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Abstract

An increasing number of individuals and organizations are taking advantage of

services available over the Internet due to its ease of access and constant availability.

Cloud computing is a paradigm for delivering computing resources over the Internet

in a highly scalable and on-demand manner. Cloud computing offers multifarious

essential services to its users, ranging from infrastructure and system development

environments to software as a service over the Internet. Various users consuming the

cloud services to deploy different applications have their service requirements defined

in a Service Level Agreement (SLA). Such applications can be real-time services, i.e.,

satellite data processing, banking transactions, healthcare applications, social media,

etc. A cloud service provider (CSP) should deliver all its services swiftly to these

applications, which demand fluctuating computational processing, on time. Real-time

stream computations are perennial, receiving processing requests unpredictably and

requiring a fair amount of resources for their processing in a constrained timeframe.

Such a dynamic nature of applications leads to resource elasticity at runtime. In

a cloud resource hierarchy, multiple resources with different processing capabilities

and costs exist. In order to optimally utilize the cloud resources and ensure their

uninterrupted availability for real-time processing requirements, it is required to scale

the resources at each processing level efficiently. This work proposes MeghMesa,

the multilevel elasticity framework in a cloud environment for processing real-time

streaming applications and collectively optimizing the elasticity concern of multilevel

resources while attaining SLAs and quality of service (QoS) parameters.

The MeghMesa framework consists of a multilevel, multivariable-multistep (ML-

MVMS) resource forecasting and scaling module as primary functional modules. The

ML-MVMS model plays a significant role in accurately identifying resources required

at multiple processing levels (server, node, and operator levels) in the cloud envi-



2

ronment. The scaling module makes the quick allocation of resources to the volatile

demand of processing, based on the outcome of the ML-MVMS model. By evaluating

the proposed approach on resource utilization data of real-time streaming applica-

tions executing in a multilevel cloud environment, it is derived that the MeghMesa

outperformed the existing approaches by optimally utilizing resources and quickly

availing resources on demand.
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Chapter 1

Introduction

With recent technological advancements, large workforces to individuals have adopted

cloud computing. It has revolutionized the traditional method of computing by de-

livering infinite computing power without having physical resources on-premises. It

offers access to an infinite pool of computing resources, networks, and storage over

the Internet, managed by third-party providers. Cloud users are no longer required to

invest in expensive infrastructure or bother about its management; they can leverage

the on-demand computing capabilities offered by a service provider to handle dynamic

workloads and process critical tasks on time. Users are charged as per the utility-

based pricing model, which requires them to pay only for the services they consume.

Cloud computing allows users to access the resources dynamically to process the work-

load efficiently without overprovisioning or underprovisioning them. Dynamic scaling

of resources in real-time provides seamless functioning during increasing demand. It

promises timely access to various services with high availability, security, and flexi-

bility. Cloud computing enables quick experimentation and invention by facilitating

easy access to advanced technologies, development platforms, and services.

Figure 1.1 presents the conceptual model of cloud by NIST (National Institute

of Standards and Technology) (Liu et al. 2011). NIST is a non-regulatory agency

1



2 CHAPTER 1. INTRODUCTION

that develops and promotes standards and guidelines to foster innovations and the

adoption of emerging technologies by ensuring reliability, security, and interoperabil-

ity. The NIST cloud model provides a reference for CSPs to validate their services

and align them as per the standards, and it also guides cloud users on how to use

the cloud services. The NIST cloud model in Figure 1.1 shows deployment models

distinguished based on ownership, access control, security, and sharing of the cloud

resources. The deployment models are public, private, community, and hybrid.

� A public cloud is owned by a third-party service provider that delivers vari-

ous services to the general public or organizations over the Internet. The public

cloud service manager is solely responsible for managing the resources and avail-

ing the services. Public cloud services are remarkably elastic and economical,

as users have to pay only for the resources or services they consume. Mi-

crosoft Azure, Amazon Web Services (AWS), and Google Cloud Platform are

some of the public cloud service providers. They own the cloud infrastructure

at distributed geographical locations, make it available to consumers over the

Internet, and charge them based on a utility-based pricing model.

� A private cloud is mostly dedicated to a single organization. The infrastructure

can be located on an organization’s premises or managed by a third-party ser-

vice provider. Access to private cloud resources is restricted to the organization

only. The private cloud provides high data and computation security and more

customization options for services compared to the public cloud. It is suitable

for organizations requiring specialized computation needs and high confiden-

tiality, which include government bodies, science and research institutions, and

financial organizations.

� A community cloud is a shared infrastructure accessed by multiple organizations

from a single community with mutual interests, such as compliance regulations,



3

Figure 1.1: NIST cloud model (Liu et al. 2011)
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security requirements, and industry standards. A community cloud is designed

to achieve mission-critical objectives. The infrastructure is owned by multiple

organizations within the same community or by a third party.

� A hybrid cloud combines the functionality of one or more public and private

clouds; they are separate entities, however, bounded by the standard properties

enabling data and application adaptability (Liu et al. 2011). The organizations

can keep their data and logic in a private cloud while leveraging the public

cloud’s functionalities for specific processing needs. This deployment model is

helpful for applications accepting dynamic workloads and requesting specific

computational needs for certain applications.

The cloud computing service model refers to the various services CSP provides to

users. As per (Liu et al. 2011), there are three service models in cloud computing:

infrastructure as a service (IaaS), platform as a service (PaaS), and software as a

service (SaaS).

� IaaS provides computing resources such as virtual machines (VM), storage, and

networks to users for setting up scalable solutions on a utility-based pricing

model. IaaS reduces the upfront investment in infrastructure required by busi-

nesses and individuals and also optimizes their IT spending. Virtualization

is the technique for providing infinite resources that are used to handle the

processing requests of users over the Internet. Virtualization provides an ab-

straction of computing resources from end users and applications, making use

of them. In IaaS, users control the operating system, software, and data hosted

on the underlying infrastructure, while CSP manages the underlying infrastruc-

ture. By leveraging IaaS services, users can reduce upfront infrastructure and

maintenance costs and have more control over scalable remote resources.
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� PaaS provides a platform for establishing an environment for developing, test-

ing, and deploying any service or application. It abstracts the underlying com-

plex infrastructure from the cloud users, including the operating system, mid-

dleware, and database. It offers a pre-configured computing environment with

development tools, a runtime environment, and database systems to accelerate

the production of products.

� SaaS provides ready-to-use software and services. Users can directly consume

such cloud services on a subscription basis over the Internet without worrying

about installation compatibility issues, maintenance, or management. The CSP

is responsible for managing the internal infrastructure and platform hosting the

software.

The NIST cloud model identified fundamental characteristics that each cloud ser-

vice provider should deliver. They included resource pooling, on-demand self-service,

rapid elasticity, broad network access, and measured service as essential properties

(Liu et al. 2011).

� Resource pooling: It refers to aggregating and sharing computing resources to

serve multiple users and applications. It presents an infinite pool of resources

to the users. Resources include storage, memory, network, and processing ca-

pabilities. It is a fundamental principle to enable resource availability, scaling,

and sharing, by isolating the execution of parallel and concurrent processes and

guaranteeing high performance.

� On-demand self-service: One of the essential services which ensure the resources

are provided to users without any human interactions with CSP. Users can

control the access and usage of specific resources. This characteristic facilitates

the user with highly available services in a smaller timeframe. It ensures the

users are charged on what they-used basis, reducing their capital expense.
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� Rapid Elasticity: It enables the cloud infrastructure to scale the computing

resources rapidly and automatically while guaranteeing optimal throughput,

cost-effectiveness and agility to the fluctuating resource demand. It enables

organizations to meet their varying computing demand by seamlessly adapting

the resource capacity.

� Broad network access: It refers to the cloud’s ability to provide ubiquitous ac-

cess to cloud services and resources from anywhere over the Internet. It also

ensures to avail of services over any network which follows the standard net-

work protocols for connecting to the cloud resources, which are geographically

distributed.

� Measured service: It enables the CSP and users to monitor, measure and track

the cloud services and sources used. By having detailed resource usage patterns,

CSP can identify the scope of optimizing the resources and reduce the operating

cost. Similarly, users can avoid unnecessary costs during periods of less usability.

In addition to these essential characteristics, cloud computing also offers security

and data protection, parallel processing, availability and reliability of resources.

Among all the features provided by CSP, elasticity plays a vital role in processing

dynamic workloads on distributed streaming applications. Streaming applications

receive workloads at continuous and varying rates from geographically distributed lo-

cations. The input workload requires processing immediately upon arrival. Processing

the bursty workload in a timely manner requires applications to have more computing

resources, leading to scaling up the resources. Whereas during the calm period, fewer

resources are required, leading to scaling resources down from the existing allocation.

If the resources are statically provisioned for processing by considering the worst-case

scenario, where resources are allocated by considering maximum processing require-

ments, they will be underutilized. If resources are allocated by considering average
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processing requests, the performance of the application will be degraded. Hence,

resource allocation is to be done based on applicable conditions.

The performance issues with static resource provisioning motivated the use of

elasticity, which allows resources to be dynamically scaled up or down based on pro-

cessing demand. As per (Herbst, Kounev, and Reussner 2013), resource elasticity

represents the ability of the system to handle fluctuations in input workload by al-

locating and deallocating the resources automatically to ensure the availability of

resources to process workloads at each point in time. Elasticity can be attained by

resizing, migration, and replication (Galante and Bona 2012). Figure 1.2 presents

how resizing (vertical scaling) and replication (horizontal scaling) of cloud resources

takes place.

Figure 1.2: Vertical vs Horizontal elasticity (Thakkar and Bhavsar 2022)

Resizing of resources, also called vertical scaling, where the capacity or individual

resources within a system are scaled up or down to handle the increase in processing
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demands. In Figure 1.2, blue boxes represent the individual resources, which can

be memory, CPU, or storage. The size of such resources varies depending on their

type and underlying configurations. Resizing is the best solution for systems requir-

ing strict Service Level Agreement (SLA) (Gandhi et al. 2018) and facing changes

in resource demand periodically (Lorido-Botran, Miguel-Alonso, and Lozano 2014).

There are a couple of shortcomings of verticle scaling:

� a resource has its capacity, and further scaling may not be cost-effective or

feasible,

� many operating systems (OS) do not allow reconfiguration of resources during

runtime (Rosa Righi et al. 2019)

Replication or horizontal scaling of resources solves above mentioned shortcom-

ings by adding or removing new instances in a cloud environment. These instances

may range from a physical machine, VM, or container, to any application module.

Horizontal scaling performs well for systems receiving flash crowds (Lorido-Botran,

Miguel-Alonso, and Lozano 2014) or sudden bursts in workload (Gandhi et al. 2018).

Elasticity can also be achieved by migrating VMs, systems, applications, or data

from one physical machine or CSP to another. Migration in the cloud happens as

a cause of system failure, for scaling resources, security reasons, or to adapt cost-

effective solutions.

A considerable amount of work is done to optimally utilize resources while main-

taining the performance of the application. However, each work differs by responding

differently to Why, When, and How to scale resources.

In response to the question ’Why’ resource scaling, it refers to the underlying mo-

tivation for resource scaling. Literature proposed solutions to pursue cost efficiency

or enhance the application’s throughput and latency. Heinze et al. 2015 proposed

a reactive online parameter optimization model for elastic DSP (distributed stream
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processing), which allows users to define the desired quality of service in terms of

threshold values and parameters. This model optimizes the parameters to achieve

a trade-off between monetary cost and latency (Mencagli 2016) proposed a mecha-

nism that uses a game theory approach for the distribution of control logic among

local modules for deciding the resource consumption of individuals. Through im-

plementation, the authors prove that the proposed mechanism improves efficiency,

along with performance, and reduces operating costs. Liu and Buyya 2017 proposed

a heuristic-based resource-efficient scheduling approach to reduce inter-node commu-

nication, which improves the latency.

In response to ’When’ to perform resource scaling, which refers to the target

time to scale resources for handling dynamic workload conditions, the literature has

described proactive and reactive approaches. Bibal Benifa and Dejey 2019 proposed

a proactive resource allocation algorithm that learns the environment and performs

the resource distribution accordingly, improving response time, CPU utilization and

throughput. Shekhar et al. 2018 proposed a proactive, vertical scaling approach

for latency-sensitive applications. Hidalgo, Wladdimiro, and Rosas 2017 proposed a

solution that scales processing operators in proactive or reactive order, according to

the data stream flow, to utilize processing elements in elastic stream processing.

In response to ’How’, which refers to the way resource scaling is performed, the

literature used a migration option to relieve overloaded and underloaded resources,

and a replica management option for handling the parallelism of processing operators.

Nashaat, Ashry, and Rizk 2019 proposed an algorithm that clusters VMs according to

their CPU and memory parameter values and places them on physical machines using

the adaptive worst fit decreasing virtual machine placement (AWFDVP) algorithm.

This approach aims to reduce excessive VM migration, which introduces instability

and increases data transfer, leading to performance degradation. The proposed al-

gorithm performs smart VM migration, reducing the number of VM migrations and
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power consumption and improving overall performance. Noshy, Ibrahim, and Ali

2018 discuss various live VM migration techniques that target memory management

issues. Lombardi et al. 2017 proposed an algorithm that proactively and reactively

manages the parallelism of a number of operators to optimize available resources.

To answer the Why, When, and How to scale resources, the literature elaborated

on elasticity in the context of applications and abstracted issues related to process-

ing platforms. Existing literature homogeneously focuses on execution resources and

misses the hierarchy of execution resource containers (operator, VM, physical infras-

tructure) onto which application modules are mapped. A container is any entity that

provides processing elements to a computation (Marangozova-Martin, De Palma, and

El Rheddane 2019).

Cardellini et al. 2018 designed the elastic DSP replication and placement (EDRP)

framework for QoS-aware resource placement and replication in a geo-distributed en-

vironment. Sun et al. 2020 proposed the Dr-Stream, the dynamic framework for

redirecting real-time streaming data to computing resources to advance the latency

and throughput in the stream processing system. Russo Russo et al. 2018 proposed

a multi-level adaptation solution at the application and infrastructure levels, by sig-

nificantly reducing resource wastage and negligible application performance degrada-

tion. However, they considered infrastructure and application level scaling, separately.

Herbst, Kounev, and Reussner 2013 stated that while adapting the resources to fulfil

the processing requirement, multiple types of resources are required to be scaled up

or down, where each of the resources has different elasticity properties. They also

stated that elasticity could be considered at multiple levels if the resource type is a

container of other resources.

Many studies on elasticity fail to consider the impact of resource scaling at different

levels of processing containers concurrently. On the other hand, Marangozova-Martin,

De Palma, and El Rheddane 2019 targeted the resource elasticity at multiple execu-
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tion containers. However, they considered static resource elasticity and a reactive

approach to processing incoming workloads, which cannot handle the fluctuations

in workload generated by real-time streaming applications. Real-time applications

are ones that demand volatile computational resources to immediately analyze and

process large volumes of real-time data streams generated from various sources, such

as sensors, devices, and applications. In a solution to efficiently handle dynamic

real-time applications executing in the cloud environment and optimally utilizing the

available resources, this work targeted pro-active elastic scaling at multiple processing

containers simultaneously in a cloud hierarchy. This work also ensures that the perfor-

mance of real-time applications is not affected and that Quality of Service parameters

are achieved as per the service level agreement (SLA).

In this research work, three different containers from the cloud framework are con-

sidered for scaling. The containers are referred to as different processing levels, each

having a different amount of computing resources. The server, node, and operator are

three levels, each containing processing elements inside them. The server level is the

topmost level in the cloud hierarchy, containing multiple different configurations of

nodes. The node level is divided among multiple operators, where actual processing

takes place. The server level is the highest processing level, whereas the operator level

is the lowest in a cloud hierarchy. Each server, node, and operator in the respective

processing levels have different amounts of CPU and memory shares. Along with

that, the server level contains the count of nodes executing inside it, and the node

level contains the count of operators executing inside it.

