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Abstract

In order to make an accurate prediction regarding the quantity of cotton that will be

harvested, we have compiled a specialized dataset consisting of environmental parame-

ters as part of this particular research project. The purpose of the dataset collection

was to collect data on environmental parameters from a variety of locations in Gujarat,

and we have utilized geographic information systems in order to accomplish this. For the

purpose of utilizing artificial intelligence that can be explained, we decided to concentrate

on this particular application that is associated with agriculture. Within the scope of

this investigation, we have employed machine learning and deep learning models to make

projections regarding yield, and we have utilized XAI models to offer an explanation

concerning a particular prediction.
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Chapter 1

Introduction

Explainable Artificial Intelligence, also commonly referred to as XAI, refers to the evolu-

tion of machine learning models and algorithms that offer easily comprehensible insight

into their decision-making process[2]. As opposed to black box artificial intelligence

systems, XAI aims to unveil the intricate hidden algorithm process, allowing users to

understand the ‘how’ and the ‘why’ behind specific decisions or predicted outcomes.

Transparency offered by XAI is vital for fostering trust, holding people accountable, and

promoting the use of artificial intelligence in various domains. It ensures that they can

justify and reasoned decision from end users, stakeholders and regulators on what the

intelligent system’s output implies.

Explainable or intelligent artificial intelligence (XAI) is a concept that allows for more

Figure 1.1: XAI Research Trend (in published research papers) [1]

advanced machine learning models that can explain why they made specific decisions in a

transparent way. The global artificial intelligence (AI) software market is forecast to grow
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rapidly in the coming years as you can see in figure 1.1, reaching around 126 billion U.S.

dollars by 2025[3]. In the agricultural sector where precision and efficiency matter most,

XAI explains the complex and often invisible elements of artificial intelligence algorithms.

However, as the stakeholders and farmers increasingly rely on AI-based technologies to

manage crops, check weather conditions and enhance the general agriculture productivity,

the AI needs to be easy to comprehend and use. Explainable AI in Agriculture helps end-

users to ensure fair decisions and trust modern solutions. This paradigm shift towards

transparent AI solutions enhances the robustness and longevity of agricultural systems

while giving stakeholders the information they require to take appropriate steps against

evolving challenges.

Explainable artificial intelligence (XAI) in agriculture was chosen as a topic because

Figure 1.2: XAI Agriculture Trend (in published research papers)[1]

of the growing significance of artificial intelligence in transforming traditional farming

practices as you can see in figure 1.2 which is having no. of research papers published

on the X-axis and year of publishing is on the Y-axis. This trend is the driving force

behind the selection of XAI in agriculture [4]. It is becoming increasingly important for

these advanced systems to have decision-making processes that are both transparent and

interpretable. This is because artificial intelligence technologies are becoming increas-

ingly integrated into agricultural practices. For the purpose of maximizing crop yields,

effectively distributing resources, and ensuring environmental sustainability, it is essential

for those working in the agricultural industry to make decisions that are accurate and

well-informed. The exploration of the realm of explainable AI in agriculture has a num-

ber of objectives, one of which is to gain an understanding of how these technologies can
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be made more accessible and understandable to farmers, stakeholders, and policymakers.

When it comes to addressing concerns regarding trust and accountability, as well as the

seamless integration of artificial intelligence into the existing fabric of agriculture, the

motivation lies in addressing these concerns. In light of the rapidly shifting landscape of

the world, this will ultimately contribute to the development of farming practices that

are more environmentally friendly and productive.

Yield prediction as an agriculture-related application have been selected and applied

explainable AI models to it. GIS techniques have been integrated to collect the environ-

mental parameters’ data for yield prediction. Data were collected from only areas where

the probability of cultivation of a particular crop is high. That is having much importance

in collecting accurate (in terms of usefulness in predicting yield from it) environmental

parameters’ data rather using whole area’s data (whole area in terms of non-cultivation

area). After collecting data, ML/DL algorithms implemented on that and select the best

one out of it. Then, explainable AI models implemented to the best ML/DL algorithms[5]

for explaining why a particular number came up as a prediction for yield based on the

data provided.

In a number of studies, the user is required to possess a particular set of skills in order to

implement it in real time. The usability of this research is what makes it novel. after the

models have been trained and tested, and after it has been finalized. It does not require

a specific skill set for anyone to be able to successfully use it.

1.1 Objectives

• Collect relevant agricultural data using Geographic Information Systems.

– Focus on target regions and crops to gather precise, reliable envirnomental

data using satellite imagery and geospatial analysis.

• Develop high-performance yield prediction models

– Implement machine/deep learning algorithms to forecast crop yield.

– Optimize models for accuracy on collected agricultural data sets.

• Apply explainable Al techniques to agricultural machine learning models

3



– Understand internal workings of complex models when applied to agricultural

data.

– Explain how models arrive at yield predictions based on environmental pa-

rameters.
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Chapter 2

Literature Survey

Throughout the following paragraphs, each of them has a process or goal that is similar

to the one that is being investigated, such as yield prediction, applying XAI models to

ML/DL models, or processing GIS images. Even though the database is unique to this

study, methods that have been used in similar studies in the past can also be used in this

study with similar goals. Following are the summary of the papers which are reviewed

you can find it in tabular form (see table 2.1)

Celik et al. (2023) [6] put forward an explainable boosting machine (EBM) approach

for cotton yield forecasting, integrating satellite data, climate records, and soil attributes.

Compared to SVM, random forests, XGBoost and LightGBM, benefits were model inter-

pretability and accurate yield predictions while quantifying influential features without

needing post-hoc techniques. Limitations were slower training than some models and lack

of geographic/remote sensing inputs currently. Key drivers identified were precipitation,

vegetation indices, and leaf area, while static soil properties contributed less. Future work

involves adding geographic data and evaluating explanation methods like Grad-CAM.

Quach et al. (2023) [7] examined VGG16, ResNet50, MobileNet and other CNN

architectures for plant disease recognition, utilizing gradient-weighted class activation

maps to explain model reliability. A constraint was limited samples available presently.

