is the step size, or amount of

movement, that the rotary filter makes when moving the input data. Increasing the

step can reduce the computer load and output size, and decreasing it makes the

model more sensitive to the details of the input data.

6. Increase/decrease measurement word width: Neural network measurement

reduces the accuracy of weights and biases, thereby reducing memory

requirements and computational complexity. Adjusting the measurement term

width affects the balance between model accuracy and computational efficiency.

7. Multiple Accumulation (MAC) element size increase/decrease: In hardware

design, MAC operations are central to many machine learning algorithms.

Changing a set affects the parallelism and output of calculations and the overall

performance of the neural network.

8. Increase/decrease the number of output channels: This involves changing the

number of feature maps created by the convolutional layer. Upscaling allows the

model to learn more complex features, and downscaling can reduce computing

requirements.

27

5.4 Architecture of Hardware-Aware NAS

NAS architecture is a complex technique designed to automatically find the optimal neural

network architecture. It uses data, hardware information, and search methods to integrate

various components into connected systems. Complete the process and create a perfect neural

network ready for deployment [24].

1. Data and target hardware: The first phase includes the data used to train and validate

the NN and the target hardware on which the nn is deployed. This includes the selection

of appropriate data sets and the hardware constraints that the neural network must meet.

Hardware limitations may vary based on factors such as computer power, memory

capacity, power consumption, and storage requirements. It is important to consider

these factors so that the neural network works well on the selected device.

2. NAS Algorithm: The core of the NAS architecture.

o Search Space: NAS algorithms first define a search space, usually a set of

possible neural network architectures. For a hardware compatible NAS, this

search field will be adjusted according to the hardware requirements. This

means that the NAS algorithm only considers architectures that can run

efficiently on the target devices and ensures that the product architecture is

optimized for the device.o

o Optimization: Once the search space is defined, the NAS algorithm uses

optimization techniques to select the best architecture in the search space. This

may include techniques such as reinforcement learning, developmental

transitions, or gradient-based techniques. The optimization process considers

many metrics such as model accuracy, computational cost, effort, etc. to

determine the most efficient and effective architecture.

3. Constructed neural network: Once the NAS algorithm finds the optimal architecture, it

generates the corresponding neural network to be used in real applications. These

networks are designed to provide the best performance on the target devices, taking into

account the constraints and requirements specified during the search. The resulting

template can be expanded or edited as needed.

Fig 5.2 NAS Architecture

28

5.5 Aging Evolution in NAS

Aging evolution is a powerful strategy used in hardware-aware neural network

architecture (NAS) research. Inspired by the principles of biological evolution, this

strategy aims to optimize the design of neural networks, fostering a balance between the

exploration of new architectures and the use of known successful architectures. In the

context of a hardware-aware NAS, legacy evolution plays an important role in ensuring

that the evolution process is aware of the hardware limitations of the target device. The

goal is to identify an architecture that not only performs well in terms of predictive

accuracy, but also meets the specific resource constraints of the selected device.

Working of NAS algorithm:

Initial Population: The aging evolution starts with an initial population of neural network

architectures, each of which is randomly generated. The size of this population is

determined.

Assessment: Each architecture in the population is evaluated on its "baseline", which

measures how well the architecture performs its intended task and respects hardware

constraints. This physical measure usually considers factors such as prediction accuracy,

computational complexity, effort, and duration.

Selection and Modification: Based on physical evaluation, certain architectures are

selected for the next generation. The selection process favors architectures with more

relevant points, but also includes less efficient architectures to maintain diversity. The

selected architecture receives a modification function to slightly change its configuration.

This may include changing the number of layers, layer types, connection patterns, etc.

Ageing: An ancient method is implemented so that the population is not dominated by a

few successful architectures at the beginning and promotes diversity. In this process, body

art symbols gradually disappear over time, due to the continuous search for new and

possibly better architectures in the evolutionary process.

Iteration: Physical evaluation, selection, modification, and aging are performed in several

iterations until the optimal architecture is found.

In essence, aging evolution in Hardware-Aware NAS provides a systematic and efficient

approach to navigating the vast search space of potential neural network architectures. By

incorporating hardware constraints into the evolution process, it ensures the identified

architectures are not only effective in predictive performance but also feasible for the

target device.

