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ABSTRACT 
  

In order to achieve better performance of processor, we should strive to achieve a 

situation where most of the featured instructions are executable in a single cycle. Ideally, 

we would like to see a streamlined and uniform handling of all instructions, where the 

fetch and the execute stages take up the same time for any instruction, desirably, a single 

clock. This is basically one of the first and most important principles inherent in the RISC 

design. The RISC has attributes like Simple instructions, less complexity, Compiler 

generates software routines to perform complex instructions, and Instruction size is 

constant 

 

The project aims at providing RTL Design of RISC processor for DSP application, which 

may be implemented on FPGA. 

 

Various processor cores like ARM processor NIOS_II processor, PowerPC etc.  are 

available in market which are  widely acceptable by industries. These processors are 

available in form of Soft IP core module 

 

The project work includes detailed literature survey of ARM processor, NIOS_II 

processor, PowerPC. Comparison of these processors is carried out based on various 

parameters like Performance, Code density, Strength of instruction set, Supports by 

software tools, Interrupt mechanism etc.  

 

In this work, 32-bit processor is designed using VHDL. The designed processor supports 

32 various instructions. It supports all general addressing modes. The functionality of the 

designed is verified by writing a program to transfer a block of data in memory. 
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ABOUT ISRO 

 
 

ABOUT ORGANIZATION: 
 

The Indian Space Program was formally organized in 1972 when Government of India 

set up the development and application of space technology and space sciences for the 

socioeconomic benefit of the commission include the formulation if the policy of the 

Department of Space and implementation of the Government’s policy in all matters 

concerning outer space. 

 

The Indian Space Research Organization (ISRO) under DOS plays a key role, through its 

centers, in the planning and execution of National Space activities. It is also responsible 

for technical management in the area of Space Application and space technology. Basic 

natural resources survey, and meteorology, other R&D activities of ISRO in satellite 

achieving the basic application objectives 

 

OBJECTIVES OF ISRO 

 

Long distance telecommunication, diffusion of TV signals using satellite. Remotes 

sensing of natural and renewable earth resources and meteorological parameters from 

satellites.   

• 

• 

• 

• 

• 

• 

Satellite based resources survey, management and environment monitoring. 

Development and operationalisation of indigenous satellite. 

To realize the above objectives of ISRO activities are oriented predominantly towards 

design and development of applications satellites for communications, Remote 

Sensing, TV broadcasting and meteorology. 

Design and Development of Rocket launching vehicles to place these application 

satellites into the required orbits. 

Establishment of ground stations/facilities for using these satellites and for launching.  
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The headquarters of both DOS and ISRO located at Bangalore provides overall direction 

to the technical, scientific and administrative functions of the ISRO centers/units. These 
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• Vikram Sarabhai Space Centre (VSSC)-Trivandrum. 

• SHAR Centre-Sriharikota. 

• ISRO Telemetry, Tracking and Command Network (ISTRAC)-Bangalore. 
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remote sensing for natural resources survey and management, meteorology and geodesy. 

 

To carry out its programmes, the centre is organized functionally in to the communication 
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and calibration facility and Payload Fabrication Facility provide the support services.  

Some of the major facilities at SAC include: 

 

Experimental Satellite Communication Earth Station at Ahmedabad and Delhi. 
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Small Communication Terminal (SCOT). 

 - xiii - 



Meteorological Data Reception Terminal. 

Electronics and Mechanical Fabrication. 
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It is responsible for the technology development related to on board signal processing 

required for future SATCOM services. ADCTG consists of the following two divisions. 

 

On Board Signal Processing Division (OSPD) 

OSPD is responsible for the development of on board signal processing technology for 

future SATCOM services. 

 

Advanced Communication Technology Division (ACTD) 

ACTD carry out advanced R&D for satellite based digital communication & secured 

communication. It is also responsible for technology development related to wide band 
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RTL Design of RISC Processor for DSP Application                                                    Introduction 
 

CHAPTER 1 

INTRODUCTION 
 

1.1 Motivation for Thesis 

In its relatively brief lifetime of more than thirty years, the microprocessor has undergone 

phenomenal advances. Its performance has improved at the outstanding rate of doubling 

every 18months. In past three decades, microprocessors have been responsible for 

inspiring and facilitating of the major innovations in the computer systems. Design, 

which can be implemented on FPGA, offers the great advantage of flexibility. Soft 

processor is the processor that can be implemented on FPGA and value addition is 

possible in future.  

 

1.1.1 Aim 

My project titled as “RTL Design of RISC processor for DSP Application”. RISC 

processor expects to perform more of the optimizations via the compiler. The purpose of 

doing is this is to reduce the hardware complexity and thus achieve a much faster 

operation. 

Milestones 

 Literature review and understanding processor functionality and its 

architecture 

 Study of various core processors like ARM, NIOS_II, PowerPC etc. 

 RTL Design of 32-bit processor 

 Prototype system design based on processor and memory 

 Implementation of system on Xilinx based FPGA 

 

1.2 Background 

Processor is key component for any embedded system. Embedded system is combination 

of hardware and software. The project related to the embedded system is based on the 

knowledge of Hardware/ software co-design. The project carried out is belongs to 

embedded system field. It is embedded system design for specific DSP application. 
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There are various processor cores like ARM, NIOS, POWERPC, MICROBLAZE, 

PICOBLAZE are widely used for embedded system. The study of some of such 

processors has been completed during the first phase of project work. Mainly detailed 

study of features of ARM and NIOS_II processor is carried out. The comparative study is 

presented in the report.  

 

System level design work is carried out during major project. The design may be 

implemented on FPGA. FPGA is programmable logic device, which is a general-purpose 

chip for implementing logic circuitry.  It contains a collection of logic circuit elements 

that can be tailored or customized in different ways.  A PLD can be viewed as a “Black 

Box” that contains logic gates and programmable switches, as shown in Figure-1.1.  

 

 

Figure-1.1 programmable logic device as black box 
 
The programmable switches allow the logic gates inside the PLD to be connected 

together to implement whatever logic circuit is needed.  This makes the real estate 

requirement on the printed circuit board required is very small. Therefore the problems 

associated with longer signal tracks ground returns are eliminated. 

 

Field Programmable Gate Arrays (FPGAs) provide a rapid prototyping platform. FPGAs 

are devices that can be reprogrammed to achieve different functionality without incurring 

the non-recurring engineering costs typically associated with custom IC fabrication. In 

this work, the target platform is the Xilinx Virtex FPGA 
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RTL coding is done using VHDL as hardware description language. Structural modeling 

concept is used. ALU, shift register, register array, tristate register, and instruction 

decoder are designed. Interfacing is carried out on single bus (32-bit) 

 

1.3 Organization of Thesis 

In this Thesis Chapter 2 gives a background discussion on RISC processor. Chapter 3 

introduces ARM processors. The study of NIOS II processor and PowerPC processor is 

represented in Chapter 4 and Chapter 5 respectively.  Chapter 6 gives a comparison of 

ARM and NIOS processor.  Specification of Processor is mentioned in Chapter 7.  RTL 

design of Processor is briefed in Chapter 8.  Chapter 9 shows the results and analysis. 

Chapter 10 discusses the summary and future scope. Finally there are two appendices at 

the end of the thesis report. Appendix-A focuses on the attributes of RISC /CISC 

processor. Appendix B represents an Assembly language program to copy the block of 

data from memory to memory. 
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CHAPTER 2 
 RISC (REDUCED INSTRUCTION SET COMPUTER) 

 

2.1 Introduction 

(Reduced instruction set computer) is a design philosophy aimed at delivering simple but 

powerful instructions that execute within a single cycle at high clock speed. The RISC 

philosophy concentrates on reducing the complexity of instructions performed by the 

hardware because it is easier to provide greater flexibility and intelligence in software 

rather than hardware. As a result, a RISC design places greater demands on compiler. 

 

2.2 CISC Vs RISC 

The traditional CISC (complex instruction set computer) relies more on the hardware for 

instruction functionality, and consequently the CISC instructions are more complicated. 

Figure 2 illustrates then difference between CISC and RISC 

 

  CISC                      RISC 

                                                                                                                 Greater complexity          

 

                               Code generation                 Code generation 

Compiler 

Processor Processor

Compiler

  

 

Greater complexity  

Figure 2.1 CISC vs. RISC 

 

2.3 Design Rules for RISC processor 

 

The RISC philosophy is implemented with four major design rules: 

1. Instructions:  

RISC processors have a reduced number of instruction classes. These classes provide 

simple operation that can each execute in a single cycle. The compiler or programmer 
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synthesizes complicated operations (for example, a divide instruction) by combining 

several simple instructions. Each instruction is a fixed length to allow pipeline to fetch 

future instructions before decoding the current instruction. In contrast, in CISC 

processors the instructions are often of variable size and take many cycles to execute. 
 

2. Pipelines: 

 The processing of instructions is broken down into smaller units that can be 

executed in parallel by pipelines ideally the pipeline advances by one step on each cycle 

for maximize throughput. Instructions can be decoded in one pipeline stage. There is no 

need for an instruction to be executed by a miniprogram called microcode as on CISC 

processors. 
 

3. Registers: 

 RISC machines have large general-purpose register set. Any register can contain 

either data or an address. Registers act as the fast local memory store for all data 

processing operations. In contrast, CISC processors have dedicated registers for specific 

purposes. 
 

