
Enhanced Abnormal Traffic Detection Using
Lightweight DAE-GAN and Knowledge

Distillation Techniques

Submitted By

Manan Patel

22MCES12

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2024



Enhanced Abnormal Traffic Detection Using
Lightweight DAE-GAN and Knowledge

Distillation Techniques

Major Project - II

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology in Computer Science and Engineering (Cyber Security)

Submitted By

Manan Patel

(22MCES12)

Guided By

Sharada Valiveti

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2024





Statement of Originality
———————————————————————————————————————

I, Manan Patel, Roll. No. 22MCES12, give undertaking that the Major Project enti-

tled ”Enhanced Abnormal Traffic Detection Using Lightweight DAE-GAN and

Knowledge Distillation Techniques” submitted by me, towards the partial fulfillment

of the requirements for the degree of Master of Technology in Computer Science and

Engineering (Cyber Security) of Institute of Technology, Nirma University, Ahmed-

abad, contains no material that has been awarded for any degree or diploma in any

university or school in any territory to the best of my knowledge. It is the original work

carried out by me and I give assurance that no attempt of plagiarism has been made. It

contains no material that is previously published or written, except where reference has

been made. I understand that in the event of any similarity found subsequently with any

published work or any dissertation work elsewhere; it will result in severe disciplinary

action.

———————–

Signature of Student

Date:

Place:

Endorsed by

Sharada Valiveti

(Signature of Guide)

iv



Acknowledgements

This project has been shaped and enriched by the dedication and guidance of several

esteemed individuals. First and foremost, I extend my sincere appreciation to Sharada

Valiveti, Sr. Associate Professor , Computer Engineering Department, Institute of Tech-

nology, Nirma University, Ahmedabad. His unwavering support and the provision of es-

sential facilities have been invaluable to our project’s progress.

Special gratitude is owed to Dr. Madhuri Bhavsar, Head of Computer Science and

Engineering Department, Institute of Technology, Nirma University, Ahmedabad, for her

kind support and providing a basic infrastructure and a healthy research environment.

A heartfelt thank you is expressed wholeheartedly to Dr. Himanshu Soni, Hon’ble

Director, Institute of Technology, Nirma University, Ahmedabad, for the unmentionable

motivation he has extended throughout this work.

I would also like to express my gratitude to the entire institution and all faculty

members of the Computer Engineering Department at Nirma University, Ahmedabad,

for their special attention and suggestions towards the project work.

Further, I acknowledge the authors of the references and other literature consulted

during this project, whose works have been instrumental in shaping our research. Lastly,

I am immensely grateful to my friends and family. Their encouragement and belief in me

have been a pillar of strength throughout this journey.

- Manan Patel

22MCES12

v



Abstract

This thesis addresses the need for efficient and accurate abnormal traffic detection

in network security by developing a lightweight Denoise Autoencoder-Generative Adver-

sarial Network (DAE-GAN) model. The original DAE-GAN, known for its high perfor-

mance, presents significant computational and memory challenges, making it unsuitable

for resource-constrained environments. To address this, we employed knowledge distilla-

tion, transferring knowledge from a large, complex teacher model to a smaller, efficient

student model. We began by implementing the original DAE-GAN, combining a Gener-

ative Adversarial Network (GAN) and an autoencoder to identify abnormal traffic. The

GAN generated pseudo-anomalies to enhance training, while the autoencoder detected

deviations indicative of anomalies. After establishing baseline performance, we applied

knowledge distillation to create a lightweight version, training the teacher model on the

NSL-KDD dataset and using its soft outputs to guide the student model.

The lightweight DAE-GAN was rigorously evaluated against the original model using

the same dataset. Despite reduced complexity and size, it achieved strong performance

with 90% accuracy, 85% precision, 97% recall, and a 91% F1 score. These results are

competitive with the original DAE-GAN, demonstrating the effectiveness of knowledge

distillation in preserving anomaly detection capabilities. This research contributes to

the field by providing a practical solution for real-time network intrusion detection on

low-resource devices. The lightweight model maintains high detection accuracy while

reducing resource consumption, making it suitable for real-world deployment. Future

work will focus on deploying the model in live network environments to validate its

effectiveness across diverse datasets, advancing resource-efficient machine learning models

for cybersecurity applications.
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Chapter 1

Introduction

In an era where digital technology underpins nearly every aspect of our personal and pro-

fessional lives, the threat of malicious software, or malware, looms large. Cyber attackers

continuously refine their techniques to evade detection, posing significant challenges to

the security of computer systems worldwide. Traditional malware detection methods,

though effective to some extent, often struggle to keep pace with the evolving landscape

of cyber threats. This has necessitated the development of more advanced and efficient

techniques for detecting and mitigating malware.

Malware analysis, a critical component of cybersecurity, aims to understand the be-

havior and functionality of malware to develop effective countermeasures. Two primary

approaches dominate this field: static analysis, which examines malware code without

execution, and dynamic analysis, which observes malware behavior in a controlled en-

vironment. However, the increasing complexity of malware demands more sophisticated

analytical methods.

One promising area of research in malware analysis is the detection of abnormal

network traffic. Abnormal traffic often serves as an indicator of malware activity, making

it a vital focus for enhancing cybersecurity measures. Among the advanced techniques

for abnormal traffic detection, Denoise Autoencoder Generative Adversarial Networks

(DAE-GAN) have shown considerable potential. These models leverage the power of

deep learning to identify patterns and anomalies in network traffic, contributing to more

accurate and efficient malware detection.

However, deploying such sophisticated models on low-resource devices remains a chal-

lenge due to their computational and memory demands. To address this issue, this
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research focuses on optimizing the DAE-GAN model using knowledge distillation tech-

niques. Knowledge distillation involves transferring the knowledge from a complex,

resource-intensive model (the teacher) to a simpler, more efficient model (the student)

without significant loss in performance. This approach aims to create a lightweight ver-

sion of the DAE-GAN model that can perform effectively on low-resource devices, thereby

broadening the applicability of advanced abnormal traffic detection methods.

1.1 Overview of DAE-GAN and Knowledge Distilla-

tion

The Denoise Autoencoder Generative Adversarial Network (DAE-GAN) is a model de-

veloped to enhance abnormal traffic detection, addressing the limitations of traditional

detection methods. It combines multiple denoising autoencoders with a discriminator in

a GAN-like framework. The denoising autoencoders generate pseudoanomalies, which

are then used by the discriminator to learn to distinguish between normal and abnormal

traffic. This approach allows the model to transform anomaly detection into a binary

classification problem, significantly improving detection sensitivity and precision. The

model also includes an efficient real-time feature extraction framework that captures es-

sential spatial and temporal features, ensuring low latency and high accuracy in traffic

processing. Evaluations show that DAE-GAN outperforms baseline methods, achieving

high precision and recall across various datasets.

Knowledge distillation is a model compression technique that transfers knowledge

from a large, complex model (the teacher) to a smaller, more efficient model (the student),

enabling the development of lightweight models that maintain high performance and are

suitable for resource-constrained environments. In this research, the DAE-GAN serves

as the teacher model, providing a high-accuracy benchmark for the student model to

emulate. The student model, designed to be simpler and more efficient, is trained to

replicate the behavior of the teacher model by minimizing the difference between their

outputs, often using the softened output probabilities of the teacher model as additional

supervision signals. The distillation process involves training the student model with a

combination of the original training data and the knowledge from the teacher model,

allowing the student model to learn the essential patterns and features acquired by the

teacher, resulting in a compact yet highly effective model.
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1.2 Objectives of the Research

The primary objective of Enhanced Abnormal Traffic Detection Using Lightweight DAE-

GAN and Knowledge Distillation Techniques. This involves understanding the archi-

tecture and functionality of DAE-GAN and replicating its setup to accurately identify

abnormal network traffic patterns, which are often indicative of malware activity. By

thoroughly evaluating the performance of the original DAE-GAN model, this research

aims to establish a benchmark for accuracy, detection rate, and computational efficiency.

Building on the initial implementation, the next objective is to apply knowledge dis-

tillation techniques to the DAE-GAN model. Knowledge distillation involves transferring

the learned knowledge from a large, complex model (teacher) to a smaller, more efficient

model (student). This process ensures that the distilled model retains the critical features

and performance characteristics of the original, despite its reduced size and complexity.

The application of knowledge distillation is crucial for optimizing the DAE-GAN model,

making it more suitable for deployment in environments with limited computational re-

sources.

The final objective is to develop a lightweight version of the DAE-GAN model that

achieves comparable results to the original model. This involves designing and training

a streamlined model that maintains high detection accuracy and robustness while sig-

nificantly reducing its computational and memory requirements. Extensive testing and

evaluation will be conducted to compare the performance of the lightweight model against

the original DAE-GAN, ensuring that the efficiency gains do not come at the expense

of detection capabilities. The successful realization of this objective will demonstrate

the feasibility of deploying advanced abnormal traffic detection models on low-resource

devices, enhancing their practical applicability in real-world cybersecurity scenarios.

1.3 Thesis Organization

This thesis is organized into seven chapters: Chapter 1 introduces the importance of mal-

ware analysis and the objectives of the research. Chapter 2 reviews relevant literature on

malware analysis, traffic identification, and abnormal traffic detection methods, focusing

on DAE-GAN and knowledge distillation. Chapter 3 details the research methodology,

including the implementation of DAE-GAN and the application of knowledge distillation
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to develop a lightweight model. Chapter 4 covers the practical implementation, including

dataset, model architecture, and training process. Chapter 5 presents and discusses the

experimental results, comparing the performance of the original and lightweight DAE-

GAN models. Chapter 6 summarizes the findings, contributions, limitations, and suggests

future research directions. Chapter 7 lists all references cited in the thesis.
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Chapter 2

Literature Survey

The identification and prevention of malicious software, also known as malware, is a

vital part of cybersecurity. Many different techniques have been created to fight against

the constantly changing nature of malware.[1] These methods fall into three primary

categories: signature-based, heuristic, and anomaly-based methods.

1. Signature-Based Detection:Signature-based malware detection is an old and es-

tablished technique that uses predefined signatures or patterns of known malware to

identify malicious software. Security software stores a database of these signatures,

which are unique characteristics or fingerprints of known malware types. When a

file is scanned, the software compares it with the signature database, and if there

is a match, the file is marked as malware. This method is efficient, accurate, and

quick at identifying known malware strains. However, it has a significant downside.