MobileNet achieved very high accuracy, though overlaying regions triggering predictions

against expert disease knowledge showed EfficientNetV2 and Xception as most robust.

Next steps entail deploying the model operationally via apps, and developing global

explanation approaches.

Bandi et al. (2023) [8] designed an end-to-end pipeline combining YOLOv5 disease
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detection followed by Vision Transformer models for fine-grained apple leaf damage sever-

ity quantification. Comparisons with and without background removal pre-processing

boosted classifier performance. Expanding to more plant categories and disease types

offers future direction.

Mehedi et al. (2023) [9] assessed leading deep CNN models including EfficientNetV2L,

MobileNetV2, and ResNet152v2 for plant disease distinction, employing locally inter-

pretable model-agnostic explanations to clarify model rationales, thereby increasing user

trust. Almost 99.6% accuracy was attained, though larger annotated datasets are still

wanting. Testing web/mobile deployment and devising more advanced explanation tech-

niques provide next steps under limited resources.

Sun et al. (2019) [10] introduced a CNN-LSTM model fusing convolutional neural

networks’ prowess in extracting visual features from satellite imagery with long short-term

memory networks’ sequence modeling capabilities suited for temporal climate data to

forecast soybean yields. Outperformance over individual CNNs and LSTMs was exhibited

but currently restricted to few environmental inputs available. Incorporating more data

modalities constitutes an advancement opportunity.

Arvind et al. (2021) [11] leveraged deep neural networks for plant disease catego-

rization, followed by applying LIME and Grad-CAM methods to offer accompanying

explanations for each prediction. Across CNN architectures evaluated, EfficientNet B5

proved optimal further enhanced via fine-tuning, with YOLOv4 object localization con-

firming explanation validity. Core limitations rest with significant computational burdens

for such complex models. Analyzing diseased leaves showing multiple simultaneous in-

fections provides next phase research.

Wolanin et al. (2020) [12] devised a deep learning pipeline with regression activation

mapping to predict and shed light on wheat yield drivers across agricultural areas of India,

outperforming baseline random forest and ridge regression approaches. Scope remains for

extending to more geographic regions cultivating wheat to improve generalizability and

better aid real-world decision making.

Viana et al. (2021) [13] used random forests, PFI, PDPs, and LIME to explain factors

influencing agricultural land use. Key findings were that drainage, slope, and soil type

strongly affect land use. A limitation was availability of variables related to political

and cultural factors. Advantages included capturing complex system behaviors for land
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suitability analysis.

Ryo (2022) [14] showcased interpretable ML methods like SHAP, variable importance

plots, and partial dependence plots. Multiple tree-based, SVM, and neural network

models were compared. A key finding was that no-tillage increased crop yield under

certain conditions. A limitation was that analysis was specific to one dataset without

causality testing.

Cartolano et al. (2022) [15] applied SHAP and LIME on crop recommendation data

using XGBoost, SVM, and neural networks. Models struggled to distinguish some crops

with certain features more influential. A limitation was reliability concerns with post-hoc

explanation methods.

Lundberg (2017) [16] introduced SHAP values as a unified measure of feature im-

portance. A contribution was defining an additive feature attribution method satisfying

properties like consistency. There was no detailed discussion on limitations or models

used.

Ribeiro et al. (2016) [17] present LIME for explaining individual predictions by locally

approximating complex models. Tradeoffs between interpretability and local fidelity were

highlighted. Benefits include model-agnostic and modular properties.

Letzgus et al. (2023) [18] proposed extending XAI techniques to handle regression

problems using layer-wise relevance propagation. Proposed methods outperformed base-

lines without evaluating end-user benefits. A limitation was the computational expense

of retraining complex models.

Dhaliwal et al. (2022) [19] compared algorithms like linear regression, random forests,

and neural networks for predicting cotton yield and interpreting key determinants. Find-

ings were that management practices were more influential than climate in increasing

yields. A limitation was potential overfitting with the single-site dataset used.

Dieber (2020) [20] compared machine learning models such as decision trees, ran-

dom forests, logistic regression, and XGBoost to explain rainfall predictions using the

LIME technique. Findings were that while LIME improved interpretability, there were

limitations around the completeness of local explanations, documentation gaps, and the

potential for misinterpretation. A limitation was reliance on a single dataset. Recom-

mendations included enhancing documentation, developing complementary global expla-

nation tools, and benchmarking against alternative frameworks to address these issues.
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Title Method/Approach Limitations Advantages Disadvantages Future Approach Key Findings Dataset Models
Used

Explainable Artifi-
cial Intelligence for
Cotton Yield Pre-
diction With Multi-
source Data [6]

”Used explainable boosting
machine (EBM) for cotton
yield prediction; integrated
remote sensing data, cli-
mate data and soil data”

Does not
consider
geograph-
ical fea-
tures or
SAR/MSI
data for
yield pre-
diction

Interpretable and ac-
curate for prediction;
can quantify feature
importances without
post-hoc methods

Slower training
than black box
models

Incorporate geo-
graphical data and
SAR/MSI data;
evaluate Grad-CAM
interpretability

”Key features driving
model are precipita-
tion, EVI and LAI;
static features less im-
portant”

”Multisource
dataset of
satellite,
climate
and soil
data”

EBM

Using Gradient-
weighted Class
Activation Map-
ping to Explain
Deep Learning
Models on Agri-
cultural Dataset
[7]

”Used VGG16, ResNet50,
MobileNet for disease clas-
sification; used Grad-CAM
for interpretability”

Limited
dataset
size; model
not yet de-
ployed for
practical
use

High accuracy for Mo-
bileNet; Grad-CAM
shows model reliabil-
ity

Deploy model via
computer/mobile
apps; develop global
vs. local XAI

MobileNet highly ac-
curate but Efficient-
NetV2 and Xception
more reliable for fea-
tures

Plant dis-
ease image
dataset

CNN
models
+ Grad-
CAM

Leaf disease sever-
ity classification
with explainable
artificial intelli-
gence using trans-
former networks
[8]

