AXI3 Protocol VIP Development

A Major Project

Submitted in Partial Fulfilment of the Requirement

for the degree of

Master of technology
In

(VLSI Design)

By

Mevada Nikul
22MECV13

NIRMA

UNIVERSITY

INSTITUTE OF TECHNOLOGY
NAAC ACCREDITED ‘A+ GRADE

Department of Electronics & Communication Engineering
Institute of Technology, Nirma University

Ahmedabad-382481
December-202

AXI3 Protocol VIP Development

A Major Project

Submitted in Partial Fulfilment of the Requirements

for the degreeof

MASTER OF TECHNOLOGYIN
VLSI DESIGN

By

Mevada Nikul

(22MECV13)

Internal Guide: External Guide
Prof. Akash Mecwan Mr. Mukund Raj Rathore
EC Department, Institute of Verification Engineer
technology Nirma University, Scaledge India PVT. LTD
Ahmedabad Ahmedabad

NIRMA

@ UNIVERSITY

INSTITUTE OF TECHNOLOGY

NAAC ACCREDITED ‘A+ GRADE

Department of Electronics & Communication Engineeringlnstitute of
Technology, Nirma University

Ahmedabad - 382 481
December 2023

ij NIRMA

UNIVERSITY

INSTITUTE OF TECHNOLOGY

NAAC ACCREDITED ‘A+ GRADE

Certificate

This is to certify that the Major Project entitled “AXI3 Protocol VIP Development” submitted
by Mevada Nikul (22MECV13), towards the partial fulfillment of the requirements for the
Masters of Technology in VLSI Design, Nirma University, Ahmedabad is the record of work
carried out by him under our supervision and guidance. In our opinion, the submitted work
has reached a level required for being accepted for examination. The results embodied in this
Project, to the best of our knowledgehaven’t been submitted to any other university or

institution for award of any degree or diploma.

Date:
Place: Ahmedabad

Pro. Akash Mecwan Dr. Usha Mehta
Internal Guide, HOD of Electronics
Institute of Technology, and communication
Nirma University, department, Institute
Ahmedabad of Technology, Nirma
University,
Ahmedabad

Dr. Usha Mehta

Dr. Rajesh Patel
Professor and Head,

EC Department, Director,

Institute of Technology, Institute of Technology, Nirma
Nirma University, Ahmedabad. University, Ahmedabad.

SCALEDGE

External Certificate

This is to certify that the Major Project Report entitled” AXI3 Protocol VIP Development”
submitted by Mevada Nikul (Roll No. 22MECV13) as the partial fulfilment of the requirements for the
award of the degree of Master of Technology in VLSI Design, Electronics and Communication
Engineering, Institute of Technology, Nirma University is the record of work carried out by him under
my supervision and guidance. The work submitted in our opinion has reached a level required for
being accepted for the examination.

Date:

External Guide
Mukund Raj Rathore
Verification Engineer

Scaledge India PVT. LTD

Y

Statement of Originality

I, MEVADA NIKUL, Roll No: 22MECV13, give undertaking that the MTech thesis entitled
” AXI3 Protocol VIP Development” submitted by me, towards the partial fulfillment of the
requirements for the degree of Master of Technology in Electronics & Communication
Engineering (VLSI Design) of Institute of Technology, Nirma University, Ahmedabad,
contains no material that has been awardedfor any degree or diploma in any university
or school in any territory to the best of my knowledge. It is the original work carried out
by me and | give assurance that no attemptof plagiarism has been made. It contains no
material that is previously published or written, except where reference has been made.
| understand that in the event of any similarity found subsequently with any published

work or any dissertation work elsewhere; it will result in severe disciplinary action.

Signature of Student
Date:

Place: Ahmedabad

Endorsed by
Pro. Akash Mecwan

(Signature of Guide)

Acknowledgements

It gives me immense pleasure in expressing thanks and profound gratitude to
Pro. Akash Mecwan, Assistant Professor, EC Department, Institute of
Technology, Nirma University for his valuable guidance and continual
encouragement throughout this work.The appreciation and continual support
he has imparted has been a great motivation to me in reaching a higher goal.
His guidance has triggered and nourished my intellectual maturity that | will

benefit from, for a long time to come.

It gives me a great pleasure to thank Dr. Usha Mehta, PG Coordinator of VLSI
Design, EC Department, Institute of Technology, Nirma university for his

guidance throughout whole M.Tech and in this project thesis.

It gives me an immense pleasure to thank Dr. Usha Mehta, Hon’ble Head of
EC Department, Institute of Technology, Nirma University for his kind support

and providingbasic infrastructure and healthy research environment.

| would also like to thank my scaledge colleague Mukund Raj Rathore
(Verification engineer), Disha Purohit (Senior Verification engineer) their
continuous support and guidance throughout my M.Tech thesis project

scaledge.

| would also thank the Institution, all faculty members of Electronics and
CommunicationEngineering Department, Nirma University, Ahmedabad for

their special attention and suggestions towards the project work.

Mevada Nikul

(22MECV13)

Contents

(00T | [0 | (PP P RSP PPST 3
EXEErNal CertifiCate . ittt ettt 4
Statement Of OrigiNality ..o e e e 5
ACKNOWIEAZEIMENTS ..ot e e e e et tre e e e e e s abaae e e e e earaaeeas 6

Y o1 o T S PRSP PR PPPP 10
Ty e [¥ ot o] o HE PP RO PUSPTOPRPPON 11
1.1 CommMON TEIrMINOIOZIES ...uvvveieiiiiiieee ettt e e e e e erre e e e e e et ae e e e e e e sanbaeeeeeeenanreneeas 11
1.2 List of AXI 3.0 Protocol fEAtUreScccueiriieiiierieereece e 12
AXI Channel @rChitBCLUIEveiieiiee ettt ettt e e s e e s ab e e e sbbe e e s bbeeesnreeesnneas 13
2.1 Channels in AXI 3 fOr TranS@CHON:cccuuiii ittt e e s e e e 13
2.1.1 Write Channel ArchiteCtUIecoiiiiiieeee e et 13
2.1.2 W (WRITE) Channel ArChit@CTUIEcooeeeeiiiiiiitittieeeeeeeeeeee et e ee e eeeee e e eaabaarraaaeeees 14

2.2 AXI 3.0 Channels definitionccccoceeiiieriieiie e e e 14

YT ={ g b= 1B DT ol T n o] o 3 SRURURPPRRI 15
LY B N O €] [e] o T |1 o= SRR 15
3.2 AX1 3.0 AW (Write address) Channel Signalscooccciiieiieieiiiieeee e 15
3.3 AX1 3.0 W (Write Data) Channel Signalscccuviiiiiiiiciiiiiec e e e e e 16
3.4 AX1 3.0 B (Write Response) Channel SigNals........ccoccueeiiiieeiiiiie et esee e sre e e e e sree e 16
3.5 AX1 3.0 AR (Read address) Channel SIgNalscociecciiiiiieeeeciiiieee e e e arae e e e 17
3.6 AX1 3.0 R (Read Data) Channel SIgNalS........cccccuviiiieieiiiiieie et eeciarae e e e e aaraa e e e e 18
I Y YT ={ g =Y [Tt u o] s J TN 19
3.8 AXI Master — Slave ConfigUrationuiiiiiiiiiiiiiee e rae e e e e 19
Handshake Mechanism in AXI.......eee ettt et s et e e s ear e e e snreeessnreeesane 21
4.1 VALID assert High before READY assert High handshake...........ccccceveiiiiiiiiiiiccce e, 21
4.2 READY assert High before VALID assert High handshake...........cccoveveiiiiiiiiiiiicee e, 22
4.3 READY assert High before VALID assert High handshake..........ccccouvveiiiiiiiieii e, 22
4.5 AXI 3.0 channel Dependencies between handshake signalsccccceeeviciieeiiiinncieee e, 23
4.7.3 BUFSTEYPE = WRAP <.t e et e e e e et e e e eeb e e e e eebaes 28
4.8 Data read and Wt STFUCTUIE ...o..eiiiiiiiiieeeee ettt et st 29
4.8 N T o AT L= 101 =T PSP 30
4.9 Narrow Transfers EXaMPIESceiiiiiciiiiiiee ittt e e e e s e e e s e s sabaee e e e e e anaeeeeas 31
49.1 Narrow INC (Without strobe SigNal)c.eeecieeeiiiiee e 31
4.9.2 NarrowW (With STrODE)ceeeii ittt e e et e e e e e e bt e e e e e e senbaaeeeeeeennsees 32