1.1 Distributed stream processing

The ease of access to the uninterrupted availability of the Internet and the world-

wide acceptance of information technology in the areas of engineering, healthcare,

government, business, agriculture, and scientific study have resulted in an explosion
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of data. In general, all of these domains are required to collect, process, and analyze

the data streams to extract valuable information and detect patterns and outliers.

Stream processing is a computing model that enables data analysis in a scalable and

efficient manner. It can perform multiple operations on the incoming data streams,

serially or parallelly. This functioning, starting from data generation to its process-

ing and delivery to the store, is called the stream processing pipeline. The pub/sub

(publisher/subscriber) and source/sink are the fundamental paradigms for processing

streaming data. The source or publisher is a generator of data streams (i.e., satellite

signals, financial transactions, application logs) processed by stream processing sys-

tems, and the results are stored in the sink or consumed by subscribers (Thakkar and

Bhavsar 2022).

Distributed Stream Processing (DSP) is a system that processes an unconstrained

data flow in real-time and extracts critical information, which assists in addressing

the situation in real-time. The way DSP processes applications is represented by a

directed acyclic graph (DAG), where each vertex presents different tasks and the edges

transfer the dataflow between the tasks (Eskandari et al. 2021). The DAG contains

input streams, operators as processing vertices, and consumers as storage vertices.

The operators continuously process input data and produce outgoing streams, which

are processed by other operators or stored by the sink operator.

Various stream processing tools and frameworks have been designed to analyze

and process large volumes of real-time streaming data generated from various sources,

such as remote sensing devices, scientific, wearable, mobile, and edge devices and ap-

plications (Assuncao, Silva Veith, and Buyya 2018). Some frameworks use a dataflow

approach, where incoming data is processed as streams and redirected through a di-

rected graph of operators residing on distributed hosts that apply application logic.

On the other hand, some frameworks employ discretizing incoming data streams by

temporarily storing them in smaller time windows and then performing micro-batch
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operations on the stored data. The latter approach improves the fault tolerance and

scalability of stream-processing frameworks by managing slow-processing tasks more

efficiently. However, the first approach can quickly respond to the data streams upon

their arrival (Assuncao, Silva Veith, and Buyya 2018). Stream processing frameworks

process real-time workloads parallelly and efficiently with high fault tolerance and

resilience. Apache Storm and Apache Samza are real-time processing frameworks.

There are also other frameworks for processing the stored data at regular intervals,

called batch processing frameworks. Apache Hadoop is one of the most widely used

batch-processing frameworks. Several hybrid frameworks are available that process

the data in real-time and in batches to meet the business requirements. Table 1.1

lists various stream processing frameworks with their processing categories.

Table 1.1: Stream processing frameworks

Name Category

Apache Haddop (Foundation 2022b) Batch processing

Apache Flink (Foundation 2022a) Batch processing

Apache Storm (Foundation 2022d) Real-time processing

Apache Samza (Foundation 2019) Real-time processing

Apache Spark (Foundation 2021a) Hybrid processing

In order to improve scalability, many of these frameworks have been deployed on

the cloud, which provides elastic scaling of resources based on processing demands.

However, as per (Assuncao, Silva Veith, and Buyya 2018), it is challenging to make

the processing of streaming applications elastic. Thus, to provide a highly elastic

environment for streaming applications executing on a cloud environment, MeghMesa,
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the multilevel elastic framework, is designed in this work. The proposed framework

also ensures the optimal utilization of available cloud resources.

1.2 Motivation

Cloud architecture consists of a hierarchy of various kinds of resources. Each of them

can be seen as a separate dimension of the adaptation process with its elasticity prop-

erties (Herbst, Kounev, and Reussner 2013). However, each processing level includes

resources such as memory, CPU, and network. It is significantly challenging and

complicated to predict the exact requirements of each resource (Khan et al. 2022)

for real-time application processing. Such complexity in a cloud environment moti-

vates designing and developing a framework that dynamically scales multidimensional

resources based on real-time processing demand at each processing level.

1.3 Problem definition

The research work is envisioned to design a framework for managing the multilevel

elasticity of distributed stream processing (DSP) in a cloud environment. DSP sys-

tems cater to computational analysis and support transformation or value extraction

operations on data deluge received from distributed data sources, i.e., satellites, mo-

bile devices, large-scale scientific environments, etc. To keep up with the high volume

and velocity of data, applications executing on DSP systems need to elastically scale

their processing on different levels of computing resources (operator, node, and server)

to achieve QoS parameters and fulfil the SLA. Thus, it is required to accurately predict

resources which can lead to efficient scaling decisions required at multiple processing

levels in a cloud environment.
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1.4 Objectives

� To design an architecture facilitating elasticity for supporting distributed stream

processing applications.

� Design and develop multilevel elastic model functioning at operator, node and

infrastructure level.

� Achieve optimized resource utilization during elastic-scaling of cloud resources

supporting distributed stream processing applications.

1.5 Research scope

The scope of this thesis is to design a multilevel elastic framework for a cloud en-

vironment for processing real-time streaming applications. The proposed framework

contains a resource prediction model to get knowledge of the precise amount of re-

sources required while processing the fluctuating workload efficiently. Based on the

prediction of resources, the scaling decision is taken at each processing level.

1.6 Contributions

� The multilevel elastic framework, MeghMesa, is designed for a cloud environ-

ment for processing real-time streaming application workloads.

� The multilevel elastic model, ML-MVMS (Multi-Level - Multi-Variate Multi-

Step), is proposed, which efficiently identifies the resources required in advance

to handle dynamic workloads.

� The performance of ML-MVMS is evaluated by comparing it with existing ap-

proaches and using evaluation metrics such as MAE (Mean Absolute Error),

MSE (Mean Squared Error), and RMSE (Root Mean Squared Error). Based on
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the availability of resources at the respective levels, resource scaling decisions

are taken to optimally utilize them.

� MeghMesa has been evaluated on a real-time experimental setup, and its per-

formance is validated by comparing it with existing approaches.

1.7 Summary

This chapter discusses the basic concepts of cloud computing, including various char-

acteristics, deployment models, and services. The elasticity property of a cloud is

elucidated for forming the base of this research work. As this work targets elasticity

for distributed streaming applications, stream processing was also discussed. This

chapter also introduced various stream processing platforms, which process stream-

ing data in parallel. Based on the domain analysis, a research problem was defined,

and the objectives were decided to attain it.

1.8 Roadmap of the Thesis

The rest of the thesis is organized by the collection of chapters as below:

Chapter 2: Literature review

This chapter discusses the existing work for attaining elasticity at different execution

levels in a cloud environment while processing the real-time streaming workload. The

domain is analyzed in three parts (threefold objectives). First, the distributed stream

processing framework in a cloud environment and approaches for attaining elasticity

are discussed. The second part explores the methods for dynamically scaling the

resources at multiple levels for the real-time streaming workload in cloud environment.

Then the elasticity techniques used for resource forecasting are discussed.
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Chapter 3: Methodologies and dataset for proposed frame-

work

This chapter presents the methodologies for implementing elasticity at multiple pro-

cessing levels of cloud architecture while efficiently operating distributed streaming

applications. First, the distributed stream processing platforms, which process real-

time streaming applications, are elucidated. Then, the different approaches for ac-

curately forecasting the resource consumption for attaining elasticity at the server,

node, and operator levels are discussed.

Chapter 4: Design and development of MeghMesa framework

This chapter includes a detailed discussion of the development of the proposed frame-

work. The conceptual diagram demonstrates the birds-eye view of the proposed

framework, which is discussed in depth in an architectural view. The subsequent

part of the chapter reviews the individual modules of the architecture. Then, the

forecasting model with hyperparameter selection for accurately estimating the re-

source requirement in real-time is discussed.

Chapter 5: Implementation, evaluation and performance anal-

ysis

This chapter discusses the results obtained by executing the proposed framework in

a real-time environment. Then the performance of the ML-MVMS forecasting model

and the MeghMesa framework was examined by comparing them with existing works.

Chapter 6: Conclusion and Future scope

This chapter concludes the thesis with insights and findings, along with future research

directions.
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1.9 Indian Studies

In recent years, cloud computing has gained significant momentum in India, driven

by the country’s rapid digital transformation, increasing Internet penetration, and

the need for scalable and cost-effective IT solutions. The Government of India has

recognized profound opportunities in cloud computing and has implemented several

policies and launched some initiatives to transform India into a digitally empow-

ered country. The Government of India launched Meghraj - the Cloud Computing

initiative for delivering e-services in the country for faster development and deploy-

ment of eGov applications, while efficiently utilizing ICT spending. The Ministry

of Electronics and Information Technology (MeitY) has created a reference architec-

ture for guiding various departments in government to build their cloud deployment

architecture with recommended components and activities. The National Digital

Communications Policy envisioned in 2018 to set the goals, initiatives, strategies and

intended policy outcomes for achieving digital empowerment and advancing the living

standards of Indian citizens. The Indian government has initiated many cloud-based

projects, including Aadhaar, the Aarogya Setu app, and DigiLocker.

Many Indian researchers contributed to the field of cloud computing to improve

the quality of various cloud services delivered to users as well as the profitability of

service providers.

Shukla and Simmhan 2018 proposed a model-driven schedular for task-to-resource

mapping to improve the performance of DSP applications. The authors experimen-

tally stated that the proposed approach reduces resource consumption as compared

to the existing approach for the same input workload.

Gandhi et al. 2018 presented a solution to optimally utilizing the resources scaling

by modelling the workload characteristics and quantitatively deciding the scaling

options. The authors stated that this work effectively reduces the resources required
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to process the input workload, while attaining the SLA.

Thakkar and Bhavsar 2022 identified that the elasticity in a cloud environment is

attained at individual processing levels. However, the authors proposed a novel ap-

proach to concurrently manage elasticity at multiple processing levels. They claimed

that this approach would improve the utilization of computing resources efficiently

without degrading the performance of applications.

Bhatia et al. 2019 presented complete work on the SDN-based VANET (SDVN)

system as a whole, with its architecture, use cases, scope of opportunities, and chal-

lenges.



Chapter 2

Literature review

This chapter discusses the existing work carried out for attaining elasticity at differ-

ent execution levels in a cloud environment while processing the real-time streaming

workload. The domain is analyzed in three parts. First, the distributed stream pro-

cessing framework in a cloud environment and approaches for attaining elasticity are

discussed. The second part explores the methods for dynamically scaling the resources

at multiple levels for the real-time streaming workload in a cloud environment. Then

the elasticity techniques used for resource forecasting are discussed.

2.1 Distributed stream processsing in cloud com-

puting

Distributed stream processing (DSP) frameworks process real-time workloads effi-

ciently and parallelly upon arrival. As the number of operators to process incoming

workload changes frequently, it requires enough computing resources, which demands

elasticity of resources. Thus, to get the high availability and elastic properties of

resources, DSP systems are placed on the cloud.

Sun et al. 2020 stated that it is challenging to decide a way to continuously adapt

1
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resource adjustments for processing the fluctuating data streams. As the reschedul-

ing approach does not work due to the longer decision time, frequent changes to

the underlying computing environment or the loss of vertex state information may

occur. To address these problems, the authors proposed the Dr-Sream framework,

which processes dynamic workloads in a scalable and elastic manner while improv-

ing system performance and mapping input workloads to resources without causing

data loss. Dr-Stream contains four stages: 1) Topology construction: based on the

user logic, the topology structure is designed and submitted to the stream processing

environment; 2) Instantiation: number of instances determined for each vertex to

balance the incoming workload; 3) Scheduling: This stage determines the scheduling

of topology onto the available computing nodes, while optimally utilizing resources.

The modified first-fit approach is applied to the current deployment of vertices. 4)

Redirection and Rescheduling: A lightweight load balancing approach to balance the

data center load is proposed, in which factors influencing the load state of vertex in-

stances are reduced to only n instances of that vertex. A logical ring-based approach

is proposed for storing states of stateful verities. Results show that the Dr-Steam

framework performs better than the default strategy of apache storm by providing

high throughput, low latency, a lower average load balancing value, and a low average

load ratio.

Russo, Cardellini, and Presti 2019 stated that current work discusses the dynamic

scaling of homogeneous computing resources. However, the data center may contain

various resources that cloud users demand to process different applications. The

authors proposed a Markov Decision Process (MDP) based solution for controlling

elasticity on heterogeneous resources. MDP-based solution suffers from limited space

issues. Also, it requires complete knowledge of the system to provide a timely response

in terms of computing resources for incoming data streams. They addressed these

issues by blending reinforcement learning (RL) and function approximation (FA)
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techniques. Since RL is a self-learning technique, it takes longer to converge when the

size of the system increases. By providing an approximate state space representation,

FA techniques achieve near-optimal solutions by reducing memory and computing

resources. With the blending of model-based (MDP) and model-free (RL) methods,

the authors presented that this integration improves the convergence problem of MDP

with limited system dynamics. From the experiments, the authors mentioned that

with a priori knowledge of the system, the proposed solutions could effectively work

for improving the dynamic scaling online.

Cardellini et al. 2018 optimized resource heterogeneity while proposing an elastic

DSP replication and placement (EDRP) framework for providing QoS-aware replica-

tion and placement of applications and resources in a geo-distributed environment.

The EDRP framework is formulated as an integer learning programming (ILP) prob-

lem to optimize deployment at run-time while considering monetary and reconfigu-

ration costs and response time. It is used to minimize the response time in terms of

choosing the critical path for reducing the traversal of the application DAG and the

monetary cost of computing and networking resources used for operating the input

data streams of the application. From the evaluation, the authors proved that sys-

tem downtime could be reduced by ten times by considering resource reconfiguration

costs.

Gedik et al. 2013 addressed profitability challenges with the auto-parallelization

of conventional distributed stream processing systems. The authors attain the elastic-

ity of DSP applications by dynamically parallelizing the regions of the application’s

directed acyclic graph (DAG) for handling fluctuating data streams. Replication of

DAG regions allows the processing of big data in parallel.The control algorithm is exe-

cuted periodically to collect the congestion index and throughput data, which are then

utilized to ascertain the optimal number of parallel channels needed to achieve high

throughput and maximize resource utilization. A state migration algorithm is exe-
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cuted to change the number of channels in a stateful parallel region, and data splitting

is done with a round-robin algorithm when a parallel region is stateless, while a hash-

based algorithm is in either case. The proposed approach ensures the security of data

and maintains data arrival orders during delivery, regardless of whether migration

occurs. The experiment demonstrates that the proposed approach achieves increased

throughput, a rapid settling period, and mitigates oscillation and overshooting.

Lombardi et al. 2017 proposed ELYSIM, a fine-grained model that estimates the

resource requirement for DSP applications by enabling the independent scaling of two

symbiotic entities: operators and resources. ELYSIUM can process in reactive and

proactive modes, depending on the type of input load it is operating over. When

real-time input load is used, it scales reactively, and when input load is predicted

over a specific prediction horizon, it scales proactively. Q-Learning is used to auto-

mate parameter tuning. By experimenting with the proposed approach on the DSP

framework, the authors concluded that the ELYSIUM approach enhances resource

utilization in comparison to the joint scaling approach through resource economiza-

tion.

Borkowski, Hochreiner, and Schulte 2019 aimed to reduce the number of scal-

ing operations needed to process incoming data. They proposed a concrete scaling

mechanism based on an Extended Kalman Filter (EKF). The proposed approach

identifies CPU and memory consumption, referred to as intrinsic measures, for in-

coming data, referred to as extrinsic measures. With this mapping of intrinsic and

extrinsic measures, the filter can quickly identify resource demand and make optimal

scaling decisions.