”Detected diseases with
YOLOv5, classified severity
with Vision Transformer”

Limited to
apple leaf
diseases

End-to-end pipeline
from detection
to classifica-
tion/recommendation

Include more plant
species and diseases

Background removal
improves ViT classi-
fier performance

Images of
diseased
plant
leaves

YOLOv5
+ Vision
Trans-
former

Plant Leaf Disease
Detection using
Transfer Learning
and Explainable AI
[9]

”Used Efficient-
NetV2L, MobileNetV2,
ResNet152V2 for detection,
LIME for interpretability”

Data and
infras-
tructure
limitations

High accuracy for dis-
ease detection; model
transparency

Include more diseases
and larger dataset

EfficientNetV2L
best performer with
99.63% accuracy

Images of
diseased
plant
leaves

Transfer
learn-
ing CNN
models +
LIME

County-Level Soy-
bean Yield Predic-
tion Using Deep
CNN-LSTM Model
[10]

”Proposed CNN-LSTM
model using satellite,
weather and soil data”

Limited
environ-
mental
variables
used

Integrates spatial
and temporal fea-
tures; outperforms
CNN/LSTM

Incorporate more en-
vironmental data; op-
timize model architec-
ture

MODIS data more
predictive than envi-
ronmental data

”Satellite,
weather
and crop
yield data”

CNN-
LSTM

Deep Learning
Based Plant Dis-
ease Classification
With Explainable
AI and Mitigation
Recommendation
[11]

”Used deep neural networks
for plant disease classifica-
tion, then applied LIME
and Grad-CAM for explain-
able AI, and validated ex-
planations using YOLOv4”

Not eval-
uated for
multiple
diseases
per leaf

High accuracy with
deep learning; Im-
proved trust and ex-
plainability using XAI
methods

Computationally
expensive mod-
els

Test multi-model ap-
proach for leaves with
multiple diseases

EfficientNet B5 gave
best accuracy; Ex-
plainable AI enhances
trust in predictions

Tomato
plant
disease im-
ages from
PlantVil-
lage
dataset

”EfficientNet
B5, LIME,
Grad-
CAM,
YOLOv4”

Estimating and
understanding
crop yields with
explainable deep
learning in the
Indian Wheat Belt
[12]

Used CNN with regres-
sion activation mapping for
wheat yield estimation in
India

Focused
only on
wheat
yield

Improved predictive
performance over
baseline models;
Interpretability of
complex DL models

Length of grow-
ing season and
light/temperature
conditions are key
drivers of yield vari-
ability

”Meteorological,
vegetation
and crop
yield data”

”CNN,
Regression
Activation
Mapping”

Evaluation of
factors explain-
ing agricultural
land use - ML &
model-agnostic
approach[13]

”Used random forest + PFI,
PDPs and LIME for ex-
plaining factors influencing
land use”

Limited
variables
available
related
to politi-
cal/cultural
factors

Captures complex be-
haviors of land use
systems; Useful for
land suitability analy-
sis

Test approach across
different geographic
contexts and crops

”Drainage, slope and
soil type strongly in-
fluence land use”

”Biophysical,
bioclimatic
and agri-
cultural
socioe-
conomic
data”

”Random
forest,
PFI, PDP,
LIME”

”Explainable arti-
ficial intelligence
and interpretable
machine learning
for agricultural
data analysis”[14]

”Showcased various inter-
pretable ML methods like
SHAP, variable importance,
partial dependence plots
etc.”

Specific
to one
dataset;
Did not
test
causal-
ity

”Useful for discover-
ing patterns, interac-
tions; Enhances model
trust”

Using post-hoc
methods instead
of inherently
interpretable
models can be
limited

Communicate discov-
eries with domain ex-
perts to understand
mechanisms

Identified under which
conditions no-tillage
can increase crop
yield

Dataset on
effect of
no-tillage
on crop
yield

”Multiple
tree-based,
SVM,
neural
network
models”

8



Title Method/Approach Limitations Advantages Disadvantages Future Approach Key Findings Dataset Models
Used

”Explainable AI at
Work! What Can
It Do for Smart
Agriculture?” [15]

Applied SHAP and LIME
on crop recommendation
dataset

Some relia-
bility con-
cerns with
SHAP/LIME

Visual interpretations
to understand model
behavior

Improve approach
with more XAI
methods

Models tend to con-
fuse certain crops;
Some features more
influential

Crop
recom-
mendation
dataset

”XGBoost,
SVM,
neural
networks”

A Unified Ap-
proach to Inter-
preting Model
Predictions [16]

Introduces SHAP values as
a unified measure of fea-
ture importance that vari-
ous methods approximate

Model-
agnostic;
faithful to
models;
consis-
tent with
human
intuition
based on
experi-
ments

Not discussed Develop faster
model-specific
estimation
methods; in-
tegrate work
on estimating
interaction ef-
fects; define
new explanation
model classes

”There is a unique
additive feature attri-
bution method that
satisfies several desir-
able properties (con-
sistency, local accu-
racy, missingness)”

Introduced SHAP
model

Not clearly
specified

”Why Should
I Trust You?:
Explaining the
Predictions of Any
Classifier” [17]

LIME: Locally approxi-
mating models to explain
individual predictions in
an interpretable manner.
Compared against inter-
preting gradients directly
and global approximation
with Parzen windows

Model-
agnostic;
modular &
extensible

Explanations have a
tradeoff between in-
terpretability and lo-
cal fidelity

Explore differ-
ent explanation
families; further
experiments in
speech/video/medical
domains; ex-
plore com-
putational
optimizations

”Explanations are
useful for range of
models and tasks
like improving trust,
detecting data issues,
model selection”

Introduced LIME
model

”Random
forests,
neural
networks,
SVMs,
etc.”