4. Load-Store architecture: 

The processor operates on a data held in registers. Separate load and store 

instructions transfer data between the register bank and external memory. Memory 

accesses are costly, so separating memory accesses from data processing provide an 

advantage because you can use a data items held in register bank multiple times without 

needing multiple memory access. In contrast, with CISC design the data processing 

operations can act on memory directly. 
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CHAPTER 3 
ARM PROCESSOR 

3.1 Introduction 
 

The ARM7TDMI* is a member of the Advanced RISC Machines (ARM) family of 

general-purpose 32-bit microprocessors, which offer high performance for very low 

power consumption and price. The ARM architecture is based on Reduced Instruction Set 

Computer (RISC) principles, and the instruction set and related decode mechanism are 

much simpler than those of micro programmed Complex Instruction Set Computers. This 

simplicity results in a high instruction throughput and impressive real-time interrupt 

response from a small and cost-effective chip. Pipelining is employed so that all parts of 

the processing and memory systems can operate continuously. Typically, while one 

instruction is being executed, its successor is being decoded, and a third instruction is 

being fetched from memory. The ARM memory interface has been designed to allow the 

performance potential to be realized without incurring high costs in the memory system. 

Speed-critical control signals are pipelined to allow system control functions to be 

implemented in standard low-power logic, and these control signals facilitate the 

exploitation of the fast local access modes offered by industry standard dynamic RAMs. 
 

A three-stage pipeline occupies minimal silicon area yet allows division of the execution 

time of each instruction into three parts: instruction fetch from memory, instruction 

decode, and instruction execution. The instruction execution stage is the most complex.  

Register read, a shift applied to one operand, an ALU operation, and finally a register 

writes all execute in one clock cycle. This limits the processor’s maximum clock speed to 

around 80 MHz on a 0.35-micron silicon process.  

*  T-Thumb 

    D-Debug 

    M-Multiplier 

    I-ICE 
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ARM7TDMI-S(Synthesizable) soft IP processor top-level block diagram is shown in 

Figure_3.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 ARM7TDI Top-level block diagram 

 

However, that speed is more than enough for the cost-sensitive applications using ARM7. 

The combined shift and ALU execution stage is also an important ARM feature. A single 

instruction can specify one of its two source operands for shifting or rotation before it is 

passed to the ALU. This allows very efficient bit manipulation and scaling code, and 
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virtually eliminates single shift instructions from ARM code. (The ARM processor does 

not have explicit shift instructions; a move instruction applies a shift to its operand.) 

 

ARM7 also uses Von Neumann memory architecture; the instructions and data occupy a 

single address space and are accessed with individual address and data buses. Though this 

limits performance—instruction fetching (and hence execution) must stop for instructions 

that access memory—the reduced cost of a single memory outweighs performance in 

many embedded applications.  

 

To reduce the penalty of data accesses stalling the pipeline, ARM implements load 

multiple and store multiple instructions. These instructions can move any of the ARM 

registers to and from memory, and update the memory address register automatically 

after the transfer. This not only allows one instruction to transfer many words of data (in 

a single bus burst), it also reduces the amount of instructions needed to transfer data. As a 

result, ARM code is smaller than other 32-bit instruction sets. 
 

Although the pipeline stalls during load and store operations, the ARM7 can continue 

useful work. These instructions can specify an update of the base address register with a 

new address after (or even before) the transfer. RISC architectures would normally use a 

second instruction (add or subtract) to form the next address in a sequence. ARM   does it 

automatically with a single bit in the instruction, again a useful saving in code size.  
 

The ARM instruction set has one further useful feature. Most architecture has conditional 

branch instructions. These follow a test or compare instruction to control the flow of 

execution through the program. Some architecture also has a conditional move 

instruction, allowing data to be conditionally transferred between registers. The ARM 

instruction set takes this functionality to its logical extreme, allowing all instructions to 

be conditionally executed. Loads, stores, procedure calls and returns, and all other 

operations may execute conditionally after some prior instruction to set the condition 

code flags. (Any ALU instruction may set the flags.) This eliminates short forward 

branches in ARM code. Once again, this improves code density and avoids flushing the 

pipeline for branches, increasing execution performance. 
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ARM8 is the next core in the ARM line. It extends the ARM7 implementation in two 

fundamental ways: two additional pipeline stages and a new cache interface. ARM7’s 

execute stage splits into three separate stages on ARM8, and register read moves back 

into the decode stage. The two additional pipeline stages perform memory accesses and 

register writes. Because each instruction executes over multiple cycles, register-

forwarding paths must pass data between successive instructions. This is necessary 

because one instruction will not have written its result to the register file before the next 

two instructions have read their source register values. ARM8 incorporates a single cache 

interface that allows instruction fetches in parallel with data accesses. It retains ARM7’s 

Von Neumann cache interface, but doubles the bandwidth of the interface to provide 64 

bits every cycle. ARM8 also uses a sophisticated prefetch buffer and branch prediction 

unit to fetch instructions ahead of the execution unit. On every cycle, one instruction is 

fed to the processor from the prefetch buffer. When the cache is not in use for a data 

access, two instructions are loaded into the prefetch buffer. This allows the single cache 

to satisfy both data and instruction accesses. 
 

ARM8 behaves similarly in performance to a Harvard machine with separate instruction 

and data caches, yet retains the simplicity of a single cache machine. Static branch 

prediction predicts the target of branch instructions; backward branches are assumed 

taken (loops) and forward branches untaken (conditional code). Correctly predicted 

branches do not enter the main execution engine and thus effectively execute in zero 

cycles. Mispredicted branches take three cycles to correct. ARM8 delivers 100- MHz 

operation in a typical 0.35-micron process, and lowers the average number of clock ticks 

per instruction to around 1.5. This increases overall performance by about 70% over 

ARM7. Digital Equipment Corporation code designed the StrongARM1, the fastest of 

our current processors. Adoption of Harvard architecture to deliver maximum cache 

throughput and a five-stage instruction pipeline to allow maximum clock rate produced 

an embedded processor that is faster than some workstation processors. StrongARM110 

incorporates two 16-Kbyte caches maintained even when the processor is coupled to a 

relatively low-speed memory system. When coupled with Digital’s very fast 0.35-micron 

process, which operates with a 2-volt supply, StrongARM1 machines deliver 233 MHz. 
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With less than 1 Watt of power consumption, this makes the StrongARM power 

consumption/performance ratio the best in the industry.  

 

3.2 ARM7 register set 
 

The ARM processor, like all RISC processors, uses load-store architecture. This means it 

has two instruction types for transferring data in and out of processor: load instructions 

copy data from memory to registers in the core, and conversely the store instructions 

copy data from registers to memory. There are no data processing instructions that 

directly manipulate data in memory. Thus, data processing is carried out solely in 

registers. 

Data items are placed in the register file- a storage bank made up of 32-bit registers. 

• Register structure depends on mode of operation 

• 16 pieces of 32-bit integer registers R0 - R15 are available in ARM-mode (usr,     user) 

• R0 - R12 are general-purpose registers 

• R13 is Stack Pointer (SP) 

• R14 is subroutine Link Register 

• Holds the value of R15 when BL-instruction is executed 

• R15 is Program Counter (PC) 

• Bits 1 and 0 are zeroes in ARM-state (32-bit addressing) 

• R16 is state register (CPSR, Current Program Status Register) 

 

3.3 Processor modes  

 

The processor mode determines which registers are active and the access rights to the 

cpsr register itself. Each processor mode is either privileged or non privileged: a 

privileged mode allows full read-write access to the CPSR. Conversely, a nonprivelleged 

mode only allows read access to the control field in the cpsr but still allows read-write 

access to the control flags. There are seven processor modes in total: six privileged 

modes and one nonprivileged mode as mentioned below 
 

- 10 - 



RTL Design of RISC Processor for DSP Application                                       ARM PROCESSOR 
 

Nonprivileged mode 
 

• User mode: Normal program execution state 

 

Privileged mode 
 

• FIQ (fast interrupt request) mode: Data transfer state (fast irq, DMA-type transfer) 

• IRQ (interrupt request) mode: Used for general interrupt services 

• Supervisor (svc) mode: Protected mode for operating system support 

• Abort mode (abt) mode: Selected when data or instruction fetch is aborted 

• System (sys) mode: Operating system ‘privilege’-mode for user 

• Undefined (und) mode: Selected when undefined instruction is fetched 
 

The processor enters abort mode when there is failed attempt to access memory. Fast 

interrupt request and interrupt request modes correspond to the two-interrupt levels 

available on the ARM processor. Supervisor mode is the mode that the processor is in 

after reset and is generally the mode that an operating system kernel operates in. 

Undefined mode is used when the processor encounters an instruction that is undefined or 

not supported by the implementation. User mode is used for programs and applications. 

 

 3.4 Instruction set 

Arm architecture supports 32- bit ARM instruction set and 16- bit THUMB instruction 

set. 

It supports different types of instructions: 

• Data processing 

• Arithmetic 

• Multiplication 

• Logical 

• Comparison 

• Shift rotate 

• Branch  

• Exception 
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• Load/ store instruction 

• Co-processor instruction 
  

• In normal instruction execution (unconditional) condition field contents of AL is used 

(Always) 

• In conditional operations one of the 14 available conditions is selected 

• For example, instruction known usually as BNZ in ARM is NE (Z-flag clear) 

conditioned branch-instruction 

 

3.5 ARM7TDMI Architecture 
 

The ARM7TDMI processor employs a unique architectural strategy known as THUMB, 

which makes it ideally suited to high-volume applications with memory restrictions, or 

applications where code density is an issue. 
 

