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Abstract

Maintaining patient privacy while utilizing the combined power of dispersed datasets

is critical in the field of healthcare. One interesting approach is federated learning (FL),

which enables cooperation between different institutions without jeopardizing private

medical data. This article investigates the use of improved deep learning models in four

different health-related fields using the FL framework. Our goal is to improve predictive

accuracy while preserving data privacy by combining FL techniques with cutting-edge

deep learning frameworks. By using real-time data exchange across decentralized net-

works, we want to optimize model training by taking advantage of the latest develop-

ments in communication technology. The Enhanced FL Health Model (EFHM), as our

proposed method is called, balances the advantages of various health datasets with the

drawbacks of conventional centralized learning paradigms. We examine the consequences

of incorporating domain-specific expertise to customize deep learning structures to the

distinct features of every health domain. We provide insights into the potential future

paths of federated learning in healthcare through a thorough examination of the benefits

and difficulties associated with EFHM implementation.
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Abbreviations

FL Federated Learning.

DL Deep Learning.

CNN Convolutional Neural Networks.

Conv2D Convolutional 2D.

PC papillary carcinoma.

MC mucinous carcinoma.

LC lobular carcinoma.

DC ductal carcinoma.

TA tubular adenoma.

PT phyllodes tumor.

SGD Stochastic Gradient Descent.

DAGs Directed Acyclic Graphs.
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Chapter 1

Introduction

1.1 Knowledge Discovery Process

Introduces the idea of federated learning and discusses how the field of breast cancer

prediction can benefit from it. highlights the significance of data privacy in this field and

discusses how federated learning can help to overcome this issue.

Without the need to share raw patient data, a federated learning framework enables

the creation of a breast cancer prediction model using data from various hospitals or

clinics.

By utilising various datasets from various universities, the study can show how a

federated learning strategy can increase the accuracy of breast cancer prediction models.

The paper demonstrates the scalability and adaptability of federated learning ap-

proaches to big and challenging datasets.

Healthcare providers can use high-speed, low-latency networks that allow for the quick

transmission of significant amounts of medical data.

Objectives Steps :-

• To study about various use cases where federated learning can enhance deep learning

integration.

• To design a model for Cancer prediction using Federated learning.

• To Implement Federated Learning model for Cancer Prediction.
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• To validate the proposed model based on Privacy Preservation Distributed data for

federated learning model.

Healthcare data analytics have gained a lot of interest recently, because more and

more of these data are becoming easily available from variety of sources. Hospitals, med-

ical products, clinical research, outsourcing, medical tourism, insurance for health, and

medical equipment are all part of the healthcare industry. The modern health-care indus-

try is divided into many sub-sectors and depends on interdisciplinary teams of competent

experts and paraprofessionals to meet the health needs of people and populations. Accu-

rate predictions of illnesses and other health issues can be made by further examination

of these correlations.

During recent years, a variety of industries, including healthcare, banking, and man-

ufacturing, have shown an increasing interest in federated learning. can learn from data

from various banks. With no compromise to consumer privacy, it has been utilised in

banking to create fraud detection models that can learn from data from various banks.

For instance, federated learning has been applied to the healthcare sector to increase the

precision of medical diagnosis models while preserving patient privacy.

The diverse field of healthcare is essential to both individual and societal well-being.

Fundamentally, it includes a variety of services meant to advance, preserve, or restore

health. Worldwide healthcare systems are essential to maintaining people’s general health

and standard of living, from acute care for illnesses and accidents to preventive measures

like immunizations and screenings.

Accessibility is one of the main cornerstones of a strong healthcare system. A rating of

1.0 denotes serious problems in this area, including a lack of healthcare facilities, lengthy

appointment wait times, and insufficient coverage, especially for underserved populations.

Under such circumstances, people can choose not to receive essential medical care because

of financial difficulties or distance, which could result in differences in health outcomes.

Federated learning (FL) is a decentralized machine learning framework that enables

the collaboration of multiple parties without the need to share sensitive data [1]. Feder-

ated learning is a productive distributed method for protecting privacy when developing

ML models [2].

Cancer has one of the highest fatality rates across the globe [3]. For example, in

many cases, cancer diagnosis requires large amounts of patient data, including medical

2



Figure 1.1: Healthcare 1.0 to 5.0

records, imaging data, and genome data. However, collecting and sharing this data can

be difficult, especially when it comes to sensitive information such as medical records.

Federated learning provides a way to train models on distributed data sources, without

having to share the underlying data.

A branch of machine learning known as ”Deep Learning” uses multiple-layered artifi-

cial neural networks to derive hierarchical representations from data. According to LeCun

et al. [4], it makes complex patterns and features easier to learn from raw data, which

makes jobs like image recognition, natural language processing, and healthcare analytics

easier. Deep learning automatically learns hierarchical representations, in contrast to

typical machine learning techniques that rely on manually created features. This enables

more adaptable and scalable models that can capture intricate relationships in data.

Conventional machine learning methods have limited efficacy in tasks such as image

analysis and natural language processing because they frequently face difficulties when

dealing with unstructured and high-dimensional data. By automatically learning hierar-

chical representations, deep learning gets over these restrictions and makes predictions

that are more reliable and accurate [5]. Deep learning models can identify complicated

patterns and connections in complex data by utilizing large-scale labeled datasets and

sophisticated computer resources. This has led to breakthroughs in a variety of fields,

including healthcare.

The deployment of deep neural network designs throughout distributed devices or

data centers allows for the integration of deep learning with federated learning. Deep

learning models can learn from dispersed data sources while maintaining data privacy

thanks to federated learning, which makes collaborative model training easier [6]. In the

healthcare industry, where private patient data is dispersed throughout several medical
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facilities and research centers, this integration provides scalable and privacy-preserving

machine learning solutions.

MURA (musculoskeletal radiography), lung cancer diagnosis, skin cancer detection,

and breast cancer prediction are only a few of the problems that face the healthcare

industry. Accurate prediction models are necessary for these activities, but they also need

to protect patient privacy and security [7] [8]. Further complicating model creation and

implementation are issues with data heterogeneity, small sample sizes, and discrepancies

in data sharing among healthcare organizations. These issues highlight the need for

collaborative and privacy-preserving machine learning methodologies [9].

Drug development, medical image analysis, disease prediction, and customized ther-

apy recommendations are just a few of the problems that deep learning in healthcare can

solve. Deep learning methods can increase diagnostic accuracy and extract important

insights by utilizing sophisticated neural network architectures and large-scale healthcare

datasets [10]. Deep learning also makes it possible to integrate several data modalities,

such as genomic data, patient-reported outcomes, medical imaging, and electronic health

records, enabling complete and customized analytics for healthcare [11].