Toward Explain-
able AI for Regres-
sion Models[18]

Layer-wise Relevance Prop-
agation (LRP) Extending
XAI techniques designed for
classification to handle re-
gression problems

Did not
evaluate
benefit to
end user

Preserves units of
measurement in
explanations

computationally
expensive to
retrain complex
models

Incorporate model un-
certainty into expla-
nations

Proposed methods
outperform base-
lines for explaining
regression models

Low-
dimensional
synthetic
datasets
and real-
world
image and
chemical
datasets

Neural
networks

Predicting and
interpreting cot-
ton yield and
its determinants
under long-term
conservation man-
agement practices
using machine
learning[19]

” Compared performance
of algorithms(Linear regres-
sion, ridge regression, lasso
regression, random forest,
XGBoost, artificial neural
network) for predicting his-
torical cotton lint yield
and identifying key determi-
nants”

Single
site data
constrains
model’s
prediction
domain;
needs
wider
range of
training
data

Captured complex
variable relationships;
useful insights for soil
health management

Risk of overfit-
ting with limited
data; difficult to
interpret com-
plex models like
RF and ANN

Include multi-site
data covering wider
output and predictor
ranges to improve
model robustness

Management practices
more influential than
climate; optimized N
rate and legume cover
crop can increase cot-
ton yield

”32-years
of yield,
manage-
ment, cli-
mate and
soil data
from a
long-term
cotton ex-
periment”

”Random
forest,
XGBoost
(best
perfor-
mance)”

Why model why?
Assessing the
strengths and lim-
itations of LIME
[20]

Train models on rainfall
data; Use LIME for local
explanations; Evaluate via
user study and ISO stan-
dardss

Local ex-
planations
incom-
plete; Lack
of docu-
mentation

Provides local feature
importance; Fast ex-
planation

Global analysis
requires manual
effort; Potential
for misinterpre-
tation

Improve documenta-
tion and user experi-
ence; Develop global
analysis tools; Bench-
mark against other
frameworks

LIME improves in-
terpretability but us-
ability needs enhance-
ment

Rainfall
prediction
data

”Decision
tree, ran-
dom forest,
logistic re-
gression,
XGBoost”

Table 2.1: Literature Review Table
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Chapter 3

Methodology

This chapter provides information about methodology. As we can see in figure 3.1, it

has been divided into three parts, with the green part giving information about the data

collection process, for which information is available in section 3.2, the blue part showing

an overview of the yield prediction method; more details are present in sections 3.3 and

3.4 and the orange part giving information about explanation.

3.1 Proposed Architecture

3.2 Data Collection

General understanding of GIS data, There are spatial coordinates in it that show where

the features are. The metadata that goes with these data sets is stored in scientific data

formats that people who study Earth science use[21]. The authentication of collected

data is given below 3.1 for every parameter it uses the metadata from related spatial co-

ordinates. The dataset that is used for the collection of data for that particular parameter

is provided.

Authors have generated own dataset using geo-spatial data and process using GEE.

The significance of data is the data is collected from the locations on which cultivation

is going on. for extraction of that area, we have got data by Global Food-and-Water

Security-support Analysis Data [22].

3.2.1 Selection of Region Of Interest

For collecting data we have to first get the region of interest based on past data. We

have particularly selected cotton crop to do yield prediction.Why we have selected some
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Figure 3.1: Overview of method

areas of major cotton producing states as our region of interest is because it is one of

the major producer of cotton as per provided government document[23]. So, we have got

yield data by districts of major cot using web-site from government of India [24]. Some

areas of Gujarat is considered major farming zone of cotton which is needs to be sorted.

So we removed low production districts from region of interest(which is displayed in 3.3

on right side, red part showing ROI).

3.2.2 Processing satellite images

Google earth engine have been used to process image data and extract data into required

format. To extract data that we have got the image data from dataset as input data.

We need to get the required band of the image from that image we have masked in our

ROI (Cotton cultivation area)(figure 3.3(on right)) which is present in the middle of the

figure 3.4. after masking on ROI, this ROI image (which is having parameter’s data on

top of that) clipped to one district.
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Figure 3.2: Proposed Architecture

Figure 3.3: Left: Plot of cotton production per district bigger the circle larger the yield
| Right: ROI from filtered districts

3.2.3 Data conversion process: Processed satellite image to tab-

ular format data

After clipping it for a district, every pixel has its coordinates and parameter’s value. We

fetched the parameter’s value by applying an aggregation technique (by using reducer

method from google earth engine) and extracted the mean of that parameter’s value

from the image we have clipped as shown in output of figure 3.2. We have done this
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Figure 3.4: Processing satellite images

Figure 3.5: Processing satellite images

process for every district we are interested in for 22 years’ data for every parameter

mentioned in table 3.1 which is mentioned in the above point.

3.2.4 Parameters of dataset
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Parameters Dataset
Soil Moisture GLDAS-2.1: Global Land Data Assimilation System
Wind Speed GLDAS-2.1: Global Land Data Assimilation System
Humidity GLDAS-2.1: Global Land Data Assimilation System

Transpiration GLDAS-2.1: Global Land Data Assimilation System

Rainfall
CHIRPS Daily: Climate Hazards Group InfraRed
Precipitation with Station Data (Version 2.0 Final)

surface net solar radiation ERA5-Land Hourly - ECMWF Climate Reanalysis
Temperature ERA5-Land Hourly - ECMWF Climate Reanalysis

Soil pH OpenLandMap Soil pH in H2O

Leaf Area Index
MOD15A2H V6.1 MODIS combined Leaf Area Index (LAI)
and Fraction of Photosynthetically Active Radiation (FPAR)

Fraction of
Photosynthetically Active
Radiation

MOD15A2H V6.1 MODIS combined Leaf Area Index (LAI)
and Fraction of Photosynthetically Active Radiation (FPAR)

Vapor pressure deficit
TerraClimate is a dataset of monthly climate and climatic
water balance for global terrestrial surfaces.

Vapor pressure
TerraClimate is a dataset of monthly climate and climatic
water balance for global terrestrial surfaces.

Maximum temperature
TerraClimate is a dataset of monthly climate and climatic
water balance for global terrestrial surfaces.

Minimum temperature
TerraClimate is a dataset of monthly climate and climatic
water balance for global terrestrial surfaces.

