
“RTL DESIGN OF RISC PROCESSOR FOR
DSP APPLICATION”

 Major Project Report

Submitted in Partial Fulfillment of the Requirements for

Degree
 of

Master of Technology
In

Electronics & Communication Engineering
(VLSI Design)

By

Jayesh J. Patel
(05MEC011)

Under the Guidance of

Dr K. S. Dasgupta
Group Director (ADCTG),
SAC (ISRO)-Ahmedabad

Electronics & Communication Engineering Department Institute of
Technology

Nirma University of Science & Technology
Ahmedabad 382 481

May 2007

 - i -

CERTIFICATE

This is to certify that the Major Project Report entitled “RTL Design of

RISC Processor for DSP Application" submitted by Jayesh J Patel (Roll

No. 05MEC011) as the partial fulfilment of the requirements for award of

the degree of M.Tech (EC-VLSI Design) awarded by institute of

Technology, Nirma University, Ahmedabad embodies work carried out by

him under my supervision at Space Application Centre (ISRO),

Ahmedabad, Gujarat during w.e. f SEPTEMBER 2006-APRIL 2007.

Date: Dr. K. S. Dasgupta
Place: Group Director-ADCTG

SAC (ISRO)
Ahmedabad

 - ii -

CERTIFICATE

This is to certify that the Major Project Report entitled “RTL Design of

RISC Processor for DSP Application” submitted by Jayesh J Patel (Roll

No. 05MEC011) as the partial fulfilment of the requirements for the award

of the degree of Master of Technology in Electronics & Communication

(VLSI Design) of Institute of Technology Nirma University is the record of

work carried out by him under my/our supervision and guidance. The work

submitted has in our opinion reached a level required for being accepted for

the examination. The results embodied in this major project work to the best

of our knowledge have not been submitted to any other University or

Institution for award of any degree or diploma.

Date :
Place:

Facilitator at Institute
Prof. N. P. Gajjar Dr. N. M. Devashrayee
Nirma University PG Coordinator-VLSI Design
Ahmedabad

Prof. A. S. Ranade Prof. A. B. Patel
HOD Director
EC-Department Institute of Technology,
Nirma University Nirma University
Ahmedabad Ahmedabad

 - iii -

ACKNOWLEDGEMENT

It has been great pleasure for me in doing a major project work on RTL DESIGN OF

RISC PROCESSOR FOR DSP APPLICATION under Guidance of Dr. K. S. Dasgupta

Group Director, SAC. I am very grateful to him who assigned me a project under his

expert guidance in the ACTD/ADCTG Department, without his invaluable guidance the

work would have not been possible. His academic excellence continues to be a source of

inspiration. He always inspires us to put best efforts to achieve the goal.

I would like to express my sincere thanks to Prof. N. P. Gajjar for his kind, ordinal and

valuable guidance and support at every moment of the project His practical approach,

needful help encouraged me to do better work. His dedication to work always inspired

me to do task as a challenge.

I like to express thanks to Director, Dr. N. M. Devashrayee, PG coordinator-VLSI Design

and Institute for providing me such nice opportunity to do my dissertation work at the

prime organisation like SAC (ISRO) Ahmedabad.

I express my gratitude to Mr. RJK Jain Head, HRD department (SAC) who accepted my

candidature for dissertation work at SAC, ISRO Ahmedabad. I am very much thankful to

Shri Pinakin Thaker who has rendered their guidance and extended co-operation at all

times.

Thanks to my family members for their faith, colleagues for giving me support. Finally

thanks to God for helping me out at difficult times.

Jayesh J. Patel

05MEC011

 - iv -

ABSTRACT

In order to achieve better performance of processor, we should strive to achieve a

situation where most of the featured instructions are executable in a single cycle. Ideally,

we would like to see a streamlined and uniform handling of all instructions, where the

fetch and the execute stages take up the same time for any instruction, desirably, a single

clock. This is basically one of the first and most important principles inherent in the RISC

design. The RISC has attributes like Simple instructions, less complexity, Compiler

generates software routines to perform complex instructions, and Instruction size is

constant

The project aims at providing RTL Design of RISC processor for DSP application, which

may be implemented on FPGA.

Various processor cores like ARM processor NIOS_II processor, PowerPC etc. are

available in market which are widely acceptable by industries. These processors are

available in form of Soft IP core module

The project work includes detailed literature survey of ARM processor, NIOS_II

processor, PowerPC. Comparison of these processors is carried out based on various

parameters like Performance, Code density, Strength of instruction set, Supports by

software tools, Interrupt mechanism etc.