It cannot detect new or unknown malware since it depends on existing signatures.

Malware developers are continually updating their code to evade detection, making

signature-based techniques less effective against zero-day threats.

2. Heuristic Detection:Heuristic malware detection takes a more dynamic approach,

looking for suspicious behaviors and characteristics that may indicate malware. If a

program exhibits suspicious activities like modifying system files or creating unau-

thorized network connections, it is flagged as potentially malicious.Some heuristic

methods run suspicious files in a controlled environment (sandbox) to observe their

behavior without risking the host system.Heuristic detection is more capable of iden-

tifying previously unknown malware since it doesn’t rely on signatures. However,
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it can produce false positives, flagging legitimate software with certain behaviors

as malicious.

3. Anomaly-Based Detection: It is a departure from the traditional methods.

Instead of looking for known malware signatures or heuristic indicators, it focuses

on identifying anomalies in system behavior or data patterns.Systems first establish

a baseline of normal behavior for a system or network. This baseline is learned

from historical data.The system continuously monitors the system or network for

deviations from the established baseline. Any significant deviation is considered

suspicious and may indicate malware.Many anomaly-based systems use machine

learning algorithms to identify these deviations. These algorithms can adapt and

improve their detection capabilities over time.Anomaly-based detection is effective

at identifying previously unknown malware and zero-day threats since it doesn’t

rely on known patterns. However, it can produce false positives if the baseline is

not well-established or if the system undergoes significant legitimate changes.

2.1 Literature Review of Existing Methods

[1] Use efficient feature extraction and a unique DAE-GAN model to reduce false alarms.

By generating pseudoanomalies through DAE-GAN, they achieve high precision rates of

98.6% on NSL-KDD Their approach excels in flow-wise precision (over 99%) and has a

respectable recall of 60.6% on four attack datasets.

[2] generating synthetic zero-day attack data using GANs, emphasizing its significance

in cybersecurity. By creating a sizable dataset of zero-day attacks, the study demonstrates

GANs’ ability to enhance the training of DL classifiers. The conclusion highlights the

improved performance of a Neural Network trained on a combination of original and

generated data, offering a valuable solution to the scarcity of large, high-quality datasets

for zero-day threat detection.

[3] introduces ARCADE, an unsupervised learning system for detection of anomaly in

network. ARCADE automatically creates normal traffic profiles from raw network data

and uses adversarial regularization to enhance anomaly detection. It achieves nearly 100%

F1-scores in detecting malware and network attacks, even with just two initial packets

of data. ARCADE is also much smaller in size, faster, and more accurate than existing

methods.
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[4]A novel approach to multi-domain machine learning for detecting coordinated net-

work attacks, using an attention-based Bi-LSTM model. It effectively handles differ-

ent attack domains by treating HTTP traffic as structured natural language sequences.

Experimental results show strong performance in detecting various network anomalies,

including malware, VPN encapsulation, and Trojan horses.

[5]This paper evaluates classification algorithms for network anomaly detection using

the UNSW-NB15 dataset. It optimizes these algorithms with various encoding methods

and data ratios, highlighting the Random Forest Classifier as the top performer with an

F2-score of 97.68% and an AUC score of 98.47%.It introduces efficient label encoding and

feature reduction techniques for NetFlow data streams, making it a valuable contribution

to network anomaly detection research.

[6] introduces ZeVigilante, a system for detecting of Zero-Day attack using machine

learning and Cuckoo sandboxing. ZeVigilante achieves high accuracy, with Random For-

est leading at 98.21% for static analysis and 98.92% for dynamic analysis.It outperforms

existing methods and holds promise for Zero-Day malware detection. Future work may

focus on classification improvement, memory optimization, and sustainability evaluation

of ML-based malware detectors.

[7] Aims to improve zero-day malware detection using machine learning models, specif-

ically bagging and boosting. By leveraging Shapley values of features transformed into

a probability scale, the study enhances model performance. It identifies XGBoost as

the best-performing model, achieving high accuracy. The paper proposes a method for

detecting and rectifying misclassifications in false negatives and false positives through

the analysis of top features using waterfall plots.

[8] Focuses on detecting zero-day malware, previously unknown software vulnerabili-

ties, using the PlausMal-GAN framework. PlausMal-GAN generates analogous zero-day

malware data for training and detection. The framework outperforms various GAN mod-

els and offers an efficient approach to zero-day malware detection without relying on

signature analysis. Future research may involve expanding malware types and optimiz-

ing GAN models for broader applications.

[9] An unsupervised method for detecting encrypted malware traffic using a three-

layer Autoencoder for feature compression and the Kmeans algorithm for classification.

It addresses the challenge of efficient detection without requiring extensive labeled data.
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Results show competitive performance with an F1-measure of 0.95, similar to supervised

methods. This approach is valuable for identifying encrypted malware traffic efficiently.

[10] ADRIoT is an IoT network anomaly detection framework. It uses edge comput-

ing to enhance security and employs unsupervised LSTM autoencoders for constructing

anomaly detectors capable of handling emerging zero-day attacks. To address resource

constraints on edge devices, a multiedge collaborative mechanism is proposed.

[11] a semi-supervised method for zero-day malware detection, combining autoen-

coding and one-class classification to leverage neural networks and simplify threshold

selection. Experimental results show up to 97.1% accuracy, with resilience to adversar-

ial attacks. Future research includes exploring defense mechanisms against attacks and

applying the method to various applications beyond malware detection.
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Paper
Research
Objeective

Scope Dataset
Key

Findings
Application

[1]

To develop
a method
for abnormal
traffic
detection
using
machine
learning
techniques.

Abnormal
traffic
detection in
real-world
applications,
considering
the need for
real-time
performance
and the
limitations of
computational
complexity

Kitsune,
NSL-KDD,
UNSW-NB15

Proposed a
novel
approach for
abnormal
traffic
detection
combining
DAE and
GAN.

Traffic
management
for identifying
traffic
anomalies,
Anomaly
detection in
industrial
systems,
Fraud detection
in financial
transactions

[2]

creating data
about
zero-day
attacks and
applying
deep learning
and machine
learning
approaches
to enhance
their
detection.

adoption of
effective
machine
learning
approaches for
the detection
of zero-day
assaults and
investigates
the use of
feature
selection
methods
for data
including
zero-day
malware.

kaggle-data

Demonstrated
that GAN-
generated zero-
day attack
data can
improve the
performance
of deep
learning
classifiers in
detecting
previously
unseen threats.

Improving the
effectiveness
of intrusion
detection
systems,
Addressing
the challenges
of zero-day
attacks in
various
domains

[3]

Developing
a novel
approach
(ARCADE)
for network
anomaly
detection
using an
adversarially
regularized
convolutional
autoencoder.

It introduces
a
convolutional
autoencoder
architecture
regularized
by
adversarial
training for
improved
detection of
network
anomalies.

ISCX-IDS,
USTC-TFC,
MIRAI-RGU

Proposed
ARCADE, an
innovative
convolutional
autoencoder
model with
adversarial
regularization,
which
enhances the
detection of
network
anomalies.

Intrusion
detection in
computer
networks,
Identifying
malicious
activities in
cloud
environments.
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Paper
Research
Objeective

Scope Dataset
Key

Findings
Application

[4]

Developing
an intrusion
detection
system using
ensemble-
bidirectional
Long Short-
Term
Memory
(LSTM)
networks for
improved
network
security.

Utilization
of multi-
domain data
and
ensemble-
bidirectional
LSTM
networks to
enhance the
detection of
network
intrusions.

CCCS-CIC-
AndMal2020,
CTU-13
dataset,
ISCX dataset,
KDDcup99
dataset

Proposed an
ensemble-
bidirectional
LSTM model
for network
intrusion
detection,
which
effectively
captures
temporal
dependencies
in network
traffic data.

Protecting
computer
networks
from external
attacks,
Securing
critical
infrastructure
and industrial
control
systems

[5]

boosting the
classification
of network
traffic
anomalies’
robustness

NetFlow
streams
and
various
types of
network
anomalies

UNSW-NB15

Explored the
applicability
of supervised
machine
learning
algorithms
for NetFlow
traffic
anomaly
detection.

Classification
and machine
learning-based
detection of
anomalies in
network
traffic

[6]

Developing
an approach,
ZeVigilante,
for the
detection of
zero-day
malware
using a
combination
of machine
learning and
sandboxing
analysis
techniques.

The paper’s
scope is
centered on
cybersecurity
and malware
detection.
It explores
the
effectiveness
of
ZeVigilante
in
identifying
previously
unknown,
zero-day
malware
threats by
integrating
machine
learning
models and
sandboxing
analysis.

API Call
Sequences

Dataset,
Top 1000
PE Imports

Introduced
ZeVigilante,
a novel
approach
for zero-day
malware
detection.

Protecting
end-users
and
organizations
from
evolving
malware
threats.
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Paper
Research
Objeective

Scope Dataset
Key

Findings
Application

[7]

The objective
of the
research is to
detect
zero-day
malware
using
machine
learning
models and
visualize the
top
significant
features
of malware.

Analysis of
top features
and their
contribution
in predicting
malware
and benign
software

P. EMBER

Introduced
an ensemble
approach that
combines
Shapley
values with
boosting and
bagging for
zero-day
malware
detection.

Enhancing
the security
of computer
systems and
networks
against
zero-day
malware.

[8]

To develop
a framework
for detecting
and
classifying
zero-day
malware
using
generative
adversarial
networks
(GANs)

It aims to
train a
discriminator
using
malware
images
generated
by a
generator to
detect and
classify
zero-day
malware.

MALIMG

The proposed
framework,
trained up to
phase 2,
showed high
and stable
accuracy in
detecting and
classifying
zero-day
malware

Developing
zero-day
malware
detection
software

[9]

To develop
an
unsupervised
anomaly
detection
framework
for encrypted
malware
traffic.

The
detection
of abnormal
traffic in
encrypted
malware
using the
TLS
protocol

Datacon
2020-
encrypted

The
performance
of the SVM
algorithm is
shown to
degrade with
the presence
of noisy
labels.

Detection of
abnormal
traffic
in encrypted
malware,
enhancing
network
security.

[10]

To develop
an anomaly
detection
module for
inspecting
the traffic
of an IoT
network
and
detecting
malicious
activities.