By training convolutional neural networks (CNNs) using medical imaging data, deep

learning techniques can be applied to the diagnosis of lung cancer, MURA analysis, skin

cancer, and breast cancer. By helping physicians with early detection and diagnosis, these

models can be trained to extract discriminative features from images and enhance patient

outcomes [12] [13]. Furthermore, through the integration of multimodal data sources and

the provision of real-time insights for individualized patient care, deep learning algorithms

can enhance clinical decision support systems [14].

Federated Learning and Deep Learning together offer a viable path to transform

healthcare analytics. This integrated strategy has the potential to unleash new insights

from distributed healthcare data sources while protecting sensitive patient information

by tackling the issues of data privacy, scalability, and model generalization. Federated

Learning can equip healthcare practitioners with robust predictive models customized

to various clinical domains through cooperative efforts and technological breakthroughs

like edge computing We are about to set off on a revolutionary journey toward more

individualized, effective, and equitable healthcare delivery as we explore deeper into the

applications of Federated Learning-enhanced Deep Learning models in the field.
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Figure 1.2: Federated Learning in Healthcare

As per Fig. 1.2, Federated learning can be implemented in many different applications.

The term ”clinical decision support” in Federated Learning refers to the application of

machine learning algorithms and techniques to analyse medical data from many sources

while upholding the confidentiality and privacy of the data. In FL, medical imaging

analysis uses cutting-edge hardware and software to examine medical pictures including

X-rays, MRIs, CT scans, and ultrasounds to help with diagnosis, therapy planning, and

condition monitoring. The continuous or periodic observation, measuring, and recording

of a patient’s physiological characteristics is referred to as patient monitoring in FL. In

order to recognise and stop population health concerns, public health surveillance in FL

entails constant monitoring, data collecting, analysis, and dissemination [15].

As seen in Fig. 1.3, A decentralised machine learning method called IoT-based (FL)

enables several IoT devices to cooperatively train a single shared model without jeopar-

dising the privacy of their individual data [16]. The immutability and transparency of

blockchain technology are utilised by blockchain-based FL, a distributed machine learning

approach, to enable safe and decentralised model training on user data [17]. Federated

transfer learning is a machine learning approach that enables several dispersed devices to

cooperate learn from each other’s data while retaining anonymity by transferring informa-

tion from a pre- trained model to a new task at each device [18]. MTL-FL is a cooperative

machine learning technique that increases the effectiveness and efficiency of the training

process by allowing many related tasks to be learned concurrently on distributed data

sources [19].
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Figure 1.3: FL implementation in Healthcare

For example, in many cases, cancer diagnosis requires large amounts of patient data,

including medical records, imaging data, and genome data. However, collecting and

sharing this data can be difficult, especially when it comes to sensitive information such

as medical records. Federated learning provides a way to train models on distributed

data sources, without having to share the underlying data.

We are proposing an framework of breast cancer prediction using Fedarated learning

that uses decentralized approach and use of various Fedarated learning algorithms to

predict about Bengin and Malignant Tumor

1.2 Research Contributions

The contributions of the study are as follows:

• A federated learning framework makes it possible to create various health prediction

models utilizing data from many hospitals or clinics without requiring the sharing

of raw patient data.

• The study can demonstrate how a federated learning approach can improve the

accuracy of various healthcare prediction models by utilizing many datasets from

different universities.
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• The paper illustrates how federated learning techniques may be scaled and adjusted

to large and complex datasets.

• High-speed, low-latency networks are available to healthcare practitioners, enabling

the rapid transfer of substantial volumes of medical data.

1.3 Background Study and Research Challenges

In this part, we go over a general overview of Federated Learning and its architecture

and how it integrates into Deep Learning and Other Techniques.

1.3.1 Federated Learning

Federated learning is a machine learning technique that eliminates the need for data to

be transferred to a centralised server in order to train data on a distributed network

of devices. When dealing with sensitive data, such as financial or medical information,

this technique helps to ensure that the information is secure and private. Instead of

sending data to a single location, models are trained on individual devices, and the

outcomes are aggregated to create a global model. This method is used repeatedly to

increase the accuracy of the model while maintaining the privacy of the underlying data.

Federated learning allows for the construction of more accurate models while maintaining

user privacy, and it has the potential to revolutionize machine learning.

The privacy-preserving aspect of federated learning is one of its main advantages.

Federated learning reduces the chance that private information may be disclosed to un-

affiliated parties by maintaining data decentralization and executing calculations locally.

This is especially crucial in situations where tight guidelines for processing personal data

are imposed by data protection rules, like the GDPR in Europe or HIPAA in the US.

With federated learning, companies may manage privacy issues and still facilitate col-

laboration and knowledge sharing across remote datasets by training machine learning

models on data from many sources without having to exchange raw data.

1.3.2 Federated Learning in healthcare Sector

By enabling the creation of precise and individualised healthcare models while protecting

patient privacy, federated learning has the potential to significantly revolutionise the

healthcare sector. In the healthcare domain, patient data is often sensitive and needs to

7



be protected to comply with various privacy regulations.

Federated learning has the potential to revolutionize healthcare by creating precise

and personalized models while safeguarding patient privacy. In the healthcare sector,

sensitive patient data must comply with privacy regulations. Federated learning allows

organizations to train machine learning models across distributed networks without cen-

tralizing data. Healthcare professionals can leverage diverse sources, including electronic

health records, wearables, and mobile apps, to build accurate models for predicting out-

comes and diagnosing diseases. Additionally, federated learning aids drug discovery by

using patient data without compromising privacy.

1.3.3 Federated Learning Integration

A new era of cooperative and privacy-protecting machine learning has begun with the

integration of federated learning with different models. Federated learning enables nu-

merous clients or devices to jointly train models without compromising data privacy by

combining the advantages of distributed learning with decentralised data storage. This

ground-breaking strategy transforms how data is used for machine learning and encour-

ages a new degree of cooperation among experts [20].

• Federated Recurrent Neural Networks : Federated RNNs apply sequential

data analysis to the idea of federated learning. They give numerous devices or

clients the ability to train RNN models jointly while protecting data privacy by

sharing their local data [21]. This integration is especially helpful in cases involving

time series analysis, speech recognition, and natural language processing.

• Federated Convolutional Neural Networks : Federated CNNs give federated

learning access to the capabilities of convolutional neural networks. Computer

vision tasks including picture classification, object identification, and image seg-

mentation frequently employ these models. Multiple clients can jointly train CNN

models using their local data by integrating federated learning with CNNs, enabling

collective learning without disclosing sensitive photos or jeopardising privacy [22].

• Federated Generative Adversarial Networks : GANs are well-known deep

learning models that are used to create fake data that mimics the distributions

of real data [23]. Federated GANs enable numerous clients to jointly train GAN
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models using their local data while protecting privacy and producing high-quality

synthetic data. This interface is useful for generating synthetic data for machine

learning tasks, augmenting data, and exchanging data while protecting privacy,

among other areas.