Runoff
TerraClimate is a dataset of monthly climate and climatic
water balance for global terrestrial surfaces.

Day land surface temperature
MOD11A2 V6.1 product provides an average 8-day land
surface temperature (LST)

Night land surface
temperature

MOD11A2 V6.1 product provides an average 8-day land
surface temperature (LST)

NDVI
MOD13A2 V6.1 product provides two Vegetation Indices
(VI): the Normalized Difference Vegetation Index (NDVI)
and the Enhanced Vegetation Index (EVI)

EVI
MOD13A2 V6.1 product provides two Vegetation Indices
(VI): the Normalized Difference Vegetation Index (NDVI)
and the Enhanced Vegetation Index (EVI)

NDWI MODIS Terra Daily NDWI

Table 3.1: Parameters

3.3 Data Preprocessing

3.3.1 Feature selection

We have used Mutual Information (MI) [25] to extract features from dataset. It is a

method used to assess the statistical dependence between features and the target vari-
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able in a dataset. It measures the degree to which knowing the value of one variable

reduces uncertainty about the other, thereby quantifying the amount of information one

variable provides about another. Mutual information is calculated for every feature in the

feature extraction process in relation to the target variable. While features with low mu-

tual information might not be as relevant to the prediction task, those with high mutual

information are thought to be informative. This method is especially useful for identi-

fying features that are highly correlated with the target, which aids in the identification

of significant predictors and enhances the effectiveness and interpretability of machine

learning models.[26] For continuous random variables, the summation is replaced with

integration:

where:

I(X;Y ) =

∫∫
p(x, y) log(p(x, y))/(p(x)p(y))

)
dxdy

• p(x, y) is the joint probability density function of X and Y .

• p(x) and p(y) are the marginal probability density functions of X and Y , respec-

tively.

Figure 3.6: Mutual Information Algorithm

As you can see algorithm in 3.6, We first define X as the input variable, representing a

set of features like temperature, soil pH etc. Y is defined as the output variable, in this
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case the crop yield. The MI() function calculates the mutual information score between

any given variable X and the output Y. We initialize the MI score I(X;Y) to 0. Then,

we iterate through every possible value x that X can take in its distribution. For each

x, we iterate through every possible value y that Y can take. We calculate the joint

probability p(x,y) of X=x and Y=y occurring together based on the joint distribution.

Additionally, we calculate the marginal probabilities p(x) and p(y) of the individual vari-

ables X and Y independently from their marginal distributions. For each combination

of x and y that has a non-zero joint probability, we calculate an MI contribution score

of p(x,y)*log(p(x,y)/(p(x)*p(y))) using the standard MI equation. We add this to the

overall MI score. After iterating over all combinations of x and y and summing their

MI contributions, we get the final MI score between that variable X and output Y. We

repeat this whole process for each variable in the input feature set X. The higher the MI

score, the more information X contains about predicting or explaining Y. As a result (see

the figure 3.7), in this dataset we are getting postive MI score for every feature. So, we

can say that every feature is independent from each other and not dependent on other

features. Also, every feature contains information about yield.

Why Mutual information (MI)? It is chosen as a feature extraction technique for its ver-

satility and effectiveness in capturing both linear and non-linear relationships between

variables. Unlike some linear methods, MI makes no assumptions about the data dis-

tribution and is non-parametric, allowing it to handle diverse datasets without relying

on specific mathematical models. Its information-theoretic foundation provides a prin-

cipled way to quantify the information shared between features and the target variable,

making it suitable for understanding the information content of features. MI is partic-

ularly valuable for variable selection, helping to identify the most informative features

for a prediction task and assess redundancy among features. Its insensitivity to scaling,

model-agnostic nature, and robustness to different units or scales make it a flexible choice

applicable to various machine learning scenarios. While MI is a powerful technique, its

selection depends on the specific characteristics of the dataset and the analytical goals,

often complementing other feature selection methods for a comprehensive approach. for

comparison of mi to other feature selection techniques see table 3.2.
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Technique Key Differences from Mutual Information
Pearson Correlation Only captures linear relationships

Uni-square test
Specific to tree ensemble models, less
Reneralizable

Feature Importance
Faster approximation but less accurate than
mutual information

Variance Threshold
Simply removes low variance features, no
pairwise evaluations

Exhaustive Feature Selection
Tries all possible feature combinations,
computationally infeasible

Recursive Feature Elimination Model-specific, computationally intensive
Principal Component
Analysis

Sensitive to relative scaling of features

Statistical Similarity
Measures

Specific similarity measures less grounded in
information theory

Genetic Algorithm Search Computationally expensive, requires wrapper
Neural Network Feature
Extraction

Requires training a full neural network

Hybrid Filter-Wrapper
Method

More complex implementation

Table 3.2: comparison of mi to other feature selection techniques

Figure 3.7: MI score

3.4 Models Used For Prediction (ML/DL models)

In existing researches about yield prediction, most have good accuracy from Random

forest and deep neural networks for tabular data. for image data, they have good accuracy

by using CNN, CNN-LSTM, etc. here, tabular data were used as mentioned in section
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3.2. So, Random forest and deep neural networks were used

3.4.1 Random Forest

Figure 3.8: Random Forest architecture

Figure 3.9: Random Forest algorithm

For machine learning models, we have used Random Forest regression [27] which is
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less sensitive to scale of input data. The reason for this insensitivity lies in the nature of

decision trees, the base learners used in a Random Forest. Decision trees make splits in

the data based on feature thresholds. These splits are determined by comparing feature

values to certain thresholds, and the decision to split is not influenced by the scale of

the features. Therefore, whether a feature is on a small or large scale doesn’t affect the

decision-making process of individual trees [28]. A random forest regressor is an ensemble

learning method that operates by constructing a multitude of decision trees at training

time and outputting the mean prediction of the individual trees. Here is an overview of

how it works:

• Bootstrap Samples: The training dataset is sampled randomly with replacement to

create multiple bootstrap training sets. Each set will have same number of instances

as original dataset, but some instances will be repeated.