4.10 UNaligNed tranS ersuvviiiiiccieeee et e e e e e e e ra e e e e e e e arraaeeas 34
4.11 AXI 3.0 Write and REad IrESPONSE.cceeeeiieeiiitiirtrrerrreeeeeeeeeeeeeeeeeeeeeeeeessesssssssassssssssssseseeeees 35
The AXI protocol offers response signalling for both read and write transactions:......................... 35

e Forread transactions, the slave responds with the read data and response information
through the same read data Channel. ... 35

e For write transactions, the response information is conveyed through a separate write

FESPONSE CHANNEL ..eiiieeeiiiiee e e e e e e e e e e e st e e e e e e s abteaeeeeessastaeeeaeennnssens 35
ST oTe] a Y=l F=q 0 F=1 1 o= PSR SPPR 35

® RRESP[1:0] fOr r@ad tranSfers. .ccciieeeieceiiiirittrrtreeeeeeeeeeeeeeeeeeeeeeeeeeese e sssaaaabarrrarreereeeeeaaeaeaaeeeas 35

I 1 oY o R 0] B (o T VY = {1] (<] 35
.. 35
ATOMIC ACCESSES . .uuiiiiiiiiiiiiiiie et e e s s b s e e e e s s bbb e e e e s s s bbb e e e e s s sabbseeeesssanbans 37
11 EXCIUSIVE ACCESS .eenereieeiieee ettt e ettt e ettt e e sttt e e ettt e st e e s sabee e s sabaeesaabeeessabeeesanbeeessabeeesanseeennne 37
1.2 LOCKEO ACCESS. ...ueeeeeteie ettt ettt e e s e e s sa et e s amreressnbe e e sanreeesamnenesanreeesnne 38
5.3 AX1 3.0 Data iNterl@AVING.cceviieeee ettt ettt et e e e et e e e e e et r e e e e e esaabaeeeeeesansraneeeeans 39
WAV FOIMIS ittt 40
Lo Y101 o] LY 1 PSP PUPR 40

L Y1111 o] L= =T Lo PSP PPRPR 41
6.3 BUISt based transfersooo i s 42
6.4 INTErIEAVING TrANSTEIS ...viiiiii ittt e e e e e e e e e e e sata e e e e e sesnssaeeeeeesnsraneeeeans 43
6.5 OUL Of Order TraNSTEISeeiiiiiee et et e e st e e s st e e ssabeeeesabeeesane 44
AXI VIP Verification ENVIFONMENT ...ccoiuuiiiiiiiie ettt ettt ettt e st e e sbe e e e sbneeesnneas 45
A <Y g 1o n Lo T] T U 45
7.2 UVM Test bench Archit@CTUIE.ccoiiiiiiiieiee ettt 46
7.2 UVM Test bench components hierarchy..........ccuueeiiiicciiieee e 49
AXIVIP FEATUIES RESUIL ...eeiiiiiiiiiiee ettt ettt ettt e et e sttt e e st e e sabee e e sabbeeseabaeeesbbeeesnreeesnreas 50
AN I =T I = T U] o 4o = SRRR 50
8.1.1 AXI Fixed Brust Write tranS@CtioN.c.ueeiiiiiiiiiiie it e e 50
8.1.2 AXI Fixed Brust Read £ranS@CtiON.....c.cueeiiiiiiiiiiie ettt 50

8.2 AXIINCR BrUST By P, ittt ittt e e et s e e e e et e e e e aat e e e e aabaeeeeaetaseeeaesanaes 51
8.2.1 AXI INCR Brust Write transSeCtioNn.ceeeiiiiiiiiiieei ettt 51
8.2.2 AXI INCR Brust Read tranSeCtion.ceeiiieeeiiiiiieiiiiie ettt e e 51

8.3 AXI W RAP BrUSt By P, i iiiieiiiiiiiiiiie et rre e s e e e e e ettt et s s e e e e e e e e eaaeaebaaaaeseeeeeeeeaeneesnnanannes 52
8.3.1 AXI WRAP Brust Write transection.ccccoviiiiiiiiiiiiiiiiiiiiiicc i, 52
8.3.2 AXI WRAP Brust Read transeCtioN.eeeiuiiiiniiieiiieeesiiee ettt e st essieee e e 52

8.4 AXI OUL Of OF0 eI FESPONSE. ittt e e e e e e e e e e e e e e e e e e e s e e aaaa e bsarraereereeeeeaaeaaaaaeens 53

8.4.1 AXI INCR Brust, out_of _order feature Write transection.ccccceeciiveieeeviciieee e, 53

8.5 AXI Interleaving TranSECION. ...uuiiii ittt e esr e e ee st e e e e st b e e e e e s ssaasaeeeeeesntraeeeaeens 53
8.5.1 AXI INCR Brust, Interleaving feature Write transection.cccccceeeeeeiei e 53

8.6 AXI OULSTANAIiNG AdAIrESSES. ..o e e e e e e e e e e e aaaaaaaaaaaaaeas 54
8.6.1 AXI INCR Brust, outstanding feature Write transection.ccccceeeveciieeieeeccciieee e, 54

8.7 AXI @XCIUSIVE ACCESS. ...veeureeriteeitieetee et s ittt ettt et st s e st esb e sab e s b e e sabeesabeesbeesneesneeenee s 54
8.7.1 AXI Exclusive Access Read Modified Write transection.cccocveeeriieeiniiiee e erieeeee 54

8.8 AXI NArroW TranSECHION. ..ccci ittt e e s s e e e s s ennreneeeeeaas 55
8.8.1 AXI Narrow transfer feature Write transection.c.ccceceerieiriieniic i 55
8.8.2 AXI Narrow transfer feature Read transection.cccceceeriieriieniic i 56
8.10 CoVEIrage REPOIT. ... et e e ettt ettt s e e e e e e e e e eeeeese e e s e eeeeeeeenennnnananens 56

< 00 I R ANy T n o T o TN 2U=T oo S 58
8.12 Tools Used during AXI VIP DeVeloOpMENt.oveiiiiiiiiieiieeceeee e e e e 58
(6o 0ol [V DT OO PTOPPR PPN 59
REFEIEINCE ...ttt ettt et sttt s bt e e bt e e bt s b e e re e ne e s neeennee e 60

Abstract

AXI Protocol is a part of ARM Advanced Microcontroller bus architecture (AMBA) Family.
Verification of IP very complex due to System on Chip allows the integration of different
Intellectual Properties. Advanced eXtensible Interface (AXI) protocol provides high bandwidth,
low latency, and can able to operate at high frequencies. And comparing with other AXI
provides better efficiency as compare to other AMBA protocols.

Verification of SoC take more time to verify because it is on chip, so developing a reusable
Verification IP that allows to reuse this verification environment to verify other SoCs also. The
meaning of reusable VIP time taken to verify the SoCs will be greatly reduced. To creating a
Verification IP for the AMBA AXI3 (Advanced eXtendsible Interface) protocol by using Universal
Verification Methodology (UVM). Here RTL of Master or slave of AXI are not Present here one
agent of test bench are work as AXI Master Agent and Second Agent work as AXI Slave of AXI
here Required any RTL so Also this concept know as Back-to-Back VIP Development.

AXI3 Protocol Support five independent channels for write, Read or responds channels. In AXI
Multiple outstanding transaction and out of order transaction are also cover in verification
test plane of axi. Implement test cases scenarios to achieve high functional coverage of axi
testbench, ensuring that the AXI VIP effectively exercises the different features and corner
cases of the AXI protocol.

10

Chapter 1

Introduction

The Because of the AMBA protocol's flexibility, it may be used in a variety of SoC
architectures with different size, power, and performance requirements AMBA
protocols are widely used open standards, ensuring compatibility across IPs from
different providers for SoCs. Because of this interoperability, low-friction integration
and IP reuse are possible, resulting in a faster time to market.

The AMBA AXl| protocol provide high-performance and high-frequency for
communication between Master and Slave components.

AXI| transactions are typically request-response based, where master initiates
a transaction and slave responds according to transection.

AXI supports multiple master — slave configurations that can contain multiple master —
slave configuration.

AXI protocol have 5 Independent Channels for write read and response.

All channels has a group of signals required to perform particular operation, write

address channel have control, write data information.

1.1 Common Terminologies

AW: AX| Write Address channel.
W: AXI Write Data channel.

B: AXI Write Response channel.
AR: AX| Read Address channel.

R: AXI Read Response channel.

Transaction: The AXI bus handles a complete set of required operations, which can
include one or more data transfers.

Transfer: one exchange of information, with valid and ready handshake occurred ,
handshaking signals available in each channel.

Beat: An individual data transfer within an AXI burst.