• Federated Reinforcement Learning : It enables numerous clients to coopera-

tively train RL models while ensuring data privacy by fusing reinforcement learning

approaches with federated learning [24]. This integration is advantageous in situa-

tions like robotics, autonomous systems, and recommendation systems where clients

can learn and improve their models using their local interactions and experiences.

Reinforcement learning algorithms learn through interactions with an environment.

Figure 1.4: FL implementation with Various Models

• Federated Transformer Models : The field of natural language processing has

been transformed by transformer models, such as the well-known BERT (Bidirec-

tional Encoder Representations from Transformers). Federated Transformer mod-

els use federated learning to let numerous clients jointly train transformer models

without sharing their original data [25]. This integration is especially helpful in

9



applications that require user data safety, such as language modelling, sentiment

analysis, and machine translation.

• Federated Deep Reinforcement Learning : It blends federated learning with

the strength of deep learning and reinforcement learning. It enables collaborative

deep reinforcement learning model training across several clients while maintaining

data privacy [26]. This connection is especially helpful in industries like health-

care, driverless vehicles, and personalised recommendation systems where it might

be difficult or impossible to acquire and share raw data. Federated DRL enables

the collective learning of complicated decision-making models while protecting the

privacy of sensitive data by spreading the learning process across numerous devices.

1.3.4 Integration of various cancer predictions schemes with

federated learning

Federated learning and cancer prediction can be used to improve the accuracy of cancer

diagnosis and offer personalised treatment plans. A significant amount of patient data,

including sensitive genetic, imaging, and medical history information, is often needed

in order to forecast the risk of acquiring cancer. Protecting patient privacy, healthcare

practitioners can use federated learning to train machine learning models on dispersed

networks of devices without transferring patient data to a central location. Federated

learning enables the development of machine learning models with a variety of patient

data from multiple sources, such as genetic information, imaging data, and electronic

health records, to produce more accurate cancer prediction models.

A possible way to improve the privacy and accuracy of predictive models is to combine

federated learning with several cancer prediction systems. With federated learning, sev-

eral organizations or entities can work together to jointly train a machine learning model

without exchanging unprocessed data. This strategy protects patient privacy while al-

lowing healthcare providers, academic institutions, and pharmaceutical corporations to

pool their data resources in the context of cancer prediction. Every involved party has

the ability to train a local prediction model with its own dataset, which might contain

a variety of cancer kinds and patient groups. The global model that is created by com-

bining these locally trained models is then aggregated, utilizing the collective knowledge

from dispersed sources to increase prediction accuracy.
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Federated learning tackles data security and privacy issues, which are especially im-

portant in healthcare environments. Sensitive information on a patient’s genetic makeup,

medical history, and current state of health is frequently included in data related to can-

cer. Federated learning reduces the possibility of data breaches or unwanted access by

maintaining decentralized data and carrying out model training locally. This method

complies with United States legal frameworks including the Health Insurance Portability

and Accountability Act (HIPAA), guaranteeing adherence to strict data privacy regu-

lations while permitting cooperative research and innovation in cancer prediction. All

things considered, the combination of federated learning and different cancer prediction

schemes has enormous potential to progress customized treatment, quicken the pace of

new research, and eventually enhance patient outcomes in the battle against cancer.
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Chapter 2

Literature Survey

2.1 Introduction

This survey covers influential works that explain the fundamental ideas of federated

learning, as well as contemporary studies that address increasing issues and applications

in this evolving subject. Additionally it aims to provide the reader with a comprehensive

overview of the development, present condition, and future potential of the integration

of federated learning and deep learning.

Through an extensive examination of various studies, our objective is to offer a thor-

ough and inclusive analysis of the current information, methodology, and insights, while

also emphasising the areas that require additional investigation. Here is a table of various

papers in which already work have done on Deep Learning Enhanced Federated Learning.

Leveraging the capacity of deep neural networks to enhance model performance and

convergence in decentralized settings, Deep Learning Enhanced Federated Learning (DLEFL)

offers a substantial development in federated learning approaches. Numerous research

papers have investigated various facets of DLEFL, such as innovative architectures, op-

timization methods, and federated learning frameworks designed exclusively for deep

learning models. For example, novel strategies have been put forth by academics to deal

with issues including model heterogeneity, communication efficiency, and non-identically

distributed (non-IID) data distributions in federated environments.

12



2.2 Techniques

Several empirical studies use federated learning, deep learning, and machine learning

techniques to predict breast cancer. These research explore the complexities of predictive

modeling, using cutting-edge methods to preserve strict privacy standards while analyzing

large datasets. Advances in early diagnosis and treatment options are fostered by the

way these cutting-edge methodologies are being explored by researchers, who open up

new avenues for individualized and accurate breast cancer prediction models.

In the paper [27], The authors suggest a recent deep learning model for categorizing

areas at risk of breast cancer. They use pretrained convolutional neural network (CNN)

architectures, such as VGG-16, ResNet-50, Inception-V3, and Efficientnet-B7, in con-

junction with transfer learning (TL). Three scenarios are assessed using the suggested

method: test-learning (TL) for the pre-processed dataset, TL for the original dataset,

and TL with test-time augmentation (TTA). Notably, on the MIAS dataset, the TL

approach with TTA achieves high accuracy, specificity, sensitivity, and F1-score, out-

performing other cutting-edge techniques. The model also shows good performance on

the CBIS-DDSM dataset. The study highlights how crucial it is for medical imaging to

accurately classify breast lesions using deep neural networks.

In reasearch paper [28] ,They suggest using deep learning to recognize breast cancer

in photos from mammography screenings. Their method effectively uses mammography

pictures for computer-aided early detection of breast cancer by employing a ”end-to-end”

training strategy. The Faster R-CNN (Region-based Convolutional Neural Network)

architecture is modified to improve the localization and detection accuracy of breast

cancer.

Das et al. [29] created a computer-aided diagnosis method that uses chest X-ray pic-

tures to automatically detect pneumonia. Although chest X-ray imaging is frequently

used to diagnose pneumonia, it can be difficult and subject to subjectivity. The re-

searchers created an ensemble of three convolutional neural network (CNN) models—GoogLeNet,

ResNet-18, and DenseNet-121—and used deep transfer learning to address this. They

employed a weighted average ensemble strategy, in which a unique method was used to

compute the weights allocated to the base learners. On pneumonia X-ray datasets that

are available to the public, the suggested method outperformed both commonly used

13



ensemble techniques and state-of-the-art methods, achieving high accuracy rates.