3.6 The THUMB Concept 
 

The key idea behind THUMB is that of a super-reduced instruction set. Essentially, the 

ARM7TDMI processor has two instruction sets: 

 

• The standard 32-bit ARM set 

• A 16-bit THUMB set 
 

The THUMB set’s 16-bit instruction length allows it to approach twice the density of 

standard ARM code while retaining most of the ARM’s performance advantage over a 

traditional 16-bit processor using 16-bit registers. This is possible because THUMB code 

operates on the same 32-bit register set as ARM code. THUMB code is able to provide 

up to 65% of the code size of ARM, and 160% of the performance of an equivalent ARM 

processor connected to a 16-bit memory system. 
 

 

 THUMB’s Advantages 
 

THUMB instructions operate with the standard ARM register configuration, allowing 

excellent interoperability between ARM and THUMB states. Each 16-bit THUMB 
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instruction has a corresponding 32-bit ARM instruction with the same effect on the 

processor model. 

 

The major advantage of a 32-bit (ARM) architecture over a 16-bit architecture is its 

ability to manipulate 32-bit integers with single instructions, and to address a large 

address space efficiently. When processing 32-bit data, a 16-bit architecture will take at 

least two instructions to perform the same task as a single ARM instruction. However, 

not all the code in a program will process 32-bit data (for example, code that performs 

character string handling), and some instructions, like Branches, do not process any data 

at all. If a 16-bit architecture only has 16-bit instructions, and a 32-bit architecture only 

has 32-bit instructions, then overall the 16-bit architecture will have better code density, 

and better than one half the performance of the 32-bit architecture. Clearly 32-bit 

performance comes at the cost of code density. THUMB breaks this constraint by 

implementing a 16-bit instruction length on a 32-bit architecture, making the processing 

of 32-bit data efficient with a compact instruction coding. This provides far better 

performance than a 16-bit architecture, with better code density than a 32-bit architecture. 

THUMB also has a major advantage over other 32-bit architectures with 16-bit 

instructions. This is the ability to switch back to full ARM code and execute at full speed. 

Thus critical loops for applications such as 

• Fast interrupts 

• DSP algorithms 

can be coded using the full ARM instruction set, and linked with THUMB code. The 

overhead of switching from THUMB code to ARM code is folded into sub-routine entry 

time. Various portions of a system can be optimized for speed or for code density by 

switching between THUMB and ARM execution as appropriate. 

 

3.7 Exception and interrupt handling 
 

At the heart of an embedded system lie the exception handlers. They are responsible for 

handling errors, interrupts, and other events generated by the external system. Efficient 

handlers can dramatically improve system performance. The process of determining a 

good handling method can be complicated and challenging. 
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An exception changes the normal sequential execution of instructions. The ARM 

processor has seven exceptions that can halt the normal sequential executions: Data 

Abort, FIQ, IRQ, Prefetch Abort, Software Interrupt, Reset, and Undefined Instruction. 

Each exception has an associated ARM processor mode. When exception is raised, the 

processor goes into a specific mode and branches to an entry in the vector table. Each 

exception also has a priority level. 

Interrupts are special type of exception that are caused by an external peripheral. The 

IRQ exception is used for general operating system activities. The FIQ exception is 

normally reserved for a single interrupt source. 

 

3.8 Using FPGAs with ARM Processors 
 

FPGAs are known for providing designers with several benefits in system design. One of 

the most important has been lessening the time to market. The quicker a company gets its 

products to market, the more market share it can capture from its competitors. This could 

mean millions of dollars in income to an established company and make or break a young 

company. Another major benefit that FPGAs provide is flexibility. Designers can modify 

their design up to the day that the product is released to customers. And now with the 

concept of Internet Reconfigurable Logic (IRL), designs can be modified even after they 

are shipped to customers. More recently, FPGAs have become attractive for other 

reasons. Because the FPGA cost per gate has come down significantly, there is no longer 

a ‘price penalty’ associated with the benefits of programmable logic. FPGAs have 

become an attractive option in many high volume applications. FPGA density having 

dramatically increased, Xilinx is now shipping multi-million gate devices. Certainly, this 

number will continue to climb in the future. This trend not only allows the design 

engineer to consider programmable logic for larger designs, but also allows them to 

absorb the functionality of other on-board chips. Fewer chips mean lower cost and easier 

board layout. And finally, there is the benefit of performance. Application Specific 

Integrated circuits (ASICs) built with cutting edge technology will always be faster, but 

FPGAs are close behind. Along with better on-chip performance, the I/O performance in 

Xilinx FPGAs has improved.  One of the ways used to improve I/O performance and 

provide more flexibility was the introduction of Select I/O, which gives the designer the 
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ability to choose an I/O standard suited of his system design. With the Xilinx FPGA’s 

flexible Select I/O feature, programmable logic chips can now interface with almost any 

other component. Xilinx has already documented how to interface with an array of 

memories and peripheral busses. Xilinx has created the Memory Corner as a one-stop 

memory shop, providing solutions for leading edge memory technology.  
 

Another component that is found in almost every system is the microprocessor, which 

comes in many flavors to suit system needs. The ARM microprocessor has gained 

popularity because of its features, peripherals, low power, and flexibility. 

 

3.9 ARM as a standard component 
 

Even tough ARM is mostly used as a processor core in SoC and other ASICs have some 

manufacturers brought ARM based standard products to market. Examples of 

manufacturers are Atmel, Cirrus Logic, Hyundai, Intel, Oki, Samsung and Sharp. Most of 

the products are based on 7TDMI-core, some to 720Tand 920T-cores.In addition, there 

are a number of ASSP (Application Specific Standard Product) -chips available for 

example to communication applications (Philips VWS22100 = ARM7 based GSM base 

band chip) using ARM processor as a core.  

 

3. 10 Tool set of ARM processor 
 
3.11 Applications of ARM processors 

ARM processors are found in numerous market segments, including networking, 

automotive, mobile and consumer devices, mass storage, and imaging. Within each 

segment ARM processors can be found in multiple applications. 
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 For example, the ARM processor is found in networking applications like home 

gateways, DSL modems for high speed Internet communication, and 802.11 wireless 

communications. The mobile device segment is the largest application area for ARM 

processors because of mobile phones. ARM processors are also found in mass storage 

devices such as hard drives and imaging products such as inkjet printers-applications that 

are cost sensitive and high volume. 
 

In contrast, ARM processors are not found in applications that require leading-edge high 

performance. Because these applications tend to be low volume and high cost, ARM has 

decided not to focus designs on these types of applications. 
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CHAPTER 4 
 

NIOS_II PROCESSOR 

4.1 Introduction  
 

A Nios II processor system is equivalent to a microcontroller or “computer on a chip” 

that includes a CPU and a combination of peripherals and memory on a single chip. The 

term “Nios II processor system” refers to a Nios II processor core, a set of on-chip 

peripherals, on chip memory, and interfaces to off-chip memory, all implemented on a 

single Altera chip. Like a microcontroller family, all Nios II processor systems use a 

consistent instruction set and programming model. 

 

4.2  Nios II Processor System Basics 
 

The Nios II processor is a general-purpose RISC processor core, providing: 

• Full 32-bit instruction set, data path, and address space 

• 32 general-purpose registers 

• 32 external interrupt sources 

• Single-instruction 32 *32 multiply and divide producing a 32-bit result 

•  Dedicated instructions for computing 64-bit and 128-bit products of 

multiplication 

• Floating-point instructions for single-precision floating-point operations 

• Single-instruction barrel shifter 

• Access to a variety of on-chip peripherals, and interfaces to off-chip 

memories and peripherals 

• Hardware-assisted debug module enabling processor start, stop, step and 

trace under integrated development environment (IDE) control 

• Software development environment based on the GNU C/C++ tool chain 

and Eclipse IDE 
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• Integration with Altera's Signal Tap(r) II logic analyzer, enabling real 

time analysis of instructions and data along with other signals in the 

FPGA design 

• Instruction set architecture (ISA) compatible across all Nios II processor 

systems 

• Performance up to 250 DMIPS 

 

4.3 Performance Parameters (NIOS_II) 
 

These parameters are the actual performance parameters of the system, which were 

obtained after implementing the system design. The actual system performance 

parameters are: 

Power supply—DC voltage: 9 – 12 V; operating current: 600 mA (motherboard current 

is about 200 mA); power consumption: 10 W 

Environment—operating temperature: 0° C – 40° C; relative humidity: 8% – 95% 

Input image—Mode: two-channel asynchronous image; data format after digitalization:  

CCIR-656 

Display—LCD resolution: 640 x 480; LCD display area: 16 cm² or 6.4 inch²; LCD 

display color depth: 6-bit/RGB 

Storage—Storage image resolution: 640 x 480; storage image color depth: 8-bit, JPEG; 

storage image capacity: about 100 Kbytes/image; image storage total cycle: < 

0.5 s/2 images 

Transmission time—about 1 minute/image (depending on local network condition) 

 

4.4 Configurable Soft-Core Processor 
 

The Nios II processor is a configurable soft-core processor, as opposed to a fixed, off-the-

shelf micro controller. In this context, “configurable” means that features can be added or 

removed on a system-by-system basis to meet performance or price goals. “Soft-core” 

means the CPU core is offered in “soft” design form (i.e., not fixed in silicon), and can be 

targeted to any Altera FPGA family. In other words, Altera does not sell “Nios II chips”; 

Altera sells blank FPGAs. It is the users that configure the Nios II processor and 
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peripherals to meet their specifications, and then program the system into an Altera 

FPGA. Configurability does not mean that designers must create a new Nios II processor 

configuration for every new design. Altera provides readymade Nios II system designs 

that system designers can use as-is. If these designs meet the system requirements, there 

is no need to configure the design further. In addition, software designers can use the 

Nios II instruction set simulator to begin writing and debugging Nios II applications 

before the final hardware configuration is determined. 