Gaŕı, Monge, and Mateos 2022 proposed a q-learning-based approach to dynami-

cally select the scaling policies by considering the workflow dependencies. The authors

are targeting the auto-scaling of scientific workloads in a cloud environment by re-

ducing the economic cost and execution time. The experimental evaluation deduces
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that giving importance to the execution time gives the optimal result.

The study found the significance of elasticity in a cloud environment for real-

time streaming applications. Achieving elasticity in real-time streaming applications

presents several challenges, and this chapter provides an overview of existing ap-

proaches to address these issues. The key findings highlight the significance of elas-

ticity in cloud computing and real-time streaming applications. The next section

discusses the significance and challenges of attaining multilevel elasticity in a cloud

environment.

2.2 Multilevel elasticity

Elasticity is the ability of a system to scale up and down resources to process a

dynamic workload. Herbst, Kounev, and Reussner 2013 stated that an adaptation

process involves scaling up or down multiple types of resources, each with its own elas-

ticity properties, and if a resource type is a container of other resources, elasticity can

be considered at multiple levels. In order to optimally utilize the cloud resources, it

is required to scale the resources at each of these processing levels efficiently.

Marangozova-Martin, De Palma, and El Rheddane 2019 experimentally demon-

strated that provisioning the low-cost processing container improves the performance;

however, provisioning the high-cost processing container reduces the performance.

The authors considered threads as low-cost processing containers and virtual ma-

chines as high-cost processing containers. In this work, the workload on each operator

is measured at regular intervals, and a scaling operation is performed in case conges-

tion is found. The experiments (Marangozova-Martin, De Palma, and El Rheddane

2019) demonstrated that provisioning the wrong execution container (thread, process,

and virtual machine) leads to performance degradation. The proposed approach is

application specific and reactive; thus, it is necessary to develop a dynamic approach

that will work with any kind of application.
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Russo Russo et al. 2018 proposed a hierarchical solution for autonomously control-

ling elastic DSP applications and infrastructures that significantly reduces resource

wastage with negligible application performance degradation. The authors stated

that the data and application parallelism should be elastically adapted at runtime

to match the workload and prevent resource waste. They proposed the Multi-Level

Elastic and Distributed DSP Framework (E2DF), which consists of a two-level hi-

erarchical solution where centralized components coordinate subordinate distributed

managers, which locally control the elastic adaptation of the application components

and deployment regions. For designing a self-adaptive strategy, the authors utilized

an RL-based approach. From experimental evaluations, the author stated that the

E2DF optimally utilize the resources specified by the user by autonomously identify-

ing the requirements.

Shukla and Simmhan 2018 experimentally demonstrated that there is no linear

relation between the flow of input rate and CPU as well as memory requirements.

Thus, to meet the performance requirements of applications, DSP systems are re-

quired to effectively schedule the data flow based on the available resources. The

authors propose a model-driven scheduling approach for DSP systems. The scheduler

contains two parts: 1) resource allocation: which determines the degrees of paral-

lelism for each task and the number of computing resources required for dataflow;

2) resource mapping: which determines the mapping of threads to resources. The

authors claimed that thread and resource slot allocation for DAG and task thread

to resource slot mapping had yet to be attended concurrently by any existing work.

The model-based allocation (MBA) algorithm is proposed for optimal resource allo-

cation, and the slot-aware mapping (SAM) algorithm is proposed for thread-to-slot

mapping. MBA identifies the peak input data flow processed by one resource slot,

the count of threads for the specific task, and the CPU and memory required for

the task. SAM first collects and bundles the available threads. The total number
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of threads in a bundle is the maximum number of threads at the peak input rate

that can be supported by the task in an empty slot. By comparing the performance

of the MBA+SAM combination with the existing Linear Scaling Allocation (LSA)

+ R-Storm Mapping (RSM) combination, the authors inferred that MBA allocates

an optimal resource slot for a fixed input rate and SAM effectively assigns a bunch

of task threads to resource slots recommended by MBA; however, LSA allocates an

extra resource slot for the same input rate, and RSM also demands more slots than

proposed by LSA. The proposed scheduling approach only provides resource alloca-

tion for data flow before application execution, not considering real-time data flow.

Thus, it fails to handle the dataflow fluctuations in real time.

The task co-location challenge identified by (Shukla and Simmhan 2018) has been

pointed out in (Eskandari et al. 2018) for optimally utilizing the resources. This

problem can be addressed by decreasing data transmission between communicating

tasks. In work by Eskandari et al. 2018, a heuristic scheduling approach known as

T3-Scheduler is introduced. This approach determines the communication of tasks

among each other and locates them to a computing node for efficiently utilizing the

targeted node. T3-scheduler effectively works in both cloud and heterogeneous fog

environments. Through experimentation, the authors deduced that the proposed

approach outperforms existing approaches.

Farrokh et al. 2022 introduced SP-ant, an innovative operator scheduler based on

ant colony optimization, designed to address the challenges posed by heterogeneity

in cluster environments. By leveraging the natural behaviour of ant colonies, SP-

ant intelligently assigns operators to computing nodes, by efficiently handling load

balancing, communication costs, and node capabilities. The results presented that the

proposed approach outperformed existing approaches by reducing processing latency,

enhancing performance, and improving overall system efficiency.

Russo Russo, Cardellini, and Lo Presti 2023 proposed a two-layered control architecture-
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based autoscaling solution for processing DSP applications on heterogeneous infras-

tructure. The authors devised reinforcement learning for handling model uncertainty

at the bottom layer and Bayesian optimization techniques for handling model un-

certainty at the top layer. The results show that the proposed approach is able to

improve performance in terms of quick response time and improved resource usage

while processing dynamic workloads.

Rosa Righi et al. 2019 proposed an Elastic-RAN approach targeting multi-level

elasticity for Cloud Radio Access Networks (C-RANs). C-RANs architectures are

designed to overcome the issues related to system updates and administration in tra-

ditional RAN. It was proposed to leverage the flexibility of distributed systems and

the elasticity of cloud computing. C-RAN consists of a remote radio head (RRH),

which performs analog radio frequency functions; baseband units (BBU), for process-

ing the digital signals; fronthaul, referring to a connection between BBU and RRH.

The key idea behind C-RAN was to virtualize the functionalities of BBU. However,

it is not leveraging cloud elasticity. Thus, Elastic-RAN is proposed in this work to

improve performance and provide a malleable resource rearrangement for C-RANs.

It provides non-blocking multi-level elasticity and adaptive elasticity grain function-

alities. The multi-level elasticity refers to coordinating resources in BBU pools and

BBUs. Elastic-RAN provides non-blocking services to users by allowing fine-grained

resource adaption. As the proposed approach targets telecom operators, attention is

paid to providing cost-efficient and customer-centric functionalities. The experiments

proved that the proposed elasticity controller quickly reacts to load variations.

It is concluded that the elasticity at various processing levels has been studied

separately in the literature. However, it is necessary to handle the elasticity concur-

rently at multiple processing levels in a cloud environment while efficiently executing

the real-time streaming applications and optimally utilizing the resources.
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2.3 Resource forecasting techniques in cloud envi-

ronment for attaining elasticity

Real-time applications receive an unbounded sequence of data flows required to pro-

cess immediately. Such applications executing in the cloud environment call for suffi-

cient resources for their execution. The general resource provisioning strategy includes

static allocation, which leads to over- and under-utilization of resources. Thus, hav-

ing operational awareness of the resources to be consumed is necessary to build a

holistic resource provisioning model for the upcoming computational demand. The

significant difference in the resource utilization trend in the recent technological era

has dramatically transformed resource prediction approaches. This section includes

the various resource forecasting techniques used by other researchers to attain various

objectives.

Moreno-Vozmediano et al. 2019 presented ML-based time-series forecasting and

queuing theory-based approaches for dynamic scaling of computing resources. The

authors predicted resource demand with the SVM regression model for the scaling

decision. It is combined with the M/M/c queuing model to predict the exact number

of resources based on the expected load. From the results, the authors claimed that

it performed better than the simple methods.

Borkowski, Schulte, and Hochreiner 2016 proposed an artificial neural network

(ANN) based holistic resource provisioning model. As the authors used an offline

learning approach for model training, the model can not identify the resource re-

quirements for the unseen data flow that may occur during real-time prediction.

Singh, Gupta, and Jyoti 2019 proposed Technocrat cloud provisioning architecture

consisting of an application provisioner, performance modeler, and workload predic-

tor. The workload predictor was designed using linear regressor (LR), ARIMA, and

SVR models for forecasting non-stationary workloads for web applications. ARIMA
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is used to predict the fast-scale workload, whereas LR and SVR predict the slow-scale

workload.

Thonglek et al. 2019 used an RNN-based LSTM model to predict resource al-

location for a given job based on historical data. Two-layered LSTM discovers the

relationship between resource usage and the allocation of resources (CPU and mem-

ory). From the experiments, the authors identified that increasing the size of the

memory cell enhances prediction accuracy at the cost of a longer training time.

To improve resource prediction accuracy, Zhu et al. 2019 presented the long-term,

short-term memory (LSTM) encoder-decoder network with an attention mechanism.

The attention mechanism signifies the parameters that greatly influence prediction re-

sults by giving them greater weight. However, the authors deduced that the attention

mechanism does not substantially impact the performance of the results.

Chudasama and Bhavsar 2020 proposed a Bi-directional LSTM model and a queu-

ing theory-based short-term approach to predict resources for one hour based on

historical resource utilization.

Malik et al. 2022 stated that the existing resource utilization mechanisms consider

single resource prediction while overlooking the relation among the different resources.

They proposed a hybrid model named FLGAPSONN consisting of GA-PSO (genetic

algorithm-particle swarm optimization) for training the model with high accuracy

and FLNN (functional link neural network) for predicting multi-resource utilization.

For multivariate resource prediction, Xu et al. 2022 presented the sliding window,

S-MTF, and esDNN algorithms. S-MTF converts multivariate time-series data into

a supervised learning time series, and esDNN predicts future resource usage with

a modified GRU model. The experimental results demonstrated that this approach

outperformed state-of-the-art algorithms and improved resource provisioning. Kumar

and Singh 2018 presented a workload prediction model based on a self-adaptive dif-

ferential evolutionary algorithm and ANN. The proposed model uses an evolutionary
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algorithm to reduce the initial parameter selection effect during training. The results

show that the proposed model beats the other models with a substantially lower mean

squared prediction error.

Tran et al. 2018 proposed multivariate fuzzy LSTM (MF-LSTM), a proactive

auto-scaling service for processing multivariate monitoring data. The fuzzification

technique employed in this work addresses the need to analyze metrics correlation.

In this approach, the relationships among parameters are identified at every prediction

window, which is not possible when dealing with a real-time workload.

Mason et al. 2018 implemented an evolutionary neural network (NN) method for

forecasting CPU utilization and reducing energy efficiency while performing adaptive

resource scaling. The implementation outcome demonstrated that the Covariance

Matrix Adaptation Evolutionary Strategy (CMA-ES) converges quickly to the best

solutions on the training data. However, differential evolution (DE) provides statis-

tically comparable results to CMA-ES on test data. However, the accuracy of the

network decreased while predicting multiple future steps.

For predicting single-step host load, Song et al. 2018 utilized the LSTM model.

The proposed model efficiently schedules resource allocations and optimally utilizes

them.

Karim et al. 2021 proposed the BHyPreC architecture for predicting CPU uti-

lization for the future. The BHyPreC consists of bidirectional-LSTM (Bi-LSTM) on

top of the stacked LSTM and GRU. The authors observed the effect of different pre-

diction and history windows on the model’s performance. They used the Bitbrains

Shen, Van Beek, and Iosup 2015 dataset for model training and evaluation. From

the results, the authors show that the BHyPreC outperforms other state-of-the-art

techniques for short- and long-term future prediction.

Rahmanian, Ghobaei-Arani, and Tofighy 2018 proposed a learning automata (LA)

based, ensemble resource utilization forecasting framework. The LA theory is used to
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tune the weights of the prediction model. The proposed framework provides precise

resource prediction in a virtualized cloud environment.

Chen et al. 2021 proposed Graph Deep Factors (GraphDF), a graph-based deep

hybrid probabilistic forecasting model. It is a relational global model capable of learn-

ing complex non-linear time-series data patterns universally with the graph structure.

The key objective of GraphDF is to improve prediction accuracy and computational

efficiency.

Table 2.1 summarises the existing work for resource prediction in a cloud environ-

ment.

As the demand for cloud resources fluctuates continuously, it is required by the

CSP to have a pool of resources at multiple processing levels in a cloud hierarchy

to be prepared before processing demands arrive. Thus, it is required to predict the

resource demand in advance to cope with the volume of data flow for processing. The

literature was studied to identify the different methodologies/approaches for attaining

elasticity for multiple parameters and multiple timestamps in advance. Thus, the

Multi-Variable Prediction and Multi-Step Prediction columns in Table 2.1 represent

whether the given literature considers multiple variables and prediction steps while

forecasting resource demand.
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Paper Model

Used

Dataset Model Eval-

uation Met-

rics

Error

met-

rics

Multi-

variable

Predic-

tion

Multi-

Step

Pre-

dic-

tion

Borkowski,

Schulte,

and

Hochreiner

2016

ANN Travis CI

and GitHub

Per-task du-

ration of dif-

ferent tasks,

RMSD × ×

Shyam

and

Manvi

2016

Bayesian

Model

AmazonEC2,

Google CE-

DataCen-

ters (Reiss

et al. 2012)

vCPU in-

stance

MSE × ×

Prasad

and

Bhavsar

2020

Re-

inforcement

Learning,

LSTM

Bitbrains

(Shen, Van

Beek, and

Iosup 2015)

CPU utiliza-

tion, Disk

read/write

Throughput

and Memory

utilization

MAE,

MSE,

RMSE

✓ ×
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Chudasama

and

Bhavsar

2020

Queuing

theory,

Bidirec-

tional

LSTM

Private

Cloud

dataset

Workload of a

web server

MAE,

MSE,

RMSE

× ✓

Singh,

Gupta,

and Jyoti

2019

LR,

ARIMA,

SVR

ClarkNet,

NASA

HTTP re-

quests

MAE,

MSE,

RMSE,

MAPE

× ×

Thonglek

et al.

2019

LSTM Googles

cluster-

usage trace

(Wilkes

2011a)

Requested

CPU and

memory

resource,

Used CPU

and memory

resource

- ✓ ×

Kumar

and Singh

2018

Evolutionary

Algorithm

NASA,

Saskatchewan

Number

of HTTP

requests

RMSE × ✓

Yang et

al. 2018

Novel ad-

mission

control

mechanism

Classic

MapReduce

CPU Utiliza-

tion

Makespan × ×
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Mason et

al. 2018

Evolutionary

Neural Net-

works (NN)

PlanetLab

workload

trace (Cal-

heiros et al.

2011)

CPU utiliza-

tion

MAE,

MSE

× ✓

Tran et

al. 2018

MF-LSTM Googles

cluster-

usage trace

(Wilkes

2011a)

CPU and

Memory

usage

MAE ✓ ×

Song et

al. 2018

LSTM Googles

cluster-

usage trace

(Wilkes

2011a),

Traditional

Distributed

System

Dinda 1996

CPU Usage MSE,

MSSE

× ✓

Karim et

al. 2021

BHyPreC:

Bi-LSTM

Based

Hybrid

RNN

Bitbrains

(Shen, Van

Beek, and

Iosup 2015)

CPU Usage MAE,

MSE,

RMSE,

MAPE

× ✓
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Chen et

al. 2021

GraphDF:

Graph

Deep Fac-

tors

Google

Trace,

Adobe

Workload

Trace,

Graph Con-

struction

CPU Usage MAPE × ✓

Rahmanian,

Ghobaei-

Arani,

and

Tofighy

2018

Learning

automata

CoMon

project

(Park and

Pai 2006)

CPU Usage RMSD,

error

ratio,

absolute

Error

× ✓

Malik et

al. 2022

FLGA

PSONN

Google

cluster

workload

traces

(Reiss et al.