29

5.6 Evaluation Metrics for Hardware-Aware NAS

The need for computational resources (GPU) is the main limitation for the development

of new NAS algorithms for accuracy and performance evaluation. As a result, many NAS

benchmarks have been published as LUTs/datasets of various networks and their

accuracy/performance metrics. NAS-Bench-101 is the first large-scale NAS benchmark.

The 423K cell-based architecture is trained using CIFAR-10 to record test accuracy and

training time. NAS-Bench-201[25] extends the NAS-Bench-101 dataset by including

four-node, five-task networks in three different datasets. NASBench-301 [15] initially

generated 1018 unique neural structures in the ARROW search space. 60,000 sample

networks as part of surrogate training. Independent NAS tests provide training times that

do not measure the length of each network on the device. These specifications limit their

use in developing HW-compatible NAS switches, especially for researchers unfamiliar

with the hardware. LatBench[18] is a large dataset that measures the latency of the NAS-

Bench-201[25] sample on various devices, including desktop, mobile, CPU/GPU, TPU,

and DSP. . HW-NAS-Bench[75] evaluates various networks based on cellular architecture

(NAS-Bench-201) and layered networks (FBNet search space) using Jetson TX2 Edge

GPU, Raspberry Pi 4. , EdgeTPU, Pixel 3, Eyeriss and XilinxZC706 FPGA

5.7 Advantages of Hardware-Aware NAS

 Neural Architecture Search (NAS) offers several advantages in the field of deep learning:

- Hardware config part of guided architecture search: One of the key advantages of

Hardware-Aware NAS is the inclusion of hardware configuration in the search

process for the optimal neural network architecture. By taking hardware

limitations into account when searching, NAS systems not only achieve better

performance in terms of model accuracy but can also improve the efficiency of

device-optimized search architecture.

- Single OFA model can support diverse platforms: One of the main advantages of

hardware-enabled NAS is the ability to develop single-factor authentication (OFA)

that can be implemented on a variety of hardware platforms. This OFA model can

be replicated on various hardware architectures without recycling, providing

flexibility and efficiency in deploying AI models on a variety of hardware

platforms.

- Significantly reduced training resource and time: Hardware-aware NAS

algorithms can significantly reduce training resources and time. By focusing on

architectures that meet hardware limitations, the NAS system can avoid wasting

resources on training architectures that may work well but are not feasible for the

target hardware. This can significantly save computing resources and training

time.

- Smaller model footprint as compared to previous methods: Hardware-aware NAS

often yields neural network architectures with a smaller model footprint compared

to traditional methods. Optimizing for hardware limitations, these designs can be

compact but offer comparable or even better performance.

30

- Hardware centric optimization: Focusing on the hardware during the optimization

process results in models that are highly optimized for the specific target hardware.

This can improve model performance, reduce power consumption, and reduce

memory usage on the target hardware. This hardware-centric optimization makes

hardware-aware NAS especially valuable for peripherals and mobile devices

where resource constraints are critical.

5.8 Future Prospect of NAS:

In recent years, HW-NAS has completely transformed the way neural networks have

traditionally been designed for various devices. HW-NAS provided the possibility to

implement hybrid functions in a single network, which was not available in previous

models such as ResNet50 [27]. In this paper, we have provided an overview and

summary of several HW-NAS methods targeting resource-constrained devices in

high-performance systems, followed by a general overview of several accelerators and

algorithmic aspects. In designing robust and efficient architectures, we emphasize the

importance of hardware-aware search space, search space construction, and hardware-

based multi objective search. Automatically designed networks are more efficient than

manually constructed models, and the commonly searched accelerator-network pair

outperforms manually constructed models in both accuracy and efficiency. We believe

that further research is needed in the following areas.

 (1) MCU-NAS: We are still in the early stages of NAS being able to make MCU

inferences with reasonable accuracy. MCUNet is, to our knowledge, the only method

that provides nearly 70% accuracy in ImageNet. More efficient algorithms and

compiler designs are needed to improve the accuracy and efficiency of a limited

computing system.