 

4.5 Designing with Nios II and SOPC Builder 

SOPC Builder is a powerful system development tool for creating systems based on 

processors, peripherals, and memories. SOPC Builder enables you to define and generate 

a complete system-on-a-programmable-chip (SOPC) in much less time than using 

traditional, manual integration methods. SOPC Builder is included in the Quartus II 

software and is available to all Altera customers. Many designers already know SOPC 

Builder as the tool for creating systems based on the Nios® II processor. However, SOPC 

Builder is more than a Nios II system builder; it is a general-purpose tool for creating 

arbitrary SOPC designs that may or may not contain a processor. SOPC Builder 

automates the task of integrating hardware components into a larger system. Using 

traditional system-on-chip (SOC) design methods, you had to manually write top-level 

HDL files that wire together the pieces of the system. Using SOPC Builder, you specify 

the system components in a graphical user interface (GUI), and SOPC Builder generates 

the interconnect logic automatically. SOPC Builder outputs HDL files that define all 

components of the system, and a top-level HDL design file that connects all the 

components together. SOPC Builder generates both Verilog HDL and VHDL equally, 

and does not favor one over the other.  
 

In addition to its role as a hardware generation tool, SOPC Builder also serves as the 

starting point for system simulation and embedded software creation. SOPC Builder 

provides features to ease writing software and to accelerate system simulation.  
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An SOPC Builder component is a design module that SOPC Builder recognizes and can 

automatically integrate into a system. SOPC Builder connects multiple components 

together to create a top-level HDL file called the system module. 
 

SOPC Builder components are the building blocks of the system module. SOPC Builder 

components use the Avalon interface for the physical connection of components, and you 

can use SOPC Builder to connect any logical device (either on-chip or off-chip) that has 

an Avalon interface.  
 

The Avalon interface uses an address-mapped read/write protocol that allows master 

components to read and/or write any slave component. 
 

Altera and third-party developers provide ready-to-use SOPC Builder components, such 

as: 

 Microprocessors, such as the Nios II processor 

 Micro controller peripherals 

 Timers 

 Serial communication interfaces, such as a UART and a serial peripheral 

interface (SPI) 

 General purpose I/O 

 Digital signal processing (DSP) functions 

 Communications peripherals 

 Interfaces to off-chip devices 

• Memory controllers 

• Buses and bridges 

• Application-specific standard products (ASSP) 

• Application-specific integrated circuits (ASIC) 

• Processors 

4.6 Custom instruction 

With the Altera Nios_II embedded processor, system designers can accelerate time- 

critical software algorithms by adding custom instructions to the Nios instruction set. 
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With custom instructions, system designers can reduce a complex sequence of standard 

instructions to a single instruction implemented in hardware. System designers can use 

this feature for a variety of applications, e.g., to optimize software inner loops for digital 

signal processing (DSP), packet header processing, and computation-intensive 

applications. The Nios II CPU configuration wizard, which is accessed via the Quartus_II 

software’s SOPC Builder, provides a graphical user interface (GUI) used to add up to 256 

custom instructions to the Nios II processor. 

The custom instruction logic connects directly to the Nios II arithmetic logic unit (ALU) 

as shown in Figure 4.1 

 
 

Figure 4.1 Custom instruction logic 

 
With Nios II processor custom instructions, system designers are able to take full 

advantage of the flexibility of FPGAs to meet system performance requirements. Custom 
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instructions allow system designers to add custom functionality to the Nios II processor 

ALU. 

Nios II processor custom instructions are custom logic blocks adjacent to the ALU in the 

CPU’s data path. This gives system designers the ability to tailor the Nios II processor 

core to meet the needs of a particular application. System designers have the ability to 

accelerate time critical software algorithms by converting them to custom hardware logic 

blocks. Because it is easy to alter the design of the FPGA-based Nios II processor, 

custom instructions provide an easy way to experiment with hardware/software trade-offs 

during an embedded system’s implementation phase—rather than the specification phase. 

 

4.7 Custom Instruction Architecture 
 

Combinatorial custom instruction architecture consists of a logic block that is able to 

complete in a single clock cycle. 

Figure 4.2 shows a block diagram of combinatorial custom instruction architecture. 

 
Figure 4.2 Combinatorial Custom Logic 

The figure combinatorial custom instruction diagram uses data a [31..0] and data b[31..0] 

ports as inputs and drives the results on the result [31..0] port. Because the logic is able to 

complete in a single clock cycle, control signals are not needed. 
 

Figure 4.3 shows a simple, multiply-accumulate custom logic block. 
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Figure 4.3 Multiply-Accumulate custom logic block      
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CHAPTER 5 

POWERPC PROCESSOR 

 
5.1 Introduction 

PowerPC is a microprocessor RISC-based instruction set architecture (ISA) developed in 

1991 by IBM, Motorola (now Freescale Semiconductor), and Apple Computer. A new 

version of the PowerPC ISA will be released in August 2006 by the Power.org™ Power 

Architecture™ Advisory Council (PAAC). This new version—Power ISA™ 2.03—is a 

component of the Power Architecture platform, which also consists of a broad 

community of supporters, software and tools, and products that are built on the Power 

Architecture platform. Given its wide use, PowerPC version 1.x will continue to be the 

basis of some products in the marketplace. 

 

The PPC405 is a 32-bit implementation of the PowerPC embedded-environment 

architecture that is derived from the PowerPC architecture. Specifically, the PPC405 is an 

embedded PowerPC 405D5 processor core. 

The PowerPC architecture provides a software model that ensures compatibility between 

implementations of the PowerPC family of microprocessors. The PowerPC architecture 

defines parameters that guarantee compatible processor implementations at the 

application-program level, allowing broad flexibility in the development of derivative 

PowerPC implementations that meet specific market requirements. 

 

5.2 PPC405 Features 

 

The PPC405 processor core is an implementation of the PowerPC embedded-

environment architecture. The processor provides fixed-point embedded applications 

with high performance at low power consumption. It is compatible with the PowerPC 

UISA.  

Key features of the PPC405 include: 
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• Embedded PowerPC 405 (PPC405) core  

• Embedded 400 MHz, 600+ DMIPS RISC core (32-bit Harvard 

architecture)  

• 5-stage data path pipeline  

• Hardware multiply and divide  

• 32 x 32-bit general-purpose registers  

• 16 KB 2-way set-associative instruction and data caches  

• Memory Management Unit (MMU) enables RTOS implementation  

• Flexible memory management 

• 64-entry unified Translation Look-aside Buffers (TLB)  

• Variable page sizes (1KB - 16 KB)  

• Enhanced instruction and data On-Chip Memory (OCM) controllers 

interface directly to embedded Block RAM  

• Supports IBM Core Connect bus architecture  

• Debug and trace support  

• Advanced power management support 

• Minimized interrupt latency 

• Timer facilities -programmable interval timer (PIT), fixed interval timer 

(FIT), and watchdog timer (All are synchronous with the time base) 

 

55..33  PPoowweerrPPCC  AArrcchhiitteeccttuurree  OOvveerrvviieeww  

The PowerPC architecture is a 64-bit architecture with a 32-bit subset. In general, the 

PowerPC architecture defines the following: 

• Instruction set 

• Programming model 

• Memory model 

• Exception model 

• Memory-management model 

• Time-keeping model 
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Instruction Set 

The instruction set specifies the types of instructions (such as load/store, integer 

arithmetic, and branch instructions), the specific instructions, and the encoding used for 

the instructions. The instruction set definition also specifies the addressing modes used 

for accessing memory. 

 

Programming Model 

The programming model defines the register set and the memory conventions, including 

details regarding the bit and byte ordering, and the conventions for how data are stored. 

 

Memory Model 

The memory model defines the address-space size and how it is subdivided into pages. It 

also defines attributes for specifying memory-region cacheability, byte ordering (big-

endian or little endian), coherency, and protection. 

 

Exception Model 

The exception model defines the set of exceptions and the conditions that can cause those 

exceptions. The model specifies exception characteristics, such as whether they are 

precise or imprecise, synchronous or asynchronous, and maskable or non-maskable. The 

model defines the exception vectors and a set of registers used when interrupts occur as a 

result of an exception. The model also provides memory space for implementation-

specific exceptions. 

 

Memory-Management Model 

The memory-management model defines how memory is partitioned, configured, and 

protected. The model also specifies how memory translation is performed, defines special 

memory-control instructions, and specifies other memory-management characteristics.  