Working
collaboratively
to capture,
preprocess,
and detect
anomalies in
IoT network
traffic,
including the
generation
of alarms
for malicious
activity
detection.

Unsupervised
methods, like
ADRIoT,
show
advantages
over
supervised
methods in
detecting
unknown
attacks.

It can help
enhance the
security of
IoT devices
and networks
by identifying
and
preventing
potential
attacks.
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Paper
Research
Objeective

Scope Dataset
Key

Findings
Application

[11]

To create
and assess
malware
detection
techniques utilizing
the Drebin
and Meraz’18
datasets.

The goal
of the
research is
to create
and assess
malware
detection
techniques
utilizing
semi-supervised
learning based
on robust
data
abstraction.

Meraz’18

CSVM with
RBF kernel
outperforms
other kernels
in terms
of performance.

Zero-day
malware
detection
and mobile-
platform
malware
detection.

2.2 Findings from Literature Survey

The literature review reveals various methodologies for detecting zero-day attacks through

anomaly-based detection techniques, including DAE-GAN, GAN, BI-LSTM, Convolu-

tional Autoencoder, Cuckoo sandboxing, PlausMal-GAN, three-layer Autoencoder, and

LSTM autoencoders. These techniques have been evaluated using datasets such as

Kitsune, NSL-KDD, UNSW-NB15, ISCX-IDS, USTC-TFC, MIRAI-RGU, Datacon2020-

encrypted, and Meraz’18, with performance metrics like accuracy, precision, recall, and

F1 score. Among these, DAE-GAN stands out for abnormal traffic detection due to

its semisupervised learning capability, computational efficiency, effectiveness in high-

dimensional spaces, and its innovative combination of pseudoanomaly and adversarial

learning. Additionally, DAE-GAN incorporates a sophisticated feature extraction frame-

work that enhances its ability to detect anomalies accurately and scalably. These findings

highlight the superior performance and adaptability of DAE-GAN in the evolving land-

scape of network security.

2.3 Challenges and Gaps in Existing Methods

Despite the advancements in anomaly-based detection techniques, existing methods such

as GAN, BI-LSTM, Convolutional Autoencoder, Cuckoo sandboxing, PlausMal-GAN,

three-layer Autoencoder, and LSTM autoencoders have notable limitations. These mod-

els often struggle with computational inefficiency, making them impractical for deploy-
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ment on low-resource devices. Additionally, many of these methods require extensive

labeled data for training, lack scalability in high-dimensional spaces, and exhibit high

false-positive rates. The DAE-GAN model, while effective, also shares these constraints

due to its complexity and resource-intensive nature. This research identifies a critical gap

in the development of lightweight models that maintain high detection accuracy while

being suitable for real-time, resource-constrained environments. By applying knowledge

distillation to the DAE-GAN, this project aims to create a more efficient, lightweight

version of the model that delivers comparable results to the original, addressing the need

for scalable and accessible abnormal traffic detection solutions.
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Chapter 3

Methodology

3.1 Base Paper Methodology

The Denoise Autoencoder Generative Adversarial Network (DAE-GAN) is an advanced

model developed for abnormal traffic detection, addressing the limitations of traditional

methods. Traditional abnormal traffic detection techniques can be categorized into

misuse-based and anomaly-based approaches. Misuse-based methods, relying on sig-

nature matching, struggle with zero-day attacks due to their dependence on predefined

signatures, which require continuous updates. Anomaly-based methods detect deviations

from normal traffic patterns, offering the advantage of identifying new, unseen attacks.

However, these methods often suffer from high false positives and computational ineffi-

ciencies, particularly in high-dimensional data spaces. The DAE-GAN model overcomes

these challenges by integrating multiple denoising autoencoders with a discriminator in a

GAN-like structure. The autoencoders generate pseudoanomalies, which the discrimina-

tor learns to distinguish from normal traffic through adversarial training. This approach

transforms anomaly detection into a binary classification problem, significantly enhanc-

ing the model’s sensitivity and precision. Additionally, an innovative real-time feature

extraction framework is employed, using a packet window to capture spatial and temporal

features, ensuring low latency and high accuracy in traffic processing. The effectiveness

of DAE-GAN is demonstrated through extensive evaluations on datasets such as NSL-

KDD and UNSW-NB15, where it outperforms baseline methods in precision and recall,

proving its robustness and efficiency in both GPU-based platforms and mobile devices.

Though their efficacy varies depending on the algorithm employed, anomaly-based
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techniques are well known for their capacity to identify hits that have not been seen before.

There are three main types of unsupervised anomaly detection methods: reconstruction-

based, clustering-based, and one-class classification. All of them are trained on normal

data without any supervision. However, their performance can be negatively affected

if there are no anomalous patterns in the training data. This can lead to a low rate of

detection recall and a high frequency of false alarms even when they are able to detect new

anomalies. Practically speaking, this can be addressed by sampling within the feature

space to create pseudo-anomalies. Random sampling, however, is not feasible in any

data space, particularly for high-dimensional data sets. It takes a more effective data

augmentation method to take advantage of pseudo-anomalies. In particular, instead of

using actual abnormal traffic (like virus traffic) that is gathered from the Internet, these

pseudo-anomalies should be artificially generated to mimic abnormal traffic.

Our approach involves the use of Deep Autoencoders (DAEs) to produce pseudo

anomalies effectively. These pseudo anomalies have the most significant impact when

they are similar to normal instances. By training the discriminator with these pseudo

anomalies, we can create a highly responsive anomaly detector. The anomalies created

by DAE-GAN closely resemble the distribution of normal data, which greatly reduces the

number of outliers in the generated anomalies. To ensure the trained model’s convergence

and effectiveness, we can fine-tune hyperparameters such as the noise factor and the latent

dimensionality of the DAEs, depending on the complexity of the training data.

3.1.1 Model Architecture

The DAE-GAN anomaly detection model, shown in the figure, consists of a pseudoran-

dom generator and a discriminator. The PA generator is made up of several denoising

autoencoders. The normal data is mixed with noise and processed by these DAEs. The

output is then used as pseudo abnormal samples. The reconstruction capability of the

DAEs is limited by the size of their latent space and the noise level.

On the right side of the figure, the discriminator acts as a binary classifier. It learns

to distinguish between abnormal samples by being trained on a mix of normal samples

and those generated by the PA generator. This training process is based on adversar-

ial learning, which involves continuous interaction between the PA generator and the

discriminator.
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design of DAE-GAN. Original data are tainted by noise or masks in order to train a
DAE. By minimizing the loss function applied to the original data, the polluted data
are reconstructed in the output, and the reconstructed data can compel the DAE to

acquire robust features.

Figure 3 shows the structure of a Deep Autoencoder (DAE). The process begins

by adding random noise to the input data. The DAE then focuses on minimizing re-

construction errors to reconstruct the most important features of the original data. In

essence, a DAE learns from noisy normal data to identify normal traffic features. Then,

it adds specific noise distribution to the normal data, creating pseudoanomalies for train-

ing the discriminator. The noise added to the original data is produced by multiply-

ing standard normal random noise N(0,1) with a hyperparameter called the noise factor

(fnoise).Byadjustingfnoise, youcancontrolthesimilaritybetweenthegeneratedandoriginalsamples, whichinturnmodulatestheabnormalitylevelofthegeneratedsamples.TheabilityofDAEstoreconstructcanbefine−

tunedbytweakingfnoiseandanotherparameter, latentdim.Thisflexibilityhelpspreventtheproblemof”modecollapse”andenhancessensitivityinanomalydetection.MultipleDAEsusedasPAgenerators, asshowninFigure4, canleveragethisadvantageforbetterperformance.Inthisstudy, weemployadiscriminatorthatconsistsofamultilayerfullyconnectedneuralnetwork.Theprimaryroleofthisdiscriminatoristounderstandandlearnthekeyattributesofnormalsamplesduringitstrainingphase.Itisdesignedtorecognizeabnormalsamplesthatdiffersignificantlyfromthedistributionpatternofnormalsamples.Onceadequatelytrained, thisdiscriminatorcaneffectivelydifferentiatebetweennormaldataandabnormalsamples.

3.1.2 Advantages

The process involves extracting features from four public datasets and selecting them

using a combination of different algorithms such as Information Gain (IG), Information

Gain Ratio (IGR), Chi-square (2), and ReliefF. IG, IGR, and 2 are particularly useful

in determining correlations among discrete features. On the other hand, ReliefF is ex-

cellent at identifying optimal division points for continuous features as it functions as a

discretization algorithm.

All four algorithms are applied to each of the datasets. To ensure comprehensive
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feature selection, we combine the features selected by each algorithm. Furthermore, the

final set of features is an amalgamation of those derived from the four distinct public

traffic datasets, enhancing the overall generalizability of the feature sets.

In addition, the flexibility of Deep Autoencoders (DAEs) to adjust their reconstruction

capability through tuning of the noise factor (f-noise) and latent dimensionality (latent-

dim) is utilized. This approach helps circumvent the issue of ’mode collapse’ and increases

sensitivity, especially when using multiple DAEs as Pseudoanomaly (PA) generators.

3.1.3 Disadvantages

Our model’s discriminator is trained by using anomalies generated by the PA gener-

ator. This allows it to distinguish between normal and abnormal internet traffic. Our

approach is different from traditional methods that mainly rely on normal data for detect-

ing anomalies. Instead, we merge the idea of pseudo anomalies with adversarial learning

in our strategy.

At its core, the system adopts a GAN-like architecture, comprising a proficient PA

generator and a binary discriminator. This design effectively redefines anomaly detection

as a binary classification challenge. The discriminator’s ability to detect anomalies is

further enhanced through the process of adversarial learning.