11

Aligned: A data item is considered aligned if its address is divisible by the highest
power of 2 that fits its size in bytes. For example, addresses can be aligned with
halfwords, words, and doublewords.

Unaligned: These are memory accesses that are not, or might not be, properly
aligned to halfwords, words, or doublewords.

Outstanding addresses: This refers to the ability to issue multiple addresses for
transactions without waiting for previous transactions to complete. This feature
improves system performance by allowing parallel processing of AXI transactions.
Out of order transaction: This means transactions can be completed in a different
order than they were started. Faster transactions can finish without waiting for
slower ones, improving system performance by reducing delays.

Data Interleaving: Masters producing write data sequence to same slave but data
not arriving each clock, interleave to avoid idle cycles on bus.

Interleaving Depth: It is a maximum number of transactions for slave to accept data

for interleaved transfers. The default Interleaving depth is 1.

1.2 List of AXI 3.0 Protocol features

AXl is capable for high-bandwidth and low-latency type applications.

AXI has separate, independent address and data channels.

AXI supports unaligned data transfers using byte strobe signals.

AXI uses burst-based transactions, where only the start address is issued and the
remaining addresses are automatically calculated by the slave.

AXI supports issuing multiple outstanding addresses.

AXI supports out-of-order transaction completion.

AXI provides high-frequency operation without the need for complex bridges.

12

Chapter 2

AXI Channel architecture

2.1 Channels in AXI 3 for Transection:

e axi read address channel.

e axi read data channel.

e axi write address channel.
e axi write data channel.

e axi write response channel.

2.1.1 Write Channel Architecture

Write address channel

Address
and control
 —
Write data channel
Manager Write Write Write Write Subordinate
interface data data data data interface

_ > — —™>»

Write response channel

Write
response

-+

Fig 2.1.1: WR transaction need the WR address and WR data also WR response channels.

13

2.1.2 W (WRITE) Channel Architecture

2.2

Read address channel

Address
and control
e
Manager
interface

Read data channel

Read Read Read Read
data data data data

Subordinate
interface

fig 2.1.1 RD transaction need the RD address and RD data channels only.

AXI 3.0 Channels definition

AXI has five independent channels, each with a set of information signals and

VALID and READY signals that provide a two-way handshake mechanism.

The master initiates the VALID signal to indicate when valid address, data, and

control information are available in the channel.
AXl includes a WLAST signal to indicate the last data item in a write tra

RLAST signal to indicate the final data item in a read transaction.

nsaction,

Read and write transactions each have their own address channels, carrying all

the required address and control information for a transaction.

14

Chapter 3

Signal Descriptions

3.1 AXI 3.0 Global Signals.

Signals Source Signal Description
Aclk Clk signal All signals of channels sampled on clock edge
ARESETn Reset signal Active low, put all signals at its default state

3.2 AXI 3.0 AW (Write address) Channel Signals

Signals source Signal Description
AWID M Write address ID signal gives identification for the write
address channels signal group.
AWADDR M write address gives initial address to slave of transfer.
AWLEN M Burst length gives number of transfers will happen single
transection information to slave.
AWSIZE M Burst size, this signal gives information about how many
bytes in transfers.
AWBURST M Burst type give information about how calculate next
address for next transfer in the transaction.
AWLOCK M Lock type give information about the atomic access of
the transfer like NORMAL, EXCLUSIVE.
AWVALID M This signal indicates that the channel contains valid
WR_address, WR_control information.
AWREADY S Signal indicates that the slave is now ready to accept an
WR_address, WR_control information form master side.

15

3.3 AXI 3.0 W (Write Data) Channel Signals

Signals Source Signal Description
WID M Write ID signal gives identification for the write address
channels signal group.
WDATA M Write data.
WSTRB M Write strobe signal indicate how many bytes of data are
valid in transfer.
WLAST M Write last indicate last transfer in transection.
WVALID M Write valid, this signal indicates that the channel
contains valid write data and strobe information.
WREADY S Signal indicates that the slave is now ready to accept an
WR data information form master side.

3.4 AXI 3.0 B (Write Response) Channel Signals

Signals Source Signal Description
BID S This signal gives identification for the WR response channels

signal group.

BRESP S This signal give status about write transection, transection
pass or failed.

BVALID S This signal indicates that the channel contains valid
WR_response and strobe information.

BREADY M This signal indicates that the slave is now ready to accept an

WR_response information form slave side.

16

3.5 AXI 3.0 AR (Read address) Channel Signals

Signals source Signal Description
ARID M read address ID signal gives identification for the read
address channels signal group.
ARADDR M read address gives initial address to slave of transfer.
ARLEN M Burst length gives number of transfers will happen single
transection information to slave.
ARSIZE M Burst size, this signal gives information about how many
bytes in transfers.
ARBURST M Burst type give information about how calculate next
address for next transfer in the transaction.
ARLOCK M Lock type give information about the atomic access of
the transfer like NORMAL, EXCLUSIVE.
ARVALID M This signal indicates that the channel contains valid
RD_address, RD_control information.
ARREADY S Signal indicates that the slave is now ready to accept an

RD address, RD control information form master side.

17

3.6 AXI 3.0 R (Read Data) Channel Signals

Signals Source Signal Description

RID S read data ID signal gives identification for the read data
channels signal group.

RDATA S Read data.

RRESP S This signal give status about read transection,
transection are failed or pass.

RLAST S Read last indicate last transfer in transection.

RVALID S This signal indicates that the channel contains valid
RD_data, RD_control information.

RREADY S Signal indicates that the master is now ready to accept
an RD_address, RD_control information form slave side.

18

Global Signals <

3.7 AXI Signals Direction

/ —t CSYSREQ
» » .y
: — ACLK l,.(.m Power i
Global Signals Signals
ARESETn P
CACTIVE
Write Address Read Address Write Data Read Data Write Response
Channel Channel Channel Channel Channel
—e AWID — ARID —tr WD A— R D B —— 1 111]
— AWADDR et ARADDR — WDATA S RDATA
— AWLEN —t ARLEN — WSTRE
—t AWSIZE —et ARSIZE
—p AWBURST —t ARBURST
— AWLOCK —t ARLOCK
—t AWCACHE —t ARCACHE
— AWPROT — ARPROT
— AWNVALID — ARVALID — WVALID S— RVALID — BVALID
[G A\ READY Ge A\RREADY O \WREADY — RREADY — R \m]
— W LANST G— RSN
e RRESP 4 BRESP
fig 3.7 AXI all signals’ Directions
. L3
3.8 AXI Master — Slave Configuration
——ACLK—>]
Glovaisignais L __ s pECETh >
——AWID—» oAl
—AWADDR—» =
——AWLEN—> AR
:AAV\'IVVBSLIJZRES?I Write Contral Write Control _/(\\)’VVBSLIJZRES‘?;
F—AWLOCK—» Channel Ll —AWLOCK—>
—AWCACHE» Signals Signals —AWCACHE>]
——ACLK—>] —AWPROT—» —AWPROT—>
—ARESETn—> —AWVALID-» —AWVALID->
CAWREADY ™ “© AWREADY]|
——wi WID
—WDATA—>» Writs Data Write Data —WDATA—>
Wi STBI. Channel Channel _WST""_,,
:WVALID—P Signals Signals —(_——-WVALID-—D
WREADY WREADY]|
AXIMASTER [§fRggp__ | VrieRessorse wite Response ~ €S AXI SLAVE
[—BVALID— Channel E— <—BVALID—]
—BREADY—» Signals Signals —BREAD
——ARID—> ——ARID—>
—ARADDR —ARADDR—>]
—ARLEN—» ——ARLEN
F—ARSIZE: Read Control Read Control RSIZE:
i Sema | ASUESTS
F—ARCACHE» Signals Signals —ARCACHE>
—ARPROT—> —ARPRGT—>
——ARVALID — 110
"CARREADY <«ARREADY—]
—RID—— RID
RDATA— RDATA—
— RESP___ Read Response Read Response -« RESP.
< Rt LAST— Channel Charnel <—RLAST—
—RVALID— Signals Signals <—RVALID—
—RREADY—> —RREADY—>]
Fig 3.8.1 AXI master fig 3.8.2 AXI Slave

19

ACLK—>
~—ARESETn->

AXI MASTER

——AWPROT—>
——AWVALID->
©AWREADY]

ain
BRESP—

BVALID——
——BREADY—>

>
—ARADDR—>

Al ZE
——ARBURS T

CK
——ARCACHE>»

PROT
——ARVALID >
<CARREADY—

€«——RID——

€«—RDATA—

€ RIRF S P—
LAST

<€—RVALID—

——RREADY—>

AXI SLAVE

——ACLK
<€«—-ARESETn—

fig 3.8.3 AXI masters Slave configuration

20

Chapter 4
Handshake Mechanism in AXI

e In AXI, each of the five transaction channels has its own handshaking signals,
utilizing the same VALID and READY signals for transferring address, data, and
control information.

e The Master produces the VALID signal to indicate that the address, data, or
control information is valid.

e The Slave produces the READY signal to indicate that it is ready to accept the
information.

e A successful transfer occurs only when both the VALID and READY signals are
high.