(2) Efficient search space: search elements often constrain the NAS algorithm to find

more efficient models. Most HW-NAS methods choose the mobile search mode

(MobileNetV2, ShuffleNetV2) as the backbone, even in advanced devices. The

accuracy of the models found in this search space is 72-76%, even in the mixed search

space. More efficient spaces like EfficientNet can lead to the development of a more

rigorous and efficient search space. Recently, convolutions have been used to replace

traditional Circuits for Vision applications [26]. Transformer architecture and

accelerator co-option can be very effective SOTA designs to achieve higher accuracy.

(3) Algorithm and Accelerator Co-Design: Auto-NBA targets architecture, precision,

and accelerator micro-architecture, ignoring data flow. NAAS [24] targets the neural

architecture and accelerator (microarchitecture and translator mapping) while still

leaving the quantization aspect. Thus, the implementation of DNNs in many use cases

requires efficient differential common search methods for all four dimensions, that is

algorithm (architecture and accuracy) and accelerator (hardware architecture and

translation routines).

31

(4) Sparse CNN and Accelerator Joint Search: Current HW-NAS methods only search

regular/dense convolutional layers, ignoring sparse matrices, and do not consider the

sparse Tensor Core hardware of the latest Nvidia A100 GPUs. Sparse CNN and sparse

support booster search can be very powerful studies to achieve higher model

compression and speedup than the currently searched conventional booster-CNN pair.

(5) Benchmarks: There are multiple hardware such as MCUs, server-grade CPUs and

multi-GPUs, core architectures such as MobileNetV3, EfficientNet and data to

develop HW-NAS benchmarks. Since quantization is very important for real-time

reasoning, HW-quantized NAS benchmarks should be preferred in the future, as

current benchmarks do not include precision. NAS HW accelerator brands could be

considered because the co-design process covers both dimensions.

(6) NAS for other purposes: NAS algorithms were originally designed and focused only

on finding efficient architectures. Later, when NAS became an accessible concept, it was

used for other purposes such as pruning, quantization and Winograd search. Thus, the

potential of NAS can be extended to other applications and use cases.

(7) HW-NAS for other applications: Although HW-NAS has been used to develop

latency efficient models for image classification tasks, little attention has been paid to

hardware for other tasks, such as MobileDets [15] for object detection-aware

Transformers [25] for NLP, SqueezeNAS [24] for semantic segmentation. Research to

optimize and build custom DNN device designs for other vision applications is still an

open challenge.

Chapter 6

Conclusion

32

The report encapsulates the groundbreaking strides made in the integration of Artificial

Intelligence (AI) into embedded systems. It demonstrates the transformative potential of

AI, not merely as a theoretical concept but as a pragmatic tool that can be seamlessly

integrated into everyday devices.

The successful development and deployment of a radar gesture classification model on

the Infineon XENSIV™ kit mark a significant stride in the field of embedded AI. The

model's real-time identification of distinct gestures presents a leap towards creating more

intuitive human-machine interfaces and interactive user experiences across a multitude of

applications. This accomplishment underscores the potential of AI to elevate the

interaction between humans and machines.

Moreover, the development of various machine learning models throughout the project

exhibits how AI can be harnessed to solve complex tasks, thereby enhancing the efficiency

and effectiveness of embedded systems. It further amplifies the potential of data-driven

solutions and machine learning models in revolutionizing the embedded AI landscape.

The exploration and advancement in the area of "Neural Architecture Search" denote an

innovative approach towards the design of neural networks. The emphasis on hardware-

aware design could indeed be a gamechanger in the way AI models are developed and

deployed in real-world settings. By acknowledging the hardware constraints during the

design process, the research opens avenues for creating more practical and efficient AI

solutions.

This report manifests the immense potential and promising future of AI in the sphere of

embedded systems. Through tangible achievements in radar gesture recognition, the

development of machine learning models, and the breakthroughs in hardware-aware

neural architecture search, it provides a glimpse into the exciting possibilities that the

confluence of AI and embedded systems hold for the future.

References:

33

[1] Zhang Z, Li J. A Review of Artificial Intelligence in Embedded Systems.

Micromachines (Basel). 2023 Apr 22;14(5):897. doi: 10.3390/mi14050897. PMID:

37241521; PMCID: PMC10220566.

[2] Zhengjie Wang, Fei Liu, Xue Li, Mingjing Ma, Xiaoxue Feng, and Yinjing Guo. 2023.