2012)

CPU and

memory

Usage

MAE ✓ ×
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Xu et al.

2022

GRU Alibaba,

Google

cluster

workload

traces

(Wilkes

2011b)

CPU and

memory

Usage

MSE,

RMSE,

MAPE

✓ ×

Table 2.1: Summary of existing works for resources prediction (Thakkar, Thakkar,
and Bhavsar 2023)

2.4 Challenges for prediction of resource usage

This section discusses the challenges that must be accomplished by a CSP while

designing an accurate resource prediction model. Figure 2.1 highlights significant

challenges for resource prediction in a dynamic cloud environment.

� Complexity: The model should be less complex but able to identify the hidden

patterns in the data.

� Versatile: The model should be versatile enough to forecast future resource

requirements for diverse users, encompassing resources characterized by varying

configurations.

� Risk parameter: It should mitigate the effect of parameters causing the risk of

over-provisioning and under-provisioning.

� Cost: The model should be less expensive in terms of time and computing.
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Prediction Challanges

Versatile

Complexity

Risk 

Accuracy

Prediction Pattern 
Length

Cost

Figure 2.1: Prediction challenges (Thakkar and Bhavsar 2023)

� Accuracy: The model should forecast values accurately, enabling the CSP to

allocate the resources optimally.

� Prediction pattern length: It takes many iterations to decide the exact length of

predictions. However, it sometimes depends on the nature of the applications.

2.5 Research gaps and findings

This chapter presented various research works discussing elasticity in the context of

DSP systems and multiple processing levels in a cloud environment. The forecasting

techniques for attaining resource elasticity in a cloud environment are also discussed.

Though the research performed in the field of cloud resource utilization is encouraging,
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there is scope for improvement, and hence, this work aims to address various research

gaps listed as follows:

� In the literature, many elasticity approaches are proposed; however, most of

them are designed for processing specific applications (Marangozova-Martin, De

Palma, and El Rheddane 2019; Russo, Cardellini, and Presti 2019). However,

any kind of application could be deployed on the cloud. Thus, there is scope

for designing a holistic approach that will be able to process the input load

uniformly.

� The resource elasticity is addressed by literature at various processing levels

separately (Xu, Peng, and Gupta 2016). However, the relationships among

them are not addressed in the majority of the works.

� As real-time stream processing applications demand dynamic processing capa-

bilities, it is required to have a framework that accurately forecasts the require-

ments of different resources simultaneously by optimally utilizing them and

without compromising the performance of the system.

Thus, this work aims to address the stated research gaps and provide an efficient

solution for enhancing the performance of DSP systems and optimally utilizing cloud

resources. The next chapter presents the methodologies for implementing elasticity

at multiple processing levels of cloud architecture.



Chapter 3

Methodologies and dataset for

proposed framework

This chapter presents the methodologies for implementing elasticity at multiple pro-

cessing level of cloud architecture while efficiently operating distributed streaming

applications. First, the distributed stream processing platforms, which process real-

time streaming applications, are elucidated. Then, the different approaches for accu-

rately forecasting resource consumption for attaining elasticity at the server, node,

and operator levels are discussed.

3.1 Distributed stream processing platform

A cloud receives enormous processing requests from distributed platforms such as sen-

sors, satellites, and geographically separated regions. Such streaming requests, solicit

an efficient processing platform that can quickly scale up and down the computation

resources and parallelize the execution.

The stream processing platforms accommodate computational requests immedi-

ately upon their arrival. There are three types of stream processing platforms: batch,

real-time streaming and hybrid. The batch processing platforms handle processing

1
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requests collected in batches and then operated on. The real-time stream process-

ing platforms process the data immediately upon arrival, with lower latency. These

platforms are the ideal choice for time-critical applications, and one of those requires

real-time analytics. The hybrid platforms include the abilities of batch and real-time

platforms and are suitable for processing approaches where both platforms are neces-

sary to make decisions. Apache Storm (Foundation 2022d) and Apache Samza (Foun-

dation 2019) are real-time stream processing platforms. Along with these pure stream

processing frameworks, there are other platforms that process requests in batches.

Apache Hadoop (Foundation 2022b) is batch processing based on the MapReduce

programming model, which solves the problem of a large amount of data. Apache

Spark (Foundation 2021a) and Apache Flink (Foundation 2022a) are hybrid frame-

works. Table 3.1 lists the various distributed stream processing frameworks with their

merits.

Table 3.1: Stream processing frameworks (Thakkar and Bhavsar 2022)

Name Merits

Apache Hadoop (Foun-

dation 2022b)

Can handle a substantial volume of data

Apache Storm (Founda-

tion 2022d)

Easy to set up and operate, reliable, fault-tolerant

Apache Samza (Founda-

tion 2019)

Can handle high volume data in small or micro batches

Apache Spark (Founda-

tion 2021a)

Can execute on various platforms and connect to various

data sources
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Apache Flink (Founda-

tion 2022a)

Processes both bounded and unbounded data orders at

in-memory speed

Apache

Splunk(Foundation

2021b)

Demonstrate consistent performance in demanding en-

vironments

Apache Kafka (Founda-

tion 2022c)

Delivers high throughput and offers scalable resources

for processing and storage

Streaming platforms possess a programming model for composing streaming data

computation logic, represented in a directed acyclic graph (DAG) of data-parallel

operators. Figure 3.1 exhibits the graphical representation of a generalized stream

processing system. The source DAG operators receive data from input sources (e.g.,

sensors, social media, etc.), as highlighted on the left side, whereas downstream op-

erators, named sink operators, receive the output of intermediate DAG operators.

The processing takes place between input and sink operators. The processing opera-

tor implements logic on them and produces the output stream. In the case of input

stream fluctuation, the number of operators needs to be updated on the fly.

From the merits listed in Table 3.1, it is identified that the Apache Storm is the

best solution for attaining the objective of this work, as it provides a reliable, fault-

tolerant, and easy-to-set-up platform for processing real-time streaming applications.

By provisioning its scalable architecture, the MeghMesa framework is designed to

efficiently scale the resources at the operator, node, and server levels concurrently

for processing real-time applications in a cloud environment. The following section

discusses the Apache Storm platform.
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Figure 3.1: Stream processing model (Thakkar and Bhavsar 2022)

3.1.1 A real-time streaming platform

Apache Storm is a distributed and fault-tolerant platform for real-time stream pro-

cessing (Foundation 2022d). It is an architecture that can swiftly compute complex

processes for real-time processing, just like Hadoop does for batch processing. Storm

provides a simple programming model and a parallel processing environment for ap-

plications. It also allows to perform hot deployment of the system.

A storm application is referred to as topology, a processing logic implemented

on data streams with bolts and spouts. It is a directed acyclic graph of spouts and

bolts. The spouts are the origin of the data streams, whereas the bolts are processing

elements, processing input data streams, and generating valuable output. Figure 3.2

portrays the architecture of apache storm.

The apache storm is a master-slave architecture composed of the following ele-

ments (Foundation 2022d):
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Figure 3.2: Architecture of apache storm (Foundation 2022d)

� Nimbus: a master node responsible for distributing tasks among worker nodes

and monitoring the performance.

� Supervisor: a worker node that executes the tasks on workers and coordinates

their execution. It is also connected to the master node to get resources and

updates on the logic implemented in the worker processes.

� Zookeeper: As apache storm cannot monitor the health and state of the cluster,

apache zookeeper is deployed to solve this issue. It is responsible for storing the

states of the overall processing executing on apache storm. It brings coordina-

tion between the nimbus and supervisors.
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3.2 Existing methodologies for attaining elasticity

at multilevel

The cloud computing framework allows the execution of numerous applications over

the Internet. Such applications demand different amounts of resources for execution.

A CSP should deliver an infinite pool of resources to users for the smooth functioning

of their applications. Thus, a CSP should have a forecasting model to identify the

resource usage pattern. Such a model assists CSP in making resources available

for future use. This reduces the scope of service level agreement (SLA) violations

between the user and CSP and increases CSP’s return on investment (RoI). The

optimal resource utilization in multilevel cloud architecture also reduces the carbon

footprint in the environment (Thakkar, Trivedi, and Bhavsar 2017).

In the cloud environment, resource utilization is continuously monitored and

recorded by the CSP. Time-series data is a set of data that includes a time and

one or more values arranged in chronological order. Due to its intrinsic nature as

a time series, this type of data may have seasonal and nonseasonal patterns, vari-

ous trends, missing values, outliers, and complicated relationships between variables.

A forecasting model analyzes this time-series data to anticipate resource demand.

As application processing demands fluctuate very rapidly, it has always been chal-

lenging to accurately predict resource requirements. Statistical methods and con-

ventional neural network-based techniques have been used in existing approaches.

Both methods have their advantages and disadvantages; thus, it is essential to care-

fully consider which approach will work best for the specific situation. Examples of

statistics-based classical time series forecasting methods include autoregression (AR)

and its other variations, vector autoregressive (VAR), simple exponential smoothing

(SES), and others (Hyndman and Athanasopoulos 2018). The conventional neural

network models include the recurrent neural network and its variations: long short-
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term memory (LSTM) and gated recurrent unit (GRU), artificial neural networks

(ANNs) (Borkowski, Schulte, and Hochreiner 2016) and others. Some approaches

also used reinforcement learning (Prasad and Bhavsar 2020) to forecast the resource

requirements at runtime. By understanding the strengths and weaknesses of each

method, one can make a more informed decision and ensure that resource prediction

efforts are as effective as possible.

This section discusses the various methodologies and datasets used to design the

forecasting model to accurately identify the resource demand at the server, node, and

operator levels simultaneously.

3.2.1 Neural Networks

A neural network is a computational model inspired by the structure and functioning

of neurons in the brain (Mason et al. 2018). It is also known as an artificial neural

network (ANN). The neural network is one of the most prominent fields of machine

learning research. It consists of the interconnection of artificial neurons, which are

also recognized as units or nodes. All such neurons have weights and biases, are

organized in layers, and form a network. ANNs generally comprise an input layer,

several hidden layers, and an output layer. The hidden layer is located between the

input and output layers. It receives data streams from the input layer, learns the

complex representations, and identifies the non-linear relationships from them. The

simple block diagram of a neural network shown in Figure 3.3 has three input nodes

in the input layer, two hidden layers with four and three neurons each, and one

neuron in the output layer. During training, the neural network updates the weights

associated with each connection between neurons to accurately predict the output.

The backpropagation technique is used to update the network’s weight.

A recurrent neural network (RNN) is a type of neural network that processes se-

quential or time-series data by providing feedback. In a feedforward neural network,
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Figure 3.3: A simplified block diagram of neural network (Karim et al. 2021)

there are only forward connections from input to output. However, RNNs have recur-

rent connections that allow data to be passed from a single step in a sequence. The

hidden layer is a principle component in an RNN that maintains an internal state

called a ”memory” element. At each step in the sequence, RNN takes input, processes

it with the previous hidden state, and produces a new hidden state. This process is

recurrently iterated for each step in the sequence, and information is updated based

on the context of the complete sequence. RNN uses activation functions such as tanh

or sigmoid to determine the output of each neuron and the hidden state value at each

step. Figure 3.4 illustrates the unrolled sequences of the RNN, where Xt represents

the input value at time-stamp t, Ht denotes the hidden state value at time-stamp t,

and Yt represents the output value.

There are two versions of RNN, Long Short-Term Memory (LSTM) and Gated

Recurrent Unit (GRU).
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Figure 3.4: Unrolled RNN (Thakkar, Thakkar, and Bhavsar 2023)

3.2.2 Long Short-Term Memory

LSTM is a type of recurrent neural network (RNN) that captures and utilizes long-

term dependencies, or ”memory”, in sequential data, like time series. LSTM networks

are designed to address the vanishing gradient problem (back-propagation instability).

It captures the long-term dependencies in sequential data. The gradient diminishes

parameter updates and becomes negligible over longer sequences in the vanishing

gradient problem. LSTM addresses this issue by capturing and propagating criti-

cal information over extended periods. The LSTM cell architecture is depicted in

Figure 3.5.

A single LSTM cell contains input, output, and forget gates. Each gate includes

the activation function, determining the output of neurons based on the input it

receives.

Along with the gates, LSTM has the following components (Sherstinsky 2020):

Xt: data input at timestamp t

Ht−1: hidden step at timestamp t-1. short-term memory unit

Ct−1: cell state at timestamp t-1. memory unit

σ: Activation function
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Figure 3.5: LSTM cell architecture (Thakkar, Thakkar, and Bhavsar 2023)
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ot, ft, it: output, forgot, and input gates at timestamp t

Ct: cell state at timestamp t

Ht: output of LSTM cell, input to next hidden state

bf , bi, bo, bc: bias vectors

Upon receiving a new input timestamp Xt, the LSTM cell proceeds to update its

internal gates according to the following sequence (Sherstinsky 2020):

ft = σ(Wf [Ht−1, Xt] + bf ) (3.1)

ft is the forget gate, which determines whether to remember the output of the previous

cell or not. The equation above applies the sigmoid function to the weighted value

from the input and hidden state.

it = σ(Wi[Ht−1, Xt] + bi) (3.2)

it is the input gate, which determines what new information is included in the cell

state. In the above equation, the sigmoid function is applied to the current value of

variables and the previous hidden state.

ot = σ(Wo[Ht−1, Xt] + bo) (3.3)

ot is the output gate, determining what percentage of information from the new cell

state passed to the output and hidden state.

ct
∼ = tanh(Wc[Ht−1, Xt] + bc) (3.4)

The above equation is of the candidate memory cell, resulting from the nonlinear

transformation of input values using the activation function.
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With the results of internal gates and candidate memory cell state, the next cell

state Ct and output Ht are updated with the following formula:

Ct = ft ∗ Ct−1 + it ∗ ct∼ (3.5)

Ct is the state of next cell.

Ht = ot ∗ tanh (Ct) (3.6)

Ht is the output state of the LSTM cell and serves as the successive hidden state.

In the proposed forecasting model, three LSTM units are stacked on top of each

other. Through experimental tuning, it was identified that the model with 100 mem-

ory cells in each layer performs better. More than 100 cells increased the time and

computing complexity, whereas fewer than that were unable to identify the complexity

in the data.

3.2.3 Gated Recurrent Unit

A single GRU cell consists of an update and reset gate mechanism for updating

the states of hidden neurons (Cho et al. 2014). The update gate controls the flow

of information between the previous and current hidden states and determines the

amount of previous information to retain and update with new information. The reset

gate decides the extent to which the previous hidden state influences the computation

of the current hidden state. Each of these gates is connected to the activation function.

Figure 3.6 shows the cell architecture of the GRU model.

The GRU cell contains the following components along with gates:

xt: input vector

ht: output vector

ĥt: candidate activation vector

zt: update gate vector

rt: reset gate vector
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Figure 3.6: GRU cell architecture
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σ: activation function

W: weight associated with respected gates

With the given input xt at timestamp t, the GRU cell updates the internal gate

as follows (Cho et al. 2014):

rt = σ (Wr · [ht−1, xt]) (3.7)

The above equation determines the amount of information to forget from the past.

zt = σ (Wz · [ht−1, xt]) (3.8)

zt, update gate determines how much past information should be forwarded to the

future.

h̃t = tanh (Wh̃ · [rt ⊗ ht−1, xt]) (3.9)

With the above formula, relevant information from the past is stored for future pro-

cessing.

ht = (1− zt)⊗ ht−1 + zt ⊗ ht (3.10)

The above equation stores information from current memory content and past steps.

yt = σ (Wo · ht) (3.11)

Finally, the above equation forecasts the next value in a sequence.