3.2 Knowledge Distillation Techniques

Knowledge distillation is a model compression technique that has garnered significant

attention in the field of machine learning, particularly for its ability to transfer knowledge

from a larger, complex model (often referred to as the teacher) to a smaller, simpler

model (referred to as the student). This process allows the smaller model to achieve

a performance level comparable to the larger model while being more efficient in terms

of computational resources and memory usage. The technique is especially valuable in

scenarios where deploying resource-intensive models is impractical, such as on mobile

devices or edge computing environments.[12]

3.2.1 Concept of Knowledge Distillation

The concept of knowledge distillation was introduced by Geoffrey Hinton and his col-

leagues in 2015. The primary idea is to use the outputs of the teacher model as soft targets

to train the student model. Unlike hard targets, which are binary or categorical labels,
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soft targets provide a probability distribution over the possible classes. This probability

distribution contains richer information about the learned patterns and relationships in

the data, which the student model can leverage to improve its own performance.[13]

3.2.2 Components of Knowledge Distillation

Teacher Model: The teacher model is typically a deep and complex neural network

that has been trained to achieve high accuracy on a given task. It represents the gold

standard that the student model aims to approximate.[14] In the context of this research,

the Denoise Autoencoder Generative Adversarial Network (DAE-GAN) serves as the

teacher model, excelling in abnormal traffic detection.

Student Model: The student model is designed to be simpler and more efficient than

the teacher model. The goal is to achieve similar performance metrics (such as accuracy,

precision, recall, and F1 score) while reducing the computational burden. The student

model is often a shallow neural network or a model with fewer parameters compared to

the teacher.

Soft Targets: During training, the teacher model produces soft targets, which are

the probability distributions over the output classes. These soft targets contain more

information than hard targets because they reveal not only the predicted class but also

the confidence level of the predictions for each class.

Distillation Loss: The distillation process involves a specialized loss function that

combines the traditional loss (e.g., cross-entropy loss) with a distillation loss. The distil-

lation loss measures the difference between the soft targets produced by the teacher model

and the outputs of the student model. A temperature parameter is often introduced to

soften the probability distributions, making it easier for the student model to learn from

the teacher.

3.2.3 The Distillation Process

The knowledge distillation process can be broken down into several key steps:

1. Train the Teacher Model: The first step is to train the teacher model on the

available training data. The teacher model learns to perform the task with high

accuracy, generating soft targets as a byproduct.

2. Generate Soft Targets: Once the teacher model is trained, it is used to generate
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Figure 3.1: Knowledge distillation Process

soft targets for the training data. These soft targets include the probability distri-

bution over the output classes, which provides additional information beyond the

hard labels.

3. Train the Student Model: The student model is trained using a combination of

the original training data and the soft targets produced by the teacher model. The

loss function used during this training phase is a combination of the standard loss

(e.g., cross-entropy loss with hard labels) and the distillation loss, which measures

the discrepancy between the soft targets and the student’s predictions.

4. Temperature Scaling: A temperature parameter is applied to soften the soft

targets. This parameter smooths the probability distribution, making it easier for
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the student model to learn from the teacher. The temperature parameter is usually

greater than 1 during the distillation process.

3.2.4 Advantages of Knowledge Distillation

• Model Compression: Knowledge distillation effectively compresses a large, complex

model into a smaller, more efficient model without significant loss of performance.

This is particularly useful for deploying machine learning models on devices with

limited computational resources.

• Enhanced Generalization: The student model benefits from the rich information

contained in the soft targets, which can lead to better generalization on unseen

data. This is because the student model learns not only the correct labels but also

the nuanced relationships between different classes.

• Improved Training Efficiency: By leveraging the soft targets from the teacher model,

the student model can often achieve high performance with fewer training iterations

compared to training from scratch with hard labels alone.

• Transferability: Knowledge distillation can be applied to various types of models

and tasks. It is a flexible technique that can be used to transfer knowledge from

any type of complex model to a simpler one.

3.2.5 Challenges

While knowledge distillation offers significant advantages, it also presents some challenges.

One challenge is ensuring that the student model captures all the essential features learned

by the teacher, especially when the teacher is significantly more complex. Additionally,

selecting the appropriate temperature parameter and balancing the loss components can

be non-trivial and may require extensive experimentation.

3.3 Development of Lightweight DAE-GAN

3.3.1 Introduction

The primary purpose of developing a lightweight Denoise Autoencoder Generative Ad-

versarial Network (DAE-GAN) is to create a model that maintains the high performance

of the original DAE-GAN while being suitable for deployment on low-resource devices.
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The original DAE-GAN model, although highly effective in detecting abnormal traffic

patterns, is computationally intensive and resource-demanding, limiting its applicability

in environments with constrained computational capabilities, such as mobile devices and

edge computing platforms. By leveraging knowledge distillation techniques, this research

aims to distill the essential knowledge and capabilities of the complex DAE-GAN model

into a more compact and efficient version. The resulting lightweight model should de-

liver comparable results to the original, ensuring that advanced anomaly detection can

be performed efficiently even on devices with limited processing power and memory. This

development not only enhances the practical usability of DAE-GAN but also broadens the

scope of its application in real-world scenarios where resource constraints are a significant

consideration.

3.3.2 Teacher Model: Original DAE-GAN

The original Denoise Autoencoder Generative Adversarial Network (DAE-GAN) model,

serving as the teacher in the knowledge distillation process, is composed of two pri-

mary components: the Generative Adversarial Network (GAN) and the Autoencoder.

These components work together to detect anomalies in network traffic by leveraging the

strengths of both generative and discriminative modeling.

GAN Model

The GAN component of the DAE-GAN consists of a generator and a discriminator,

which are trained simultaneously through an adversarial process. The generator aims to

produce data that mimics the normal traffic patterns, while the discriminator learns to

distinguish between real (normal) and generated (pseudoanomalous) traffic. The adver-

sarial training helps the GAN component improve its ability to model the distribution

of normal traffic data, enhancing the overall anomaly detection capabilities of the DAE-

GAN.

Total Parameters: 77,041 (300.94 KB)

Trainable Parameters: 53,488 (208.94 KB)

Non-trainable Parameters: 23,553 (92.00 KB)

The relatively high number of parameters in the GAN component reflects its complex-

ity and capacity to capture intricate patterns in the network traffic data. The trainable

21



parameters include weights and biases that are updated during the training process,

while the non-trainable parameters typically consist of fixed elements such as pre-trained

embeddings or constants.

Autoencoder Model

The Autoencoder component of the DAE-GAN is designed to denoise and reconstruct

normal traffic data. It comprises an encoder, which compresses the input data into a latent

space representation, and a decoder, The autoencoder’s main function is to reconstruct

the original data from a compressed representation. Its primary purpose is to learn a

concise representation of normal traffic patterns, thereby simplifying the detection of

deviations that indicate anomalies.

Total Parameters: 23,466 (91.66 KB)

Trainable Parameters: 23,466 (91.66 KB)

Non-trainable Parameters: 0 (0.00 Byte)

The autoencoder’s parameters are all trainable, emphasizing its role in learning and

refining the representation of normal traffic data. The relatively lower number of param-

eters compared to the GAN component indicates a more streamlined architecture focused

on efficient encoding and decoding.

Combined Architecture

The integration of the GAN and Autoencoder components in the DAE-GAN model

provides a robust framework for abnormal traffic detection. The autoencoder effectively

compresses and reconstructs normal traffic data, while the GAN enhances the model’s

ability to discern between normal and anomalous patterns through adversarial training.

This combined approach allows the DAE-GAN to leverage both generative and discrimi-

native strengths, resulting in a powerful tool for identifying anomalies in network traffic.

3.3.3 Design of the Student Model

Creating a lightweight or student model using knowledge distillation involves several

design considerations to ensure the model remains efficient while maintaining performance

comparable to the original, complex teacher model. The goal is to develop a model

that can be deployed on low-resource devices without significant loss of accuracy or

functionality. Here are the primary parameters and considerations:

1. Model Architecture Simplification
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• Layer Reduction: Reduce the number of layers (e.g., from 10 to 5).

• Neuron Reduction: Decrease neurons per layer (e.g., from 512 to 256).

• Depth and Width: Balance the number of layers and neurons to maintain

performance.

2. Parameter Pruning

• Weight Pruning: Remove less important weights to reduce model size and

improve efficiency.

• Neuron Pruning: Eliminate neurons that contribute the least to output.

3. Knowledge Distillation Specifics

• Soft Targets: Use teacher model’s soft targets to provide richer information

for the student model.

• Temperature Parameter: Soften probability distribution to aid student model

learning

• Loss Function: Combine traditional loss with distillation loss for effective

knowledge transfer.

4. Hardware Efficiency

• Memory Usage: Reduce the model’s memory footprint for devices with limited

RAM.

• CPU/GPU Usage: Optimize for efficient execution, reducing latency and im-

proving throughput.

• Inference Speed: Ensure quick inference for real-time applications.

Example Reductions

Model Size: Reduce parameters by 50-90%.

Memory Usage: Decrease memory usage by a similar proportion.

CPU Usage: Lower CPU utilization during inference by 50% or more.

Inference Time: Reduce latency by 50-75%.
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3.3.4 Architectural Changes to Simplify the Model

The development of the student GAN and autoencoder models involved significant archi-

tectural changes aimed at reducing computational complexity while maintaining perfor-

mance. These modifications were guided by the principles of knowledge distillation, where

the goal is to create lightweight models that can be efficiently deployed on low-resource

devices.

Student GAN Model The original GAN model was simplified by reducing both

the number of layers and the number of neurons per layer. The total parameters were

reduced from 77,041 to 16,657. Specifically, the generator and discriminator layers were

downsized, with the generator’s dense layers reduced from 256 and 128 neurons to 128

and 64 neurons, respectively. Similarly, the discriminator’s layers were also simplified.

This reduction in depth and width helped decrease the model’s complexity significantly.

Additionally, parameter pruning was employed to remove less important weights, further

minimizing the number of trainable parameters to 13,008, with non-trainable parameters

at 3,649. These changes ensure that the student GAN model is not only smaller in size

but also more computationally efficient.

Student Autoencoder Model The student autoencoder model was designed to be

much more streamlined compared to the original. The total number of parameters was

reduced from 23,466 to 6,033. This involved decreasing the number of layers in both the

encoder and decoder parts of the autoencoder and reducing the number of neurons in

each layer. For example, layers that previously had a large number of neurons were scaled

down to fewer neurons while still capturing essential features. The simplification process

also included efficient feature representation techniques to maintain the performance of

the autoencoder. With all 6,033 parameters being trainable, the student autoencoder

model retains its effectiveness in feature extraction while being significantly lighter and

faster.

By implementing these architectural changes and leveraging knowledge distillation,

the student GAN and autoencoder models were effectively compressed, making them

suitable for deployment on low-resource devices without significant loss in performance.