4.1 VALID assert High before READY assert High handshake

e The Master provides information after the P1 clock edge and turns on the VALID
signal.

e The Slave activates the READY signal high after the P2 clock edge.

e The Master needs to maintain its information steady until the transfer happens
at the P3 clock edge.

P1 P2 P3

ack[[[L] LI [

INFORMATION ¥ }(

VALID ||'||' i'h
READY |'|l' ;Ill

fig 4.1 VALID before READY handshake

e A Master cannot wait until READY is confirmed before activating VALID.

e When VALID is activated, it must stay activated until the handshake happens,
ensuring a successful transaction at a rising clock edge when both VALID and
READY are activated.

21

4.2 READY assert High before VALID assert High handshake

After the P1 clock edge, the Slave activates READY before the address, data, or

control information is valid.

e This activation shows that it's ready to receive the information.

e The Master provides the information and activates VALID after the P2 clock
edge, leading to the transfer happening at the P3 clock edge.

e In this scenario, the transfer successfully happens within one cycle.

P1 P2 P3
ACLK| N N N R
{FORMATION X X
VALID Jy .
READY [)\

fig 4.2 READY before VALID handshake

4.3 READY assert High before VALID assert High handshake

e After the P1 clock edge, both the Master and Slave are ready to transfer address,
data, or control information.

e The transfer takes place at the rising clock edge when both VALID and READY are
activated.

e The transfer happens at the P2 clock edge.

P1 P2

=00 I S N S N S

INFORMATION) X

VALID !? El!
READY E,_" |'|l||

fig 4.3 VALID with READY handshake

22

4.5 AXI 3.0 channel Dependencies between handshake signals

1.5.1 Read channel dependencies

e The slave can wait for ARVALID to be activated before it activates ARREADY.
e The slave must wait for both ARVALID and ARREADY to be activated before it
begins to return read data by activating RVALID.

ARVALID ——— »» RVALID

\ /N

ARREADY RREADY

fig 4.5.1 dependencies in read channels handshake

1.5.2 Write channel dependencies

e The master should not wait for the slave to activate AWREADY or WREADY
before activating AWVALID or WVALID.

e The slave can wait for AWVALID or WVALID, or both, before activating
AWREADY.

e The slave can wait for AWVALID or WVALID, or both, before activating WREADY.

e The slave must wait for both WVALID and WREADY to be activated before
activating BVALID.

AWVALID WVALID" ———»» BVALID
AWREADY WREADY BREADY

t Dependencies on the assertion of WVALID also require the assertion of WLAST

fig 4.5.2 dependencies in write channels handshake

23

4.6 Address structure
4.6.1 AW/AR Burst length

e ARLEN[7:0] indicates the burst length for read transfers.
e AWLEN[7:0] indicates the burst length for write transfers.
e The burst_length for AXI3 is calculated as: Burst Length = AXLEN[3:0] + 1

AXI follows specific rules for burst usage:

e For wrapping bursts, the burst length must be 2, 4, 8, or 16.
e In AXI3, a burst cannot cross a 4KB address boundary.

4.6.2 AW/AR Burst size

e ARSIZE[2:0] is used for read transfers.
e AWSIZE[2:0] is used for write transfers.

In the AXI specification, AXSIZE represents either ARSIZE or AWSIZE.

AxSIZE[2:0] Bytes in transfer

0b0oo 1
0bool 2
0b010 4
0bo11 8
0b100 16
0b101 32
0b110 64
0b111 128

Fig 4.6.2 write read Brust size

24

"If the AXI bus is wider than the transfer size, the AXI interface must decide, based on the
transfer address, which byte lanes of the data bus to utilize for each transfer."

4.6.3 Burst type

® ARBURST[1:0] is used for read transfers.
® AWBURST[1:0] is used for write transfers.

AxBURST[1:0] Burst type
0b0o FIXED

0bo1 INCR

0b10 WRAP

0b11 Reserved

Fig 4.6.3 Brust type

1. Fixed burst:

e In a fixed burst type, the address stays consistent for every transfer within the

burst.

e This type is used for repetitive accesses to the same location, like when loading
or emptying a peripheral FIFO application.

1. Incrementing burst:

e In an incrementing burst, the address for each transfer within the burst
increases in increments of the previous transfer address, with the slave

calculating the next address.

e The increment value of the address depends on the transfer size.

25

For example, in a burst with a size of four bytes, the address for each transfer
is calculated as the previous address plus four.

2. Wrapping burst:

A wrapping burst resembles an incrementing burst, where the address for
each transfer increases based on the previous transfer address.

In a wrap type burst, the address wraps around to a lower address once it
reaches a wrap boundary.

The wrap boundary is determined by multiplying the size of each transfer in
the burst by the total number of transfers in the burst.

4.7 Example of Calculate Address with INC, FIXED, WRAP

4.7.1 Burst type — INC

AWADDR =32’h1000_0000
WLEN =5
AWBURST = INCR

AWSIZE =2

Decoding:

AWLEN =5 (burstlen = 6)

AWBURST = INCR (Data write in incremental address locations
AWSIZE = 2 (2"AWIZE = 4 byte per Transfer)

Total Byte in Transection = burstlen*byte per transfer =6 * 4

24 byte

Data Write Happen from 32’h1000_0000 to 32’h1000_0017

4.7.2 Burst type — FIXED

AWADDR =32’h1000_F000
AWLEN =4
AWBURST = FIXED

AWSIZE =2

27

Decoding:

AWLEN = 4 (burstlen = 5)

AWBURST = FIXED (Data write at fixed address only)

AWSIZE = 2 (2"AWIZE = 4 byte per Transfer)

Total Byte in Transection = burstlen*byte per transfer=5 * 4 =

20 byte

All Data Write Happen at 32°’h1000_F000

4.7.3Burst type — WRAP

AWADDR =32’h1000_1010
AWLEN =5

AWBURST = WRAP
AWSIZE =2

Decoding:

AWLEN =5 (burstlen = 6)

AWBURST = WRAP (Data write in wrapping manner)

AWSIZE = 2 (2"AWIZE = 4 byte per Transfer)

Total Byte in Transection = burstlen*byte per transfer =6 * 4 = 24
byte

WRAP boundaries calculations:

AWADDR % (Total Byte in Transection) = reminder
32’h1000_0010 % 24 =8

Lower wrap address = AWADDR — 8 = 32’"h1000_0008

28

Upper wrap address = Lower wrap address + 23 = 32’h1000_001F

Write data in memory:

15t Transefer write at address = 32’h1000_0010
2% Transefer write at address = 32’h1000_0014
3%t Transefer write at address = 32’h1000_0018
4% Transefer write at address = 32’h1000_001C
5% Transefer write at address = 32’h1000_0008 (wrap to lower addr)
6% Transefer write at address = 32’h1000_000C

4.8 Data read and write structure

4.8.1 Write strobe

e Strobe value indicates how many bytes of data are valid in transfers. a write
strobe indicates that the corresponding byte_lane of the data bus contains valid
information to be updated in memory.

e The size of WSTRB varies according to the data width.

e |n this AXI VIP, the write bus is 32 bits wide, so the strobe is 4 bits wide. Each bit
of the strobe signal represents a valid byte in the write transfer.

WSTRB[n] corresponds to the byte lane in WDATA from bit position

(8xn)+7to(8xn).

63 56 55 48 47 40 39 32 31 24 23 16 15 87

29

4.8 Narrow_Transfers

e |f a master initiates a transfer narrower than its data bus, WSTRB specifies which
byte lanes are valid for the transfer.
¢ Inincrementing or wrapping bursts, different byte lanes transmit data for each

transfer within the burst.

e In a fixed burst, where the address remains constant, the byte lanes used also

remain constant.

Example 1:

e The burst consists of five transfers.

e Starting address: 0.
e FEach transfer is 8 bits wide.

e Transfers occur on a 32-bit bus.