3.2.4 Statistical analysis models

Statistical models significantly understand the pattern of complex data, and based

on that, they perform forecasting. These models consider the mathematical repre-

sentation of the behaviour of data. Various statistical models include autoregression

(AR), moving average (MA), autoregressive moving average (ARMA), autoregres-
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sive integrated moving average (ARIMA) and its other variations, vector autore-

gressive (VAR), Holt-Winters exponential smoothing (HWES), Holt’s linear trend

method, simple exponential smoothing (SES), and others (Hyndman and Athana-

sopoulos 2018). This section discusses the autoregressive integrated moving average

(ARIMA) and vector autoregressive (VAR) statistical analysis models processed in

this work.

Autoregressive Integrated Moving Average (ARIMA)

ARIMA is a regression model that identifies the relationship between the past and

present values of parameters. ARIMA can process data collected at regular intervals

and is highly dependent on the stationarity of the data. If the data contains any non-

stationarity, it should be removed, and the data must be converted to stationary form.

For removing trends and periodic events from the time series data, the ARIMA model

uses lagged moving averages. ARIMA contains the following components (Hillmer and

Tiao 1982):

a. Autoregression (AR): This component refers to the correlation among past and

lagged values of the parameter. Here, p indicates the lag order for the given

input, which shows the significance of the number of lagged observations on the

current observation. In this work, 720 lagged observations were considered for

forecasting the value at the present time stamp. Thus, it was AR(720) for the

ARIMA model in this work.

b. Integrated (I): This component represents the differences between consecutive

values. Thus, it is referred to as d, the order of differencing.

c. Moving average (MA): This component represents the number of lagged obser-

vations of errors that significantly affect the current observation. It is referred

to as q, the size of the moving average window in ARIMA.
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p, d, qTime Series 

Data
Forecast

Figure 3.7: Basic ARIMA model (Thakkar and Bhavsar 2023)

Figure 3.7 depicts the basic ARIMA model. The components of ARIMA models

are represented as ARIMA(p,d,q). In this work, multilevel real-time streaming data

was evaluated using the ARIMA model. The memory requirement for the server level

was forecasted by considering 720 past observations.

Vector Autoregressive (VAR) model

The vector autoregression (VAR) model is a statistical model that identifies the rela-

tionship between multiple parameters as the change in one or more parameters affects

the forecasting result. It is a generalized version of the univariate time series model,

ARIMA. The VAR model processes multiple parameters, identifies their relationships,

and individually predicts them.

In the first order VAR(1), forecasting each parameter at time t depends on all other

parameters at time point t-1, including itself (Haslbeck, Bringmann, and Waldorp

2021). The autocorrelation in VAR(1) shows the effect on the parameter prediction

from the previous values of self and cross-lagged impact, which is the prediction of

parameters affected by past values of other parameters. The following equation shows

the VAR model for p lags (Kotze 2022):

yt = A1yt−1 + . . .+ Apyt−p + CDt + ut (3.12)

where, yt = (y1t, . . . , ykt, . . . , yKt) for k = 1, . . . K
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Ai = (K ×K) coefficient matrices for i = 1, . . . , p

ut = K-dimensional white noise

C = the coefficient matrix of potentially deterministic regressors with dimension

(K×M) Dt = (M×1) column vector holding the appropriate deterministic regressors

In this work, the VAR model was implemented on a multilevel real-time streaming

dataset consisting of resource utilization at multiple levels in a cloud environment.

For the implementation, resources from the server and node levels were given as input,

and requirements for various resources at each level were forecasted.

3.3 Dataset

A dataset refers to a set of data gathered and utilized for training, testing, or evalu-

ating a model. In cloud computing, a dataset can refer to any data collection stored

in the cloud. This could include data related to resource usage during business opera-

tions, customer transactions, or sensor operations. It may be used for various purposes

like resource usage prediction, monitoring, security, and other data analytics.

As this work uses machine learning models to forecast resource utilization, the

dataset also plays a crucial role in training and testing the model. The dataset

contains dependent and independent parameters that guide the model to recognize

hidden patterns in the data. A more extensive and diverse dataset can improve the

model’s accuracy by providing more representative samples of the data. Thus, two

distinct datasets were used in this work to accurately train the model and forecast

the resources at the server, node, and operator levels. Based on the forecasting

result, a CSP chooses to elastically scale the resources while continuously provisioning

services to the users. Hence, the dataset is the fundamental element in the MeghMesa

framework.

The following section discusses the bitbrains and multilevel real-time streaming

datasets that were used in experiments with MVMS and ML-MVMS forecasting mod-
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els.

3.3.1 Bitbrains dataset

The proposed model is evaluated on resource usage data from Bitbrains, a distributed

data center that hosts and manages business computations (Shen, Van Beek, and Io-

sup 2015). There are two tracks in this dataset: fastStorage and Rnd. The fastStorage

track contains 1250 VMs, whereas Rnd consists of 500 VMs. Thus, to enhance data

diversity, the fastStorage track is selected to assess the performance of the proposed

model. The dataset is summarised in Table 3.2. The CSV file for each VM includes

its performance metrics, which are listed in Table 3.3.

Table 3.2: Bitbrains dataset summary

Name of

the trace

# VMs Period of Re-

source usage

data collec-

tion

Interval of

Resource

usage data

collection

Total

available

memory

Total

avail-

able

cores

fastStorage 1,250 1 month 5 minutes 17,729

GB

4,057

As listed in the Table 3.2, the fastStorage dataset contains a total of 1250 VM’s

resource utilization records, which are collected for the duration of 1 month. Accord-

ing to (Shen, Van Beek, and Iosup 2015), each data point was recorded at an exact

interval of 5 minutes. The datacenter had a total memory capacity of 17.720 GB and

4057 CPU cores.

After analyzing each VM file, it was observed that timestamps were not evenly

distributed. Therefore, each VM file needs to be pre-proposed. Figure 3.8 shows the

plot of unique timestamps in the dataset vs. the different timestamps, representing
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the uneven distribution of timestamps in a dataset. Section 3.3.1 describes the proce-

dure followed for the dataset preprocessing. Once the dataset is evenly distributed, it

is split into different train:test ratios and evaluated on the proposed model with vari-

ous combinations of other hyperparameters. The parameters included in the dataset

are listed in Table 3.3. Among them, CPU cores and CPU usage parameters were

operated to evaluate the performance of the forecasting model.

Table 3.3: Bitbrains dataset parameter

Resource / Parameter

name

Description

Timestamp Unix time at data reporting

CPU cores Number of virtual CPU cores provisioned

CPU capacity provisioned

(CPU requested)

Capacity of the CPUs in terms of MHZ, it equals

to number of cores x speed per core

CPU usage In terms of MHZ

CPU usage In terms of percentage

Memory provisioned (memory

requested)

Capacity of the memory of the VM in terms of KB

Memory usage Amount of memory that is actively used in terms

of KB

Disk read throughput In terms of KB/s

Disk write throughput In terms of KB/s
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Network received throughput In terms of KB/s

Network transmitted through-

put

In terms of KB/s

Experimental setup

The high-processing computing system was preferred as the Bitbrains dataset con-

tained millions of rows. The preprocessing of such data requires a good RAM capacity

and computing power to process the data. Thus, the high-processing system with the

following configuration was used:

� Operating System: Ubuntu 20.04.6 LTS

� CPU: Intel(R) Xeon(R) Gold 6136 CPU @ 3.00GHz

� RAM: 256 GB

Data pre-processing

The dataset contains memory, network, CPU, and disc read-write usage information

of 1250 VMs. As per (Shen, Van Beek, and Iosup 2015), the data is collected at a

regular interval of 300 seconds. With the said duration of data collection, there should

be 8640 entries for each VM. However, several timestamps are not collected at the

interval of 300 seconds. These lagging or leading data entries will induce inefficiency

in the model training through erroneous predictions. Also, some VMs contain less

than 5000 entries, while others have more than 20,000 entries. Such data entries

lead to a different count of timestamps for each VM with a diverse combination. In

regards to the original work (Shen, Van Beek, and Iosup 2015), it is required to have

63130 unique timestamps, starting at 1376314846 and ending at 1378906798 UNIX

timestamps. With 2591952 seconds and estimating the readings at 300 seconds apart,
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there should be 2591952/300 = 8639.84 timestamps. However, the overall timestamp

distribution is uneven, as depicted in Figure 3.8. As missing and redundant entries

are recorded at irregular intervals, it requires processing the dataset before further

usage.

Figure 3.8: Timestamp distribution (Thakkar, Thakkar, and Bhavsar 2023)

The following steps are carried out for pre-processing:

� Data Cleaning

� Data Integration

� Data Normalization

In the first step of data pre-processing, the following iterative equation is used to

even the data at time t:

Xt =


∑i=T

i=0

∑u=min(T,i+s)
u=max(0,i−s)

xi−xu

i−u
, if xiis present∫ i+u

i−u x(v) dv}
2u

, if xiis not present

(3.13)
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Here, x is the uneven timestamp, and X is the even timestamp.

The above equation, (3.13), removes duplicate readings and takes samples at an

interval of 300 seconds. It returns a smoother and more consistent curve for param-

eters across all VMs. With a weighted average, it synchronizes the values of all the

columns for the missing timestamps found in multiple VMs. As all the columns have

been converted to an even distribution of timestamps, the model can now further

process them.

After the data is sanitized and integrated for 1250 VMs with 8640 entries each,

in the second step, a total of 10800000, all at the synchronized timestamps with even

300-second intervals, are aggregated in a single file.

In the third step, the dataset is normalized for faster convergence and efficient

performance in a range of 0-1. The MinMax scalar (Pedregosa et al. 2011) is used for

normalization:

X std = (X −X min)/(X max−X min) (3.14)

X scaled = X std ∗ (max−min) +min (3.15)

Here, min, max = Feature Range

In the next step, the model is evaluated on the processed data.

3.3.2 Real-time stream processing dataset

As this work is centred around the efficient processing of time-critical applications,

this dataset is generated by executing real-time applications in a multilevel cloud envi-

ronment. The experiment was performed in such a way that the proposed framework

receives real-time workloads for processing, where resources requirement were pre-

dicted based on the historical usage pattern and current usage is stored in a database

for future reference. Different applications were executed on this cluster to introduce
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complexity in resource usage patterns.

Numerous platforms are processing distributed streaming applications. Among all

of them, Apache Storm (Foundation 2022d) is a distributed and fault-tolerance plat-

form for real-time stream processing. It is a simple programming model and a parallel

processing environment for applications that allow for performing hot deployment of

the system during runtime. Hence, Apache Storm is the ideal choice for setting up

the experiment.

The environment used to deploy and test the proposed approach is established

with the following configurations:

Environmental setup

� Operating System: Ubuntu 20.04.5 LTS

� CPU: Intel(R) Xeon(R) CPU E5-1630 v4 @ 3.70GHz

� RAM: 32 GB

� Apache Storm: 20.4.0

� Apache Zookeeper: 3.8.0

Different real-time applications were executed to introduce the model, with real-

time complexity in resource usage for the fluctuating workload. Two applications were

designed: one was counting the occurrence of the words from real-time data streams,

and another was adding the exclamation mark at the end of each word generated in

real time. In order to include more diversity in the dataset, the number of applications

running at a given point in time kept varying. Such a dataset would become an

excellent representative of the problem domain and include data points to guarantee

that the forecasting model could learn all the real-time resource consumption patterns

without overfitting or underfitting the model. Each application processed infinite

data streams per second. These data streams could be in any form, i.e., image,
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audio, video, sensor data, business transactions, or live streaming. In this work, we

generated text as tuples to be processed by the Storm daemons. The CPU, memory,

and other resources at the server, node, and operator levels were recorded every 10

seconds for 40 hours. Thus, the dataset includes 14400 rows, each containing resource

consumption for each processing level along with the Unix timestamp. The Unix

timestamp represents a time as the number of seconds starting from January 1, 1970,

at 00:00:00 UTC. The values for each resource at a given timestamp were recorded

in separate CSV files, which were collected in a single CSV file after pre-processing

them.

Data pre-prcessing

The memory usage for all the processing levels was recorded in kilobytes, which were

converted to megabytes. The other parameters, along with memory and CPU usage,

were the number of nodes required at the server level, the number of operators at

the node level, and the number of operators consumed at the operator level, recorded

into a CSV file. This CSV file was then fed to the proposed forecasting model, ML-

MVMS, which learned the hidden resource requirement pattern against the input

data streams and accurately predicted the unobserved flow of real-time data streams.

Table 3.4 lists and describes each resource recorded at each processing level.

Table 3.4: Dataset configuration

Resource / Param-

eter name

Description Processing

level

Timestamp Unix time at data reporting All

Threads Number of processes executed All
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Server Memory Usage of memory at server level

in terms of MB

Server

Sever CPU Usage of CPU at server level in

terms of clock cycle

Server

Number Node Total nodes in server level Server

Node Memory Usage of memory at node level in

terms of MB

Node

Node CPU Usage of CPU at node level in

terms of clock cycle

Node

Node total operators Total operators in node level Node

Node used operators User operators in node level Node

Number of applica-

tions

Number of different applications

executing at current time

Operator

Application CPU Amount of CPU allocated to ap-

plication clock cycle

Operator

Application Memory Amount of memory allocated to

application

Operator

Application req CPU Amount of CPU requested by ap-

plication clock cycle

Operator



26 CHAPTER 3. METHODOLOGIES AND DATASET

Application req Mem-

ory

Amount of memory requested by

application

Operator

Application Task Number of processes running in

operator

Operator

3.4 Evaluation metrics

Evaluation metrics validate the accuracy and effectiveness of the proposed forecasting

model and framework and identify the scope of improvement. By comparing the

various models using the same error metrics, it is possible to identify the model with

the best forecasting accuracy. In this work, we compared the performance of the

proposed forecasting model with the other models by comparing the MAE, MSE, and

RMSE error metrics. These metrics also provide a direction for improvement while

optimizing the model’s hyperparameters to improve accuracy. Once the forecasting

results are acquired, performance evaluation metrics are used to make the resource

scaling decision for the resources at multiple levels of a cloud environment. Such

actions improve resource utilization by reducing over- and under-utilization.

The following metrics were used to validate the performance of the forecasting

model:

Mean Absolute Error (MAE)

Mean Absolute Error is the mean of the absolute difference between predicted and

actual values (James et al. 2013).

MAE = (
1

n
)

n∑
i=1

|forecasti − actuali| (3.16)
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Mean Squared Error (MSE)

Mean Squared Error is calculated by averaging the squared difference between pre-

dicted and actual values. As the errors are squared, MSE only penalizes the absolute

deviation from the validation values (James et al. 2013).

MSE = (
1

n
)

n∑
i=1

(forecasti − actuali)
2 (3.17)

Root Mean Squared Error (RMSE)

Root Mean Squared Error is calculated by taking the square root of the average of the

squared difference between predicted and actual values. RMSE penalizes the outlier,

so it is widely used when there are more outliers in data (James et al. 2013).

RMSE =

√√√√(
1

n
)

n∑
i=1

(forecasti − actuali)2 (3.18)

Mean Absolute Percentage Error (MAPE)

Mean Absolute Percentage Error is calculated by taking an average of the absolute

percentage error of each time minus actual values divided by actual values (James

et al. 2013). As this metric provides the error measure in percentage, it is easy to

use.