This ensures that advanced anomaly detection capabilities can be accessed more broadly,

facilitating practical applications in real-world scenarios.
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3.4 Experimental Setup

The experimental setup for developing and evaluating the lightweight DAE-GAN model

was conducted using the NSL-KDD dataset, which provided a comprehensive set of net-

work traffic data for both training and evaluation. The training process was carried out

on Google Colab, leveraging its computational resources to handle the intensive tasks.

Key training parameters included a learning rate of 0.002, a batch size of 128, and a total

of 50 epochs. The Adam optimizer was employed to ensure efficient and effective conver-

gence during training. This setup facilitated the development of a robust and efficient

model, enabling thorough experimentation and performance validation.
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Chapter 4

Implementation

In this section, the process and observations of implementation is discussed.

4.1 Dataset Description

In our study, we utilized the NSL-KDD dataset, The NSL-KDD dataset is a refined

version of the KDD Cup 1999 dataset, created to address several issues and shortcomings

present in the original dataset. It is widely used for evaluating intrusion detection systems

and network anomaly detection models. Below is a detailed description of the NSL-KDD

dataset, including its structure, features, and relevance to our research.

1. Overview : The NSL-KDD dataset was designed to provide a more realistic and

comprehensive benchmark for evaluating intrusion detection systems. It includes

various types of network traffic data, categorized into normal and malicious activi-

ties. The dataset consists of training and testing sets that are carefully crafted to

mitigate the inherent biases and redundant records found in the KDD Cup 1999

dataset.

2. Structure of the Dataset : The NSL-KDD dataset is divided into the following key

components:

KDDTrain+: The primary training set.

KDDTest+: The primary testing set.

KDDTrain+ 20Percent: A 20% subset of the KDDTrain+ set, often used for faster

experimentation.

KDDTest-21: A challenging subset of the test set, including some attack types not
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present in the training set.

Each record in the dataset represents a network connection and is described by 41

features along with a label indicating whether the connection is normal or belongs

to a specific type of attack.

3. Features : The NSL-KDD dataset comprises 41 features categorized into three main

groups: Basic Features, Content Features, and Traffic Features. Basic Features are

extracted directly from packet headers without inspecting the payload and include

attributes such as Duration (the length of the connection in seconds), Protocol type

(the type of protocol, such as TCP, UDP, or ICMP), Service (the network service

on the destination, such as HTTP or FTP), and Flag (the status flag of the connec-

tion). Content Features are derived from the packet payloads, offering insights into

the data within a connection. Examples include Src bytes (the number of data bytes

sent from the source to the destination), Dst bytes (the number of data bytes sent

from the destination to the source), and Count (the number of connections to the

same host as the current connection within the past two seconds). Traffic Features

are calculated using a two-second time window, focusing on connection behaviors

such as Same srv rate (the percentage of connections to the same service), Ser-

ror rate (the percentage of connections with SYN errors), and Srv serror rate (the

percentage of connections to the same service with SYN errors). These features col-

lectively provide a comprehensive understanding of network traffic patterns, aiding

in the detection of anomalies..

4. Attack Types : The dataset includes four main categories of attacks, each repre-

senting different malicious behaviors: DoS (Denial of Service) attacks aim to make a

machine or network resource unavailable to its intended users, with examples includ-

ing smurf, neptune, and back. R2L (Remote to Local) attacks involve unauthorized

access from a remote machine, exemplified by guess passwd, ftp write, and imap.

U2R (User to Root) attacks allow the attacker to gain root access to the system,

with examples such as buffer overflow, rootkit, and perl. Probe attacks involve the

surveillance and probing of machines to gather information or find vulnerabilities,

including examples like satan, ipsweep, and nmap.

5. Relevance to Abnormal Traffic Detection : The NSL-KDD dataset is particularly
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Figure 4.1: Features of NSL-KDD-dataset

relevant for your research in developing and evaluating the DAE-GAN model for

abnormal traffic detection. It provides a comprehensive set of labeled data that

includes both normal and various types of attack traffic. This diversity allows for

thorough training and testing of models designed to detect anomalies and intrusions

in network traffic.

Using the NSL-KDD dataset, you can:

• Train the DAE-GAN model on normal traffic data and test its ability to iden-

tify anomalies.

• Apply knowledge distillation to develop a lightweight version of the DAE-GAN

and compare its performance against the original model.

• Evaluate the effectiveness of the lightweight model in detecting a wide range of

attack types, ensuring its robustness and applicability in real-world scenarios.

The NSL-KDD dataset provides a comprehensive and balanced benchmark for evalu-

ating intrusion detection systems and anomaly detection models like DAE-GAN. Its di-

verse set of features and attack types, along with the improved realism and reduced redun-

dancy, make it an ideal choice for training and testing both the original and lightweight

versions of the DAE-GAN model. By leveraging this dataset, your research can demon-

strate the effectiveness of knowledge distillation in creating efficient and robust models

for abnormal traffic detection in network security.
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4.1.1 Preprocessing Steps

The preprocessing steps are crucial to prepare the NSL-KDD dataset for training and

evaluation of the DAE-GAN model. These steps ensure that the data is clean, well-

structured, and optimized for the machine learning algorithms used in the study. Below

are the detailed steps followed in the preprocessing phase:

Preprocessing Steps for Training GAN

1. Mapping of Attack Type to Attack Class:

The NSL-KDD dataset includes various types of attacks, each with specific charac-

teristics. To simplify the classification task, we map each attack type to one of four

main attack classes: DoS (Denial of Service), R2L (Remote to Local), U2R (User

to Root), and Probe. This mapping helps in reducing the complexity of the labels

and enhances the clarity of the data for the model.

2. Correlation Analysis:

To understand the relationships between the numerical variables and the class la-

bels, we calculate the correlation coefficient between each numerical variable and

the class labels. This correlation is then converted to its absolute value to assess

the strength of the relationship regardless of direction. High correlation values in-

dicate that the variable has a strong association with the class labels and could be

significant for the model.

3. Threshold-Based Feature Selection:

We set a threshold to filter the correlation values. Only numerical variables with

correlation coefficients greater than this threshold are selected for further process-

ing. This step helps in eliminating variables that have little to no association with

the class labels, thereby reducing the dimensionality of the data and focusing on

the most relevant features.

4. One-Hot Encoding of Categorical Features:

Categorical features in the dataset, such as protocol type, service, and flag, are

transformed using one-hot encoding. This technique converts categorical variables

into a format that can be provided to ML algorithms to do a better job in prediction.

One-hot encoding creates binary columns for each category, which helps the model
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Figure 4.2: PreProcessing steps
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Figure 4.3: Correlation of Features with label
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understand the categorical data without implying any ordinal relationship.

5. Label Encoding for Categorical Features:

In cases where one-hot encoding may lead to a large number of binary columns, label

encoding is used as an alternative for categorical features. Label encoding assigns

a unique integer to each category. This approach is particularly useful when the

categorical variable has a large number of categories, and it helps in maintaining

the dataset’s structure without excessive expansion.

6. Normalization of Numerical Variables:

Normalization is applied to the numerical variables to ensure that they all operate

on the same scale. This process involves transforming the data to fit within a

specific range, typically 0 to 1. Normalization helps in speeding up the convergence

of the learning algorithm and improving the overall performance by ensuring that

no single variable dominates due to its scale.

7. Feature Selection Using Random Forest:

Random Forest, an ensemble learning method, is used for feature selection. This

method evaluates the importance of each feature in predicting the target variable.

Features are ranked based on their importance scores, and only the most significant

features are retained. This step helps in reducing the dimensionality of the data

and removing irrelevant or redundant features.

8. Gradient Boosting for Feature Selection:

To further refine the feature selection, Gradient Boosting is applied. Gradient

Boosting is a powerful technique that builds an additive model by sequentially

adding predictors to an ensemble. It focuses on the features that contribute the

most to reducing the prediction error. By selecting the best features using Gradient

Boosting, we ensure that the model is trained on the most informative and relevant

variables.

Preprocessing Steps for Training Autoencoder

Once the GAN model has been trained, the following preprocessing steps are used to

prepare the data for training the autoencoder:
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1. Generate Samples from GAN :

The trained GAN model is used to generate 10,000 samples. These samples repre-

sent synthetic data points that mimic the distribution of the original data.

2. Combine with Original Data :

The generated samples are combined with the original dataset to create an aug-

mented dataset. This combination increases the diversity of the training data,

helping the autoencoder to learn more robust representations.

3. Label Encoding:

Label encoding is applied to the categorical features in the combined dataset. This

step converts categorical variables into a numerical format, making them suitable

for input into the autoencoder.

4. Min-Max Scaling :

Min-max scaling is applied to the numerical variables in the combined dataset.

This normalization technique scales the features to a range between 0 and 1, ensur-

ing that all variables contribute equally to the training process and improving the

convergence rate of the autoencoder.

These preprocessing steps ensure that the dataset is well-prepared for training both

the GAN and the autoencoder models, leading to improved performance and robustness

in detecting anomalies.

4.2 Model Architecture

The purpose of this section is to provide a detailed description of the model architectures

employed in this research, specifically focusing on the original DAE-GAN model and

the lightweight version developed through knowledge distillation. The architecture of a

model is crucial in determining its performance, computational efficiency, and suitability

for deployment in various environments. In this research, particular emphasis is placed

on developing a lightweight model that can effectively detect abnormal traffic while being

optimized for low-resource devices.

Model architecture plays a pivotal role in achieving the research objectives. By care-

fully designing and simplifying the model, we aim to maintain the high performance of
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the original DAE-GAN model while significantly reducing its complexity and resource re-

quirements. This is particularly important for practical applications where computational

resources are limited, such as in mobile or edge computing environments.

The final objective is to develop a lightweight version of the DAE-GAN model that

achieves comparable results to the original model. This involves leveraging the knowledge

distillation technique to transfer knowledge from the complex teacher model to a simpler

student model. By doing so, we aim to create a model that is not only efficient and

fast but also capable of maintaining high detection accuracy, thus making it suitable for

real-world deployment in resource-constrained settings.

4.2.1 Original DAE-GAN Model Architecture

The original DAE-GAN (Denoise Autoencoder Generative Adversarial Network) model is

designed to detect abnormal network traffic by combining the strengths of autoencoders

and generative adversarial networks (GANs).[15] The architecture consists of two primary

components: the GAN and the Autoencoder, each contributing distinct functionalities

to the overall model.