• Decision Trees: A decision tree regressor is trained on each bootstrap sample. When

splitting nodes during tree creation, rather than searching for the best split among

all features, a random subset of features is searched at each node. This results in a

greater tree diversity, since different trees will use different features.

• Ensemble Prediction: At prediction time, unseen samples are pushed down each

decision tree to obtain individual tree predictions. These predictions are then av-

eraged to get an ensemble prediction for that sample.

• Reduce Overfitting: By creating random variations in the tree creation and then en-

sembling, the correlation between individual trees decreases. This results in reduced

variance and guards against overfitting compared to using a single tree.

The randomness injected into the model aims to de-correlate the trees so that the

averaging process can reduce variance and improve generalizability. The number

and depth of trees are important tuning parameters. Overall, random forests bal-

ance accuracy and robustness well.

Few reasons why random forest regression[29] would be a good choice for modeling:

• Non-linear relationships: Variables like transpiration, LAI etc. can have complex

non-linear relationships with the predictors. The ensemble of decision trees in

random forests is able to model such non-linearities.
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• No need for scaling/transformations: Numerical features in the data have very

different scales. But tree-based models do not require scaling or normalization of

features. Random forests can handle this raw data.

• Avoid overfitting: With 25 potential predictors for modeling yield, overfitting could

be a concern. The ensemble approach of random forests along with random feature

selection naturally avoids overfitting.

• Interpretability: Compared to black box models like neural networks, random forest

feature importance scores provide some model interpretability. We can identify

which variables are most influential.

3.4.2 Deep Neural Networks

Agricultural systems present intricate connections between dynamic factors impacting

crop growth and yield. Modeling these complex data relationships requires flexible func-

tion approximators [30]. Deep Neural Networks (DNNs) provide a powerful modeling

approach through hierarchical feature learning. The time-series data reflects the influ-

ence of weather, soil conditions, plant indicators etc. on yield across the growing cycle.

DNNs can implicitly learn appropriate intermediate representations from raw data in

end-to-end fashion without hand-engineered inputs. Their deep architecture of multiple

neural layers enables capturing sophisticated data patterns like nonlinear variable inter-

actions. Sophisticated generalization can prevent overfitting the training data. Weights

across millions of parameters are tuned automatically via backpropagation and gradi-

ent descent optimization.[31] Daily measurements can be provided sequentially as inputs

or aggregated into a feature vector per growing season. Both convolutional and fully-

connected DNN architectures can map these inputs to an accurate yield forecast. The

representation depth of DNNs suits the intricacies of agricultural systems, providing high

accuracy without restrictive assumptions. DNN modeling empowers data-centric preci-

sion agriculture to improve decision making and productivity.

A deep neural network (DNN) has several layers that work together to make predictions

from data.

• Input Layer: The first layer is the Input Layer. It receives the raw data. The

number of nodes here matches the number of features in the input data. This layer

does not perform any calculations. It just passes the data to the next layers.
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Figure 3.10: General Architecture about Deep Neural Network

• Hidden Layer: Then there are one or more Hidden Layers. These are fully connected

layers that transform the input data into meaningful patterns. The more hidden

layers, the more complex patterns the DNN can find. The number of hidden layers

and nodes in each layer can be changed so the DNN learns better. Hidden layers

use activation functions like ReLU to introduce non-linearity.

• Output Layer: The last layer is the Output Layer. This makes the final predictions

or conclusions from the data patterns. it is regression, a linear activation gives the

number prediction.

• Loss Function: the Loss Function measures how far the predictions are from the

true targets. The optimizer improves the DNN by updating connection weights to

reduce the loss. Stochastic gradient descent is commonly used. Techniques like

dropout also enhance performance. In simple terms, raw data enters the DNN,

hidden layers extract meaningful patterns, output layer makes predictions, loss

function compares them to truth, and optimizer iteratively improves the DNN. The

depth and automated learning let DNNs excel at many predictive tasks.

When training deep learning models, it is very useful to apply normalization to each input

feature in the data. This process is called feature-wise normalization. What this means is

that we standardize the values going into the model by adjusting the mean and variance.

For example, a feature like temperature initially may have a range from 20 to 35. After

normalization, that feature will have an average value close to 0 and similar variance

around 0. This puts different features onto a common baseline. There is a convenient
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Normalization Layer we can include before the main neural network layers to automat-

ically carry out this input feature normalization. The layer does the work of scaling

the mean and variance of each input. Performing this input-level normalization provides

important benefits - it enables much faster training of deep models through stabiliza-

tion and helping optimization algorithms like gradient descent converge properly. The

specifics like type of normalization and direction to apply it depends on the problem. But

in general, feeding normalized features to neural networks unlocks more representational

power through smoother training. The models can learn richer underlying patterns.

Here are some key reasons why using a Deep Neural Network (DNN) model would be

a good choice for available data:

• Captures Complex Relationships: There are likely complex nonlinear relationships

between various weather, soil, and plant growth parameters that collectively impact

crop yield over time. The representation depth of a DNN would help model these

intricate data patterns.

• Temporal Data Patterns: The time series nature of data can display long-term and

short-term trends useful for prediction. A deep architecture can extract relevant

temporal features efficiently.

• Multivariate Dependencies: Multiple parameters interact in a sophisticated way

to influence yield. Dense neural connections can capture higher-order multivariate

dependencies.

• Avoid Overfitting: Lots of input variables leads to chance of overfitting training

data. Combination of depth and regularization mechanisms in DNNs guards against

overfitting.

• End-to-End Learning: The lack of need for complex data preprocessing or feature

crafting makes DNN modeling easier to apply and tune on this data.

A summary of the deep neural network architecture used in this research is defined using

a sequential approach. It consists of the following layers, which are displayed in figure

3.11:

• A normalization layer that applies feature-wise normalization to the 21 input fea-

tures.
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• A series of dense (fully connected) layers with decreasing numbers of units: 1024 →

1024 → 512 → 512 → 256 → 64 → 21 →1. These layers extract higher-level

features from the input data.

• A final dense layer with a single unit, for predicting a continuous target variable

(Yield).