MAPE =

(
1

n

)
·
∑(

|forecast− actual|
|actual|

)
· 100 (3.19)

For evaluating the performance of the proposed dynamically scaled multilevel

framework, the following metrics were used:
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Response time

It represents the time taken to process the computing requests. In this work, response

time is calculated as the time taken by a model to forecast the resource requirements

for incoming requests and scale the resources optimally.

Throughput

This is the number of processing requests a framework handles in a given time. We

compared the throughput in terms of the number of threads processed by the proposed

framework (MeghMesa) in a given time.

Resource utilization

This metric, in general, presents the amount of various resources required to process

the given processing requests in the cloud. In this work, we considered CPU and

memory at each processing level, along with the number of nodes executing at the

server level and the number of operators running at the node level. This metric helps

to improve the optimal usage of each resource across the multiple processing levels of

a cloud environment.

Availability

This measures the percentage of time that a cloud service is available and function-

ing correctly. It is an essential metric for evaluating cloud services’ reliability and

identifying improvement opportunities.

3.5 Summary

This chapter talked about a real-time stream processing platform, as this work is

centred around efficiently executing real-time applications on a multilevel cloud archi-

tecture. It was followed by the various methodologies used to attain dynamic scaling

at the server, node, and operator levels. The next chapter discusses the design and
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development of the framework as a solution to achieve elasticity in a multilevel cloud

architecture where real-time streaming applications execute.



Chapter 4

Design and development of

MeghMesa framework

This chapter includes a detailed discussion of the development of MeghMesa, the

Multilevel Elastic framework for efficiently processing Streaming Applications in a

cloud environment. In MeghMesa, Megh represents cloud, M stands for multilevel, E

for elasticity, and S and A for streaming applications. The MeghMesa is designed to

attain dynamic scaling at different computing levels in a cloud environment while pro-

cessing highly dynamic real-time applications and optimally utilizing the resources.

The conceptual diagram demonstrates the birds-eye view of the MeghMesa frame-

work, which is discussed in depth in an architectural view. The subsequent part

of the chapter reviews the individual modules of the architecture. Then, the fore-

casting model with hyperparameter selection for accurately estimating the resource

requirement in real-time is discussed.

4.1 Conceptual diagram of MeghMesa framework

This section discusses the logic behind the concept of the MeghMesa framework,

designed to attain the objectives. A CSP receives enormous requests in the cloud

1
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environment, including data processing, storage, retrieval, time critical operations,

secure transactions, distributed processing, and many more. Each request demands

a different share of individual resources, which fluctuates very often. A CSP should

provide customers with infinite resources to process their highly dynamic needs. With

the aim of providing seamless access to processing, a CSP must organize the resources

optimally and quickly to fulfill the customer’s computing demands. A CSP can attain

this goal by utilizing the resources at each processing level in a cloud architecture’s

hierarchy. The cloud environment consists of a multilevel processing architecture,

where each level contains numerous computing resources. The multilevel cloud ar-

chitecture includes server, node, and operator levels. The server level is the topmost

level, and the operator level is the lowest in the hierarchy. The server level includes

heterogeneous physical resources. Inside each of these servers, there are multiple

nodes with different configurations. Each node computes several processes, which are

executed by operators, the lowest processing level in a cloud environment. The opera-

tor can be seen as a black-box processing element that continuously receives incoming

data streams, applies a transformation, and generates new outgoing streams as per

the application logic. This work considers the CPU and memory resources at each

processing level. For the server level, the number of nodes executing on each server

is considered, and for the node level, the number of operators is also considered for a

multilevel cloud architecture. The main objective of this work is to attain elasticity

in all the processing levels of a cloud system to ensure the seamless functioning of

real-time streaming applications.

Figure 5.1 exhibits the MeghMesa, the proposed conceptual framework, designed

for handling elasticity at each computing level concurrently in a multilevel cloud

environment to enhance the responsiveness and performance of real-time streaming

applications.

The proposed MeghMesa framework consists of Global Manager, an ML-MVMS
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Figure 4.1: Conceptual diagram of MeghMesa (Thakkar and Bhavsar 2022)
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forecasting model, a server manager, a node manager, and an operator manager.

The Global Manager is a centralized module responsible for efficiently processing

real-time streaming applications requests and optimally utilizing the available cloud

resources. It receives incoming workloads for different processing purposes, including

transforming, analyzing, aggregating, or storing them, from various real-time stream-

ing applications. Such streaming workload demands quick processing; thus, to avail

them resources in no time, the Global manager calls the ML-MVMS model. The

ML-MVMS model is a prediction module that accurately forecasts resource demand

in advance at each processing level in a cloud hierarchy by considering the historical

resource usage pattern for given workloads to efficiently process the incoming dynamic

workload. It estimates resources required at the server, node, and operator levels for

a significant amount of time.

Based on the output of the ML-MVMS and resources configurations at each pro-

cessing level, the Global manager makes the resource scaling decision at each level. It

communicates the scaling decision to the respective level manager. Here, the operator

manager is responsible for resources utilization in each operator, denoted as Oi inside

node j. The node manager manages the resources usage of each node Nj inside a kth

server. The server manager is responsible for resources usage of the server Sk inside

a data center. Based on the scaling notification, the respective resource manager

performs the scaling operations to accommodate the incoming workload. With the

MeghMesa framework, a CSP can efficiently fulfil the fluctuating resource demand of

real-time streaming applications and optimally utilize cloud resources.

Figure 5.1 demonstrates how the multilevel elasticity will work over a period of

time. During time Ti to Ti+1, all operators from node N1 and three operators from

node N2 were functioning. However, other operators from nodes N2, N3, and N4

were not utilized. Similarly, the nodes from only server S1 were occupied, and server

S2 was in ideal mode. As the processing demand increased from Ti+1 to Ti+2, all the
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operators and nodes from server S1 were utilized. Along with that, node N1 from

server S2 has also started processing. Thus, as depicted in this figure, based on the

incoming processing demands, resources from various processing levels can be scaled

in or out to process them efficiently.

4.2 Architecture of MeghMesa framework

The architecture of the MeghMesa framework in Figure 5.2 depicts the complete

flow of the proposed work. The Global manager receives processing requests from

external sources, including applications demanding quick processing of data, satellite

devices sending sensitive information to analyze, surveillance cameras providing live

streaming of video, or any baking application performing a number of transactions

per second, but not limited to them only.

� In step 1, The Global manager sends the incoming data streams to the scaling

decision module, which is responsible for taking scaling decisions at the operator,

node, and server levels based on prediction results and resources configuration

at each processing level to process the incoming data streams.

� In step 2, the ML-MVMS prediction module considers the historical observa-

tions from Ti−1 to Ti−n duration of the data stream history of resources utiliza-

tion at the operator, node, and server levels for given workloads as a reference

to identify the resources demand for upcoming computing requests.

� In step 3, the ML-MVMS module identifies the resources consumption patterns

for input processing demand from the historical data and performs the forecast-

ing of the resources demand for a Ti+1 to Ti+n number of timestamps, which

allows the CSP to prepare the resources at each processing level well in advance

of their requirements. The ML-MVMS module forwards the forecasting values

to the scaling decision module.
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Figure 4.2: Architecture of MeghMesa framework
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� In step 4, the scaling decision module checks the feasibility of resources scaling

based on resource availability at the processing levels. Considering the max-

imum capacity of resources for the respective processing level, it decides the

scaling of individual resources for each processing level and notifies the Global

manager. This module reduces the scope of over- and under-utilization of re-

sources by optimally utilizing their capacity.

� In step 5, the Global manager updates the operator manager, node manager,

and server manager about the scaling of resources.

� In step 6, upon receiving resources scaling decision, the respective level manager

performs the scaling operations. By quickly scaling the resources, applications

can get enough computation infrastructure for processing, and from the CSP

perspective, the resources are also optimally utilized.

� After this forecasting and scaling process, in step 7, resources consumption

for incoming workload from each processing level is pre-processed and stored

for further processing and referencing in step 3. The data pre-processing is

performed to transform the raw data into a suitable format for further analysis.

4.3 Design model of MeghMesa framework

This section discusses the design approach of the scaling module and prediction model.

Section 5.3.1 discusses the concept behind the decision to scale resources at the server,

node, and operator levels. Section 5.3.2 discusses the internal architecture of predic-

tion models: MVMS and ML-MVMS.
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4.3.1 Scaling module

This module in the MeghMesa framework takes the decision to scale the resources

at respective levels and also determines the amount of each resource type to scale.

Upon receiving forecasting values from the prediction module and configurations of

individual resources at each processing level from the Global Manager, the scaling

module makes the decision to scale resources at each level.

As stated by (Marangozova-Martin, De Palma, and El Rheddane 2019), resources

provisioned from the lower processing level improve the overall performance of a cloud.

Thus, by referring to that, in this work, the lowest processing level is considered first

while taking the scaling decision. The requested CPU and memory are compared at

the operator level with the maximum resources available. If the requested resources

are available at the operator level, the scaling is only performed at this level, and

the operator manager is notified of the scaling; otherwise, the scaling of operators

is requested at the node level, and the node manager is informed of the scaling up

the resources. The node level, which consists of multiple operators, is on top of the

operator level. The scaling module checks the requirements for CPU and memory

at the node level by comparing them with the maximum availability. If there are

enough resources, then the node manager is notified for the scaling, and in another

case, the server manager is reported to scale up the number of nodes. The server level

is the topmost level in a cloud hierarchy. After reviewing the availability and scaling

necessary at the lower levels, the scaling module examines the CPU, memory, and

node availability against the demand. The server manager is notified of the scaling

if the resources are available. In the other case, a CSP is requested to increase the

resources in a data center. Figure 5.3 shows the conditions to take scaling decisions

for extended resource requirements. It can be said that the resources need to be

scaled up. When the computational requests are reduced, resources from the higher

level are decreased towards, the lower level. Thus, the server level resources are
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Figure 4.3: Scaling module of MeghMesa framework



10 CHAPTER 4. DESIGN AND DEVELOPMENT OF MEGHMESA

consolidated into a few active servers, and others are set to free. (Thakkar, Trivedi,

and Bhavsar 2017) proved with their experiment that consolidating the scattered

processing elements into fewer reduces power consumption and decreases the carbon

footprint in the environment. Subsequently, the nodes are consolidated into a few

servers, and the operators are squeezed into the nodes.

4.3.2 Prediction model

In a highly volatile cloud environment, resource allocation must be performed dynam-

ically based on computing needs, which requires the elastic nature of resources for

scaling. Resource elasticity can only be effective when resource demand is accurately

forecast. Optimized resource allocation necessitates precise resource consumption

forecasting, which aids in proactive and real-time decision-making.

The autocorrelation plots unfold the hidden patterns in the data and assist in

designing an accurate prediction model. Figure 5.4 shows the autocorrelation plot of

the CPU utilization of a VM from the Bitbrains dataset with ten lags, visualizing the

long-range dependency. The plot shows a high autocorrelation at lag 0, and then there

is the alternate sequence of negative and positive spikes with a negative and positive

lag. These lags are due to the change in resource usage for processing real-time

workloads. As the demand for resources changes with time, there is a relationship

between previous and current resource usage. Thus, LSTM is the best solution due

to its inherent capacity to handle long-term dependence on volatile data.

This work is based on the modified LSTM model. The proposed model forecasts

the values of multiple resources for multiple time steps in the future. Thus, the

proposed resource forecasting model is named the Multi-Variate Multi-Step resource

prediction model (MVMS). The MVMS model has evaluated on the bitbrains dataset

initially. Then, it is implemented on a real-time multi-level dataset, in which a number

of resources at each processing level are forecasted. Thus, the MVMS model for
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Figure 4.4: Autocorrelation of CPU utilization (Thakkar, Thakkar, and Bhavsar
2023)

prediction in a multi-level environment is referred to as ML-MVMS. The number

of input parameters to forecasting models is denominated as i and the number of

output parameters as o. Both of these models have the same working prototype and

underlying hyperparameters. However, the MVMS and ML-MVMS have varying i

and o parameters based on the dataset they are operating over.

Hyper-parameter selection

In this work, the hyperparameters are optimized using a random search method.

A random search avoids the grid-related issues of exhaustive methods, making it

well-suited for quick exploration of diverse hyperparameter combinations in complex

optimization landscapes. Random search is easy to parallelize by concurrently evalu-

ating different random combinations of hyperparameters, which makes it suitable for

distributed computing environments where the evaluations are very time-consuming.

Table 5.1 lists the hyper-parameters for the proposed forecasting model.
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Table 4.1: Hyper-parameters selection for the proposed MVMS model

Hyper-parameter Value

LSTM layers 3

Neurons in each LSTM layer 100

Dense layer 1

Neurons 12

History window 60

Prediction window 12

History and prediction window

The history and prediction windows are the timeframes considered for taking input

from the past and forecasting the values for future time durations. The size of the

window should be adjusted according to the specific application.

The history window size plays an essential role in determining the usage of re-

sources in a highly dynamic environment. This window includes the number of his-

torical observations of resource usage, and based on the usage pattern for compu-

tation requests identified by the model, the demand for future computing resources

is forecasted. The prediction window is the time duration for which the forecasting

is performed. Thus, the selection of an appropriate history and prediction window

plays a significant role while performing the prediction of resources. A suitable pre-

diction window size helps a CSP to scale the resources before their demand, improving

resource availability and increasing optimal utilization.

The history window size was derived from work done by (Karim et al. 2021),

which has significantly contributed to their optimal output. By referencing the 60

timestamps from history, the forecasting model predicts the resources for 12 timesteps

in advance, providing critical information to CSP for preparing resources to cater

to input workloads. Figure 5.5 depicts the model’s history window and prediction
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window selections. Multiple timestep forecasting directs optimal utilization of the

cloud data center resources, which increases the return on investment (RoI) for CSP

and helps to reduce the carbon footprint (Thakkar, Trivedi, and Bhavsar 2017).
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Figure 4.5: History and prediction window (Thakkar, Thakkar, and Bhavsar 2023)

Dataset split analysis

In order to conduct a comprehensive model evaluation and assess the presence of over-

fitting or underfitting, the dataset is split into three separate train:test combinations,

each represented in a percentage.

� 60:40
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� 70:30

� 80:20

In these m:n split ratios, m% of the total dataset is allocated for training, while

the remaining n% is allocated for testing.

Optimal batch size

The batch size determines how many training samples are processed before the model

changes its parameters based on the error calculated while performing backpropaga-

tion. With the smaller batch size, the model takes less data at a point in time, which

improves the model’s performance. However, it takes a longer time to converge to the

result with a smaller batch size. The larger batch size speeds up the training time

but deteriorates the result. Thus, the optimal batch size should be considered when

training the model for real-time processing applications. In this work, different batch

sizes over the prediction model were examined, and by considering the accuracy of

forecasting results, the batch size was preferred for designing the resource forecasting

model for real-time streaming applications.

4.4 Multi-Variate Multi-Step resource prediction

model (MVMS)

The MVMS model is designed based on the LSTM architecture. The LSTM model

consists of hidden layers with one or more neurons in each layer. A neuron is a signal

processing unit that takes an input signal and uses an activation function to output

a signal (Mason et al. 2018). The i input parameters from the Bitbarins dataset were

given to the MVMS model, and the value for an o output parameter was predicted.

The input parameters were the CPU cores and CPU utilization from historical data,

and the output was the CPU usage prediction for the multiple timestamps. By per-

forming parameter sweeps manually and taking an educated guess, it was observed
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that a network with three stacked LSTMs having 100 neurons in each layer, followed

by a single dense layer with 12 neurons, delivered the optimum performance. The

observation revealed that more than three LSTM layers had not improved perfor-

mance and led to prolonged training time as a consequence of the additional weights

to be trained. It was also learned that less than three LSTM layers were not deliver-

ing promising performance. The proposed RNN-based model, MVMS, is depicted in

Figure 5.6, consisting of an input layer followed by three LSTM layers and a dense

layer.