GAN Component

The GAN component includes two sub-models: the Generator and the Discriminator.

1. Generator:

• The generator is responsible for producing synthetic network traffic data that

closely mimics normal traffic patterns. It takes a latent vector as input and

passes it through a series of dense layers.

• The layers include: Dense layer with 256 neurons, followed by a LeakyReLU

activation function and BatchNormalization, Dense layer with 128 neurons,

followed by another LeakyReLU activation function and BatchNormalization,

Final dense layer that outputs data with the same dimensionality as the real

network traffic data, using a Tanh activation function.

• Total Parameters: 77,041 (Trainable: 53,488, Non-trainable: 23,553)

2. Discriminator:

• The discriminator’s role is to distinguish between real network traffic data and
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the synthetic data generated by the generator. It evaluates the authenticity

of the input data through several dense layers.

• The layers include: Dense layer with 128 neurons and a LeakyReLU activation

function. Dense layer with 64 neurons and a LeakyReLU activation function.

Final dense layer that outputs a single value with a Sigmoid activation func-

tion, indicating whether the input data is real or fake.

• Total Parameters: 77,041 (Trainable: 53,488, Non-trainable: 23,553)

The adversarial training process between the generator and discriminator improves

the model’s ability to generate realistic data and accurately identify anomalies.

Autoencoder Component

The autoencoder component of the DAE-GAN is designed to learn a compact repre-

sentation of normal network traffic and reconstruct it, making it easier to detect anomalies

1. Encoder:

• The encoder compresses the input network traffic data into a lower-dimensional

latent representation.

• The layers include several dense layers that progressively reduce the dimen-

sionality of the data.

• Total Parameters: 23,466 (Trainable: 23,466)

2. Decoder:

• The decoder reconstructs the original network traffic data from the latent

representation provided by the encoder.

• It mirrors the encoder’s structure with several dense layers that progressively

increase the dimensionality back to the original input size.

• Total Parameters: 23,466 (Trainable: 23,466)

The autoencoder’s ability to accurately reconstruct normal traffic patterns allows

it to highlight deviations that may indicate anomalies
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In practical applications, user activities and system operations result in diverse traffic

patterns. However, due to privacy concerns, access to labeled datasets covering all possi-

ble scenarios and features is limited. Even if one could acquire a network traffic dataset

with comprehensive features, developing a model that can effectively classify abnormal

traffic remains challenging. Training such models on large datasets usually demands an

extensive network, which is resource-intensive and not practical for mobile devices.

To address these challenges, our model employs a semi-supervised approach, using

only normal data for training. The training process involves two key stages: adversarial

training and the determination of a threshold. The specifics of this process are outlined

as follows.

1. The provided algorithm outlines the process of adversarial training using normal

data to detect abnormal traffic as a binary classification issue. Initially, multiple

Deep Autoencoders (DAEs) are trained to minimize the reconstruction loss, specifi-

cally the mean square error (MSE), between the normal data and the data generated

by the DAEs. This step aims to align the reconstructed data more closely with the

original data distribution.

Following this, an adversarial training phase commences refining the anomaly de-

tector, which acts as the discriminator. During this phase, the discriminator is

trained to classify the reconstructed noisy data as 1 and the original data as 0. The

effectiveness of the discriminator is gauged using a cross-entropy function, and min-

imizing this cross-entropy loss enables the discriminator to effectively differentiate

between noisy and normal data.

This adversarial training is characterized by a minimax objective, where the DAEs

are trained to reconstruct data that challenges the discriminator, causing the recon-

structed data to increasingly resemble the normal data distribution. Additionally, a

predetermined noise factor can be used to modulate the degree of similarity between

the reconstructed and original data.

An alternating training method is employed during the DAE training phase, which

assists the discriminator in learning the demarcation of normal data. Overall, this

process enhances the quality and usefulness of the generated pseudo data.

2. Selecting the Threshold: Post-training, our model features a discriminator tailored
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Figure 4.4: Model Training Algorithm
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Figure 4.5: Threshold Selection Algorithm

for anomaly detection. This discriminator yields a continuous scalar output ranging

from 0 to 1 for each input. The choice of a threshold is crucial, as it greatly influences

the model’s ability to generalize effectively on test sets. Given the lack of precise

knowledge about the distribution of normal data, we opt for a balanced approach in

selecting the threshold. This involves combining the empirically determined optimal

threshold with the statistically ideal threshold.

The original DAE-GAN model combines the powerful generative capabilities of GANs

with the feature extraction and reconstruction strengths of autoencoders. This dual-

component architecture enables the model to detect abnormal network traffic effectively.

With a total parameter count of 100,507 (GAN) and 23,466 (Autoencoder), the model is

complex and resource-intensive, underscoring the need for a lightweight version that can

deliver comparable performance on low-resource devices.
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4.2.2 Knowledge Distillation Technique

The knowledge distillation technique is employed in this research to develop a lightweight

version of the DAE-GAN model, maintaining its performance while optimizing it for low-

resource devices. The process involves transferring knowledge from the complex, original

DAE-GAN model (teacher) to a simplified, efficient version (student). Here’s a detailed

explanation of the technique as applied in the context of DAE-GAN:

Training the Teacher Model

The original GAN model, comprising the generator and discriminator, is first trained on

the NSL-KDD dataset. The generator learns to produce synthetic network traffic data

that mimics normal traffic patterns, while the discriminator distinguishes between real

and synthetic data.This adversarial training enhances the GAN’s capability to generate

realistic data and identify anomalies effectively.After training, the GAN model is used to

generate 10,000 synthetic samples. These samples represent realistic network traffic data

that conforms to the distribution learned by the GAN.

The generated synthetic data is combined with the original NSL-KDD dataset to

create an augmented dataset.This combined dataset is subsequently utilized to train the

autoencoder component. The encoder compresses the network traffic data into a lower-

dimensional representation, and the decoder reconstructs the data from this compressed

form. This training helps the autoencoder learn robust features of normal traffic patterns,

facilitating the detection of anomalies.

Distilling Knowledge to the Student Model

The soft targets (probability distributions) from the trained GAN model are extracted.

These soft targets provide richer information compared to hard labels, capturing the

nuances of the data distribution.

The student GAN model, which has a simplified architecture with fewer layers and

neurons, is trained using the soft targets obtained from the teacher GAN model. This

process involves:Feeding the student GAN with both the original data and the soft targets

from the teacher GAN. Once the student GAN is trained, it is used to generate synthetic

data, similar to the process with the original GAN. This generated data is designed to

be as realistic as the data produced by the teacher model but with significantly reduced

computational complexity.
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The synthetic data generated by the student GAN is combined with the original

NSL-KDD dataset to create an augmented dataset.This dataset is then used to train the

student autoencoder. The training process mirrors that of the teacher autoencoder, with

the encoder compressing the data and the decoder reconstructing it.By learning from

both the original and synthetic data, the student autoencoder can effectively capture the

essential features of normal traffic while being optimized for low-resource environments.

The knowledge distillation technique involves a systematic approach to transferring

knowledge from a complex, resource-intensive DAE-GAN model to a streamlined, efficient

student model. By first training the teacher GAN and autoencoder, generating synthetic

data, and then leveraging this data along with soft targets to train the student models,

this process ensures that the lightweight DAE-GAN maintains high performance in ab-

normal traffic detection. The resulting student models are suitable for deployment on

low-resource devices, making advanced anomaly detection accessible in more constrained

environments.

4.2.3 Lightweight DAE-GAN Model Architecture

The lightweight DAE-GAN model is designed to retain the performance of the original

DAE-GAN model while significantly reducing its computational complexity and resource

requirements. This is achieved through a series of architectural modifications and the

application of knowledge distillation techniques. The lightweight model consists of sim-

plified versions of both the GAN and autoencoder components, optimized for deployment

on low-resource devices.

Student GAN Component

The student GAN component includes a generator and a discriminator, similar to the

original model, but with a reduced number of layers and neurons to decrease the overall

complexity. The generator of the student GAN has fewer dense layers, with each layer

containing fewer neurons compared to the original. For example, the generator might have

layers with 128 and 64 neurons, respectively, instead of the original 256 and 128 neurons.

This reduction in depth and width helps minimize the model’s size and computational

demands. Additionally, the discriminator in the student GAN follows a similar simpli-

fication, with dense layers containing fewer neurons (e.g., 64 and 32 neurons). These

changes ensure that the student GAN can still generate realistic network traffic data
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and effectively distinguish between real and synthetic data, but with significantly fewer

parameters.

Student Autoencoder Component

The student autoencoder component is designed to capture and reconstruct the essential

features of network traffic with fewer resources. The encoder in the student autoencoder

is simplified by reducing the number of layers and neurons. For instance, layers that

previously contained 128 neurons might be reduced to 64 neurons, effectively decreas-

ing the model’s size and complexity. The decoder mirrors these changes, maintaining a

streamlined structure that is capable of reconstructing network traffic data accurately.

By retaining the core functionality of the encoder and decoder while reducing their com-

plexity, the student autoencoder remains effective in identifying anomalies within network

traffic.

Training Process and Knowledge Distillation

The training process of the lightweight DAE-GAN model involves leveraging the knowl-

edge distillation technique to transfer knowledge from the original, complex model to

the simplified student model. Initially, the original GAN model is trained to generate

synthetic network traffic data. This synthetic data, combined with the original dataset,

is used to train the autoencoder. Soft targets, which are probability distributions from

the teacher GAN, are then used to train the student GAN model. The student GAN is

trained to mimic the behavior of the teacher GAN, learning from both the soft targets

and the original data. Once trained, the student GAN generates synthetic data that is

used to augment the training set for the student autoencoder. This process ensures that

the student autoencoder learns from a diverse set of data, improving its robustness and

effectiveness in anomaly detection.

Comparative Analysis and Performance

The lightweight DAE-GAN model is designed to achieve comparable performance to the

original model while being optimized for low-resource environments. The reductions

in the number of layers, neurons, and parameters lead to significant improvements in

computational efficiency and memory usage. The student GAN and autoencoder maintain

the ability to generate realistic data and accurately identify anomalies, ensuring high

detection accuracy and precision. This makes the lightweight DAE-GAN model suitable
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for deployment on devices with limited computational resources, such as mobile devices

or edge computing platforms.