A deep transfer learning-based systematic model for pneumonia identification and

classification was proposed by Santhoshi and Jyostna et.al.[30] The interpretation of

chest X-rays (CXRs) is affected by a number of factors that make it difficult to diagnose

pneumonia accurately. The researchers created a deep learning framework that makes use

of transfer learning to overcome this. Using various neural network models that had been

pretrained on ImageNet, they were able to extract features from CXR images. They

specifically used two models, YOLOv5 and Mask-RCNN. Predicting if a certain CXR

image shows pneumonic lungs and further identifying the type of pneumonia (bacterial

or viral) were the objectives. They sought to improve pneumonia detection accuracy and

offer useful insights for clinical practice by evaluating these models’ performance.

Barbadekar, Ashtekar, Chaudhari et.al. [31] suggested a method for classifying skin

cancer.Skin cancer is one of the most common cancers, and successful treatment depends

on early detection. The researchers’ main goal was to use dermoscopic pictures to create

an automated system for classifying skin lesions. Based on the VGG-19 architecture, they

employed a convolutional neural network (CNN). To accomplish accurate categorization,

the parameters and training process were carefully established. The efficacy of the sug-

gested model in detecting skin cancer was demonstrated by its evaluation utilizing the

Human Against Machine dataset.

We have created a framework that combines deep learning techniques with federated

learning to connect image datasets related to healthcare. This method preserves data

confidentiality and privacy while enabling cooperative model training across decentralized

data sources. We can effectively train deep learning models on sensitive medical imaging

data without centralizing it by utilizing federated learning, which addresses concerns

about data privacy and confidentiality.

The goal of X.Zhang et al.’s paper [32] is to extract objects using federated deep

learning and prototype matching from very-high resolution remote sensing photos. Their

method makes use of the idea of prototypes to record the key characteristics of objects in

dispersed databases, promoting efficient knowledge sharing and cooperation. The authors

show how federated learning can increase object extraction precision while preserving data

privacy, which is essential for applications like land cover mapping and environmental

monitoring.
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In their paper [33], Wei et al. suggest federated deep transfer learning for EEG

decoding in BCI applications. Their method improves the performance and generalisation

abilities of EEG decoding models by drawing on information from numerous similar

BCI activities. The authors show how federated learning may be used in the field of

neuroengineering to create EEG decoding algorithms that are more precise and reliable for

uses like motor rehabilitation and cognitive testing. The outcomes show the advantages

of distributed collaborative learning across BCI datasets.
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Proposed
Approach

Year Algorithms
Used

Short De-
scription

Dataset Pros Cons

Das R. et.al
[29]

2024 CNN, VGG-19 The CNN-
based approach
is utilized to
classify X-
ray images
as either
pneumonia-
positive or
pneumonia-
negative.

CXR demonstrates
promising results
in pneumonia
identification, po-
tentially aiding
early diagnosis.

Incorrect classifica-
tion using other ap-
proaches is approx-
imately 15-20 %

Santhoshi M.
et.al [30]

2023 RCNN, Fast-
RCNN

The paper
proposes an
efficient ap-
proach for
detecting
pneumonia
using transfer
learning mod-
els (RCNN and
FAST RCNN).
These models
are applied
to medical
images.

Various Image
Dataset

achieves accurate
pneumonia detec-
tion using transfer
learning models.

It does not provide
Multimodeling
that is used for
detecting cancer
using certain char-
acteristics.

Barbadekar
et.al [31]

2023 VGG-19 and
DesNet

The paper aims
to improve skin
cancer de-
tection using
dermoscopic
images. It
proposes a
model based
on an enhanced
architecture
of VGG-19
for accurate
classification.

HAM10000 The proposed
model outperforms
other techniques in
terms of accuracy
for skin cancer
detection.

It does not have
setting hyperpa-
rameters tuning
for improving ac-
curacy.

B.Nandhini
et.al [34]

2022 Inception V3 & V4,
CNN

The research
aimed to im-
prove the
accuracy of
automated
detection of
dermal cell
images related
to skin cancer.

International Skin
Imaging Collabora-
tion (ISIC)

Inception V4
achieved better
accuracy (92.34%
± 0.87) compared
to Inception V3
(90.34% ± 0.13).

The study did not
explore the impact
of varying hyper-
parameters on the
performance of the
Inception V3 and
Inception V4 mod-
els.

L.Li et.al [35] 2022 FedAvg, Kappa To analy-
sis breakhis
dataset and
provide analy-
sis of ResNet
and DenseNet

BreakHis The privacy of
requests and re-
sults is guaranteed
by the encryption
techniques.

The operating effi-
cienct of homomor-
phic encryption
algorithms of FL
framework.

B.Shubyan
et.al [36]

2022 Federated Learn-
ing, 5G

It looks into
FL’s use in 5G
networks and
looks into sev-
eral methods to
increase model
precision and
communication
effectiveness.

Sample Created
Dataset

Comprehensive ex-
ploration, Experi-
mental evaluation

Lack of real-world
deployment analy-
sis, Narrow focus
on techniques.

Agbley et.al
[37]

2022 Centralized Learn-
ing

To analysis
BHI Dataset
and provide
analysis of
ResNet and
GaborNet

Breast
Histopathology
Image

Gabor network
was introduced for
gathering features
from datasets and
create feature
maps with those
features.

Dataset is not
set from differ-
ent repositories
for purpose of
non-identitcally
& distributed of
non-identitcally &
distributed.

Table 2.1: Comparative analysis of approaches
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Proposed
Approach

Year Algorithms
Used

Short De-
scription

Dataset Pros Cons

L.Li et.al [35] 2022 FedAvg, Kappa To analy-
sis breakhis
dataset and
provide analy-
sis of ResNet
and DenseNet

BreakHis The privacy of
requests and re-
sults is guaranteed
by the encryption
techniques.

The operating effi-
cienct of homomor-
phic encryption
algorithms of FL
framework.

X.Zhang.et.al
[32]

2023 STC,FedPM It suggests us-
ing prototype
matching in
a federated
deep learning
strategy for
item extraction
from extremely
high-resolution
remote sensing
photos.

IAIL Dataset,
BH-Pools dataset,
GLM Dataset

Prototype Match-
ing, Very-High-
Resolution Images

Lack of Compara-
tive Analysis, Data
Availability

X.Wei.et.al [33] 2023 ConvNet, MF-
SCSN

This method
enhances
EEG decoding
precision by
employing nu-
merous brain-
computer
interface (BCI)
tasks.

BEETL motor im-
agery

Improved Accu-
racy, Transfer
Learning

Generalizability,
Comparative Anal-
ysis

Table 2.2: Comparative analysis of approaches
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Chapter 3

Proposed Methodology

3.1 System Model

With an emphasis on image classification tasks, the system model is made to apply

federated learning in predictive models for skin cancer, breast cancer, and the MURA

dataset. This framework’s key components include data aggregation methods, neural

network designs, and distributed database storage.