The deep architecture with multiple hidden layers allows the network to learn complex

nonlinear relationships between the input features and the target variable. The normaliza-

tion layer helps with faster and more stable training, while the dense layers progressively

extract relevant representations from the data.

Figure 3.11: Architecture of Deep Neural Network

In summary, the intricacies in agricultural systems, presence of temporal data, and

number of variables make using an adaptable non-linear model like a Deep Neural Network

well-suited for the task of yield forecasting using this dataset.

3.5 Explainable AI

Explainable AI models are used to explain the predictions given by the DNN model.

3.5.1 SHAP

Shapley Additive exPlanations (SHAP) [16] is a unified model interpretation approach

developed in 2017 to explain individual predictions from any machine learning model by

attributing impact of features on the prediction through a connection to game theory.[32]

Specifically, SHAP treats the ML model as a function representing a cooperative game

between input features that contributes to producing the output prediction. Shapley

values from game theory are then leveraged to assign each feature an importance value

for a particular prediction. These SHAP values quantify how much influence each feature

had in moving the prediction away from the average model output over the entire training

set, known as the base value. By adhering to principles of fairness in cooperation from

game theory, SHAP provides consistent, intuitive feature contribution explanations. As a
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model-agnostic method that encapsulates feature interactions, SHAP has become widely

used in practice for inspecting models and debugging to improve transparency and trust.

Tailored computational methods exist for different model types with TreeSHAP being

a popular variant. Overall, the key innovation in SHAP is grounding explanation of

prediction attribution in mature game theoretic concepts to better understand both global

and local behaviour of complex modern machine learning models.A high-level overview

is provided in figure 3.12. A high-level overview of how SHAP technically works:

Figure 3.12: Overview of SHAP

1. Treat the machine learning model as a function f that takes input features x and

outputs a prediction f(x).

2. Model the prediction f(x) as if it is a ”payout” in a cooperative game where each

feature xi cooperates to produce the final output f(x).

3. Estimate the Shapley values ϕi for each feature xi using sampling or model-specific

approximation methods. These Shapley values represent each feature’s fair contri-

bution to the prediction.

4. The SHAP equation then models the prediction as:

f(x) = b+
∑

ϕi

Where b is the base value or expected value of f(x) across the dataset.

5. To explain an individual prediction, the SHAP values ϕ i quantify the impact each

feature value xi had on moving the prediction from the base value b. The sum of

SHAP values equals the difference between f(x) and b.

24



6. Features with positive ϕi increased the prediction from b, negative values decreased

it. Absolute SHAP magnitude measures the importance of that feature’s attribu-

tion.

So in summary, SHAP technically leverages the model’s function to estimate Shapley

values for a sample, attributing how much prediction movement each feature caused.

This connection to ideas of fairness from game theory is what provides the foundation

for consistent, stable feature attributions.

The details of estimating SHAP values ϕi vary per model type, using sampling or

approximations. But the high level approach remains framing prediction explanation as

a cooperative game.

Why to use SHAP?

Here are some of the key reasons to use SHAP for explaining:

• Model Agnostic: SHAP is a model-agnostic approach that can explain predictions

from any machine learning model, including deep neural networks, tree models,

kernels and more. This flexibility is useful when working with different algorithms.

• Local Explanations: SHAP provides local, instance-level explanations by attribut-

ing how much each feature impacted an individual prediction, not just global feature

importance. This helps understand specific cases.

• Interactions: SHAP values reflect interaction effects between features, identifying

when combinations of features together impacted a prediction. This provides richer

explanations.

• Theoretical Foundations: SHAP is grounded in coherent concepts from game theory

and local explanation methods. This provides mathematically sound attribution

values.

• Intuitive: By explaining models in terms of feature contributions, SHAP produces

intuitive explanations that are easier for people to understand. Plots like the force

plot visualize these intuitively.

• Consistency: Explanations are consistent between similar models and instances,

improving trust and stability.
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In summary, properties like model flexibility, faithfulness to real feature interactions,

and intuitive visual representation through approaches like force plots have made SHAP a

popular and reliable approach to improve transparency and debugability of complex ma-

chine learning models. The connections to solid theoretical foundations also distinguish

SHAP from other interpretation methods.

3.5.2 LIME

LIME (Local Interpretable Model-agnostic Explanations) is an approach developed in

2016 to explain individual black box model predictions by approximating the complex

model locally with an interpretable one to attribute feature importance. The key idea

is that while complex models may be too opaque globally, they can be approximated

well in small local regions. So LIME focuses on explaining individual predictions by

sampling input data near the instance of interest, gathering predictions using the complex

model on those perturbations, and fitting a highly interpretable surrogate model like a

linear model or small decision tree on that neighbourhood data. This simple transparent

surrogate acts as the local explanation, revealing which features were most important

for the behaviour of the complex model in that region for that particular prediction.

Unlike methods requiring model access, LIME treats it as a black box, lending model

flexibility. By providing intuitive feature contributions for specific predictions via local

approximation, LIME improves trust in model fairness and enables better errors analysis.

The fidelity arguments rest on the idea that transparent models can sufficiently explain

complex model behaviour for individual instances, even if different globally. A high-level

overview is provided in figure 3.13. A high-level overview of how LIME technically works

Figure 3.13: Overview of LIME

to explain individual predictions from complex models:

1. Select an individual prediction to explain from the complex black-box model (e.g.

a neural network).
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2. Sample perturbed datasets in the neighbourhood of the selected instance by ran-

domly permuting its features.

3. Get predictions on the perturbed datasets using the original complex model.

4. Weight the perturbed datasets according to their proximity to the original instance.

5. Train a simple linear model or decision tree on the perturbed dataset and weights

to act as a local surrogate model.

6. Interpret the weights or importance values assigned to features in the simple model

to determine which features were most relevant for the prediction from the complex

model in that local area.

In essence, LIME uses the complex model as a black box to sample localized data

around the prediction of interest. It then trains a transparent, interpretable model on this

data to approximate complex model behaviour in the locality. The feature importance

from the simple model explains which inputs matter most to the complex model locally.