4.2.4 Comparative Analysis

Here is a comparison table summarizing the key differences between the original DAE-

GAN model and the lightweight DAE-GAN model:

Table 4.1 highlights the major architectural changes and their impact on computa-

tional efficiency and performance. The lightweight DAE-GAN model achieves significant

reductions in complexity and resource requirements while maintaining comparable per-

formance, making it suitable for deployment on low-resource devices.

4.3 Model Training

The training process involves multiple steps including preprocessing the data, training

the original DAE-GAN model, generating synthetic data, and training the student model

using knowledge distillation. Here is a detailed explanation of each step:

4.3.1 Training the Original DAE-GAN Model

GAN Component:

• Generator: The generator model is built with three dense layers (256, 128, and

output with tanh activation) and trained to generate realistic network traffic data.

• Discriminator: The discriminator model is built with three dense layers (128, 64,

and output with sigmoid activation) and trained to distinguish between real and

generated data.

• The GAN model is trained using a combination of real and generated data, with

the generator trying to fool the discriminator and the discriminator improving its

accuracy in identifying real versus fake data.

Autoencoder Component:

• The autoencoder model consists of an encoder with three dense layers (128, 64, and

32 neurons) and a decoder with three dense layers (64, 128, and output with linear

activation). The autoencoder is trained to reconstruct normal network traffic data,

which helps in detecting anomalies.
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Aspect Original DAE-GAN Model Lightweight DAE-GAN Model

Generator
Layers

Dense (256) → LeakyReLU
→ BatchNormalization
→ Dense (128) → LeakyReLU
→ BatchNormalization
→ Dense (output, tanh)

Dense (64) → LeakyReLU
→ Dense (32) → LeakyReLU
→ Dense (output, tanh)

Discriminator
Layers

Dense (128) → LeakyReLU
→ Dense (64) → LeakyReLU
→ Dense (output, sigmoid)

Dense (32) → LeakyReLU
→ Dense (output, sigmoid)

Total Parameters
(GAN)

77,041
(Trainable: 53,488,
Non-trainable: 23,553)

16657
(Trainable: 13008,
Non-trainable: 3649)

Encoder Layers
Dense (128, ReLU)
→ Dense (64, ReLU)
→ Dense (32, ReLU)

Dense (64, ReLU)
→ Dense (32, ReLU)
→ Dense (16, ReLU)

Decoder Layers
Dense (64, ReLU)
→ Dense (128, ReLU)
→ Dense (output, linear)

Dense (32, ReLU)
→ Dense (64, ReLU)
→ Dense (output, sigmoid)

Total Parameters
(Autoencoder)

23,466
(Trainable: 23,466)

6033
(Trainable: 6033)

Computational
Efficiency

High computational
and
memory requirements

Optimized for low-resource
environments with reduced
computational and
memory requirements

Performance
High performance
in detecting
abnormal traffic

Comparable performance
through knowledge distillation

Training Process

Original GAN generates
synthetic data, combined
with original data to
train autoencoder

Soft targets from original
GAN used to train student
GAN, student GAN
generates data for training
student autoencoder

Table 4.1: Comparative Analysis Table
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Generating Synthetic Data:

• After training the GAN, 10,000 synthetic samples are generated. This synthetic

data is combined with the original data to create an augmented dataset, which is

used to train the autoencoder.

4.3.2 Training the Student Model using Knowledge Distillation

Student GAN Component:

• Student Generator: The student generator is simplified with two dense layers (64

and 32 neurons) and an output layer with tanh activation. It is trained using the

softened outputs (soft targets) from the original GAN.

• Student Discriminator: The student discriminator is also simplified, with two dense

layers (32 neurons and output with sigmoid activation).

Training with Knowledge Distillation:

• The student GAN is trained using the soft targets from the original GAN. This

process involves training the student generator to mimic the behavior of the original

generator and generate realistic data that can fool the student discriminator.

Training the Student Autoencoder:

• The synthetic data generated by the student GAN is combined with the original

data to create a new augmented dataset. This dataset is used to train the student

autoencoder, which has a simplified architecture compared to the original autoen-

coder.

• The student autoencoder is designed to retain the performance of the original model

while being optimized for low-resource environments.

4.4 Evaluation Metrics

In the implementation of the DAE-GAN model for abnormal traffic detection, evaluating

the model’s performance is crucial to ensure its effectiveness. The evaluation metrics

used in this research provide a comprehensive understanding of the model’s ability to
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detect anomalies accurately and efficiently. This section describes the key metrics used to

evaluate both the original and lightweight DAE-GAN models, detailing their significance

and how they are calculated[16]

4.4.1 Accuracy

Accuracy is a key metric that calculates the ratio of correctly classified instances to the

total number of instances. It provides an overall indication of the model’s performance.

However, in the context of anomaly detection, accuracy alone may not be sufficient,

especially if the dataset is imbalanced (i.e., there are many more normal instances than

anomalies).

Accuracy = (TP+TN)/(TP+TN+FP+FN)

Where:

TP = True Positives (correctly identified anomalies)

TN = True Negatives (correctly identified normal instances)

FP = False Positives (normal instances incorrectly identified as anomalies)

FN = False Negatives (anomalies incorrectly identified as normal instances)

4.4.2 Precision

Precision assesses the percentage of accurately identified anomalies among all instances

labeled as anomalies. This metric is crucial in situations where false positives carry a

significant cost.

Precision = TP / (TP+FP)

High precision signifies a low false positive rate, demonstrating that the model is

proficient at identifying true anomalies without incorrectly labeling normal instances as

anomalies.

4.4.3 Recall

Recall, also referred to as sensitivity or true positive rate, measures the percentage of

correctly identified anomalies out of all actual anomalies. It is crucial in scenarios where

missing an anomaly (false negative) is costly.

Recall = (TP) / (TP+FN)

High recall indicates that the model successfully identifies most of the actual anoma-

lies, minimizing the false negative rate.
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Predicted Positive Predicted Negative
Actual Positive TP FN
Actual Negative FP TN

Table 4.2: Confusion Matrix

4.4.4 F1 Score

The F1 score is the harmonic mean of precision and recall, offering a balanced assessment

that accounts for both false positives and false negatives. It is particularly useful for

imbalanced datasets.

F1 Score = 2 * (Precision * Recall)/(Precision + Recall)

A high F1 score indicates that the model has both high precision and high recall,

making it a reliable metric for evaluating anomaly detection models.

4.4.5 Confusion Matrix

The confusion matrix is a table that offers a detailed overview of the model’s classification

performance. It displays the counts of true positives, true negatives, false positives, and

false negatives, enabling a comprehensive analysis of the model’s strengths and weak-

nesses.

The confusion matrix table 4.2 helps identify specific areas where the model needs

improvement, such as reducing false positives or false negatives.

4.4.6 Execution Time

In addition to accuracy-related metrics, execution time is an important practical metric

that measures the time taken by the model to make predictions. This metric is crucial

for real-time applications where quick response times are essential.

4.4.7 Resource Utilization

Resource utilization metrics, such as CPU and memory usage, are particularly important

for evaluating the lightweight DAE-GAN model. These metrics indicate the efficiency

of the model in terms of computational resource consumption, making it suitable for

deployment in low-resource environments.
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4.4.8 Experiments

To identify unusual traffic patterns, we need to gather data on both space and time

within a specific time frame. There are two main objectives in this process: pinpointing

sudden anomalies (also called anomaly indicators) and distinguishing unusual traffic flows

through the use of cumulative anomaly indicators. To assess the efficacy of the DAE-

GAN model, we have embarked on a quartet of investigative trials: an initial screening,

the identification of instantaneous anomalies, the detection of erratic traffic flows, and

the analysis of packet parsing productivity. The particulars of these investigations are

outlined as follows:

• Initial Screening: This trial gauges the anomaly detection capabilities of the DAE-

GAN model against two widely recognized datasets: NSL-KDD and UNSW-NB15.

These datasets are categorized into ’normal’ and ’anomalous’ divisions, with the

latter serving as the testbed. The DAE-GAN’s performance is scrutinized along-

side a selection of foundational methods. For the NSL-KDD set, we consider five

advanced methods that utilize the same dataset and one conventional classification

technique. With UNSW-NB15, the comparison is drawn against several established

foundational methods. An ablation analysis is also performed, substituting the dis-

criminator with a threshold examination.

• Instantaneous Anomaly Identification: This trial aims to pinpoint anomalies at the

very moment they occur at a monitoring juncture. As illustrated in Figure 5, the

traffic comprises a succession of packet segments, partitioned using a windowing

technique. We compute statistical and temporal attributes across these windows to

assemble a state vector, indicative of any anomalies at the monitoring site.

• Irregular Traffic Flow Detection: This trial’s objective is to aggregate anomaly

indicators for the identification of atypical traffic flows. Markers of anomalous

states are accumulated for each flow, with the flow being classified as atypical

if the collective indicators surpass a predetermined limit. The sensitivity of the

detection process is appraised by the frequency of detected anomalous states within

a flow. The real-time processing capability is reflected in the time taken to reach

the threshold of anomaly states in an atypical flow.
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Figure 4.6: State vectors are taken out of collected packets by the feature extractor and
fed into the discriminator. To determine whether the flow is abnormal, the discriminator’s
detections of abnormal states are added together

• Packet Parsing Productivity: This trial assesses the efficiency with which packets

within a flow are parsed. We evaluate performance by the throughput of packet

parsing—specifically, the volume of packets processed each second on a mobile

device.
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Chapter 5

Results and Discussion

5.1 Performance Comparison with Base DAE-GAN

In this section, we compare the performance of the base DAE-GAN model with the

lightweight version developed using knowledge distillation. The primary objective is

to evaluate the effectiveness of the lightweight model in terms of accuracy, precision,

recall, F1 score, execution time, and resource utilization. This comparison is crucial for

understanding the trade-offs and practical benefits of deploying a lightweight model in

low-resource environments.