 

Time-Keeping Model 

The time-keeping model defines resources that permit the time of day to be determined 

and the resources and mechanisms required for supporting timer-related exception 
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5.4 PPC405 Organization 

As shown in Figure 5.1 the PPC405 processor contains the following elements:  

• A 5-stage pipeline consisting of fetch, decode, execute, write-back, and load write 

back stages 

• A virtual-memory-management unit that supports multiple page sizes and a variety 

of storage-protection attributes and access-control options 

• Separate instruction-cache and data-cache units 

• Debug support, including a JTAG interface 

• Three programmable timers 

 

The following sections provide an overview of each element. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 PPC405 Organization 

 

5.5 PowerPC Embedded-Environment Architecture 

 

The PowerPC embedded-environment architecture is optimized for embedded 

controllers. This architecture is a forerunner to the PowerPC Book-E architecture. The 
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PowerPC embedded-environment architecture provides an alternative definition for 

certain features specified by the PowerPC VEA and OIA. Implementations that adhere to 

the PowerPC embedded-environment architecture also adhere to the PowerPC UISA. 

PowerPC embedded-environment processors are 32-bit only implementations and thus do 

not include the special 64-bit extensions to the PowerPC UISA. Also, floating-point 

support can be provided either in hardware or software by PowerPC embedded-

environment processors. 

 

5.6 Timer Resources 

The PPC405 supports several timer resources that can be used for a variety of time-

keeping functions. Possible uses of these timer resources include: 

 Time-of-day computation. 

 Data-logging for system-service routines. 

 Periodic servicing of time-sensitive external devices. 

 Preemptive multitasking. 

The timer resources supported by the PPC405 consist of: 

• Two timer registers: 

• A 64-bit incrementing timer called the time-base. 

• A 32-bit decrementing timer called the programmable-interval timer. 

• Three timer-event interrupts: 

• A watchdog-timer interrupt that provides the ability to set critical interrupts that 

can aid in recovery from system failures. 

• A programmable-interval timer interrupt that provides the ability to set non 

critical variable-time interrupts. 

• A fixed-interval timer interrupt that provides the ability to set non-critical 

interrupts with a fixed, repeatable time period. 

• A timer-control register for setting up and controlling the timer events. 

• A timer-status register for recording timer-event status. 

 

5.7 Tool set of PowerPC processor 
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CHAPTER 6 
COMPARISION OF ARM PROCESSOR AND NIOS II PROCESSOR  

 

Based on the study of ARM processor and NIOS_II processor the summary of features 

are listed out and shown in Table 6.1 

Table 6.1 Summary of features of ARM processors and NIOS_II processor 

 

Sr. 

no 

Parameter Nios_II Arm7TDMI 

1. Type of processor RISC RISC 

2. Size of data bus  32 bit 32 bit 

3. Size of address bus  32 bit 32 bit 

4. No. of general-purpose 

registers 

32# of 32 bit size 31# of 32 bit size (16 

are visible) 

5. No. of control registers 06# of 32 bit size 06# of 32 bit size 

6. Form of processor Soft processor ( to be 

implemented on FPGA) 

In form of soft 

processor as well as 

hard processor 

7. Type of architecture Havard type 

( Separate instruction bus and 

Data Bus) 

Von Neumann type  

8. Exception support 32 external interrupt sources Interrupt controller is 

required 

9. Exception Types 

 

1. Hardware interrupt (32#) 

2. Software interrupt- TRAP 

instruction  

3 Unimplemented 

instruction- Mul, muli, 

mulxss, mulxsu, Mulxuu, div, 

divu 

1. Fast interrupt 

2. Normal interrupt 

3. Memory aborts 

4. Attempted 

execution of 

undefined 

instruction 

- 30 - 



RTL Design of RISC Processor for DSP Application                                     Comparison of Arm 
                                                                                                                          & Nios II Processor 
 

4. Other-defined at the time of 

publishing e.g. for MMU  

5. Software interrupt 

(SWI-instruction) 

10. Instruction customization Possible (example-MAC) Not possible 

(MACRO is possible) 

11. Nature of memory and 

I/O organization 

As NIOS-II is configurable 

memory and I/O mapping is 

done at system generation 

system time.  

 

12. I/O organization Memory-mapped -32 bit. Same 

space is used for memory and 

I/O 

Memory-mapped -32 

bit. Same space is 

used for memory and 

I/O 

13. Software development 

environment/ 

Cross compiler support 

C/C++ Armasm assembler 

14. Performance 31 DMIPS (nios_II/e) 

127 DMIPS (nios_II/s) 

218 DMIPS (nios_II/f) 

0.97 MIPS/MHz 

15. Reset Signals Global and cpu_reset Global and cpu_reset 

16. Cache memory For both data and instruction For both data and 

instruction 

17. Cache memory size (on 

chip) 

512 bytes to 64 Kbytes 512 bytes to 96 

Kbytes 

18. Debug Using JTAG  Using JTAG 

19. Mode of operation 1. User mode 

2. Supervisor mode 

  1. User mode 

3. Supervisor 

mode 

4. System mode 

5. Interrupt 

request 
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6. Fast interrupt 

7. Abort mode 

8. Undefined 

mode 

20. Addressing Modes 

 

1. Register addressing 

2. Displacement 

addressing 

3. Immediate addressing 

4. Register indirect 

addressing 

5. Absolute addressing 

 

1.    data processing 

2.   load and store 

coprocessor 

3.   load store 

multiple 

4.   load and store 

word or  

  unsigned byte  

miscellaneous    

loads/ stores 

 

21. Instruction Set 32- bit instruction set 32- bit ARM 

instruction set 

16- bit THUMB 

instruction set 

22. Instruction Set category 

 

1. Data Transfer -LDW-

load from memory 

2. Arithmetic & Logical –

XOR, SUB 

3. Move-MOVI 

4. Comparison -CMPGT 

5. Shift & Rotate-ROL, 

SLL 

6. Program Control-

CALL, JMP 

7. Other Control 

Instructions-TRAP, 

1. Data 

processing 

2. Arithmetic 

3. Multiplication 

4. Logical 

5. Comparison 

6. Shift rotate 

7. Branch  

8. Exception 

9. Load/ store 

instruction 

10. Co-processor 
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BREAK 

8. Custom Instructions-

can be implemented 

9. No Operation-NOP 

 

instruction 

23. Device Support 

 

Altera FPGAs 

1. Stratix® 

2. Stratix II 

3. CycloneTM 

   4.   Cyclone II 

Actel FPGAs 

 

24. No. of pipe line stages Six stage (nios_II/f) 

Fetch-Decode-Execute-

Memory-Align-Write back 

3 stage 

Fetch-Decode-

Execute 

25. Instruction word format 

 

 

Three categories: 

1. I-type- 

               6 bit opcode field  

               Two 5-bit reg, fields 

              16-bit immediate data  

Exe. ADDI RB RA 16- BIT 

DATA 

2. R-type, and 

               6 bit opcode field  

               three  5-bit reg, fields 

              11-bit opcode 

extension field 

Exe. ADD RB RA RC 

3. J-type. 

               6 bit opcode field  

              26-bit immediate data 

Exe  CALL label 

32-bit format (no 

various cateqories) 

26. Max frequency of   200 MHz (nios_II/e) 60-110 MHz 
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operation: 

Fmax  

 165 MHz (nios_II/s) 

 185MHz (nios_II/f) 

27. Power Consumption System specification stratix 

based - DC voltage: 9 – 12 V; 

operating current: 600 mA 

(motherboard current is about 

200 mA);  

 

Voltage- 1.8 V 

Power consumption- 

.25mW 

28. Parallelism in 

FPGA…?How..? 

Multiprocesor support in  

HW(Max.. how many..In 

what 

configuration…Linear- 

mesh.- Matrix, Cube and  

SW-(C/C++ and IDE 

support) 

 Possible- multiprocessor 

design is possible 

Possible- 

multiprocessor design 

is possible 

29. External memory 

addressing and  size 

Automated & 2GB              4 GB 

30. DMA Data  transfer 

support 

Yes Yes 

 

In order to get best RISC processor for DSP application, the studies of various processor 

cores such as ARM processor, NIOS_II processor, PowerPC. is carried out. The reason to 

study said cores is that these are available in form of soft core module so it can be down 

loaded to FPGA. We can modify the logic as per our application or we can do value 

addition 

As a conclusion, based on study of various cores, I have following points  

 

ARM processor is better compared to others in following aspects 

1. barrel shifter 

- 34 - 



RTL Design of RISC Processor for DSP Application                                     Comparison of Arm 
                                                                                                                          & Nios II Processor 
 

In line barrel shifter is a hardware component that preprocessed one of the 

input registers before it is used by an instruction. This expands the 

capability of many instructions to improve core performance and density 

e.g  Suppose R0=0x00000000 

                 R1=0x00000005 

ADD RO R1, R1, LSL #1 

After execution of above instruction 

The content of above two registers will be as below 

     R0=0x0000000F 

                R1=0x00000005 

2. Load store multiple instructions 

To transfer multiple registers between memory and the processor 

in a single instructions. 

   e.g to load three registers from memory 

    LDMIA R0!, {R1-R3} 

    R0 is the base address 

    IA -increment after (specify addressing mode) 

                   Other addressing modes are IB, DA, DB 

3. Thumb instruction set 

That permits the ARM core to execute either 16 or 32 bit 

instructions. The 16-bit instructions improve code density by about 

30% over 32-bit fixed length instructions. 

e. g.  To Divide the content of R0 by R1 

 

 ARM CODE 

 

              MOV R3, #0 

LOOP1:  SUB R0, R0, R1 

  ADDGE R3, R3, #1 

  BGE LOOP1 

              ADD R2, R0,R1 
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Code size: 5*4=20 bytes 

 

THUMB CODE 

 

             MOV R3, #0 

LOOP2:  ADD R3, #1 

  SUB R0, R1 

             BGE LOOP2 

  SUB R3, #1 

  ADD R2, R0, R1 

 

Code size: 6*2=12 bytes 

 

3. conditional execution 

An instruction is only executed when specific condition has been satisfied. 