This provides local fidelity while leveraging easy-to-understand models. The core insight

is that simple models can estimate local predictions even if different globally, affording

intuitive explanations.

Why to use LIME?

Here are some of the key reasons to use LIME for explaining black box model predic-

tions:

1. Model Agnostic: LIME can explain predictions from any machine learning model

(neural nets, SVM, ensemble models, etc.) without access to model internals or

parameters. This flexibility is important for complex black box models.

2. Local Fidelity: LIME focuses on local behaviour and provides fidelity to model

predictions in the region of the specific instance being explained rather than globally.

This local accuracy is more important for explanations.

3. Intuitive Explanations: By using simple linear models or small decision trees, LIME

provides intuitive feature importance explanations that are easy for people to un-

derstand.
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4. Human Interpretable: Humans have an easier time understanding explanations from

transparent models compared to complex models, even if their global behaviour

differs. LIME generates human interpretable local explanations.

5. Model Checking: Important to detect individual cases where the model is failing

for the end users. LIME enables users to audit suspicious model behaviour.

6. Trust: By explaining specific predictions, LIME provides visibility into model be-

haviour that reassures users and improves trust in otherwise black box models.

In summary, the model agnostic nature combined with local fidelity explanations from

interpretable models make LIME suitable for explaining a prediction from any black box

algorithm in an intuitive manner to improve transparency.
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Chapter 4

Results & Conclusion

4.1 ML/DL Results

The Random Forest model was developed using 21 potential predictor variables related to

soil, weather, and plant growth conditions to predict crop yield. The model was trained

on 22 years of historical data. On evaluating model performance, the Random Forest

achieved an R-squared value of 0.51 on the test data for now. A Deep Neural Network

(DNN) model was developed for predicting crop yield using time-series data spanning

several years across parameters like weather, soil moisture, vegetation indices, etc. The

DNN architecture comprised 5 hidden layers, ReLU activation functions, and a linear

output layer for regression to crop yield. The DNN model achieved an R-squared of 0.8

. This indicates that the DNN can account for roughly 80% accuracy in predicting crop

yield. Further, tuning the models can improve the accuracy of both models.

The decision to use the DNN in the implementation is well-justified, as it outperformed

the Random Forest model in terms of the R-squared metric. In general, models with

higher R-squared values are preferred, as they provide a better fit to the data and are more

reliable for making predictions or understanding the relationship between the independent

and dependent variables.We have tried using a variety of combinations of hidden layers

and the number of nodes in each layer, but we got a lower R-squared value (between

[0.72-0.77]) (as you can see in table 4.1) than the explained model.
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Layers (Each number represents the number of nodes in one
layer)

R-squared value

512− > 512− > 256− > 64− > 21− > 1 0.72
512− > 256− > 64− > 21− > 1 0.77
1024− > 512− > 256− > 64− > 21− > 1 0.76
256− > 64− > 21− > 1 0.75
512− > 256− > 128− > 64− > 21− > 1 0.76
1024− > 512− > 256− > 128− > 64− > 21− > 1 0.72
Explained model (see section 3.4.2) 0.8

Table 4.1: comparison of r-squared between DNN architecture

4.2 XAI Results

LIME Result

As in the figure 4.1, LIME gives output as features and its impact on the predicted

value. For the particular instance in which the explanation is given, soilwater is having

the most positive impact on the yield prediction, with a LIME score of 0.84, followed

by solar radiation with LIME score of 0.35, Leaf Area Index with LIME score of 0.31,

LSTN, transpiration and after that some of the parameters are having lower but positive

impact on yield. On the other hand, humidity has the most negative impact on yield,

with a score of -0.32, followed by vap (vapour pressure), LSTD, air temperature, wind

speed and others which are having negligible impact on yield.

SHAP

As in figure 4.2, SHAP gives output as features and its impact on the predicted value. for

particular instance on which the explanation is given soilwater is having most positive

impact on the yield prediction, with shapley score of 1.01. We can see that after soil

water, LAI (Leaf Area Index) is also having a positive impact on the prediction of yield,

followed by tmmx, NDVI, transpiration, and other 12 parameters. Other than that,

we can see here that vap (vapor pressure) has a shapely score of -0.38, which is having

most negative impact on prediction of yield, followed by ws (wind speed), humidity, and

LSTD (land surface temperature for day). We can get an analysis of the most impactful

parameters for yield, which are negligible, so we can ignore small variations in those

parameters.

As discussed above, LIME and SHAP results can provide us with a good analysis of
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Figure 4.1: Lime Output

Figure 4.2: SHAP Output

parameters that are having an impact on yield. So, we can get insights about how and

why a particular number came as a yield. Farmers and traders can have insights about

yield so that they can make decision with detailed reasons.
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Chapter 5

Future work

In this study, we employed an explainable machine learning approach to understand

the factors influencing crop yield predictions for a specific crop in a particular region.

The model was trained on 20 years’ worth of data, which, while limited in time-span,

provided valuable insights into the key parameters impacting the target variable, i.e.,

crop yield.Through the use of techniques like LIME (Local Interpretable Model-agnostic

Explanations) or SHAP (Shapley Additive Explanations), we were able to obtain expla-

nations for individual predictions and also for overall predictions made by the model.

These explanations highlighted the input features or parameters that had a significant

positive or negative impact on the predicted yield values. However, it’s important to note

that the accuracy of the model and the reliability of the explanations were constrained by

the limited availability of yield data, which is the most crucial parameter in this study.

To improve the model’s performance and obtain more robust explanations, it would be

beneficial to incorporate additional relevant parameters into the dataset. One such pa-

rameter that could potentially enhance the model’s predictive capabilities is soil nutrient

levels, specifically the levels of nitrogen (N), phosphorus (P), and potassium (K). These

nutrients play a crucial role in plant growth and development, and their availability in

the soil can significantly influence crop yield. Also, one can integrate data that is col-

lected from the ground, like whether a crop is having issues like pests or diseases that

will impact its yield.
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