Byte lane used

1st transfer
2nd transfer
3rd transfer
4th transfer

5th transfer

1st transfer

2nd transfer

DATA[7:0]
DATA[15:8]
DATA[23:16]
DATA[31:24]
DATA[7:0]
Fig 4.8.1 Narrow_transfer
Example 2:
e The burst comprises three transfers.
e Starting address: 4.
e Each transfer is 32 bits wide.
e Transfers occur on a 64-bit bus.
Byte lane used
DATA[63:32]
DATA[31:0]
DATA[63:32]

3rd transfer

Fig 4.8.2 Narrow_transfer

30

4.9 Narrow Transfers Examples

4.9.1 Narrow INC (Without strobe Signal)

AWADDR = 32’'h100 (256)
AWLEN = 4

AWBURST = INCR
AWSIZE = 1

Decoding:

AWLEN = 4 (burstlen =5)

AWSIZE = 1 (2"AWIZE = 2 byte per Transfer)

Here burst size is smaller then WDATA BUS size (Let assume BUS size 64 - bit and
Transfer size 16 - bit)

Total Byte in Transection = burstlen*byte per transfer=5* 2 =10
byte

Write data in memory:

1% Transefer:

WDATA = 64’'h10203040_ 50607080 (Total 8 byte How many byte valid ?)
80,70 write on address of 100 and 101 (Remain Byte Ignore)

2% Transefer:

WDATA = 64’'h10203040_ 50607080 (Total 8 byte How many byte valid ?)
80,70 write on address of 100 and 101

3% Transefer:

WDATA = 64’h11223344 55667788
Offset =32'h101 % 8 =2
66,55 write on address of 102 and 103

31

4t Transefer:
WDATA = 64’h11223344 55667788

Offset =32’h106 % 8 = 6
22,11 write on address of 106 and 107

5% Transefer:

WDATA = 64’h10203040_50607080
Offset =32°’h108 % 8 =0
80,70 write on address of 108 and 109

4.9.2 Narrow (With Strobe)

AWADDR =32’h100 (256)
AWLEN =4

AWBURST = INCR
AWSIZE = 2

Decoding:

AWLEN = 4 (burstlen = 5)
AWSIZE = 2 (2*"AWIZE = 4 byte per Transfer)

Here burst size is smaller then WDATA BUS size (Let assume BUS size
64 - bit and Transfer size 16 - bit)

Total Byte in Transection = burstlen*byte per transfer =5 * 4 = 20
byte

Write data in memory:

1% Transefer:

WDATA = 64’h10203040 50607080
WSTRB = 8b0000_1111
80, 70, 60, 50 write on address of 100, 101, 102, 103 (Remain Byte Ignore)

32

2% Transefer:

WDATA = 64’h11223344 55667788
WSTRB = 8b1111_ 0000
44, 33, 22, 11 write on address of 104, 105, 106, 107

3%t Transefer:

WDATA = 64’h10203040_ 50607080
WSTRB = 8’b0000_1111
80, 70, 60, 50 write on address of 108, 109, 10A, 10B

4 Transefer:

WDATA = 64’h11223344 55667788
WSTRB = 8b1111_0000
44, 33, 22, 11 write on address of 10C, 10D, 10E, 10F

4 Transefer:

WDATA = 64’'h10203040_50607080
WSTRB = 8b1111_0000
80, 70, 60, 50 write on address of 110, 111, 112, 113

33

4.10 Unaligned transfers

Address: 0x00
Transfer size: 32-bits
Burst type: incrementing
Burst length: 4 transfers

Address: 0x01
Transfer size: 32-bits
Burst type: incrementing
Burst length: 4 transfers

Address: 0x01
Transfer size: 32-bits
Burst type: incrementing
Burst length: 5 transfers

Address: 0x07
Transfer size: 32-bits

Burst type: incrementing
Burst length: 5 transfers

31 2423 16{15 8i7 0i
0x03 | 0x02 | 0x01 | 0x00 | 1sttransfer
| 0x07 | 0x06 | 0x05 | 0x04 | 2nd transfer
| 0x0B | 0x0A | 0x09 | 0x08 | 3rd transfer
| OxOF | OxOE | 0xOD | 0xOC | 4th transfer
N)
WDATA[31:0]
31 2423 16115 87 0]
0x03 0x02 | 0x01 0x00 | 1st transfer
| 0x07 | 0x06 | 0x05 | Ox04 |2nd transfer
| 0x0B | Ox0A | 0x09 | 0x08 | 3rd transfer
| OXOF | OxOE | 0xOD | OxOC | 4th transfer
{ J
WDATA[31:0]
31 24123 16115 87 0
0x03 | 0x02 | 0x01 0x00 | 1sttransfer
| 0x07 | 0x06 | 0x05 | 0x04 |2nd transfer
| 0x0B | Ox0A | 0x09 | 0x08 | 3rd transfer
| OxOF | OxOE | 0xOD | OxOC | 4th transfer
| 0x13 | 0x12 | 0x11 | 0x10 | 5th transfer
N)
WDATA[31:0]
31 2423 1615 817 0
0x07 | Ox06 | OxO05 | 0x04 | 1sttransfer
| 0x0B | Ox0A | 0x09 | 0x08 | 2nd transfer
| OxOF | OxOE | 0xOD | 0xOC | 3rd transfer
| 0x13 | 0x12 | Ox11 | 0x10 | 4th transfer
| 0x17 | 0x16 | 0x15 | 0x14 | 5th transfer
N)
WDATA[31:0]

34

4.11 AXI 3.0 Write and Read response.

The AXI protocol offers response signalling for both read and write transactions:

e For read transactions, the slave responds with the read data and response
information through the same read data channel.

e For write transactions, the response information is conveyed through a separate
write response channel.

Response signalling:
e RRESP[1:0] for read transfers.

e BRESP[1:0] for write transfers.

RRESP[1:0]

BRESP[1:0] Response
0boo OKAY
0b01 EXOKAY
0b10 SLVERR
0b11 DECERR

Fig 4.11 write and read response type

OKAY:
e Indicates success of normal access, showing that a regular access has been
completed without issues.
e |t can also indicate a failed exclusive access.
EXOKAY:

e Signifies exclusive access success, indicating that either the write and read
part of an exclusive access has been successfully completed.

35

SLVERR:

DECERR:

Indicates a slave error, used when the access reaches the slave successfully,
but the slave needs to return an error condition to the master.

Slave error can occur in cases like FIFO or buffer overrun/underrun,
unsupported transfer size, attempting write access to a read-only location,
timeout conditions, or accessing a disabled or powered-down function.

Decode Generated error, usually issued by an interconnect component,
indicating that there's no slave at the transaction address.

If the interconnect cannot decode a slave access successfully, it must return
DECERR. This may involve routing the access to a default slave, which then
returns the DECERR response.

The AXI protocol mandates that all data transfers for a transaction be
completed, even if an error condition arises. Any component providing a
DECERR response must adhere to this requirement.

36

Chapter 5

Atomic Accesses

e Atomic accesses are employed in configurations with multiple masters and
slaves.

e The ARLOCK[1:0] or AWLOCK[1:0] signal indicates exclusive and locked access
information.

There are three types of accesses:
1. Normal Access
2. Exclusive Access

3. Locked Access

e By default, value of ARLOCK & AWLOCK is 0 means Normal Access.

AxLOCK][1:0] Access type

0b0oo Normal access
0b01 Exclusive access
0b10 Locked access
0b11l Reserved

Fig 4.11 write and read Access type

1.1 Exclusive Access

e Exclusive access is used when we need specific access to one of the addresses
of a slave.

e This mechanism allows the slave to remain accessible to other masters.

37

e ARLOCK][1:0] or AWLOCK][1:0] signal selects exclusive access, and RRESP[1:0]
or BRESP[1:0] signal indicates the success or failure of the exclusive access
with responses like OKAY or EXOKAY.

The process for an exclusive access:

i. The first master initiates an exclusive read operation on a slave address
location.
ii. Later, the master tries to complete the exclusive operation by
performing an exclusive write operation to the same address location.
iii. The exclusive write access of the master is determined:

e Successful if no other master has modified that location between the
read and write accesses.

e Failed if another master has modified that location between the read
and write accesses. In this case, the address location is not updated,
and an OKAY response is generated to indicate the failure of exclusive
access.

1.2 Locked Access

e The arbiter within the interconnect enforces the restriction for access.

e |n alocked access, another master cannot access the same slave while the slave is
busy.

e Any transaction with ARLOCK[1:0] or AWLOCK[1:0] set to indicate a locked
accsess compels the interconnect to lock the transaction.

e Therefore, a locked sequence must always finish with a final transaction that does
not have ARLOCK[1:0] or AWLOCK[1:0] set to indicate a locked access. This final
transaction effectively removes the lock.

e When a master initiates a locked sequence of read or write transactions, it must
ensure it has no other outstanding transactions waiting to complete.

e When completing a locked sequence, a master must ensure that all previous
locked transactions are finished before issuing the final unlocking transaction.

e The master must ensure that all requested writes or reads within a locked
sequence have the same ARID or AWID value.