This feature improve performance and code density by reducing branch 

instructions 

e.g.  ADDEQ   R1, R2, #4 

4. Enhanced instructions: 

a. Parallel arithmetic  

  Half word or byte wise addition or substraction 

  e. g.  ADD16 R2, R3, R4 

           SUB8 R3, R4, R5 

                  Half word or byte wise exchange, addition and substraction 

               e. g.  ADDSUBX R1, R3,R4 

 

b. The enhanced DSP instructions were added to standard Arm Instruction to 

support fast multiplier operation  

 DSP instructions 

• Multiply, add and accumulate 

   e. g. MLA R1, R2, R3, R4 
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Parallel arithmetic  

• Half word or byte wise addition or subtraction 

   e. g.  ADD16 R2, R3, R4 

                     SUB8 R3, R4, R5 

• Half word or byte wise exchange, addition and subtraction  

                               e.g   ADDSUBX R1, R3,R4 

 

5. Has count leading zero instructions 

This instruction counts the no. of zeros between the MSB and first bit set to 1 

CLZ R0, R1 

 

About 75 % of core in embedded system is of ARM processor. 

 

PowerPC is better compared to others in following regards 

1. Performance 

Processor Maximum 

frequency  

Performance 

PowerPC 450Mhz  700 MIPS  

NIOS_II 185 Mhz  218  MIPS  

ARM 60-110 Mhz 0.97 MIPS/Mhz 

 

Table 6.2 Processor Performance Evaluation 

2. Timer facility 

16-bit incremental count timer for three modes 

 a. watchdog timer 

 b. fixed interval timer 

 c. programmable timer 

Nios_II is better compared to others in following  
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Custom Instruction  

The soft-core nature of the Nios II processor lets designers integrate custom logic into the 

arithmetic logic unit (ALU). Similar to native Nios II instructions, custom instructions 

accept values from up to two 32-bit source registers and optionally write back a result to 

a 32-bit destination register. By using custom instructions, The system designers can fine-

tune the system hardware to meet performance goals and also the designer can easily 

handle the instruction as a macro in C/C++. 

Custom Peripherals  

System designers also can create their own custom peripherals that can be integrated with 

Nios II processor systems. For performance-critical systems that spend most CPU cycles 

executing a specific section of code, it is a common technique to create a custom 

peripheral that implements the same function in hardware. Using this approach, 

performance is doubled: the hardware implementation is faster than software; and the 

processor is free to perform other functions in parallel while the custom peripheral 

operates on data. 

Based on Instruction set strength, we can compare processors as below: 

Parameter ARM NIOS_II PowerPC 

 Size  32-bit & 16-bit  32 bit  32 bit 

 Code compactness  Possible using 

 Thumb instruction 

 Not possible  Not possible 

 Custom instruction  Not possible  By adding custom

 logic 

 Not possible 

 Types of instructions  10  9  9 

 Special instructions  Parallel arithmetic 

 CLZ 

-  Timer based 

 

Table 6.3 Instruction Set Evaluation 

 

Processors are compared based on exceptions/interrupts are as follow 
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Parameter ARM NIOS_II PowerPC 

H/w interrupt Support Support Support 

Software interrupt SWI TRAP TW 

Other interrupts Undefined 

instruction 

Unimplemented 

instruction- 

Timer out 

     

Table 6.4 Exception Evaluation 

 

Hence ARM processor is more suitable for DSP application. We can customize some 

instructions based on DSP application to get the best outcomes. 
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CHAPTER 7 
RISC PROCESSOR SPECIFICATIONS 

 
GENERAL SPECIFICATIONS OF RISC PROCESSOR 
 

Sr. no Parameter Value 

1.  Type of processor RISC 

2.  Size of data bus  32 bit 

3.  Size of address bus  32 bit 

4.  ALU 32 bit 

5.  No. of general-purpose registers 32# of 32 bit size 

6.  Form of processor Soft processor (to be implemented on 

FPGA) 

7.  I/O organization Memory-mapped -32 bit. Same space is 

used for memory and I/O 

8.  Reset Signals Global and cpu reset 

9.  Addressing Modes All general purpose 

10.  Instruction Set 32- bit instruction set 

11.  Instruction Set category 

 

All general purpose –data transfer to 

branch operations 

 
Table 7.1 RISC processor specifications 
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CHAPTER 8 

RTL DESIGN OF PROCESSOR  

8.1 Introduction 
The processor contains a number of basic blocks. There is a register bank of thirty two 

32-biut registers, an ALU, a Shifter, a program counter, an Instruction register, a 

comparator, an address register and instruction decoder. All these units communicate 

through common 32-bit tristate data bus. A block diagram is shown in Figure 8.1 

 

8.2 Arithmetic Logic Unit 

The first entity described is the ALU. This entity performs a number of arithmetic or 

logical operations on one or more input busses. A symbol is shown in Figure 8.2 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.2 ALU 

 
 
 

ARITHMATIC LOGIC UNIT 

   32-BIT A      32-BIT B 

SEL 

       32-BIT C 

 

Inputs A and B are the two 32-bit input busses upon which the ALU Operations are 

performed. Output bus C returns the result of the ALU operation. Input SEL determines 

which operation is performed as specified by Table 8.1 
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Block diagram of processor 
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Sel Input Operation Description 

0000 C<=A Data pass 

0001 C<=A AND B Addition 

0010 C<=A OR B Subtraction 

0011 C<=NOT A  Logical NOT 

0100 C<=A XOR B Logical AND 

0101 C<=A + B Logical OR 

0110 C<=A - B Logical XOR 

0111 C<=A +1 Increment 

1000 C<=A -1 Decrement 

1001 C<=0 Zero 

 

Table 8.1 ALU Function Table 

As we can see, the ALU can perform some arithmetic operations such as add & subtract, 

and some logical operations such as AND OR, XOR and NOT 

 

8.3 Comparator 

  

 

 

 

 

 

 

 

                                                                        Compout=‘1’ or ‘0’ 

 

 
 
 

COMPARATOR 

   32-BIT A      32-BIT B 

SEL 

Figure 8.3 Comparator 
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The next component described is the comparator. This entity compares two values and 

returns either a ‘1’ or ‘0’ depending on the type of comparison requested and values 

being compared. A symbol showing the ports of the comparator is shown in figure 8.3. 

The comparison type is determined by the value on input port SEL. The full table of 

comparison is shown in Table 8.2 

   

SEL input Comparison 

EQ Compout=’1’ when A equals B 

NEQ Compout=’1’ when A is not equal B 

GT Compout=’1’ when A is greater than B 

GTE Compout=’1’ when A is greater than or equal to B 

LT Compout=’1’ when A is less than B 

LTE Compout=’1’ when A is less than or equal to B 

 

Table 8.2-comparison operation table 

 

8.4 Register 

 

 

 

 

 

 

 

 

Figure 8.4 Register  

 
 
 

REGISTER 

   32-BIT A 

CLOCK 

       32-BIT C 

The register entity is used for address register and instruction register. These registers 

need to be able to capture the input data (32-bit A) on a rising edge of the clock input and 
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drive output C with the captured data. Thus the value of input A is assigned to output C 

when a rising edge occurs on input clock. A symbol for the register entity is shown in 

figure 8.4 

 

8.5 Tri-State Register  

This is one more component of the CPU. The tristate register is connected to main data 

bus and can store information from the data bus as well as drive information to the data 

bus. It has four ports as shown in Figure 8.5 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 8.5 Tristate Register 

 
 
 

TRI-STATE  REGISTER 

   32-BIT A 

CLOCK 

       32-BIT C 

ENABLE 

 

 Input A is data input to the register, and port C is the data output from register. Input 

clock is used to store a new value into register. When a rising edge is applied to input 

clock, the data on input A is stored in the register. The Enable is used to control output C. 

when enable is a ‘1’ value the register state is driven to output C . when it is a ‘0’, output 

C is a high impedance value and not driving. 