In this work, 32-bit processor is designed using VHDL. The designed processor supports

32 various instructions. It supports all general addressing modes. The functionality of the

designed is verified by writing a program to transfer a block of data in memory.

 - v -

TABLE OF CONTENTS

PROJECT TITLE ……………………………………………………………….... i

ACKNOWLEDGEMENT………………………………………………………….. iv

ABSTRACT……………………………………………………………………..…. v

LIST OF FIGURES………………………………………………………………… ix

LIST OF TABLES ……………………………………………………….…..…….. x

LIST OF ABBREVIATIONS………………………………………….…………… xi

ABOUT SAC, ISRO……………………………………………………….……..… xii

Chapter 1 Introduction ………………………………………….. 1

 1.1 Motivation of thesis …………………………………….. 1

 1.2 Background …………………………………………..…. 1

 1.3 Organisation of Thesis………………………………...… 3

Chapter 2 RISC (Reduced instruction set computer)…… 4

 2.1 Introduction ………….………………………………….. 4

 2.2 CISC Vs RISC ……..………………………………….. 4

 2.3 Design Rules for RISC ……….…………………………. 4

Chapter 3 ARM processor……………………………...… 6

 3.1 Introduction…….……………………………………….. 6

 3.2 ARM7 register set…….………………………………… 10

 3.3 Processor modes……….………………………………... 10

 3.4 Instruction set………….………………………………... 11

 3.5 ARM7TDMI Architecture……...……………………….. 12

 3.6 The THUMB Concept……………….………….……….. 12

 - vi -

 3.7 Exception and interrupt handling. ………….…….……... 13

 3.8 Using FPGAs with ARM Processors……..…….……….. 14

 3.9 ARM as a standard component………………………….. 15

 3.10 Tool set of ARM processor………………………………

 3. 11 Applications of ARM processors……………...…………

15

Chapter 4 NIOS_II processor……………………………. 17

 4.1 Introduction……………………………………….….….. 17

 4.2 Nios II Processor System Basics…………………...……. 17

 4.3 Performance Parameters (NIOS_II)………………….….. 18

 4.4 Configurable Soft-Core Processor………………...…….. 18

 4.5 Designing with Nios II and SOPC Builder……………… 19

 4.6 Custom instruction………………………………….…... 20

 4.7 Custom Instruction Architecture………………………... 22

Chapter 5 PowerPC processor……………………………. 24

 5.1 Introduction…………………………………………….. 24

 5.2 PPC405 Features …………………………………..…... 24

 5.3 PPoowweerrPPCC AArrcchhiitteeccttuurree OOvveerrvviieeww………………………………………….......... 25

 5.4 PPC405 Organization……………………………….….. 27

 5.5 PowerPC Embedded-Environment Architecture…….…. 27

 5.6 Timer Resources………………………………………... 28

 5.7 Tool set of PowerPC processor…………………………

Chapter 6 Comparison of ARM and NIOS II processor.. 30

Chapter 7 RISC Processor specifications………..………. 40

Chapter 8 RTL Design of Processor……………………… 41

 - vii -

 8.1 Introduction…………………………………….……….. 41

 8.2 Arithmetic Logic Unit………………………….……….. 41

 8.3 Comparator……………………………………………… 43

 8.4 Register……………………………………….…………. 44

 8.5 Tri state Register……………………………..………….. 45

 8.6 Register Array……………………………….………….. 45

 8.7 Shift And Rotate Logic………………………..………… 46

 8.8 Instruction Decoder and control logic ………..…………. 48

 8.8.1 Types of instruction………………………….…………. 49

 8.8.2 Instruction set………………………………….………... 49

 8.8.3 Instruction representation…………………..…………... 50

 8.9 System Level Design……………………….…………… 52

Chapter 9 Results..………………………………………… 54

 9.1 Synthesis report…………………………………..……... 54

 9.2 Data transfer result………………………………………. 54

 9.3 Shift logic circuit result………………………………….. 58

 9.4 ALU result………………………………………..……... 59

Chapter 10 Summary and future scope of work………….. 61

 10.1 Summary………………………………………..……….. 61

 10.2 Future work……………………………………..………. 61

References………………………………………………………………………..…. 62

Appendix A……………………………………………………………………..…... 63

Appendix B……………………………………………………………………..…... 66

 - viii -

 LIST OF FIGURES

Figure No. Title Page No.