38

5.3 AXI 3.0 Data interleaving.

e The write data interleaving feature allows a slave interface to accept interleaved
write data from different transactions.

e slave specifies a write data interleaving depth, indicating if it can accept interleaved
write data from masters with different transactions.

e This depth represents the number of different addresses pending in the slave
interface for which write data can be supplied.

e By default, the write data interleaving depth of any interface is only one.

Restrictions for data interleaving:

e A master cannot interleave the write data of different transactions that have the
same AWID.

e The order in which a slave receives the first transfer of each transaction must match
the order in which it receives the addresses for the transactions.

39

Chapter 6

Wave Forms

6.1 Simple write
* AWLEN=3
* AWSIZE = Halfword/ 16 bits/ 2 bytes

* AWBURST = Fixed

AWID[3:0]
AWADDR[31:0]

24 X 727227
Z A Y 7% i % 7 ; 7 i 7 :
AWLEN[3:0] W Z\ a3 Yz % ’é: :é: 2 :é: i 705 :j: B % M
; 2 :{77 G :é: 2 7 7 7 7 i 7 7 7 3
A

AWSIZE[2:0]
AWBURST[1:0]

AWVALID / \
AWREADY / \
W|D[30]WW Y, S SR) /l/.’/ d1

WDATA[31:0] % Y IO D) AD3) W
WSTRB[3:0] 77 boon_ [boon 777777 A booil b0
WLAST ,r'—\
WVALID I | \ / \
WREADY / \
BID[3:0] 7 7 i i i Z i N
BRESPI:0] 2 7 i L
BVALID / \
BREADY / \

Fig 6.1 simple one write transection waveform.

40

6.2 Simple read
ARLEN =2
ARSIZE = Halfword/ 16 bits/ 2 bytes

ARBURST = Fixed

VRS N I N I T I TR A T R T R TR R T R T Y
ARID[3:0] 7 A1 ¥
ARADDRI0) 778 A Y007
ARLEN[3:0] 777777892 X0 07
ARSIZE20] 7777778 O X v
ARBURSTI:0] 2778 99 K077 777 077777777
ARVALD [\

ARREADY [\
RID[3:0] A, I I i, S L i, S
RDATA[31:0] 7 7 A_ADO) Y7777 % SO v SO
RRESP 77/ 7 7 7 OKAY ¥ 7 7 OKAY Y77 7 OKAY ¥ /
RLAST [
RVALID \ /e W e W
RREADY f \

Fig 6.2 simple one read transection waveform

41

6.3 Burst based transfers

Transaction 1
 AWLEN=3
* AWSIZE = Word/ 32 bits/ 4 bytes

* AWBURST = INCR

Transaction 2
e AWLEN= 1
* AWSIZE = Word/ 32 bits/ 4 bytes

* AWBURST = INCR

IST'S S N s Y S A S FU S A S Y S Y S Y S A S
AWID[30)| 7 a1 X d3 ¥ 7 7
AWADDR[31:0] 777777774 no100_} noz00 %777
AWLEN[30) 2277 d3 ¥ a1 ¥z
AWSIZE[20] 77 d2 ¥ d2 ¥
AWBURST[1:0] 777774 a1 ¥ d1 Y7
AWVALID f v kY
AWREADY / \
WID[3:0] 777 7 7K d1 Y a1 X a1 ¥ a1 X a3 X a3 Y
WDATA[31:0] 777 : 4 nat01 Y nat02 Y\ wat03 ¥ natos Y n2e0t Y n2B02 ¥
WSTRB[3:0] 7z SRR D G D R e
WLAST I
WVALID /! W
WREADY i Y
BRESP[1:0] 7 OKR W7 OKAY N7
BID[3:0] o a1l W da W '
BVALID [L
BREADY f y

Fig 6.3 two write burst transection waveform

42

6.4 Interleaving transfers

Transaction 1
e« AWLEN=2
* AWSIZE = Word/ 32 bits

* AWBURST = Fixed

Transaction 2
e AWLEN=1
* AWSIZE = Word/ 32 bits

* AWBURST = Fixed

AWID[30]

AWADDRI 77

AWLEN30) 7777

AWSIZE[Z0] 7777

AWBURST[10] 77 /X a0

AWVALID f

AWREADY / \

WID[3:0] 777

IR R

R

I

X B0y XX a0t X7

A Y

TR

WSTRE[3:0] 777

/

i,
WORTAB10) A ADD)
A o

VIR 7 W

Ao V77

Ao Y77

WLAST

WVALID /

[

WREADY /

1]]]

AWIDI30) 777

X

BRESP1:0] 777

7N okey Y

BVALID

BREADY /

Fig 6.4 two write interleaving transection.

43

6.5 Out of order transfers

Transaction 1

* ARLEN=1

* ARSIZE = Word/ 32 bits

* ARBURST = Fixed

Transaction 2

* ARLEN= 3

* ARSIZE = Word/ 32 bits

* ARBURST = Fixed

ARID[3:0] 7 i1 I s |7/
ARADDR[31:0] A A) B 17
ARLENE 777777 d1 I d3 |7/
ARSIZER0] 77777 2) d2 %
ARBURSTIEN 777 40 i 40 |7/
ARVALID / \
ARRERDY 7777777 / \ / \
RID[3:0] i 7w N 0 | s W de N 7 d Y
RDATA[31:0] 7 DB W e N oea Y oes) W 7 o Y
RRESP 7 ok Y77N okay N okar Y7 7 okay ¥ 7N okay Y
RLAST [\ [\
RUALD 7\ [\ \
RREADY / \ / / \

Fig 6.5 two out of order write transection.

44

Chapter 7

AXI VIP Verification Environment

7.1 Verification Steps.

1. Listing down features from AXI spec sheet.

2. Listing down scenario according features.

3. Developed Test plan.

4. Developed Functional Coverage Plan.

5. Implement Test-bench architecture.

6. Component coding of Test-bench.

7. Implement and Pass Sanity test case.

8. bring up Sanity test case.

9. Implement remain test cases according to Test Plan.

10. Pass regression with all AXI test cases and debugging.
11.Implement functional coverage and generating coverage results.
12.Analyse coverage results if not meet with expectation, then modify test

case to get maximum coverage.

45

7.2 UVM Test bench Architecture.

AXl Master

axi_scorbord

axi_coverage

axi_interface

Fig 7.2 UVM Testbench Architecture.

1. axi_sequences

e Sequences are constructed to offer input to designs and check the capabilities
of tests and verification IP.

e These sequences provide control over randomization of transactions and
create scenarios for test cases.

e VIP includes various sequences tailored for different test cases, such as
axi_out_of order_sqgn and axi_interleaving_sqn.

2. axi_master_driver

e basically, driver drive packet level transection to pin level (Interface).
e VIP have axi master driver which contain 3 driving logic of AW, AR,W,B channel
logic.

46

axi_slave_driver

® VIP have slave driver to drive transection from axi memory component, its

contain R,B channel driving logic.

axi_master_sequencer

e The role of sequencer is routes a sequence to the driver and driver and
sequencer are communicate using TLM port.
e Here in VIP master driver routes master sequences to master driver.

axi_slave_sequencer

e The role of slave sequencer same as master sequencer, slave sequencer
routes transection from axi memory component to slave driver.

axi_master_monitor

e Monitor is passive component used to sample/ capture signals information
form interface and translate in packet format.

e In axi vip role of master monitor is sample slave signals from interface (B, R
channel Information).

axi_slave_monitor

e The role of slave monitor same as master monitor, sample transection from
master interface (AW,W,AR channels information).

axi_master_agent

e The role of agent is a container that holds and connects the driver, monitor,
and sequencer instances.

e In axi vip role of master agent hold instance of master driver, master monitor,
master sequencer and TLM ports connection.

47

9. axi_slave_agent

e The role of slave agent is same as master agent, in axi vip role of

slave agent hold instance of slave driver, slave sequencer, slave
monitor and TLM ports connections.

10. axi_scoreboard

e Scoreboard it a component that checking the expected results
against the actual results, scoreboard role in axi vip is master agent

transection and slave agent transection compare and give result
pass or failed.

11. axi_memory

e axi memory hold write transection and generate response
according to transection.