 

8.6 Register Array 

There are 32# of 32-bit registers. The register array entity is used to model the set of 

registers within the CPU that are used to store intermediate values during instruction 
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processing. These registers are read from and written to during the execution of 

instructions. The set of registers is modeled as a RAM of thirty-two 32-bit words. The 

symbol for the register array is shown in       figure 8.6. To write a location in the 

regarray, set the input SEL to the location to be written, input data with the data to be 

written, and put the rising edge on input clock. To read a location from regarray, set the 

input SEL to the location to be read and set input enable to a ‘1’. The data is output on 

port C 

 

 

 

 

 

 

 

 

 

 
 
 

REGISTER ARRAY 

   32-BIT A 

CLOCK 

       32-BIT C 

ENABLE 

         SEL 

Figure 8.6 Register Array 
 

8.7 Shift And Rotate Logic Circuit 

The next device to be described is the shift rotate entity. This entity is used to perform 

shifting and rotation operations within the CPU. Te shift rotate entity has a 32-bit input 

bus(A) , a 32-bit output bus(C) and SEL input that determines which shift/rotate 

operation to perform. This entity is shown by the symbol in Figure 8.7 

Shift pass mode allows the shifter to pass the input data to the output without any shift 

operations. This mode is quite common because all of the ALU operations flow through 

the shift entity. Table 8.3 shows a list of operations, which can perform by shift rotate 

logic. 
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       32-BIT C 

 
 
 

SHIFT ROTATE LOGIC 

   32-BIT A 

SEL 

 

Figure 8.7 Shift Rotate Entity 

 

SEL Operation 

Shiftpass Shift pass 

SHL Shift left 

SAR Shift right (logical) 

SAR Shift right (arithmetic) 

ROTL Rotate Left 

ROTR Rotate right 

 

Table 8.3-shift operations 
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8.8 Instruction Decoder And control logic 

Instruction Decoder entity provides the necessary signal interactions to data flow 

properly through CPU and performs the expected functions. This design is based on the 

state machine. For state machine the next state is produced based on the current state and 

input signals. The instruction decoder unit has very less no.s of inputs and large no.s of 

output. A symbol for the instruction decoder is shown in Figure 8.8  

 

 

                  Reset      ALU Sel 

          Clock      Shift Sel  

         Comp Sel 

                    Instruction Reg      Reg Sel 

       VMA   

      Compout      R/W 

       PC Write 

          Ready      Addr Reg Write 

                   Out Reg Write 

                         Op Reg Write 

                   Instr Reg Write 

          Reg Write 

                  PC read 

            Addr Reg Read 

                                                                                                           Out Reg Read 

              Op Reg Read 

                               Reg Read 

                                

  

 
 
 
 
 
 
 
 
 
 
 
 

Instruction 
Decoder and 
control logic 

Figure 8.8 Instruction Decoder Entity 

 

Instructions can be divided into a number of different types as follows: 
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Load-these instructions load register values from other registers, memory locations, or 

with immediate value given in the instruction. 

Store- these instructions store register values to memory locations. 

Branch-these instructions cause the processor to go to another location in the instruction 

stream. Some branch instructions test values before branching; others branch without 

testing. 

ALU- these instructions perform arithmetic and logical operations such as ADD, 

SUBTRCT, OR, AND, and NOT. 

Shift-These instructions use the shift unit to perform shift operations on the data passed to 

it. 

 

8.8.1 Types of instructions: 

1. Data transfer instructions 

2. Arithmetic instructions 

3. Logical instruction 

4. Shift-rotate instructions 

5. Branch instructions 

8.8.2 Instruction Set 

Following Table 8. 4 shows the details of instructions 

Types Instruction  Description Opcode 

(D31-

D27) 

NOP  No operation 00000 

LOAD  R from 

memory  

Load register (memory 

address is specified by 

register) 

00001 

STORE R to memory  Store register (memory 

address is specified by 

register) 

00010 

Data 

transfer 

instructions 

MOVE R to R Move register to register 00011 
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LODI Data to R Load register with 

immediate value 

00100 

ZERO R Zero a register 01111 

ADD R1 R2 R3 R1+R2->R3 01101 

SUB R1 R2 R3 R1-R2->R3 01110 

INC R Increment 00111 

Arithmetic 

instructions 

DEC R Decrement 01000 

NOT R Not a register value 01100 

AND R1 R2 R3 R1 and R2->R3 01001 

OR R1 R2 R3 R1 or R2->R3 01010 

Logical 

instruction 

XOR R1 R2 R3 R1 xor R2->R3 01011 

SHL R1 R2 Shift left R1 -> R2 11010 

SHR R1 R2 Shift right R1 -> R2 11011 

ROTL R1 R2 Rotate left R1 -> R2 11101 

Shift-rotate 

instructions 

ROTR R1 R2 Rotate right R1 -> R2 11100 

BRANCHI ADDRESS Direct unconditional branch 00101 

BRANCH R Indirect unconditional 

branch (address is in 

register) 

10101 

BRANCHGTI R1 R2 

ADDRESS 

Direct conditional branch 

If R1 is greater then R2 

00110 

BRANCHGT R3 R1 R2  Indirect conditional branch 

If R1 is greater then R2, 

(address is in register R3) 

10100 

Branch 

instructions 

BRANCHGT

EI 

R1 R2 

ADDRESS 

Direct conditional branch 

If R1 is greater then or 

equal to R2 

11110 
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BRANCHGT

E 

R3 R1 R2  indirect conditional branch 

If R1 is greater then or 

equal to R2, (address is in 

register R3) 

11111 

BRANCHLTI R1 R2 

ADDRESS 

Direct conditional branch 

If R1 is less then R2 

10000 

BRANCHLT R3 R1 R2  Indirect conditional branch 

If R1 is less then R2, 

(address is in register R3) 

10001 

BRANCHLT

EI 

R1 R2 

ADDRESS 

Direct conditional branch 

If R1 is less then or equal to 

R2 

11000 

BRANCHLT

E 

R3 R1 R2  Indirect conditional branch 

If R1 is less then or equal to 

R2, (address is in register 

R3) 

11001 

BRANCHEQI R1 R2 

ADDRESS 

Direct conditional branch 

If R1 equal to R2 

10111 

BRANCHEQ R3 R1 R2  Indirect conditional branch 

If R1 is equal to R2, 

(address is in register R3) 

10110 

BRANCHNE

QI 

R1 R2 

ADDRESS 

Direct conditional branch 

If R1 is not equal to R2 

10011 

BRANCHNE

Q 

R3 R1 R2  Indirect conditional branch 

If R1 is not equal to R2, 

(address is in register R3) 

10010 

 

Table8. 4 Instruction Set  

8.8.3 Instruction representation 

All instructions contain the opcode in five most significant bits of the instruction. Single 

word instructions also contain one or two or three 5-bit register field at LSB side 
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e.g. 

  MOV R1, R2 (1-word instruction) 

  

5-BIT OPCODE 

(5-bit) 

XXXXX……XX CODE FOR R1(5-

bit) 

CODE FOR R2(5-

bit) 

 

ADD R1, R2, R3 (1-word instruction) 

 

5-BIT OPCODE 

(5-bit) 

XXXXXX

……XX 

CODE FOR 

R1(5-bit) 

CODE FOR R2(5-

bit) 

CODE FOR 

R2(5-bit 

 

BRANCHI ADRDRESS (2-word instruction) 

 5-BIT OPCODE (5-bit) XXXXXX……XX 

ADRDRESS (32-bit ) 

 

 

8.9 System Level Design 

 

If the instruction is an add of two registers, the decoder would cause the first value to be 

written to Opreg for temporary storage. The second register value would be placed on the 

data bus. The ALU would be placed in add mode and result would be stored in register 

OutReg. Outreg would store the resulting value until it is copied to the final destination. 

 

When executing an instruction, a number of steps take place. The PC holds the address in 

memory of current instruction. After an instruction has finished execution, the PC is 

advanced to where the next instruction is located. If the processor is executing a linear 

stream of instructions, this is the next instruction. If a branch was taken, the PC is loaded 

with the next instruction location directly 
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Instruction decoder copies the PC value to the address register, which outputs the new 

address on the address bus. At the same time decoder sets R/W (read write signal) to a ‘0’ 

value for a read operation and sets VMA to a ‘1’, signaling the memory that the address 

is now valid. The memory decodes the address and places the memory data on the data 

bus , when the data has been placed on the data bus, the memory has set the ready signal 

to a ‘1’ value indicating that the memory data is ready for consumption. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     RESET 
 
 
 
CLOCK 
 
 
 
 
 
 
32-BIT 
 
PROCESSOR 

 
 
VMA 
 
 
ADREESS LINES 
 
R/W 
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          MEMORY 
 
READY  

 

Figure 8.9-system level Design 

 

The decoder causes the memory data to be written into instruction register. The decoder 

now has access to the instruction and decodes the instruction. The decoded instruction 

executes, and the process starts over again 
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CHAPTER 9 

RESULTS AND ANALYSIS  
9.1 Synthesis result 

 

Device utilization summary: 

Selected Device: v300pq240-6  

 Number of Slices:                      2597    out of   3072      84%   

 Number of Slice Flip Flops:           2984    out of   6144      48%   

 Number of 4 input LUTs:               3787    out of   6144     61%   

 Number of bonded IOBs:               2     out of    170      1%   

 Number of TBUFs:                       161     out of   3072      5%   

 Number of GCLKs:                        1     out of      4      25%   
 

Total memory usage is 132580 kilobytes 
 

9.2 block of data transfer 

Problem statement for system  

The program (shown in Appendix-b) will copy the block of data available at 

memory location 0000008H to 0000001B to new memory locations starting from 

00000020H and onwards 

Simulation results showing the address and data, VMA. Ready and R/w signals 

9.2.1 Initial phase 
 

 
Figure 9.1 simulation result for data transfer program (initial phase) 
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9.2.2 Phase shows the repetition of execution 
 

 
Figure 9.2 simulation results for data transfer program (phase shows repetition) 