Figure-1.1 Programmable logic device as black box………………….. 2

Figure 2.1 CISC Vs.RISC…………………………………………….. 4

Figure 3.1 ARM7TDI Top-level block diagram……………………... 7

Figure 4.1 Custom instruction logic…………………………………... 21

Figure 4.2 Combinatorial custom logic……………………………….. 22

Figure 4.3 Multiply-Accumulate custom logic block…………………. 23

Figure 5.1 PPC405 Organization……………………………………… 27

Figure 8.1 Block Diagram of RISC Processor……………….……..… 42

Figure 8.2 Arithmetic Logical Unit…………………………………… 41

Figure 8.3 Comparator………………………………………………… 43

Figure 8.4 Register…………………………………………………….. 44

Figure 8.5 Tristate Register…………………………………………… 45

Figure 8.6 Register Array……………………………………………... 46

Figure 8.7 Shift Rotate Entity…………………………………………. 47

Figure 8.8 Instruction Decoder Entity………………………………… 48

Figure 8.9 System level Design……………………………………….. 53

Figure 9.1 Simulation result for data transfer program (initial phase)... 54

Figure 9.2
Simulation results for data transfer program (phase shows

repetition)…………………………………………………..

55

Figure 9.3
Simulation for data transfer program (control signals from

instruction decoder)………………………………………...

55

Figure 9. 4 Simulation result for shifter………………………………... 58

Figure 9. 5 Chip scope result for shifter……………………………….. 59

Figure 9. 6 Simulation result for ALU…………………………………. 59

Figure 9. 7 Chip scope result for ALU………………………………… 60

Figure A.1 RISC Vs CISC instruction execution flow………………… 64

Figure A.2 Block Diagram of typical RISC Processor 65

 - ix -

LIST OF TABLES

Table no. Title Page no.

 Table 6.1 Features of ARM processors and NIOS_II processor… 30

 Table 6.2 Processor Performance Evaluation……….…………… 37

 Table 6.3 Instruction Set Evaluation…………………….…….… 38

 Table 6.4 Exception Evaluation………………………….....…… 39

 Table 7.1 RISC processor specifications. ………………..….… 40

Table 8.1 ALU Function Table…………………………….…… 43

Table 8.2 Comparison operation table…………………….……. 44

Table 8.3 Shift operations………………………………….…… 47

Table8. 4 Instruction Set………………………………….……. 49

Table A.1 Assembly Language programme……………………... 66

 - x -

LIST OF ABBREVIATIONS

ALU Arithmetic Logic Unit

ASIC Application Specific Integrated circuit

CISC Complex Instruction Set Computer

CPLD complex programmable logic Device

CPSR Current Program Status Register

DMA Direct Memory Access

DSP Digital signal Processing

FPGA Field Programmable Gate Array logic

IDE Integrated Development Environment

IRL Internet Reconfigurable Logic

LCD liquid Crystalline Display

MIPS million Instructions per second

MMU Memory Management Unit

RAM Random Access Memory

RISC Reduced Instruction Set Computer

SOC System-On-Chip

SOPC System-On-a-Programmable-Chip

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuits

VLSI Very Large Scale Integration

UART Universal Asynchronous receiver transmitter

VMA Valid Memory Address

 - xi -

ABOUT ISRO

ABOUT ORGANIZATION:

The Indian Space Program was formally organized in 1972 when Government of India

set up the development and application of space technology and space sciences for the

socioeconomic benefit of the commission include the formulation if the policy of the

Department of Space and implementation of the Government’s policy in all matters

concerning outer space.

The Indian Space Research Organization (ISRO) under DOS plays a key role, through its

centers, in the planning and execution of National Space activities. It is also responsible

for technical management in the area of Space Application and space technology. Basic

natural resources survey, and meteorology, other R&D activities of ISRO in satellite

achieving the basic application objectives

OBJECTIVES OF ISRO

Long distance telecommunication, diffusion of TV signals using satellite. Remotes

sensing of natural and renewable earth resources and meteorological parameters from

satellites.

•

•

•

•

•

•

Satellite based resources survey, management and environment monitoring.

Development and operationalisation of indigenous satellite.