A Survey of Hand Gesture Recognition Based on FMCW Radar. In Proceedings of the

8th International Conference on Communication and Information Processing (ICCIP

'22). Association for Computing Machinery, New York, NY, USA, 73–79.

https://doi.org/10.1145/3571662.3571674

[3] S. Sun, Z. Cao, H. Zhu and J. Zhao, "A Survey of Optimization Methods From a

Machine Learning Perspective," in IEEE Transactions on Cybernetics, vol. 50, no. 8,

pp. 3668-3681, Aug. 2020, doi: 10.1109/TCYB.2019.2950779.

[4] K. Alirezazad and L. Maurer, "FMCW Radar-Based Hand Gesture Recognition Using

Dual-Stream CNN-GRU Model," 2022 24th International Microwave and Radar

Conference (MIKON), Gdansk, Poland, 2022, pp. 1-5, doi:

10.23919/MIKON54314.2022.9924984.

[5] WEVOLVER [WEVOLVER]. (2023). 2023 EDGE AI TECHNOLOGY REPORT. In

https://www.wevolver.com/article/2023-edge-ai-technology-report. WEVOLVER.

Retrieved October 10, 2023, from https://www.wevolver.com/article/2023-edge-ai-

technology-report

[6] Dong, Yaoyao & Qu, Wei. (2021). Review of Research on Gesture Recognition Based

on Radar Technology. 10.1007/978-3-030-69066-3_34.

[7] Infineon Technologies (no date) Infineon-CY8CKIT-064B0S2-4343W_Kit_Guide-

UserManual. Available at: www.infineon.com/dgdl/Infineon-CY8CKIT-064B0S2-

4343W_Kit_Guide-UserManual-v01_00-EN.pdf (Accessed: 03 December 2023).

[8] H. Lin, "Embedded Artificial Intelligence: Intelligence on Devices" in Computer, vol.

56, no. 09, pp. 90-93, 2023. Doi: 10.1109/MC.2023.3280397

https://doi.ieeecomputersociety.org/10.1109/MC.2023.3280397

[9] Infineon/MTB-example-ml-profiler: This code example demonstrates how to run

through the ModusToolbox machine learning (MTB-ml) development flow with psoc

6 MCU, where the end user has a pre-trained neural network (NN) model, which can

be profiled and validated at the PC and target device., GitHub. Available at:

https://github.com/Infineon/mtb-example-ml-profiler (Accessed: 29 November

2023).

https://doi.org/10.1145/3571662.3571674
https://doi.ieeecomputersociety.org/10.1109/MC.2023.3280397

34

[10] Infineon Technolgies. (2022, October 10). ModusToolboxTM Machine Learning

Configurator user guide. Bangalore

[11] Infineon Technologies (no date a) BGT60TR13C 60 GHz Radar Sensor . Available

at www.infineon.com/dgdl/Infineon-DS_BGT60TR13C-DataSheet-v02_46-

EN.pdf?fileId=8ac78c8c7d718a49017d94bac88e5d43 (Accessed: 03 December

2023).

[12] Infineon Tecnologies (no date) CY8CPROTO-062-4343W . Available at:

www.infineon.com/dgdl/Infineon-CY8CPROTO-062-4343W_PSoC_6_Wi-

Fi_BT_Prototyping_Kit_Guide-UserManual-v01_00-

EN.pdf?fileId=8ac78c8c7d0d8da4017d0f0118571844 (Accessed: 17 September

2023).

[13] AG, I.T. (no date) Artificial-intelligence - infineon technologies, artificial-

intelligence - Infineon Technologies. Available at:

https://www.infineon.com/cms/en/product/promopages/artificial-intelligence/

(Accessed: 03 December 2023).

[14] AG, I.T. (no date b) ModusToolboxTM for Machine Learning, Infineon

Technologies. Available at: https://www.infineon.com/cms/en/design-

support/tools/sdk/modustoolbox-software/modustoolbox-machine-learning/

(Accessed: 03 December 2023).

[15] Our products are designed to make Edge Ai Easy. (no date) Imagimob. Available

at: https://www.imagimob.com/products (Accessed: 03 December 2023).