 

Various control signals generated by Instruction decoder 
 

 
Figure 9.3 simulation for data transfer program (control signals from instruction 

decoder) 
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Contents of memory before data transfer 

 

// Memory data file (do not edit the following line - required for mem load use) 

// Instance=/processor/mem1/mem_data 

// Format=mti address radix=h data radix=s version=1.0 

 

 0: 00010000000000000000000000000001 00000000000000000000000000001011 

 2: 00110100000000000000010000100001 00101100000000000000010000100101 

 4: 00010000000000000000000000000011 00000000000000000000000000001010 

 6: 00010000000000000000000000000010 00000000000000000000000000010000 

 8: 00110100000000000000100001000010 00010000000000000000000000000110 

 a: 00000000000000000000000000100000 00100000000000000000000000000110 

 c: 00000100000000000000000000100100 00001000000000000000000010000010 

 e: 01010000000000000001010000100110 00011100000000000000000000000001 

10: 00011100000000000000000000000010 00010100000000000000000000001111 

12: 00000000000000000000000000001100 00000000000000000000000000000000 

14: 00000000000000000000000000000000 00000000000000000000000000000001 

16: 00000000000000000000000000000010 00000000000000000000000000000100 

18: 00000000000000000000000000001000 00000000000000000000000000010000 

1a: 00000000000000000000000000100000 00000000000000000000000001000000 

1c: 00000000000000000000000010000000 00000000000000000000000100000000 

1e: 00000000000000000000001000000000 00000000000000000000010000000000 

20: 00000000000000000000000000000000 

00000000000000000000000000000000 

22: 00000000000000000000000000000000 

00000000000000000000000000000000 

24: 00000000000000000000000000000000 

00000000000000000000000000000000 
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26: 00000000000000000000000000000000 

00000000000000000000000000000000 

28: 00000000000000000000000000000000 

00000000000000000000000000000000 

2a: 00000000000000000000000000000000 

00000000000000000000000000000000 
2c: 00000000000000000000000000000000 00000000000000000000000000000000 

2e: 00000000000000000000000000000000 00000000000000000000000000000000 

30: 00000000000000000000000000000000 00000000000000000000000000000000 

32: 00000000000000000000000000000000 00000000000000000000000000000000 

 

Contents of memory before data transfer 

 

// Memory data file (do not edit the following line - required for mem load use) 

// Instance=/processor/mem1/mem_data 

// Format=mti address radix=h data radix=s version=1.0 

 

 0: 00010000000000000000000000000001 00000000000000000000000000001011 

 2: 00110100000000000000010000100001 00101100000000000000010000100101 

 4: 00010000000000000000000000000011 00000000000000000000000000001010 

 6: 00010000000000000000000000000010 00000000000000000000000000010000 

 8: 00110100000000000000100001000010 00010000000000000000000000000110 

 a: 00000000000000000000000000100000 00100000000000000000000000000110 

 c: 00000100000000000000000000100100 00001000000000000000000010000010 

 e: 01010000000000000001010000100110 00011100000000000000000000000001 

10: 00011100000000000000000000000010 00010100000000000000000000001111 

12: 00000000000000000000000000001100 00000000000000000000000000000000 

14: 00000000000000000000000000000000 00000000000000000000000000000001 

16: 00000000000000000000000000000010 00000000000000000000000000000100 

18: 00000000000000000000000000001000 00000000000000000000000000010000 
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1a: 00000000000000000000000000100000 00000000000000000000000001000000 

1c: 00000000000000000000000010000000 00000000000000000000000100000000 

1e: 00000000000000000000001000000000 00000000000000000000010000000000 

20: 00000000000000000000000000000010 

00000000000000000000000000000100 

22: 00000000000000000000000000001000 

00000000000000000000000000010000 

24: 00000000000000000000000000100000 

00000000000000000000000001000000 

26: 00000000000000000000000010000000 

00000000000000000000000100000000 

28: 00000000000000000000001000000000 

00000000000000000000010000000000 

2a: 00000000000000000000000000000010 

00000000000000000000000000000000 
2c: 00000000000000000000000000000000 00000000000000000000000000000000 

2e: 00000000000000000000000000000000 00000000000000000000000000000000 

30: 00000000000000000000000000000000 00000000000000000000000000000000 

32: 00000000000000000000000000000000 00000000000000000000000000000000 

 

9.3 Shift logic 

Simulation result 

 
Figure 9. 4 Simulation result for shifter 

 

- 58 - 



RTL Design of RISC Processor for DSP Application                                  Results and Analysis 
 

Chip scope result 

 
Figure 9. 5 Chip scope result for shifter 

9.4 ALU Result 

Simulation result  

 

 
 

Figure 9. 6 simulation result for ALU 
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Chip scope result 

 

 
Figure 9. 7 Chip scope result for ALU 
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CHAPTER 10 
SUMMARY AND FUTURE SCOPE OF WORK 

10.1 Summary  

The project work entitled as “RTL design of RISC processor for DSP Application” is 

selected to carry out the work during September 2006-April 2007. During first phase of 

project work, literature survey is carried out to understand the basic architecture of 

Processor, general block diagram of the same, function of each block, instruction set of 

processor. The detailed study of various processors like ARM, NIOS_II, and PowerPC is 

also carried out  

RTL coding for RISC processor has been carried using VHDL. The design was download 

on Xilinx FPGA. The functionality is verified by executing a program for processor to 

transfer a block of data from memory to memory through register of register bank. The 

individual blocks like ALU and Shifter are simulated using Modelsim simulator. After 

down loading the same on the FPGA, the result is verified using Chip scope. 

 

10.2 Future work 

As in this dissertation work, the RTL design of RISC processor has been carried out; 

there is scope of further work. It is possible to design the DSP module and integration of 

the same can be done with designed processor. As memory is designed on same FPGA on 

which RISC processor is designed, it is also possible to enhance the performance of RISC 

processor by allocating more are of programmable Logic device and interface the same 

with external memory. The work can be extended by value addition in form to support 

the exceptions, enhancing the instruction set also. 
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APPENDIX-A 

 

 

RISC VS CISC 

 

A.  What is RISC? 

 

RISC (Reduced Instruction Set Computer): A computer architecture that reduces chip 

complexity by using simpler instructions. RISC compilers have to generate software 

routines to perform complex instructions that were previously done in hardware by CISC 

computers. In RISC, the microcode layer and associated overhead is eliminated. 

 

RISC keeps instruction size constant, bans the indirect addressing mode and retains only 

those instructions that can be overlapped and made to execute in one machine cycle or 

less. The RISC chip is faster than its CISC counterpart and is designed and built more 

economically. 

B. What is the comparison between RISC and CISC? 

The main characteristics of CISC microprocessors are: 

1) Extensive instructions. 

2) Complex and efficient machine instructions. 

3) Micro encoding of the machine instructions. 

4) Extensive addressing capabilities for memory operations. 

5) Relatively few registers. 

 

RISC processors have following traits: 

1) Reduction of the instruction set. 

2) Instruction pipelining (the interleaved execution of many instructions). 

3) Load/store architecture (only the load and store instructions have access to 

memory, all others work with the internal processor registers). 

4) Unity of RISC processors and compilers (the compiler is no longer developed for 
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a specific chip, but instead, at the outset, the compiler is developed in conjunction with 

the chip to produce one unit). 

 

C. Explain the performance evaluation of RISC and CISC 

The following equation is commonly used for expressing a computer's performance 

ability: 

 

TIME / PROGRAM = (TIME / CYCLE) * (CYCLES / INSTRUCTION) * 

(INSTRUCTIONS / PROGRAM) 

 

The CISC approach attempts to minimize the number of instructions per program, 

sacrificing the number of cycles per instruction. RISC does the opposite, reducing the 

cycles per instruction at the cost of the number of instructions per program. 

 

RISC Vs CISC instruction execution flow 

 

 
Figure A.1 RISC Vs CISC instruction execution flow 
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Block Diagram of typical RISC Processor 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.2 Block Diagram of typical RISC Processor 
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APPENDIX-B 

 

Assembly language Program to transfer a block of data 

This program will copy the block of data available at memory location 0000008H 

to 0000001B to new memory locations starting from 00000020H and onwards 

 

label Instruction  description 

XX: LOADI R1,08H Starting address of block of data is stored is R1 

 ADD R1,R1,R1 R1+R1->R1 (New Content Will Be 10H) 

 LOADI R5,00H Starting address of program is stored in R5 

 LOADI R2,10H Starting address of memory where data is to be 

transferred  is stored is R2 

 SHL R2, R2 Shift the content of R2 by 1 (new content in R2 is 20H) 

 LOADI R6,1BH Last address of block of data is stored is R6 

 DEC R6 Decrement R6 by 1 (new content in R6 is 1AH) 

YY: LOAD R4, R1 Load the data in dummy register R4 from memory 

location whose address is in R1 

 STORE R2 ,R4 Store  the data from dummy register R4 to memory 

location whose address is in R2 

 BRANCHGTI R1,R6, 

R5 

Indirect jump to memory location specified by R5 based 

on content of R1 and R6 

 INC R1 To locate next memory location from where new data is 

to be transferred 

 INCR2 To locate next memory location to where new data is to 

be transferred 

 BRANCHI YY To jump for next data transfer 

 

Table A.1 Assembly Language programme 
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