The MURA dataset, the skin cancer dataset, and the breast cancer dataset are dis-

persed across several clients or devices that store and process the data locally. Con-

volutional Neural Networks (CNNs) including components like Convolutional Layers

(Conv2D), Pooling (MaxPooling), Flatten, and Dense layers are used by each client to

perform image categorization jobs. The optimizer is stochastic gradient descent (SGD),

and optimization is made easier by the ’relu’ activation function.

Setting hyperparameters for the federated learning process is crucial and involves se-

lecting values for parameters such as Epochs (ϵ), Rounds (r), Batch Size (b), and Learning

Rate (α). Epochs dictate the number of iterations over the entire dataset, Rounds in-

dicate the communication rounds between clients and the server, Batch Size determines

the number of samples processed in each iteration, and Learning Rate regulates the step

size for updating model weights during training.

Clients send their modified model weights to the server after completing local training.

These weights are aggregated using the function aggregateweights, which combines the

contributions from each client (shown as wa, wb, wc,..., wn) and saves the resultant weights

on the server. To aggregate client contributions, aggregation techniques like weighted
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Figure 3.1: Proposed System Model

averaging or federated averaging are commonly used. Because individual data points are

kept private and insights from the distributed dataset are obtained through the aggregated

weights on the server, this technique guarantees collaborative learning while protecting

data privacy.

The server then analyzes the prediction datasets after averaging the weights. This

analysis could entail assessing the correctness of the model, forecasting data that hasn’t

been observed, or running extra statistical tests to improve comprehension of the predic-

tion tasks.

The federated learning system paradigm, which is illustrated in the picture that goes

with it, makes use of a number of elements, such as distributed database storage, neural

network designs, and data aggregation. In order to maintain data privacy and enable

collaborative learning across several clients, the function aggregateweights is essential.

The server’s aggregated weights form the basis for further examination and assessment

of the prediction datasets.
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3.2 Dataset Explanation

• MURA Dataset: The MURA dataset is especially well-suited for training and

testing machine learning algorithms in the field of musculoskeletal imaging due to its

extensive diversity and large-scale nature. Researchers may examine a broad range

of clinical scenarios, from basic injuries like fractures to more difficult disorders like

degenerative joint diseases, thanks to its thorough coverage of diverse body parts

and pathological conditions.

– The MURA dataset is a collection of musculoskeletal radiographs obtained

from various clinical sources, comprising studies of upper extremities (elbows,

wrists, and fingers), lower extremities (knees, ankles, and toes), and other

body parts.

– This dataset contains both normal and abnormal radiographs, with annota-

tions indicating the presence or absence of musculoskeletal pathologies.

– Each study includes multiple images capturing different views of the same

body part, contributing to the dataset’s diversity.

– MURA is widely used in research for tasks such as bone abnormality detec-

tion, fracture localization, and joint disease classification, making it a valuable

resource for developing and evaluating machine learning models in muscu-

loskeletal imaging.

• CBIS-DDSM Dataset: The CBIS-DDSM dataset provides researchers with a

comprehensive picture of breast imaging across a range of clinical situations by

include both screening and diagnostic mammograms. This variety enables the cre-

ation and assessment of algorithms for more complicated diagnostic tasks, like clas-

sifying suspicious lesions and determining the course of a disease, in addition to

early identification in screening scenarios.

– The Curated Breast Imaging Subset of DDSM (CBIS-DDSM) dataset is a

comprehensive collection of digital mammography images derived from the

Digital Database for Screening Mammography (DDSM).

– It encompasses both screening and diagnostic mammograms, annotated with
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detailed lesion information such as lesion type, pathology, and associated find-

ings.

– CBIS-DDSM includes images from both benign and malignant cases, providing

a rich dataset for studying breast cancer detection and diagnosis.

– Each mammogram is accompanied by metadata, including patient information,

imaging parameters, and lesion characteristics.

– With its diverse set of cases and extensive annotations, CBIS-DDSM serves as

a valuable resource for developing and evaluating algorithms in breast cancer

imaging research.

• Skin Cancer Dataset: The Skin Cancer dataset offers a large and varied collection

of skin lesion photos, making it an essential tool for the advancement of computer-

aided diagnosis and dermatology. Because it incorporates a variety of imaging

modalities, including clinical photography and dermoscopy, researchers may assess

how well algorithms function across several imaging techniques and investigate di-

verse visual representations of skin diseases.

– The Skin Cancer dataset comprises images of skin lesions captured through

various imaging modalities, including dermoscopy and clinical photography.

– It encompasses a wide range of skin conditions, including melanoma, nevi

(benign moles), and other dermatological abnormalities.

– Annotations for each image typically include lesion type, clinical diagnosis,

and additional metadata such as patient demographics and lesion location.

– With its diverse collection of skin lesion images and comprehensive annota-

tions, the Skin Cancer dataset facilitates research in computer-aided diagnosis

of skin cancer, lesion classification, and melanoma detection.

– This dataset is crucial for developing machine learning models to assist der-

matologists in accurate diagnosis and management of skin conditions.

3.3 Problem Formulation

The CNN model used in this study consists of the following layers:
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Input Layer

X ∈ R28×28×1 (3.1)

The input layer represents the input image data, where X is a 3-dimensional tensor

with dimensions 28×28×1. Here, 1 represents the number of channels (grayscale image).

Convolutional Layer

Z [1] = W [1] ∗X + b[1] (3.2)

The convolutional layer applies a set of learnable filters (W [1]) to the input data X,

resulting in feature maps Z [1]. The bias term b[1] is added to each filter’s output.

Activation Layer (ReLU)

A[1] = ReLU(Z [1]) (3.3)

The ReLU activation function introduces non-linearity to the model by replacing

negative values in the feature maps with zeros.

Max Pooling Layer

P [1] = MaxPooling(A[1]) (3.4)

The max pooling layer downsamples the feature maps A[1] by taking the maximum

value within each region of the specified size.

Flatten Layer

F = Flatten(P [1]) (3.5)

The flatten layer reshapes the 2-dimensional feature maps P [1] into a 1-dimensional

vector F , which serves as input to the fully connected layers.

Fully Connected Layer

Z [2] = W [2] · F + b[2] (3.6)

The fully connected layer computes the weighted sum of inputs F with learnable

weights W [2], and adds biases b[2].

Activation Layer (ReLU)

A[2] = ReLU(Z [2]) (3.7)
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Similar to the previous ReLU activation, this layer introduces non-linearity to the

model.

Output Layer

Z [3] = W [3] · A[2] + b[3] (3.8)

The output layer computes the final weighted sum of inputs A[2], followed by the

addition of biases b[3].

Activation Layer (Softmax)

Ŷ = Softmax(Z [3]) (3.9)

The softmax activation function normalizes the output of the model into a probability

distribution, representing the predicted class probabilities.

In this paper, we develop a CNN-based federated learning system for predicting var-

ious cancer schemes. We specifically want to look into how well federated learning may

increase cancer predictions model accuracy while protecting patient privacy and address-

ing data bias. We also want to assess the framework’s scalability and show how it could

help with early detection and treatment planning for cancer.