48

7.2 UVM Test bench components hierarchy

e il e e ol e e e e e e e sl e e e sl e e e sl e e e sl e s e sl Bl e e e e o

£

UM INFO @ 0: reporter [UVMIOP] UVM testbench topoclogy:

Size Value

Name Type
uvm_test_top axi_wr_rd wrap test
env axi_env
cvg axi_coverage
analysis_imp uvm_analysis_imp
m age axi m age
m_ axi_m drv
rap\ port uvm_analysis port
seqg_\tem port uvm_seq_item pull port
m_mon axi_m mon
mmon_ap uvm_analysis_port
m_sqr axi_m sqr
rsp_export uvm_analysis export
seq_item expQrt vm_seq item pull imp
arbitration_ array

lock_gueue
num last_ reqs
num last_rsps

array
integral
integral

rsp_port uvm_anA\lysis_port
seg_item port uvm_seq Xtem pull port

axi_s_mon
vm_analysly _port
axi_s_sqgr
pP_eXport uvm_analysis_export
s%q_item export uvm _seq_item pu i
itration_queue array
lokk_queue array
last_reqs integral
num\last rsps integral
sb axi_sb

uvm_analysis_imp axi mas

AXI VIP UVM Testbench

Slave components

uvm_analysis_imp axi_slave

Fig 7.2 UVM Testbench components hierarchy.

r_monitor - @s€e9

AXI VIP UVM Testbench

Master components

49

Chapter 8

AXI VIP Features Result
8.1 AXI Fixed Brust type.

8.1.1 AXI Fixed Brust Write transection.

O T3
{Sa6d72d4) 2527159

i1 7
{ 1bcdfe71 e709a8ch 2336818 8306

i

Fig 8.1.1 Write FIXED Request.

e Master Initiate transection with NORMAL Access and FIXED Burst type.
e Slave response as OKAY to indicate success of NORMAL Access.

8.1.2 AXI Fixed Brust Read transection..

il 7
19a6d72d4 | aSafy159

M
1J
]

[[T 1T
(oodpoos T T T a00boce
10
- | I -

Fig 8.1.2 Read FIXED Request.

50

e Slave response with RDATA and RRESPONSE with NORMAL Access and FIXED

Burst type.
e Slave response as OKAY to indicate success of NORMAL Access.

8.2 AXI INCR Brust type.
8.2.1 AXI INCR Brust Write transection.

13843106

[l

d 2
{20d0b7d5 7196733 5de4Ge34 308cf072 b40a7FIs dacd835d (34252266 9a86bef3
{f

Fig 8.2.1 Write INCR Request.

e Master Initiate transection with NORMAL Access and INCR Burst type.
e Slave response as OKAY to indicate success of NORMAL Access.

8.2.2 AXI INCR Brust Read transection.

u 2
{eb5dfdec 13843106

2
il

i 2
120000705 719639 5de49e 34 Jaachinz b4097f15 dacd335d 30252066
il

. ‘ | | . ‘ | {

Fig 8.2.2 Read INCR Request.

e Slave response with RDATA and RRESPONSE with NORMAL Access and INCR
Burst type.
e Slave response as OKAY to indicate success of NORMAL Access.

51

8.3 AXI WRAP Brust type.
8.3.1 AXI WRAP Brust Write transection.

J L 111

u:):):):)
2160 |Fiodies0 [eocetbel [9effis |oa62080

la)
o (5210620 | 9aa20ec) 2532 1h435723 -brae,d 152574030 cl\t 746 ba7efbs
(f
| | ‘ | [|

Fig 8.3.1 Write WRAP Request.

e Master Initiate transection with NORMAL Access and WRAP Burst type.
e Slave response as OKAY to indicate success of NORMAL Access.

8.3.2 AXI WRAP Brust Read transection.

JomD | | b 2 I
G26ER (1720160 JF1od9830 |G0cee8 | 97effdis |f662080
L

::)::):::)::J
S206e2) | Saadec) ey I T Bhish b Jeb76_ Jbarefos eS8 | 697021

| | L | [L — | [—
L L I — [—

Fig 8.3.2 Write WRAP Request.

e Slave response with RDATA and RRESPONSE with NORMAL Access and WRAP
Burst type.
e Slave response as OKAY to indicate success of NORMAL Access.

52

8.4 AXI out of order response.

8.4.1 AXI INCR Brust, out_of order feature Write transection.

Fig 8.4.1 out of order response.

e Master Initiate transection with NORMAL Access, INCR Burst type and out of
order response number which is 3 here, Number of Transactions are 5.

e Slave response as OKAY to indicate success of NORMAL Access but in out of
order.

8.5 AXI Interleaving Transection.

8.5.1 AXI INCR Brust, Interleaving feature Write transection.

(5 A 15 9

Fig 8.5.1 Interleaving transection.

53

e Master Initiate transection, Interleaving transection with interleaving Depth =
3, NORMAL Access, INCR Burst type.

e In write request transfers of different transection are overlapping.

e First transfer of each transection happen first then it can interleave.

e Slave response as OKAY to indicate success of NORMAL Access.

8.6 AXI outstanding addresses.

8.6.1 AXI INCR Brust, outstanding feature Write transection.

1 (T { A I [0 b2 (D
OOCseien [[T T T Jddfaf0

7Y R R W Y
|

5T T 16 [To [J7 [Je [1 | Jo [If
:):D:D:D:D:D:D:DE:D:):D:D:D:D:D:D:D:D:D:D ic5alb3A

1 1 L | |1 LT T T
1 1 iR 1 — — — — — —
8 [(S Y N 2 N 1 2 G

0 1o
L | | [[[[] [

Fig 8.6.1 outstanding address.

e Master Initiate transection with NORMAL Access, WRAP Burst type with
NUMBER_OF_OUTSTANDING_ADDR = 3.
e Slave response as OKAY to indicate success of NORMAL Access in order.

8.7 AXI exclusive Access.

8.7.1 AXI Exclusive Access Read Modified Write transection.

Fig 8.7.1 Exclusive read modified write transection.

54

e Master Initiate First Read transection with EXLUSIVE Access, WRAP Burst type.
e Slave assign one EXLUSIVE address for particular Master.
e Slave response as EXOKAY to indicate success of Exclusive Access in order.

Fig 8.7.2 Exclusive read modified write transection.

e Master Initiate Second transection with EXLUSIVE Access, WRAP Burst type
with write request.

e If master write happened with same on exclusive address, then slave give
EXOKAY response, indicate success of Exclusive access otherwise give OKAY
response to indicate fail of Exclusive access.

8.8 AXI Narrow Transection.

8.8.1 AXI Narrow transfer feature Write transection.

Fig 8.9.1 Exclusive read modified write transection.

55

e Master Initiate write transection with strobe value, WRAP Burst type and
Normal Access.

e Slave accept data only which is valid only, strobe give information about how
many bytes are valid in data.

e Slave response as OKAY to indicate success of NORMAL Access in order.

8.8.2 AXI Narrow transfer feature Read transection.

Fig 8.9.1 Exclusive read modified write transection.

e Master Initiate read transection, WRAP Burst type and Normal Access.
e Slave response as OKAY to indicate success of NORMAL Access in order.

8.10 Coverage Report.

22 Covergroups e

¥|Name ClassType |Coverage |Goal ‘%ofGoaI ‘Slatus |Induded |Merge_instances Get_inst_coverage Comment

= faxi_pkgfaxi_coverage

=+ 8 TYPE AXI_WRITE_CG 9.10% 100 9%.10% [y auto(1)
++ 8 ‘CVP AXI_WRITE_CG::WR_ADDR_CP 100.00% 100 100.00... NN "
+ 4 ‘CVP AXI_WRITE_CG::WR_ID_CP 100.00% 100 100.00... I "
+ 4 ‘CVP AXI_WRITE_CG::WR_BRUST SIZE_CP 100.00% 100 100.00... I "
+ 4 ‘CVP AXI_WRITE_CG::WR_BRUST_TYPE_CP 100.00% 100 100.00... I
+ 4 ‘CVP AXI_WRITE_CG::WR_BRUST_LEN_WRAP_CP 100.00% 100 100.00... I
+ 4 ‘CVP AXI_WRITE_CG::WR_BRUST_LEN_INCR_CP 100.00% 100 100.00... I
+ 4 ‘CVP AXI_WRITE_CG::WR_BRUST_LEN_FIXED_CP 93.75% 100 93.75% [y
=+ TYPEAXI READ_CG %9.10% 100 95.10% [y auto(1)
+- 3 CVPAXI_READ_CG::RD_ADDR_CP 100.00% 100 100.00... IR
+- 4 CVP AXI_READ_CG::RD_ID_CP 100.00% 100 200.00... I
+- 4 (CVP AXI_READ_CG::RD_BRUST SIZE_CP 100.00% 100 100.00... I
+- 4 CVP AX]_READ_CG::RD_BRUST TYPE_CP 100.00% 100 100.00... I
+- 4 CVP AXI_READ_CG::RD_BRUST LEN_WRAP_CP 100.00% 100 100.00... I
+- 4 CVP AX]_READ_CG::WR_BRUST_LEN_INCR_CP 100.00% 100 100.00... I
++ 3 CVP AXI_READ_CG::WWR_BRUST LEN_FIXED_CP B75% 100 93.75% ¢
'} 3| TYPE AXI_TRANSECTION_CG 100.00% 100 100.00... N auto(0)
|8 CVP AXI_TRANSECTION_CG::WR_RD_TRANSECTIO! 100,00% 0 100.00... I
+- 4 INST \/axl_pkg 1axi couerage AXI TRANSECFION CG 100,00% 100 100.00... I 0

56

Functional coverage is process to measure of how much
functionalities/features of the design have been covered by the tests.