[16] Infineon psocTM 6 Wi-Fi Bt Pioneer kit (2022) SensiML. Available at:

https://sensiml.com/supported-platforms/board/infineon-cypress-psoc6-mcu/

(Accessed: 03 December 2023).

[17] Infineon CY8CKIT-062S2 pioneer kit (no date) Infineon CY8CKIT-062S2

Pioneer Kit - Edge Impulse Documentation. Available at:

https://docs.edgeimpulse.com/docs/development-platforms/officially-supported-

mcu-targets/infineon-cy8ckit-062s2 (Accessed: 03 December 2023).

[18] Kulkarni, U. et al. (2021). AI Model Compression for Edge Devices Using

Optimization Techniques. In: Gunjan, V.K., Zurada, J.M. (eds) Modern Approaches in

Machine Learning and Cognitive Science: A Walkthrough. Studies in Computational

Intelligence, vol 956. Springer, Cham. https://doi.org/10.1007/978-3-030-68291-0_17

[19] Get started Onnx (no date) ONNX. Available at: https://onnx.ai/get-started.html

(Accessed: 06 October 2023).

https://doi.org/10.1007/978-3-030-68291-0_17

35

[20] Tensorflow Lite: ML for Mobile and edge devices (no date) TensorFlow. Available

at: https://www.tensorflow.org/lite (Accessed: 09 August 2023).

[21] PYTORCH documentation¶ (no date) PyTorch documentation - PyTorch 2.1

documentation. Available at: https://pytorch.org/docs/stable/index.html (Accessed: 15

September 2023).

[22] CMSIS components (no date) Introduction. Available at: https://arm-

software.github.io/CMSIS_5/General/html/index.html (Accessed: 20 November 2023).

[23] Y. Liu, Y. Sun, B. Xue, M. Zhang, G. G. Yen and K. C. Tan, "A Survey on Evolutionary

Neural Architecture Search," in IEEE Transactions on Neural Networks and Learning

Systems, vol. 34, no. 2, pp. 550-570, Feb. 2023, doi: 10.1109/TNNLS.2021.3100554.

keywords: {Computer architecture;Optimization;Convolutional neural networks;Search

problems;Neural networks;Deep learning;Statistics;Deep learning;evolutionary

computation (EC);evolutionary neural architecture search (NAS);image classification}.

[24] Krishna Teja Chitty-Venkata and Arun K. Somani. 2022. Neural Architecture Search

Survey: A Hardware Perspective. ACM Comput. Surv. 55, 4, Article 78 (April 2023), 36

pages. https://doi-org.elibrary.nirmauni.ac.in/10.1145/3524500

[25] GeeksforGeeks (2024) Neural Architecture Search algorithm, GeeksforGeeks.

Available at: https://www.geeksforgeeks.org/neural-architecture-and-search-methods/

(Accessed: 19 May 2024).

[26] Neural Architecture Search: Everything you need to know (2024) Deci. Available at:

https://deci.ai/neural-architecture-search/ (Accessed: 19 May 2024).

[27] K. T. Chitty-Venkata, M. Emani, V. Vishwanath and A. K. Somani, "Neural

Architecture Search Benchmarks: Insights and Survey," in IEEE Access, vol. 11, pp.

25217-25236, 2023, doi: 10.1109/ACCESS.2023.3253818.

https://doi-org.elibrary.nirmauni.ac.in/10.1145/3524500

22mece08_MajorProject.pdf
by PRAJAPATI DHRUVIL

Submission date: 22-May-2024 11:42AM (UTC+0530)
Submission ID: 2105910491
File name: 22MECE08_MajorProject.pdf (1.66M) Word count: 9695
Character count: 19289

3 %
SIMILARITY INDEX

0%
INTERNET SOURCES

0%
PUBLICATIONS

1%
STUDENT PAPERS

2%

2 1%

3 <1%

Exclude quotes On

Exclude bibliography On

Exclude matches < 6 words

22MECE08_MajorProject.pdf
ORIGINALITY REPORT

PRIMARY SOURCES

 "Neural Architecture Search Survey: A
 1a Hardware Perspective" ACM Computing Surveys, 2022

 Student Paper

en.teknopedia.teknokrat.ac.id
Internet Source

www.infineon.com
Internet Source

	New Bookmark