To realize the above objectives of ISRO activities are oriented predominantly towards

design and development of applications satellites for communications, Remote

Sensing, TV broadcasting and meteorology.

Design and Development of Rocket launching vehicles to place these application

satellites into the required orbits.

Establishment of ground stations/facilities for using these satellites and for launching.

 - xii -

The headquarters of both DOS and ISRO located at Bangalore provides overall direction

to the technical, scientific and administrative functions of the ISRO centers/units. These

are as follows

Satellite Launching Technology Development Centers:

• Vikram Sarabhai Space Centre (VSSC)-Trivandrum.

• SHAR Centre-Sriharikota.

• ISRO Telemetry, Tracking and Command Network (ISTRAC)-Bangalore.

• ISRO Satellite Centre (ISAC)-Bangalore.

SAC, Ahmedabad is ISRO’s application R& D centre. The primary responsibilities of the

centre are to conceptualize plan and execute projects and research programmes leading to

practical applications of space technology. The main area of activities are satellite based

telecommunication, and Remote Sensing for natural resources survey and management,

environment test facilities and reliability and quality assurance. SAC also manages the

DELHI earth station.

The major tasks of this centre are to conceptualize and conduct research and

development, and execute projects in the field of space application. To this end, SAC has

two board areas of activity viz., satellite based communication, including television, and

remote sensing for natural resources survey and management, meteorology and geodesy.

To carry out its programmes, the centre is organized functionally in to the communication

area and the remote sensing area. The technical service group, test, evaluation, standards

and calibration facility and Payload Fabrication Facility provide the support services.

Some of the major facilities at SAC include:

Experimental Satellite Communication Earth Station at Ahmedabad and Delhi.

Transportable Remote Area Communication Terminal (TRACT).

Emergency Communication Terminal (ETC).

Small Communication Terminal (SCOT).

 - xiii -

Meteorological Data Reception Terminal.

Electronics and Mechanical Fabrication.

Environmental and Space Simulation.

Visual Photo Interpretation.

Digital Image processing computer.

Antenna Test Range.

INTRODUCTION TO ADCTG

It is responsible for the technology development related to on board signal processing

required for future SATCOM services. ADCTG consists of the following two divisions.

On Board Signal Processing Division (OSPD)

OSPD is responsible for the development of on board signal processing technology for

future SATCOM services.

Advanced Communication Technology Division (ACTD)

ACTD carry out advanced R&D for satellite based digital communication & secured

communication. It is also responsible for technology development related to wide band

networks.

ABOUT FACILITY

As ISRO is an R & D organization, it is very healthy in form of laboratory and in form of

Equipment’s facility, we have separate Computer machine with required software. (e. g.

Matlab, Xilinx. etc.). There is good facility of library, which contains almost all-technical

literature in form of books, journals, research papers, and transactions.

 - xiv -

RTL Design of RISC Processor for DSP Application Introduction

CHAPTER 1

INTRODUCTION

1.1 Motivation for Thesis

In its relatively brief lifetime of more than thirty years, the microprocessor has undergone

phenomenal advances. Its performance has improved at the outstanding rate of doubling

every 18months. In past three decades, microprocessors have been responsible for

inspiring and facilitating of the major innovations in the computer systems. Design,

which can be implemented on FPGA, offers the great advantage of flexibility. Soft

processor is the processor that can be implemented on FPGA and value addition is

possible in future.

1.1.1 Aim

My project titled as “RTL Design of RISC processor for DSP Application”. RISC

processor expects to perform more of the optimizations via the compiler. The purpose of

doing is this is to reduce the hardware complexity and thus achieve a much faster

operation.

Milestones

 Literature review and understanding processor functionality and its

architecture

 Study of various core processors like ARM, NIOS_II, PowerPC etc.

 RTL Design of 32-bit processor

 Prototype system design based on processor and memory

 Implementation of system on Xilinx based FPGA

1.2 Background

Processor is key component for any embedded system. Embedded system is combination

of hardware and software. The project related to the embedded system is based on the

knowledge of Hardware/ software co-design. The project carried out is belongs to

embedded system field. It is embedded system design for specific DSP application.

- 1 -

RTL Design of RISC Processor for DSP Application Introduction

There are various processor cores like ARM, NIOS, POWERPC, MICROBLAZE,

PICOBLAZE are widely used for embedded system. The study of some of such

processors has been completed during the first phase of project work. Mainly detailed

study of features of ARM and NIOS_II processor is carried out. The comparative study is

presented in the report.