Figure 4.6: The proposed RNN based model (Thakkar, Thakkar, and Bhavsar 2023)

Optimal batch size

In MVMS, for batch size selection, it is essential to subtract the history and pre-

diction window sizes from the total count of timestamps for an accurate multistep

forecast. After preprocessing the bitbrains dataset, each VM contains exactly 8640
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unique timestamps with a history window of size 60 and a prediction window of 12

steps. Figure 5.5 depicts the history window and prediction window distribution. The

history window and prediction window overlap at the current value of the timestamp.

Thus, adding one extra value makes the final count of timestamps for each VM 8569,

which will be beneficial for prediction. If the batch size is not a perfect divisor of

8569, then in the last batch of the VM, there will be an overlap of data from the

next VM, which would cause the model not to comprehend the spike from the VM

change and hence reduce the performance. The factors of 8569 are 1, 11, 19, 41, 209,

451, 779, and 8569. The smaller batch size increases the computation time and leads

to less information extracted per batch. A batch size value lower than the number

of neurons does not contribute more to model convergence. Therefore, factors 1, 11,

19, and 41 were not considered for the batch size, and 209, 451, 779, and 8569 were

selected as different batch sizes. Then, with varying combinations of train:test ratio

and batch size, the proposed model was iterated 10, 25, and 50 times.

4.5 Multi-Level MVMS (ML-MVMS)

The ML-MVMS model is a multilevel resource forecast version of MVMS that predicts

resource demand at the server, node, and operator levels in a cloud environment. The

underlying architecture of the ML-MVMS model is identical to the MVMS model. It

receives varying values for the i and o parameters from the MVMS model. The model

receives CPU and memory usage parameters from the server, node, and operator

levels. It also receives node and operator usage from the server and node levels,

respectively.

Optimal batch size

The ML-MVMS was operated on the recorded dataset by executing time-critical,

complex applications demanding divergent computation power. A smaller batch size
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was considered while training the model to track the tiniest change in resource uti-

lization patterns. The data were collected for 40 hours at an interval of 10 seconds.

For the real-time dataset, the resource demand prediction was made 1 hour in ad-

vance, equal to 360 timestamps. As real-time applications are prone to fluctuations

in input workload, more than one hour of prediction may cause resource shortages or

wastage while scaling the resources. With the concern of predicting the resource for

one hour, the ML-MVMS model was operated over batch sizes of 360 (1 hour) and

720 (2 hours) resource utilization records, respectively, over 100 to 20000 iterations.

4.6 Prediction model execution environment

The prediction models were executed on the Paramshavak, a high performance com-

puting (HPC) system. The Docker image was used to avoid platform dependencies

and environmental issues on the Paramshavak system. The Docker image provided

high GPU configurations to perform rapid training and testing of the proposed mod-

els. The Paramshavak system has the following configurations:

� Operating System: CentOS Linux 7

� CPU: Intel(R) Xeon(R) Gold 6139 CPU @ 2.30GHz

� RAM: 96 GB

4.7 Algorithm for dynamically scaling multilevel

resources for processing real-time applications

This section discusses the algorithm developed for attaining elasticity at multiple

processing levels in a cloud environment.

Algorithm 1 elucidates the step-by-step procedure for attaining multilevel elastic-

ity for executing real-time streaming applications in a cloud environment. In Step
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Algorithm 1 Algorithm for attaining multilevel elasticity

Input: Real-time streaming data to be processed
Output: Scaling decision for processing input
Initialization: Default configuration of the server, node, and operator levels

1: procedure main
2: Global Manager ← Real-time streaming data to be processed
3: Forecasting results ← Forecasting Model(resources usage history)
4: Global Manager ← Scaling Module(Forecasting results, Default configurations of resources)
5: Sacaling notification to the server, node, and operator manager from Global Manager
6: end procedure

1, the Global Manager receives real-time streaming for processing and allocates the

resources according to the forecasting. It then calls the forecasting model to estimate

the resources required for the subsequent time stamps. In Step 2, the forecasting

model delivers the prediction of multiple types of resources at the server, node, and

operator levels. In step 3, the scaling decision module decides to dynamically scale

each resource at individual processing levels as well as multiple levels concurrently.

Algorithm 2 Algorithm for forecasting resource demand for real-time streaming data

Input: Resource Utilization History
Output: Resource prediction for multistep future demands
Initialization: Input Parameters: i, Output Parameters: o, Hyperparameter configuration

1: procedure Forecasting Model(resources usage history)
2: Initialize the hidden state and cell state
3: Update hidden state, cell state, and obtain output
4: Forecast the values for different resources at server, node, and operator levels in a cloud environment for

processing real-time applications
5: end procedure

Algorithm 2 lists the steps followed for forecasting the demand for multiple re-

sources simultaneously. In step 1, based on the hyperparameter configurations, hidden

and cell states were initialized. In step 2, the model was executed for a number of

epochs, and in each epoch, the values of the hidden state were updated. In step 3,

after the successful execution of the model, the future values of several resources were

predicted.

Algorithm 3 presented the logic behind the scaling decision. From steps 1 to 7,

it checks for the availability of resources at the operator level, and accordingly, a
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Algorithm 3 Algorithm for Scaling of resources

Input: Forecasting results, Default configurations of resources
Output: Scaling decision for server, node, and operator manager
Initialization: Default configuration of the server, node, and operator levels

1: procedure Scaling Module(Forecasting results, Default configurations of resources)
2: if op res req ≥ max res node then
3: allocate node from pool of resources
4: notify Node Manager to scale resources
5: else
6: allocate requested operators from node
7: notify Operator Manager to scale resources
8: end if
9: if node res req ≥ max res server then
10: allocate server from pool of resources
11: notify Server Manager to scale resources
12: else
13: allocate requested node from server
14: notify Node Manager to scale resources
15: end if
16: if server res req ≥ server max res then
17: allocate server from Pool of resources
18: notify Server Manager to scale resources
19: else
20: request to CSP for scaling out server
21: end if
22: end procedure

scaling notification is given to the operator or node manager. Steps 8 to 14 look for

the resources at the node level; as a result, the node or server managers are prompted

for scaling of resources. At last, resources at the higher processing level are checked

for availability; if the server level does not contain enough computing resources, the

CSP is informed of the shortage and needs to take administrative actions to provide

enough resources to users.

4.8 Summary

This chapter discussed the proposed MeghMesa architecture to attain optimal uti-

lization of resources at runtime while executing time-critical applications in a cloud

environment. The forecasting and decision modules play a significant role in dynami-

cally deciding the scaling of resources. The next chapter discusses the performance of

the MeghMesa framework and prediction models in various processing environments.



Chapter 5

Implementation, evaluation and

performance analysis

The proposed approach was executed and evaluated in three stages:

� Proposed model for achieving dynamic scaling

� Designed the model to attain elasticity at multiple processing levels and ex-

perimented on multilevel real-time streaming data for verification of resource

optimization and elasticity

� Performance evaluation of the proposed framework

Implementation

The MeghMesa framework comprises a multilevel, multivariable-multistep (ML-MVMS)

resource prediction model and a scaling module as primary functional modules. The

ML-MVMS accurately identifies resources required at multiple processing levels (server,

node, and operator levels) in the cloud environment for a longer duration. Stages 1

and 2 evaluate ML-MVMS to identify its versatility and the scaling decisions made

1
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based on it. Stage 3 evaluates the performance of the MeghMesa framework against

existing approaches.

5.1 Stage 1: MVMS: model for achieving dynamic

scaling

In stage one, single-level MVMS was evaluated on the Bitbrains dataset. The Fig-

ure 5.1 presents the complete sequence to forecast resource usage. The MVMS re-

ceived CPU utilization in MHz and CPU cores as input parameters and forecasted

CPU utilization for fulfilling future demands. The MVMS model learns the CPU

utilization pattern from the previous 60 records of CPU utilization and CPU cores

and forecasts the CPU utilization for the upcoming 12 timestamps. The outcome of

MVMS was validated by evaluating MAE, MSE, and RMSE evaluation metrics.

Figure 5.1: MVMS resource usage forecasting sequence

5.1.1 Result analysis

The performance of MVMS was compared with that of the GRU model. The GRU

model was designed with the same hyperparameters as the MVMS model, and the

results of both models were compared. They were trained over different batch sizes

and splitting ratios of a dataset to obtain an accurate forecast.

Both the models were evaluated first on different dataset splitting combinations
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and then tested against batch sizes. The models were initially assessed on a 60%:40%

dataset splitting ratio and batch size of 8569 over 10 to 50 iterations. The models

experimented again with a 70%:30% split ratio over the same hyperparameter con-

figurations. A subtle improvement in performance metrics was observed, with some

unfavourable fluctuations. Figure 5.2 shows the average value of MAE for 70%:30%

was high as compared to 60%:40%, whereas MSE and RMSE were lower for 70%:30%

as depicted in Figures 5.3 and 5.4 for MVMS and GRU.

As the advancement in performance was observed with a higher training ratio, a

dataset was further split into an 80%:20% ratio, and models were evaluated with the

same hyperparameters. The values of performance parameters in Figures 5.2 to 5.4

concluded that, among all three dataset splitting combinations, models performed

optimally with 80%:20%.

Figure 5.2: Comparison between MAE of MVMS and GRU with different dataset
splitting ratios (Thakkar, Thakkar, and Bhavsar 2023)

After identifying the optimal dataset splitting ratio, models experimented with

other batches of 779, 451, and 209 sizes. The performance of MVMS and GRU for all
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Figure 5.3: Comparison between MSE of MVMS and GRU with different dataset
splitting ratios (Thakkar, Thakkar, and Bhavsar 2023)

Figure 5.4: Comparison between RMSE of MVMS and GRU with different dataset
splitting ratios (Thakkar, Thakkar, and Bhavsar 2023)
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batch sizes with an 80%:20% dataset splitting ratio is depicted in Figures 5.5 to 5.7.

With the smaller batch size, models were under-fitted, and the performance of both

models declined. In contrast to that, with 8569 batch size models optimally performed

for 80%:20% dataset splitting ratio. It was observed that with higher training data

and larger batch size, models had more data to identify resource utilization patterns.

As an outcome, models have accurately forecasted resource requirements. In contrast,

with less training data and smaller batch sizes, models failed to identify resource

utilization patterns, and eventually, performance decayed.

Figure 5.5: Comparison between MAE of MVMS and GRU for all batch sizes
(Thakkar, Thakkar, and Bhavsar 2023)

From the performance parameter values of RMSE, MSE, and MAE for the best

hyperparameter configuration, it is inferred that the MVMS model outperformed the

GRU model. Due to its inherent architecture, the GRU model failed to maintain the

values of hidden neurons for longer and fell short of forecasting the CPU requirements

with high accuracy. The MVMS model is designed to retain the resource utilization

pattern for longer. Thus, it could predict the CPU requirement for multiple times-
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Figure 5.6: Comparison between MSE of MVMS and GRU for all batch sizes
(Thakkar, Thakkar, and Bhavsar 2023)

Figure 5.7: Comparison between RMSE of MVMS and GRU for all batch sizes
(Thakkar, Thakkar, and Bhavsar 2023)
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tamps. The fewer neural network layers in the MVMS model reduce the complexity

of the computation and allow for a faster computation time without compromising

the accuracy of the result.

5.1.2 Time complexity

The time required by any neural network model to produce the best result depends

on the type and number of hyperparameters. Along with that, the time required to

train a model also depends on the underlying execution environment. As MVMS was

executed on the system with high-end configuration, it took approximately 3 minutes

per iteration with the 80%:20% dataset split ratio and 8569 batch size. Thus, within

30 minutes, MVMS converged to the optimal result. However, with a 209 batch size,

MVMS took about 12 minutes per iteration. Training times for all the batch sizes

with 80%:20% dataset split ratio are shown in Figure 5.8. It was concluded that

the model took more time to produce the result for the smaller batch size with any

dataset-splitting ratio.

Figure 5.8: Training Time of MVMS (Thakkar, Thakkar, and Bhavsar 2023)
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From the results, it is deduced that the proposed neural network architecture

(MVMS) for time series prediction is inexpensive to train in terms of processing com-

plexity and time while producing highly accurate results. As the MVMS can predict

the resources for individual VMs, it is also referred to as a multi-agent prediction

model. Thus, MVMS is versatile enough to work with any problem definition with-

out significant modifications.

As MVMS delivered 99% accuracy, it was implemented on a real-time streaming

dataset to accurately identify the fluctuating resource demands in real-time applica-

tions and efficiently scale the cloud resources.

5.2 Stage 2: Evaluating the ML-MVMS on multi-

level real-time streaming data

The architecture of a cloud consists of a processing hierarchy; at each processing

level, several resources are executed. Such resources should be optimally utilized to

get the maximum benefit. In this stage, the proposed multilevel MVMS (ML-MVMS)

model is proposed to accurately estimate future resource demand; based on that, the

resources could be optimally utilized. Efficiently used cloud resources increase return

on investment (RoI) and reduce the carbon footprint (Thakkar, Trivedi, and Bhavsar

2017).

The ML-MVMS model was evaluated on real-time streaming data. It retained

the utilization pattern of individual resources for a longer time and identified the

relationships among the utilization patterns of multiple resources at various processing

levels.

5.2.1 Result analysis

This section discusses the performance of MVMS over a multilevel cloud architecture.

The multilevel-MVMS (ML-MVMS) receives Timestamp, Threads, Server memory,
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Sever CPU, Number of Nodes, Node memory, Node CPU, Node total operators, Node

used operators, Number of applications, Application CPU, and Application memory

from the real-time streaming dataset as input. By identifying the hidden pattern

and relation among all input parameters, the ML-MVMS model predicted the future

demand of Server memory, Sever CPU, Number Node, Node memory, Node CPU,

Node used operators, Application CPU, and Application memory. The performance

of this model was validated by evaluating the MAE, MSE, and RMSE evaluation

metrics.

The model was trained with the 80%:20% train:test dataset splitting ratio refer-

enced from the MVMS model. In real-time applications, processing demand changes

rapidly; thus, smaller batch sizes were considered in this scenario to track the tiniest

change in resource utilization patterns. The model has experimented with 360 and

720 batch sizes over 100 to 20000 epochs.

Figure 5.9 shows the performance parameter values for ML-MVMS executing with

a 360 batch size. Initially, the model’s performance fluctuated up to 2000 epochs

because it was not able to identify the variations in resource utilization patterns.

However, the model’s performance was continuously enhanced. After 15000 epochs,

the model’s performance deteriorated due to overfitting of the data. Overfitting occurs

as the model starts memorizing the training data instead of learning generalizable

patterns. Thus, the ideal time to stop training the model is before it starts overfitting.

In this way, as the ML-MVMS with 15000 epochs performed better, it was considered

for forecasting real-time streaming applications.

Figure 5.10 displays the forecasted demand of various resources, such as memory,

CPU, nodes, and operators, at server, node, and operator levels, respectively, for a 360

batch size. Figures 5.10a to 5.10c shows resurces demand forecasting at server level.

Figures 5.10d to 5.10f shows resource demand forecasting at node level. Figures 5.10g

and 5.10h shows resources required at the operator level. The performance parameter
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Figure 5.9: Performance of ML-MVMS with 360 batch size

values from Figure 5.9 and Figure 5.10 show that ML-MVMS could identify the

resource consumption pattern but failed to accurately predict the resource demand.

Thus, the model was experimented with over a 720 batch size.

Figure 5.11 shows the performance of the model for 720 batch size. It performed

similarly to 360 batch size for the number of epochs. Thus, it was concluded that

ML-MVMS performs best for both batch sizes for 15000 epochs.