3.4 Workflow of the project

As shown in figure 3.2, we have performed these steps to implement our algorithm and

find results accordingly.

• Dataset Collection: The initial step involves sourcing publicly available datasets

from official sources.

• Training and Testing Process of dataset: Upon obtaining the BreakHis dataset, it

is partitioned into two subsets. Ensuring equitable distribution of target classes, a

stratified sampling method is employed for both training and testing sets.

• Create a CNN model utilising Keras: Following dataset segmentation, the construc-

tion of a Convolutional Neural Network (CNN) model commences using the Keras

framework.

• Create a client dataset for Federated Learning Environment: To facilitate federated
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Figure 3.2: Workflow of Problem

learning, where data remains on client devices, it’s imperative to generate client-

specific datasets.

• Training the model on client dataset: Subsequently, training commences on the des-

ignated client datasets, with each device conducting local training, thus preserving

data privacy.

• Aggregate Weights: Upon completion of local training, the model weights from

each client are transmitted back to the central server, where they are aggregated

to update the global model.
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• Run Federated Learning Algorithm on Global Model : The updated global model

undergoes further training via the Federated Learning algorithm. This iterative pro-

cess continues until satisfactory performance on the test set is achieved, evaluated

through metrics like accuracy, precision, recall, and F1 score.

• Deploy the Trained Model: Upon successful training, the global model is deployed

for making predictions on new data. This iterative approach is repeated across

multiple datasets.
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Chapter 4

Result Analysis

4.1 Experimental Setup

The computational framework and testing setup leveraged multiple software libraries.

NumPy, known for its mathematical computing capabilities, was employed. TensorFlow,

a popular choice for developing and training machine learning models, played a pivotal

role. To access various neural network models for image classification, the Keras optimiz-

ers package was utilized. The construction of complete neural network models, comprising

all layers, was facilitated through the Keras model API. Diverse activation functions and

regularizers were applied separately in assembling these models, mimicking the training

and evaluation phases. Additionally, the Scikit-learn library was utilized for a range of

preprocessing tasks and assessing metrics.

To optimize the model’s accuracy, we need to adjust various hyperparameters such as

the number of clients (η), learning rate (α), epochs (ϵ), rounds (r), and batch size (b).

Tweaking these parameters allows us to explore different configurations and assess their

impact on model performance without concerns about plagiarism.

Parameters Value
Learning rate (α) 0.01
Batch size (b) 32

Number of Clients (η) 5
Number of rounds (r) 5
Number of epochs (ϵ) 10

Table 4.1: Simulation Setting Parameters

We employed a Convolutional Neural Network (CNN) methodology, utilizing various
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parameters tailored for image classification tasks such as Convolutional Layers (Convo2D),

Pooling (MaxPooling), Flatten, and Dense layers. To optimize our model, we utilized

Stochastic Gradient Descent along with the ’relu’ activation function. Following the

model training and evaluation, we implemented a function called aggregateweights. This

function serves the purpose of consolidating all the weights (wa, wb, wc, ..., wn) and storing

them on a server computer, providing insights into the analysis of our prediction dataset.

The Convolutional 2D (Conv2D) layer is a fundamental element of a convolutional

neural network (CNN). It utilizes a set of learnable filters to process input images, extract-

ing relevant features and producing output feature maps. Maxpooling, another crucial

component, downsamples feature maps by selecting the maximum value within a sliding

window, effectively capturing essential information. The flatten layer in neural networks

serves to convert multidimensional input tensors into one-dimensional outputs, facilitat-

ing classification or regression tasks. In a dense layer, each neuron is interconnected

with every neuron in the preceding layer, enabling linear transformations and activation

functions to generate an output vector.

4.2 Evaluation Metrics

Evaluation metrics are crucial instruments for evaluating how well machine learning mod-

els or algorithms perform on a range of tasks and datasets. By contrasting the expected

and actual class labels, the confusion matrix offers a thorough summary of the predic-

tions made by a classification model. Predictions are categorized into true positives, false

positives, false negatives, and true negatives, allowing for a thorough examination of the

model’s accuracy in classifying incidents into various groups. Stakeholders are able to

pinpoint the model’s strong and weak points and make well-informed decisions about the

model’s deployment or refinement by viewing the distribution of prediction outcomes.

A basic classification statistic called accuracy measures the percentage of correctly

categorized examples in relation to all occurrences in the dataset, hence quantifying the

overall correctness of a model’s predictions. It is frequently used as a baseline metric for

model evaluation and offers a clear assessment of the model’s capacity for class discrim-

ination. But accuracy by itself might not give a whole view of a model’s performance,

particularly in datasets that are unbalanced and have a dominant class. Accuracy must

therefore be complemented by other measures like precision, sensitivity, and the F1 score
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in order to provide a more comprehensive knowledge of the model’s advantages and dis-

advantages with regard to other classification-related factors.

The following metrics have been used to track the model’s performance on the testing

data:

• Confusion Matrix: A confusion matrix is a table that compares the predicted

class labels of a classification model to the actual class labels in order to assess the

performance of the model.

Confusion Matrix Predicted Positive Predicted Negative
Actual Positive True Positive(T+) False Negative(F−)
Actual Negative False Positive(F+) True Negative(T−)

Table 4.2: Confusion matrix

• Accuracy: A classification statistic called accuracy counts the number of in-

stances in a dataset that was properly classified out of all the instances.

Accuracy = T++T−
T++T−+F++F−

• Precision: A classification statistic called precision calculates the percentage of

accurate positive predictions among all positive predictions generated by a model.

Precision = T+

T++F+

• Sensitivity: A classification statistic called sensitivity counts the number of

genuine positive examples among all real positive examples in a dataset.

Sensitivity = T+

T++F−

• F1 Score: The F1 score is a classification statistic that provides a fair assessment

of a classifier’s performance by combining precision and recall into a single value.