. AXI WRITE Cover group.

Cover point for write address.

Cover point for write ID.

Cover point for write burst type.

Cover point for write burst size.

Cover point for write supported len for FIXED burst type.
Cover point for write supported len for INCR burst type.
Cover point for write supported len for WRAP burst type.

. AXI READ Cover group.

Cover point for read address.

Cover point for read ID.

Cover point for read burst type.

Cover point for read burst size.

Cover point for read supported len for FIXED burst type.
Cover point for read supported len for INCR burst type.
Cover point for read supported len for WRAP burst type.

. AXI Transection cover Group

Cover point for consecutive write requests.
Cover point for a write request followed by a read request.
Cover point for consecutive read requests.

Cover point for a read request followed by a write request.

57

8.11 Assertion Report.

#-A Jtopjsval/assert_aw_stable_whie_awvald_high Concurrent
#-A Jtopjsvalfassert_unk_not_permited_aw Concurrent
+-A [topjsval/assert_awburst_not_permited R state Concurrent
+1-A [topjsval/assert_awvald_mavwait_for_awready Concurrent
+-A [topjsval/assert_awburst wrap_sp_len Concurrent
+-A [topjsvalfassert_wdata_cnt not match_awlen Concurrent
#-A [topjsval/assert_w_stable_whie_wvald_high Concurrent
4 top/svalassert _wvaid_maxwait_for_wready Concurrent
+-A /top/svalfassert_unk_not_permited_w Concurrent
+1-A [topjsvalfassert_b_stable_whie_bvald_high Concurrent
+-A Jtopjsval/assert_bvalid_high_wlast low Concurrent
+-A Jtopjsval/assert_bvalid_maxwait_for_bready Concurrent
+-A [topjsval/assert_unk_not_permited_b Concurrent
+-A [topjsval/assert_ar_stable_whie_arvald_high Concurrent
+-A [topjsvalfassert_unk_not_permited_ar Concurrent
+-A [topjsvalfassert _arvalid_mavwait_for_arready Concurrent
+-A Jtopjsvalfassert _arburst_wrap _sp_len Concurrent
+-A [topjsvalfassert _arburst_not_permited_\R _state Concurrent
+-A ftop/svalfassert_r_stable_whie_rvald_high Concurrent
+-A ftopjsval/assert _rvald_maxwait_for_mready Concurrent
+-A [topjsval/assert_unk_not_permited r Concurrent
+-A [topjsval/assert _rdata_cnt not_match_arlen Concurrent

e Assertion is process to bound a design during simulation.
e In AXI VIP development write assertion for all axi channels.

8.12 Tools Used during AXI VIP Development.

1. Synopsys VCS for simulation and coverage.
2. Synopsys Verdi for wave form analyse.

SVA
SVA
SVA
SVA
SVA
SVA
SVA
SVA
SVA
SVA
SVA
SVA
SVA
SVA
SVA
SVA
SVA
SVA
SVA
SVA
SVA
SVA

£ S 8§88 8888838888 8SS8S8SsS 8$s8S 88 8§

C o0 0 0 0000000000000 oo oo o

O o e e O e O e e e e e O O = e = O

S5 S33s333533ss3ss8s8338388s

S s Ssssssssssssss=3838

Ons
Ons
Ons
Ons
Ons
Ons
Ons
Ons
Ons
Ons
Ons
Ons
Ons
Ons
Ons
Ons
Ons
Ons
Ons
Ons
Ons
Ons

3. Questa sim VSIM for simulation and waveform analyse.

o - - I - T T = R R e e e - -

assert(@(posedoe ACLK) disable if..,
assert(@(posedge ACLK) disable if..,
assert(@(posedge ACLK) disable if..,
assert(@(posedge ACLK) disable if..,
assert(@(posedge ACLK) disable if...
assert(@(posedge ACLK) disable if,.,
assert(@(posedge ACLK) disable if...
assert(@(posedge ACLK) disable if..,
assert(@(posedge ACLK) disable if...
assert(@(posedge ACLK) disable if..,
assert(@(posedge ACLK) disable if..,
assert(@(posedge ACLK) disable if,.,
assert(@(posedoe ACLK) disableif..,
assert(@(posedge ACLK) disable if..,
assert(@(posedge ACLK) disable if..,
assert(@(posedge ACLK) disable ..,
assert(@{posedge ACLK) disable f...
assert(@(posedge ACLK) disable if,.,
assert(@(posedoe ACLK) disable if..,
assert(@(posedge ACLK) disable if..,
assert(@{posedge ACLK) disable if...
assert(@(posedge ACLK) disable if..,

N e S N e S

58

Chapter 9

Conclusion.

AMBA AXI- 3.0 protocols back-to-back VPI is developed successfully and it can be
configured and inserted into a test bench for verifying a design with the help of
different test cases.

Now days complexity of RTL and SoCs are going to increase, verification of complex
RTL and SoCs are going to very difficult to handle and it take a lot of time, so there is
a need a develop standard verification environment so we can reuse to verify other
standard IPs and it take less time to verify, Now most of SoCs uses AXI Protocol based
on chip communication

This Project work is carried out by designing AXI Master and AXI Slave with the help
of System Verilog, Universal Verification Methodology (UVM) developed Verification
IP(VIP) for AXI protocol.

AXI 3.0 VIP is Back-to-Back VIP that mean, there are no any RTL are Present AXI
Master and AXI slave are integrated back-to-back and communicate with the help of
request and response based.

This project verifies features of AXI which include FIXED Burst type, INCR Burst type,
WAP Brust type, out of order transection completion, multiple outstanding address,
interleaving transfers of different transection, narrow transfer.

All the components and objects in the verification environment are developed using
UVM which helps to reduce time to develop testbench and reduce verification time.
99.40 % of functional coverage was achieved by this project with regression pass to

all of the test cases of AXI VIP.

59

Chapter 10

Reference

1. AMBA AXI and ACE Protocol Specification AXI3, AXI4, and AXI4-Lite ACE and ACE-
Lite

2. Mahesh G, Shaktivel SM. Functional Verification of the Axi20cp Bridge using

System Verilog and effective bus utilization calculation for AMBA AXI 3.0 Protocol.

IEEE Sponsored 2nd International Conference on Innovations in Information,
Embedded and Communication Systems (ICIIECS). 2015. 2. Mahesh G, Shaktivel
SM. Verification of Memory Transactions in AXI Protocol using System Verilog
approach. IEEE ICCSP Conference. 2015.

3. Naidu KJ, Srikanth M. Design and Verification of Slave block in Ethernet
Management Interface using UVM. Indian Journal of Science and Technology.
2016 Feb; 9(5):1-7.

4. Universal Verification Methodology (UVM) 1.1 User’Guide, May,2011. 9. [9] UVM
Cookbook, Mentor Graphics, Sept, 20

5. Mahesh G, Shaktivel SM. Verification of Memory Transactions in AXI Protocol
using System Verilog approach. IEEE ICCSP Conference. 2015.

6. Chen CH, lu JC, Huang Il. A Synthesizable AXI Protocol Checker for SoC Integration.

IEEE Transl, ISOCC. 2010; 8:103-6

7. AMBA AXI-4 Specification, Copyright ARM Limited.
http://www.gstitt.ece.ufl.edu/courses/eel4720 _5721/labs/
refs/AX14_specification.pdf.

8. https://developer.arm.com/documentation/102202/latest/AXI-protocol-overview

60

e plagiarism report

e
<
=1
Y

N
6,

Match Overview

11%

‘I archive.alvb.in
Internet Source

11%

>

61