Figure 5.12 displays the forecasted utilization of memory, CPU, nodes, and oper-

ators, at server, node, and operator levels for a 720 batch size. Figures 5.12a to 5.12c

shows resurces demand forecasting at server level. Figures 5.12d to 5.12f shows re-

source demand forecasting at node level. Figures 5.12g and 5.12h shows forecasting

of resources required at the operator level. The performance parameter values in

Figure 5.11 and Figure 5.12 demonstrated that ML-MVMS accurately identifies the

resources needed at each processing level of cloud architecture while processing time-

critical applications.
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(a) Server Memory(mb) (b) Server CPU

(c) Nodes required (d) Node Memory(mb)

(e) Node CPU (f) Operator required

(g) Operator Memory(mb) (h) Operator CPU

Figure 5.10: Resources forecast at Server, Node and Operator level by ML-MVMS
over 360 batch size
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Figure 5.11: Performance of ML-MVMS over 720 bach size

5.2.2 Time complexity

Table 5.1: Time complexity of ML-MVMS

Historical data

duration

Prediction data

duration

Batch size Response Time

2 hours 1 hour 360 ∼ 16.64 seconds

2 hours 1 hour 720 ∼ 5.325 seconds

The Table 5.1 shows the time required to execute ML-MVMS for 360 and 720

batch sizes. ML-MVMS takes approximately 16.64 seconds to complete one epoch

with a 360 batch size, nearly three times higher than a 720 batch size. ML-MVMS

performs better with a 720 batch size in less time, as with a larger batch size, it

can process more data and learn the patterns among utilization data. The model

requires a higher training time for lower batch size values. Within a more petite



5.2. STAGE 2 13

(a) Server Memory(mb) (b) Server CPU

(c) Nodes required (d) Node Memory(mb)

(e) Node CPU (f) Operator required

(g) Operator Memory(mb) (h) Operator CPU

Figure 5.12: Resources forecasted at Server, Node and Operator level by ML-MVMS
over 720 batch size
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time frame of 5.320 seconds, ML-MVMS forecasts resource utilization at the server,

node, and operator levels for one hour in advance from a given point in time with the

highest accuracy of 0.064554 RMSE, 0.027813571 MAE and 0.004167242 MSE. Here,

the lower value of the performance parameter indicates less error in the predicted

value compared to the original value. Thus, a given value of RMSE, MAE, and MSE

shows that the model delivers highly accurate prediction results. Thus, ML-MVMS

with 720 batch size quickly converges to accurate results compared to 360 batch size.

With a given forecast time window, CSP can reserve or free resources well before a

given time.

In the MeghMesa framework, the ML-MVMS model notifies the Global Manager

about the forecasting values for each resource type at multiple processing levels. The

Global Manager forwards these values, along with the resource configurations, to the

scaling decision module, which is responsible for taking the final decision about scaling

each resource type at the individual processing level and among multiple processing

levels concurrently.

5.2.3 Statistical analysis on multilevel real-time streaming

data

It was observed that the GRU model failed to deliver accurate results for a more

extended period. Thus, the performance of the ML-MVMS model was compared

with statistical models. Statistical models significantly understand the pattern of

complex data, and based on that, they perform forecasting. The ARIMA and VAR

models experimented on a multilevel real-time streaming dataset.

Evaluating VAR on multilevel real-time streaming data

As this work addresses multilevel elasticity, it is required to forecast the resources

for multiple resources. The vector autoregression (VAR) model is a statistical model

that identifies the relationship between multiple resource utilization parameters. It is
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a generalized version of the univariate time series model, ARIMA. The VAR model

processes multiple parameters together and individually predicts resource utilization

parameters. Thus, the VAR statistical model was preferred to evaluate the multilevel

real-time streaming dataset.

Table 5.2 lists the input and parameters of the VAR model. Initially, resources

from the server and node levels were given as input to the VAR model, and values

for server CPU and memory were predicted. The 720 observations from the past

were considered, and based on that, values for the next timestamp were estimated.

To evaluate the performance of the VAR model, RMSE, MSE, and MAPE error

metrics were calculated. The performance parameters in Table 5.2 show that the VAR

model delivers very high variation in forecasted values compared to actual resource

utilization values for multilevel architecture.

Table 5.2: Performance evaluation of the VAR model

Input Parameters Server Memory, Server CPU, Node Memory,
Node CPU, Node Used Operators

Prediction Parameters Server Memory, Server CPU

Server CPU

RMSE 92231.910

MSE 8506725293.108

MAPE 584.74533064992

Server Memory

RMSE 1311792.973

MSE 1720800804382.595

MAPE 681.5685939410122

Since more number of parameters were given as input, the VAR model failed

to identify the complex resource utilization pattern in the dataset. Thus, the VAR
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model was re-evaluated with CPU and memory resources from the server level only.

Table 5.3 lists resource utilization parameters from a server level and prediction pa-

rameters. It also shows the performance parameters of the VAR model. The result

exhibits that the performance of the model deteriorated. Thus, it was concluded

that, with its inherent simplicity, the VAR model was unable to ascertain the intri-

cate relationships in resource utilization of a multilevel real-time streaming dataset,

as resource requirements at runtime fluctuated very frequently.

Table 5.3: Performance evaluation of the VAR model

Input Parameters Server Memory, Server CPU

Prediction Parameters Server Memory, Server CPU

Server CPU

RMSE 299499.157

MSE 89699744789.750

MAPE 1885.4376815910764

Server Memory

RMSE 4407451.132

MSE 19425625480527.641

MAPE 2277.5668542990857

To evaluate the performance of statistical models for real-time streaming data,

the ARIMA model was experimented on the given input of a resource usage.

Evaluating ARIMA on multilevel real-time streaming data

The autoregressive integrated moving average (ARIMA) model takes the time series

of parameters and forecasts future trend. Here, the Server Memory parameter from a

multilevel real-time streaming dataset was given as input to the ARIMA model, which

forecasted the value for the same parameter. The 720 lagged observations of server
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memory were considered for forecasting the value at the present time stamp. The

output of the ARIMA model was evaluated by calculating RMSE, MSE, and MAPE

evaluation metrics. Table 5.4 contains the predicted results for Server Memory. It

was derived from the results that the ARIMA model failed to identify the memory

utilization pattern at the server level, as ARIMA only considers the autoregression of

the server memory utilization values. Since the dataset contains multilevel resource

utilization for real-time streaming applications running on the cloud, having fluctu-

ating resource demands over time, the ARIMA model could not identify the complex

pattern of resource requirements. Hence, there was a substantial deviation between

the forecasted and actual values.

Table 5.4: Performance evaluation of the ARIMA model

Input Parameter Server Memory

Prediction Parameter Server Memory

RMSE 25592.17116406

MSE 6.54959225e+08

MAPE 15.507375191937184

The real-time streaming data contains seasonal and nonseasonal cycles, different

trends, outliers, and complex affinities among the variables. As statistical models

heavily rely on the stationarity of data, they can not identify such complexities in

the data. ARIMA and VAR models forecast future trends with stationary reference

to past trends; therefore, any non-seasons in data will cost the model’s performance.

It was observed that the proposed ML-MVMS model could accurately forecast

the real-time resource utilization for multiple timestamps in advance for a multilevel

cloud architecture, compared to all variations of the VAR and ARIMA models.
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5.3 Scaling decision

In the MeghMesa framework, the scaling decision module plays an essential role

while dynamically scaling the resources. It receives the forecasted values for each

resource type and their configurations. The scaling of each type of resource at indi-

vidual and multiple processing levels was determined based on the availability of the

resources. The dynamic scaling decisions will be communicated back to the Global

Manager, who will notify the individual processing level managers to scale the re-

sources.

The proposed MeghMesa framework allows CSP to provide high availability of

resources for processing real-time applications while reducing resource waste.

5.4 Stage 3: Performance and result analysis of

MeghMesa framework

This section discusses the performance of the MeghMesa framework as compared

to the existing approaches for handling elasticity in multilevel cloud architecture.

Here, Apache Storm’s default resource allocation approach (round robin approach

(RR)) and updated resource-aware strategy (RAS) (Peng et al. 2015) were taken

as references. Apache Storm’s default approach is round-robin, in which a process

is evenly distributed among available resources. The RAS works on the principle of

improving resource availability and allocating tasks to the most appropriate resources

to avoid resource wastage.

Figure 5.13 shows the comparison of MeghMesa with both of these approaches.

The number of applications in Figure 5.13a shows the total applications executing at

any given time. As depicted in the figure, RR and MeghMesa can execute the same

number of applications; however, RAS cannot run more applications. Figure 5.13b

presents the total number of tasks executing for all applications while evaluating each
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(a) Number of Applications (b) Number of Tasks

(c) Server Memory(MB) (d) Server CPU

(e) Number of Nodes (f) Node Memory(MB)

(g) Node CPU (h) Number of Operators

Figure 5.13: Comparison of MeghMesa with existing approaches
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approach. MeghMesa can process the maximum number of tasks at any time as com-

pared to RR and RAS. Figures 5.13c and 5.13d shows the amount of memory and CPU

utilized at the server level. The RAS consumes more resources, whereas MeghMesa

consumes less while processing additional tasks. Figure 5.13e shows the same amount

of nodes required by RR, RAS, and MeghMesa. Resources needed at the node level

are presented in Figures 5.13f and 5.13g. At the lower processing level, higher re-

sources are utilized by all of them. However, MeghMesa and RR consume nearly

equal amount of memory, but MeghMesa optimally uses CPU. Figure 5.13h plots

the number of operators required by each approach. MeghMesa utilized a maximum

number of operators at the lowest processing level. The operator level is the lowest in

the cloud architecture and costs less than other levels. As per Marangozova-Martin,

De Palma, and El Rheddane 2019, resources provisioned from the lower processing

level improve performance. Thus, the higher utilization of operators by MeghMesa

justifies the better performance compared to RR and RAS. The RR approach over-

looks the availability of resources and their demand, leading to resource shortages

and sometimes SLA violations. RAS failed to perform better because it continuously

checks the resources’ availability, leading to a long waiting time, slow processing, and

reduced throughput. It also leads to the under and over-utilization of resources.

5.4.1 Performance of MeghMesa framework

Table 5.5 shows the average performance of the MeghMesa as compared to the RR

and RAS approaches. The MeghMesa optimally utilized the resources and executed

one more application on average for the specific duration of the time, as compared

to the RAS approach. However, MeghMesa and RR computed the same number of

applications on average. As MeghMesa scaled the resources to handle the incoming

workload, it could execute more threads on average compared to the RR and RAS

approaches. The operator level in MeghMesa is the lowest processing element; optimal
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utilization of it allows the execution of more incoming workload and thus increases

the performance of the system. The MeghMesa used additional operators than both

approaches and executed more threads into them.

Table 5.5: Performance of MeghMesa

Parameters RR RAS

Application -0.00831 0.808864

Threads 15.25762 58.23269

Operator 0.761773 1.551247

Node Memory 47.02939 185.2168

Node CPU -5979.59 -22175.8

Server Memory -15916.7 -51676.3

Server CPU -4922.83 -11426.6

Similarly, the amount of memory used was more than the average usage by the

RR and RAS approaches. However, MeghMesa took fewer CPU cycles from the node

level, but that had not affected the performance of the system. The server is the

highest processing level in the MeghMesa framework. Provisioning fewer high-cost

processing elements improves the performance of the system. MeghMesa proves this

by consuming less server-level resources than RR and RAS approaches.

5.4.2 Space Complexity of MeghMesa framework

The space complexity of the MeghMesa framework is determined by the internal mod-

ules: the ML-MVMS and scaling modules. The memory required by the ML-MVMS
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model depends on its underlying functional levels, hyperparameter configurations,

and the number of input-output parameters. As the ML-MVMS model processes

multiple resource utilization parameters from each processing level and predicts re-

sources at each lever, it entails significant memory. However, the scaling module

inside the MeghMesa framework leverages a constant amount of memory for making

resource scaling decisions at each processing level. Thus, the complexity of the ML-

MVMS model introduces more significant memory requirements in the MeghMesa

model. Hence, the overall space complexity of the MeghMesa framework is greater

than the other two approaches, which take a constant amount of memory to decide

the resource scaling.

5.5 Summary

From the results, it is concluded that the MeghMesa framework is able to accurately

forecast the resource requirements at multiple processing levels of cloud architecture

and dynamically scale them quickly. The time complexity of multilevel MVMS (ML-

MVMS) shows that it takes a few seconds to forecast the resources in advance. This

leads to the proposed framework handling any fluctuation in resource requirements

at runtime well in advance.

The MeghMesa framework benefited CSP by allowing them to highly utilize the

resources, generate a high Return on Investment (RoI), and provide customers with

uninterrupted resources for processing time-critical applications in real-time.
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Conclusion and Future scope

6.1 Conclusion

� The MeghMesa framework can accurately determine the resources required at

the server, node, and operator level in a cloud environment.

� The MeghMesa quickly converges to optimal results while processing real-time

streaming data.

� The proposed framework comprises an ML-MVMS resource prediction module

that accurately predicts resource demands. The efficiency of the model depends

on the selection of hyperparameters inside the model. The optimal combination

of hyperparameters determines the accuracy of the forecasting model. In the

ML-MVMS model, the hyperparameters are optimized by experimentally tun-

ing them with a random search technique. Random search is easy to parallelize

by concurrently evaluating different random combinations of hyperparameters,

which makes it suitable for distributed computing environments where the eval-

uations are very time-consuming.

� From the performance evaluation, it is derived that the MeghMesa framework

1
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outperforms the existing approaches by optimally utilizing resources and quickly

availing resources on demand.

6.2 Furture scope

� Implementing the proposed framework on a working environment.

� The reinforcement learning approach can be used to take scaling decisions after

forecasting resource usage. This allows the system to take the scaling decision

based on the workload at the current time.

� In this work, the proposed multilevel elasticity is attained in the context of

apache storm. However, it can be evaluated on public cloud platforms or other

stream processing platforms.

� The MeghMesa framework can be easily customized and extended for different

requirements, as it is general and flexible.

In ML-MVMS, resources at multilevel were forecasted for one hour in advance from a

given point in time; however, depending on the demand of CSP, this time frame can

be varied.

Here, relationships among resource utilization parameters were manually determined

for prediction; however, various resources at multiple levels can be dynamically iden-

tified using machine learning approaches.

6.3 Real-life applications of the MeghMesa frame-

work

The MeghMesa framework facilitates the CSP to host real-time stream processing

applications, demanding resources in an Ebb and Flow pattern. It precisely identi-

fies the resource demand of different applications and quickly allocates the optimal



6.3. REAL-LIFE APPLICATIONS OF THE MEGHMESA FRAMEWORK 3

amount of resources from each computing level of the cloud hierarchy. This way, with

the help of MeghMesa, the CSP can optimally utilize the resources while efficiently

catering to cloud consumers.

As the MeghMesa framework is easy to adapt, the private cloud owner can utilize

it to govern the resources optimally. It allows the execution of resource-intensive

processes in parallel by elastically scaling resources. Such processes include satel-

lite data processing, medical computations, surveillance applications, social media

applications, and scientific and research-related processes.

The MeghMesa framework identifies the demand for resources based on their uti-

lization pattern, which facilitates the CSP in planning resource availability accord-

ingly.

The real-time applications that provide livestock price tracking are time- and

money-sensitive. It requires quick changes in prices and a total number of shares

for its users in real-time. The MeghMesa framework identifies the flow of a number

of users accessing this platform based on regular usage and provides them with the

resources to process the stock price query and their transactions in real time. This

framework can also quickly process the sudden demand for processing by elastically

scaling the resources.
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