F1Score = 2∗Precision∗Sensitivity
Precision+Sensitivity
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Figure 4.1: Analysis of Accuracy on Various Datasets

Dataset No.of Images Time Taken Accuracy

CBIS-DDSM Dataset 10,000 Images 1 hr 48 min 75%
MURA Dataset 14,863 Images 2 hr 37 min 71%
ISIC Dataset 15,863 Images 2 hr 54 min 73.2%

Table 4.3: Result Analysis Table

4.3 Analysis

Table 4.3 presents a comparative analysis of three datasets along with their corresponding

model training results. The CBIS-DDSM dataset, comprising 10,000 images, required

approximately 1 hour and 48 minutes for model training and achieved an accuracy of

75%. On the other hand, the MURA dataset, with 14,863 images, took about 2 hours

and 37 minutes for training, resulting in an accuracy of 71%. Lastly, the ISIC dataset,

consisting of 15,863 images, underwent training for approximately 2 hours and 54 minutes,

yielding an accuracy of 73.2%.
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Figure 4.2: Training and Validation Accuracy on Various Datasets
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Chapter 5

Conclusion and Future Plan

5.1 Conclusion

The goal of the project is to create a convolutional neural network (CNN)- based breast

cancer prediction model that can be trained on dispersed datasets without compromis-

ing patient privacy. The model will incorporate clinical data from numerous medical

institutions as well as mammography pictures to forecast the possibility of breast cancer

in patients. The CNN model will be trained on the scattered datasets using federated

learning while data security and privacy are upheld. The accuracy of the breast cancer

prediction model will be examined, and the practicality of transferring the model across

other institutions will also be examined. The project will help create a breast cancer pre-

diction system that protects patient privacy and may be utilised by medical practitioners

to enhance diagnostic and treatment outcomes.

Machine learning models are trained at the edge in a learning paradigm known as fed-

erated learning. It was initially intended for use cases involving mobile and edge devices,

among other domains, but recently it has become popular in healthcare applications.

There is a lot of interest from both industry and academia in the creation of federated

learning systems for the healthcare sector. By working together to train a model in

this framework, several medical institutions can take use of the advantages of a huge

dataset while also pro- tecting patient privacy. Data preparation, model construction,

federated training, and model aggregation are the framework’s four main processes. Re-

cent research has demonstrated that federated learning can match centralised methods

for perfor- mance while protecting the privacy of the data. But a number of issues still
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Figure 5.1: Prototype of Framework

need to be resolved, including the heterogeneity of the data, the requirement for effective

communication, and the choice of suitable models and algorithms.

5.2 Future Plan

The future of breast cancer prediction is full of interesting opportunities to improve the

accuracy and customization of predictive algorithms. A key component of the future

strategy is comparing these models to the genetic profiles and medical histories of spe-

cific patients. The goal is to improve algorithms that provide a customized and nuanced

picture of breast cancer risk by exploring the distinctive features of every patient. In

order to provide more accurate predictions that take into consideration a range of med-

ical backgrounds and genetic predispositions, individualization is necessary. This will

ultimately improve clinical decision-making.

Furthermore, a crucial tactic for automating and arranging weekly data intake is the

use of Airflow Directed Acyclic Graphs (DAGs). This automation guarantees a steady

flow of data and expedites the process of integrating new data, enabling constant changes

to the model. Airflow DAGs’ structured scheduling facilitates the methodical addition of

new data, preserving the model’s correctness and relevance over time. This strategy is in

line with the requirement for real-time flexibility in healthcare forecasts, especially when

it comes to breast cancer, where it is critical to stay up to date with the most recent

patient data.

To summarize, the strategy for the future centers on a holistic approach to the predic-

tion of breast cancer. This includes customized measurement based on patient profiles,
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the deliberate incorporation of ensemble CNN models, ongoing learning via incremental

training, and the methodical automation of data updates via Airflow DAGs. By pushing

the envelope of accuracy, these coordinated efforts hope to make breast cancer prediction

models more accurate, precise, and dynamic instruments for bettering patient outcomes.

33



Bibliography

[1] B. Camajori Tedeschini, S. Savazzi, R. Stoklasa, L. Barbieri, I. Stathopoulos,

M. Nicoli, and L. Serio, “Decentralized federated learning for healthcare networks:

A case study on tumor segmentation,” IEEE Access, vol. 10, pp. 8693–8708, 2022.

[2] M. Akter, N. Moustafa, T. Lynar, and I. Razzak, “Edge intelligence: Federated

learning-based privacy protection framework for smart healthcare systems,” IEEE

Journal of Biomedical and Health Informatics, vol. 26, no. 12, pp. 5805–5816, 2022.

[3] M. M. Fadel, N. G. Elseddeq, R. Arnous, Z. H. Ali, and A. I. Eldesouky, “A fast

accurate deep learning framework for prediction of all cancer types,” IEEE Access,

vol. 10, pp. 122586–122600, 2022.

[4] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553,

pp. 436–444, 2015.

[5] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural networks,

vol. 61, pp. 85–117, 2015.

[6] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,

“Communication-efficient learning of deep networks from decentralized data,” arXiv

preprint arXiv:1602.05629, 2017.

[7] P. Rajpurkar, J. Irvin, K. Zhu, B. Yang, H. Mehta, T. Duan, D. Ding, A. Bagul,

C. Langlotz, K. Shpanskaya, et al., “Chexnet: Radiologist-level pneumonia detection

on chest x-rays with deep learning,” arXiv preprint arXiv:1711.05225, 2017.

[8] M. Kohli, K. H. Yu, and P. Varma, “Google’s deep learning algorithm detects lung

cancer accurately from ct scans,” Stanford AI Lab Blog, vol. 12, 2017.

34



[9] M. Ghassemi, T. Naumann, P. Schulam, A. L. Beam, and R. Ranganath, “Unlocking

the black box: interpretable machine learning for clinical decision support,” arXiv

preprint arXiv:1612.00850, 2016.

[10] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and S. Thrun,

“Dermatologist-level classification of skin cancer with deep neural networks,” Nature,

vol. 542, no. 7639, pp. 115–118, 2017.

[11] E. J. Topol, “High-performance medicine: the convergence of human and artificial

intelligence,” Nature medicine, vol. 25, no. 1, pp. 44–56, 2019.

[12] V. Gulshan, L. Peng, M. Coram, M. C. Stumpe, D. Wu, A. Narayanaswamy, S. Venu-

gopalan, K. Widner, T. Madams, J. Cuadros, et al., “Development and validation

of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus

photographs,” Jama, vol. 316, no. 22, pp. 2402–2410, 2016.

[13] P. Rajpurkar, J. Irvin, R. L. Ball, K. Zhu, B. Yang, H. Mehta, T. Duan, D. Ding,

A. Bagul, C. Langlotz, et al., “Deep learning for chest radiograph diagnosis: A

retrospective comparison of the chexnext algorithm to practicing radiologists,” PLoS

medicine, vol. 15, no. 11, p. e1002686, 2018.

[14] L. Yao, L. Han, Z. Ni, X. Zhang, H. Duan, R. Liu, S. Lin, and J. Liu, “Learning

to diagnose from scratch by exploiting dependencies among labels,” arXiv preprint

arXiv:1710.10501, 2017.

[15] V. Nemade and V. Fegade, “Machine learning techniques for breast cancer pre-

diction,” Procedia Computer Science, vol. 218, pp. 1314–1320, 2023. International

Conference on Machine Learning and Data Engineering.

[16] H. K. Bharadwaj, A. Agarwal, V. Chamola, N. R. Lakkaniga, V. Hassija, M. Guizani,

and B. Sikdar, “A review on the role of machine learning in enabling iot based

healthcare applications,” IEEE Access, vol. 9, pp. 38859–38890, 2021.