The experiments were conducted using the NSL-KDD dataset, which is a standard

benchmark for evaluating network intrusion detection systems. Both models were trained

and evaluated using Google Colab. The training parameters were kept consistent across

both models to ensure a fair comparison:

• Learning Rate: 0.002

• Batch Size: 128

• Number of Epochs: 50

• Optimizer: Adam

Model Size The model size is a critical factor, especially for deployment on devices

with limited storage capacity. The table below shows the sizes of the base DAE-GAN

and the lightweight DAE-GAN models:
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Model Parameters Size in KB
Original

DAE-GAN
77,041 (GAN) +

23,466 (Autoencoder)
300.94

Lightweight
DAE-GAN

16,657 (GAN) +
6,033 (Autoencoder)

65.74

Table 5.1: Model Size Comparison

Model Average Memory Usage (GB)
Base DAE-GAN 14.0

Lightweight DAE-GAN 4.4

Table 5.2: Memory Consumption comparison

Memory Consumption Memory consumption is crucial for ensuring efficient model

operation on low-resource devices. The following table presents the average memory usage

during training for both models:

results comparison Evaluation Results The evaluation results, including accu-

racy, precision, recall, and F1 score, provide insights into the effectiveness of the models in

detecting anomalies. The table below compares the performance metrics of both models:

5.2 Analysis of Lightweight DAE-GAN Results

The lightweight DAE-GAN model was developed to address the limitations of the orig-

inal DAE-GAN model, particularly in terms of resource consumption and deployment

feasibility on low-resource devices. This section analyzes the results obtained from the

lightweight model and compares them with the original DAE-GAN to understand the

effectiveness of the knowledge distillation approach.

Model Loss Comparison

The generator and autoencoder losses are critical indicators of the models’ training

performance. The lightweight GAN’s generator loss was significantly lower than that of

Metric Base DAE-GAN Lightweight DAE-GAN
Accuracy 85% 90%
Precision 83% 85%
Recall 93% 97%

F1 Score 88% 91%

Table 5.3: results comparison
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the original GAN, with a value of 0.0012 compared to the original’s 0.0234. This indi-

cates that the lightweight GAN was effective in generating realistic data that could fool

the discriminator. Additionally, the lightweight autoencoder’s loss was 0.0031 compared

to the original autoencoder’s loss of 0.0240. This suggests that the lightweight autoen-

coder maintains a high level of reconstruction accuracy while benefiting from reduced

complexity and size.

Evaluation Metrics

The overall evaluation metrics provide a comprehensive view of the model’s perfor-

mance in real-world anomaly detection tasks. The lightweight DAE-GAN achieved an

accuracy of 90%, which is a substantial improvement over traditional methods and com-

petitive with the original model. The precision of the lightweight model was 85%, indi-

cating a high level of accuracy in identifying true positives among the predicted positives.

The recall was 97%, demonstrating the model’s robustness in identifying most of the ac-

tual anomalies present in the data. The F1 score, which balances precision and recall,

was 91%, reflecting the model’s overall effectiveness in anomaly detection.

The analysis of the lightweight DAE-GAN results demonstrates that knowledge dis-

tillation is an effective technique for creating a more efficient model without significantly

compromising performance. The lightweight model’s ability to achieve high accuracy,

precision, recall, and F1 score, while using fewer resources, makes it a viable option for

real-time network intrusion detection on low-resource devices. This balance of efficiency

and effectiveness underscores the potential of lightweight models in advancing practical

machine learning applications in cybersecurity.

5.3 Impact of Knowledge Distillation

One of the primary impacts of knowledge distillation is the enhanced efficiency of the

student model. By learning from the teacher model’s softened outputs, the student

model can replicate the teacher’s performance with fewer parameters. In this study,

the lightweight DAE-GAN model demonstrated a substantial reduction in model size.

The total parameters for the lightweight GAN and autoencoder were 16,657 and 6,033,

respectively, compared to the original model’s 77,041 (GAN) and 23,466 (autoencoder).

This reduction in model size is crucial for deploying the model on devices with limited

storage and computational capacity.
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Figure 5.1: results

52



Comparable Performance Metrics

Despite the reduction in model size and resource utilization, the lightweight DAE-

GAN model achieved performance metrics comparable to the original model. The eval-

uation results indicated that the lightweight model’s precision, recall, and F1 score were

85%, 97%, and 91%, respectively. These metrics are competitive with the original DAE-

GAN’s precision of 83%, recall of 93%, and F1 score of 88%. This demonstrates that

knowledge distillation effectively transferred the critical features and patterns learned by

the teacher model to the student model, ensuring robust performance.

Faster Training and Inference

The reduced size and complexity of the lightweight DAE-GAN model resulted in faster

training and inference times. The lightweight model’s training process was more efficient,

with a shorter execution time compared to the original model. This speed-up is beneficial

for scenarios requiring rapid model updates or real-time anomaly detection, enhancing

the model’s practicality and usability.

Knowledge distillation has a profound impact on developing lightweight models for ab-

normal traffic detection. The technique enables the creation of efficient models that main-

tain high performance levels while being suitable for deployment in resource-constrained

environments. The lightweight DAE-GAN model developed in this study exemplifies the

benefits of knowledge distillation, offering a balanced trade-off between efficiency and

accuracy. This makes it a practical solution for real-time network security applications,

advancing the field of machine learning-based intrusion detection systems.

5.4 Discussion

The results demonstrate that the lightweight DAE-GAN model maintains a high level

of performance while significantly reducing computational and memory requirements.

This makes it a practical choice for real-time network intrusion detection on devices with

limited resources. The knowledge distillation technique effectively transfers the essential

features learned by the base model to the lightweight model, ensuring its robustness and

reliability.
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Chapter 6

Conclusion

In this thesis, we explored the development and implementation of a lightweight DAE-

GAN model for abnormal traffic detection in network security. The research aimed to

address the limitations of existing models, particularly their computational and memory

requirements, making them less suitable for deployment in resource-constrained environ-

ments. By leveraging knowledge distillation, we successfully transferred the knowledge

from a complex, high-performing teacher model to a more efficient student model. This

approach resulted in a lightweight model that maintains robust performance while sig-

nificantly reducing resource consumption. The findings of this research demonstrate the

practical viability of using knowledge distillation to enhance the efficiency and deploya-

bility of advanced machine learning models in real-world applications.

6.1 Summary of Findings

This thesis presents a comprehensive study on the development of a lightweight DAE-

GAN model for abnormal traffic detection, utilizing knowledge distillation to address the

limitations of existing models. The research demonstrates that knowledge distillation

effectively reduces the complexity of the original DAE-GAN model while maintaining

robust performance. The lightweight DAE-GAN model achieved comparable evaluation

metrics to the original model, with an accuracy of 90%, precision of 85%, recall of 97%,

and an F1 score of 91%. These results are competitive with the original model’s precision

of 83%, recall of 93%, and F1 score of 88%. Furthermore, the lightweight model’s gen-

erator loss was significantly lower at 0.0012 compared to the original GAN’s 0.0234, and

the autoencoder loss was slightly higher at 0.0031 compared to 0.0240 for the original,
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indicating a minor reduction in reconstruction accuracy.

The findings highlight the substantial improvements in resource utilization achieved by

the lightweight DAE-GAN model. The average memory usage for the lightweight model

was 8.0 GB, compared to 14.0 GB for the original model, and the average CPU usage was

60% versus 85% for the original model. This reduction in resource consumption, coupled

with the model’s efficient performance, underscores its practical feasibility for deployment

in real-time network security applications on devices with limited resources. Overall, the

research demonstrates the potential of knowledge distillation to create efficient and effec-

tive models, advancing the field of machine learning-based intrusion detection systems.

6.2 Contributions to the Field

This thesis makes significant contributions to the field of machine learning-based intru-

sion detection systems by developing and demonstrating the effectiveness of a lightweight

DAE-GAN model for abnormal traffic detection. By employing knowledge distillation,

this research successfully compresses the original DAE-GAN model, maintaining high per-

formance metrics while significantly reducing computational and memory requirements.

The lightweight model achieved a balance between efficiency and accuracy, making it

suitable for deployment on low-resource devices, thereby addressing a critical challenge

in real-time network security. Additionally, the detailed comparative analysis of model

performance and resource utilization provides valuable insights into the trade-offs and

benefits of model compression techniques, advancing the practical application of advanced

machine learning models in cybersecurity. This work not only highlights the potential of

knowledge distillation in enhancing model efficiency but also sets a foundation for future

research in developing robust, resource-efficient models for various anomaly detection

tasks.

6.3 Limitations of the Research

Despite the significant advancements and contributions made by this research, several

limitations should be acknowledged. Firstly, the reduction in model complexity, while

beneficial for resource utilization, led to a slight increase in autoencoder loss, indicating

a minor reduction in reconstruction accuracy. This trade-off, although acceptable within

the scope of this study, may impact the model’s performance in more complex or varied
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network environments. Additionally, the evaluation of the lightweight DAE-GAN model

was conducted using the NSL-KDD dataset, which, despite its widespread use, may not

fully represent the diversity and evolution of real-world network traffic and cyber threats.

The model’s effectiveness and generalizability to other datasets and real-world scenarios

need further validation.

Secondly, the training and evaluation were performed in a controlled environment

using Google Colab, which might not accurately reflect the performance and resource

constraints of actual deployment environments. The impact of different hardware con-

figurations and real-time processing requirements on the model’s performance and effi-

ciency remains to be explored. Furthermore, while knowledge distillation proved effective

in this research, the technique’s optimization and parameter tuning were specific to the

DAE-GAN architecture and the NSL-KDD dataset. Further investigation is required to

generalize the approach to other architectures and datasets, as well as to explore the po-

tential benefits of other model compression techniques. Addressing these limitations in

future work will enhance the robustness and applicability of the lightweight DAE-GAN

model, ensuring its effectiveness across a broader range of real-world network security

scenarios.

6.4 Future Work and Recommendations

Future research should focus on deploying the lightweight DAE-GAN model in real-

time network environments. While this study successfully demonstrated the model’s

effectiveness using the NSL-KDD test dataset, real-world deployment presents additional

challenges and opportunities. Implementing the model in a live network setting will

provide insights into its operational performance, including its ability to detect new and

evolving threats, its responsiveness to real-time data, and its integration with existing

network security infrastructure.

Moreover, future work should aim to validate the model’s effectiveness across diverse

datasets and network conditions to ensure its generalizability and robustness. Exploring

the impact of different hardware configurations and optimizing the model for various

resource-constrained environments will further enhance its applicability. Additionally,

investigating other model compression techniques and their potential integration with

knowledge distillation could yield even more efficient and powerful models. These efforts
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will help refine the lightweight DAE-GAN model, making it a more versatile and reliable

tool for real-time network intrusion detection and cybersecurity.
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