[17] K. Pratim Kalita, D. Boro, and D. Kumar Bhattacharyya, “An efficient consensus

algorithm for blockchain-based federated learning,” in 2023 International Conference

on Intelligent Systems, Advanced Computing and Communication (ISACC), pp. 1–7,

2023.

35



[18] D. Albashish, R. Al-Sayyed, A. Abdullah, M. H. Ryalat, and N. Ahmad Alman-

sour, “Deep cnn model based on vgg16 for breast cancer classification,” in 2021

International Conference on Information Technology (ICIT), pp. 805–810, 2021.

[19] A. Khanna, V. Schaffer, G. Gürsoy, and M. Gerstein, “Privacy-preserving model

training for disease prediction using federated learning with differential privacy,” in

2022 44th Annual International Conference of the IEEE Engineering in Medicine

Biology Society (EMBC), pp. 1358–1361, 2022.

[20] Q. Li, Z. Wen, Z. Wu, S. Hu, N. Wang, Y. Li, X. Liu, and B. He, “A survey on

federated learning systems: Vision, hype and reality for data privacy and protection,”

IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 4, pp. 3347–

3366, 2023.

[21] D.-V. Nguyen and K. Zettsu, “Spatially-distributed federated learning of convolu-

tional recurrent neural networks for air pollution prediction,” in 2021 IEEE Inter-

national Conference on Big Data (Big Data), pp. 3601–3608, 2021.

[22] M. S. B. Siddiqui, S. A. Shusmita, S. Sabreen, and M. G. R. Alam, “Fednet: Feder-

ated implementation of neural networks for facial expression recognition,” in 2022 In-

ternational Conference on Decision Aid Sciences and Applications (DASA), pp. 82–

87, 2022.

[23] Y. Sun, N. S. T. Chong, and H. Ochiai, “Information stealing in federated learn-

ing systems based on generative adversarial networks,” in 2021 IEEE International

Conference on Systems, Man, and Cybernetics (SMC), pp. 2749–2754, 2021.

[24] D. Zou, X. Liu, L. Sun, J. Duan, R. Li, Y. Xu, W. Li, and S. Lu, “Fedmc: Feder-

ated reinforcement learning on the edge with meta-critic networks,” in 2022 IEEE

International Performance, Computing, and Communications Conference (IPCCC),

pp. 344–351, 2022.

[25] H. Li, Z. Cai, J. Wang, J. Tang, W. Ding, C.-T. Lin, and Y. Shi, “Fedtp: Federated

learning by transformer personalization,” IEEE Transactions on Neural Networks

and Learning Systems, pp. 1–15, 2023.

36



[26] J. Zheng, K. Li, N. Mhaisen, W. Ni, E. Tovar, and M. Guizani, “Federated learning

for online resource allocation in mobile edge computing: A deep reinforcement learn-

ing approach,” in 2023 IEEE Wireless Communications and Networking Conference

(WCNC), pp. 1–6, 2023.

[27] M. K. Bizaki, A. V. Sadr, M. Amini, N. Nafissi, I. Shiri, H. Zaidi, and R. Reiazi,

“Deep neural networks-based malignant breast lesions detection and segmentation

from mammography,” in 2022 IEEE Nuclear Science Symposium and Medical Imag-

ing Conference (NSS/MIC), pp. 1–3, 2022.

[28] P. Kumar, K. Sangeetha, A. S. Praneeth, M. S. Madhav, T. Swaroopa, and G. Rohit,

“Automatic detection and localization of breast cancer from mammogram imaging

modality using modified faster rcnn,” in 2023 5th International Conference on Smart

Systems and Inventive Technology (ICSSIT), pp. 1549–1553, 2023.

[29] R. Das, D. S. K. Nayak, C. P. Rout, L. Jena, and T. Swarnkar, “Deep learning

techniques for identification of pneumonia: A cnn approach,” in 2024 International

Conference on Advancements in Smart, Secure and Intelligent Computing (ASSIC),

pp. 1–5, 2024.

[30] M. Santhoshi and J. Jyostna, “An efficient approach of pneumonia detection us-

ing transfer learning models, rcnn and fast rcnn,” in 2023 International Conference

on Advances in Computation, Communication and Information Technology (ICAIC-

CIT), pp. 1214–1219, 2023.

[31] A. Barbadekar, V. Ashtekar, and A. Chaudhari, “Skin cancer classification and detec-

tion using vgg-19 and desnet,” in 2023 International Conference on Computational

Intelligence, Networks and Security (ICCINS), pp. 1–6, 2023.

[32] X. Zhang, B. Zhang, W. Yu, and X. Kang, “Federated deep learning with prototype

matching for object extraction from very-high-resolution remote sensing images,”

IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1–16, 2023.

[33] X. Wei and A. A. Faisal, “Federated deep transfer learning for eeg decoding using

multiple bci tasks,” in 2023 11th International IEEE/EMBS Conference on Neural

Engineering (NER), pp. 1–4, 2023.

37



[34] S. Likhitha and R. Baskar, “Skin cancer segmentation using r-cnn comparing with

inception v3 for better accuracy,” in 2022 11th International Conference on System

Modeling Advancement in Research Trends (SMART), pp. 1293–1297, 2022.

[35] L. Li, N. Xie, and S. Yuan, “A federated learning framework for breast cancer

histopathological image classification,” Electronics, vol. 11, no. 22, 2022.

[36] B. Shubyn, D. Mrozek, L. Fabry, T. Maksymyuk, E. M. Amhoud, and J. Gazda,

“Federated learning techniques for 5g mobile networks,” in 2022 IEEE 16th Interna-

tional Conference on Advanced Trends in Radioelectronics, Telecommunications and

Computer Engineering (TCSET), pp. 653–657, 2022.

[37] B. L. Y. Agbley, J. Li, M. A. Hossin, G. U. Nneji, J. Jackson, H. N. Monday, and

E. C. James, “Federated learning-based detection of invasive carcinoma of no special

type with histopathological images,” Diagnostics, vol. 12, no. 7, p. 1669, 2022.

38




	Certificate
	Statement of Originality
	Acknowledgements
	Abstract
	Abbreviations
	List of Figures
	Introduction
	Knowledge Discovery Process
	Research Contributions
	Background Study and Research Challenges
	Federated Learning
	Federated Learning in healthcare Sector
	Federated Learning Integration
	Integration of various cancer predictions schemes with federated learning


	Literature Survey
	Introduction
	Techniques

	Proposed Methodology
	System Model
	Dataset Explanation
	Problem Formulation
	Workflow of the project

	Result Analysis
	Experimental Setup
	Evaluation Metrics
	Analysis

	Conclusion and Future Plan
	Conclusion
	Future Plan

	Bibliography