System level design work is carried out during major project. The design may be

implemented on FPGA. FPGA is programmable logic device, which is a general-purpose

chip for implementing logic circuitry. It contains a collection of logic circuit elements

that can be tailored or customized in different ways. A PLD can be viewed as a “Black

Box” that contains logic gates and programmable switches, as shown in Figure-1.1.

Figure-1.1 programmable logic device as black box

The programmable switches allow the logic gates inside the PLD to be connected

together to implement whatever logic circuit is needed. This makes the real estate

requirement on the printed circuit board required is very small. Therefore the problems

associated with longer signal tracks ground returns are eliminated.

Field Programmable Gate Arrays (FPGAs) provide a rapid prototyping platform. FPGAs

are devices that can be reprogrammed to achieve different functionality without incurring

the non-recurring engineering costs typically associated with custom IC fabrication. In

this work, the target platform is the Xilinx Virtex FPGA

- 2 -

RTL Design of RISC Processor for DSP Application Introduction

RTL coding is done using VHDL as hardware description language. Structural modeling

concept is used. ALU, shift register, register array, tristate register, and instruction

decoder are designed. Interfacing is carried out on single bus (32-bit)

1.3 Organization of Thesis

In this Thesis Chapter 2 gives a background discussion on RISC processor. Chapter 3

introduces ARM processors. The study of NIOS II processor and PowerPC processor is

represented in Chapter 4 and Chapter 5 respectively. Chapter 6 gives a comparison of

ARM and NIOS processor. Specification of Processor is mentioned in Chapter 7. RTL

design of Processor is briefed in Chapter 8. Chapter 9 shows the results and analysis.

Chapter 10 discusses the summary and future scope. Finally there are two appendices at

the end of the thesis report. Appendix-A focuses on the attributes of RISC /CISC

processor. Appendix B represents an Assembly language program to copy the block of

data from memory to memory.

- 3 -

RTL Design of RISC Processor for DSP Application RISC (REDUCED INSTRUCTION
 SET COMPUTER)

CHAPTER 2
 RISC (REDUCED INSTRUCTION SET COMPUTER)

2.1 Introduction

(Reduced instruction set computer) is a design philosophy aimed at delivering simple but

powerful instructions that execute within a single cycle at high clock speed. The RISC

philosophy concentrates on reducing the complexity of instructions performed by the

hardware because it is easier to provide greater flexibility and intelligence in software

rather than hardware. As a result, a RISC design places greater demands on compiler.

2.2 CISC Vs RISC

The traditional CISC (complex instruction set computer) relies more on the hardware for

instruction functionality, and consequently the CISC instructions are more complicated.

Figure 2 illustrates then difference between CISC and RISC

 CISC RISC

 Greater complexity

 Code generation Code generation

Compiler

Processor Processor

Compiler

Greater complexity

Figure 2.1 CISC vs. RISC

2.3 Design Rules for RISC processor

The RISC philosophy is implemented with four major design rules:

1. Instructions:

RISC processors have a reduced number of instruction classes. These classes provide

simple operation that can each execute in a single cycle. The compiler or programmer

- 4 -

RTL Design of RISC Processor for DSP Application RISC (REDUCED INSTRUCTION
 SET COMPUTER)

synthesizes complicated operations (for example, a divide instruction) by combining

several simple instructions. Each instruction is a fixed length to allow pipeline to fetch

future instructions before decoding the current instruction. In contrast, in CISC

processors the instructions are often of variable size and take many cycles to execute.

2. Pipelines:

 The processing of instructions is broken down into smaller units that can be

executed in parallel by pipelines ideally the pipeline advances by one step on each cycle

for maximize throughput. Instructions can be decoded in one pipeline stage. There is no

need for an instruction to be executed by a miniprogram called microcode as on CISC

processors.

3. Registers:

 RISC machines have large general-purpose register set. Any register can contain

either data or an address. Registers act as the fast local memory store for all data

processing operations. In contrast, CISC processors have dedicated registers for specific

purposes.

4. Load-Store architecture:

The processor operates on a data held in registers. Separate load and store

instructions transfer data between the register bank and external memory. Memory

accesses are costly, so separating memory accesses from data processing provide an

advantage because you can use a data items held in register bank multiple times without

needing multiple memory access. In contrast, with CISC design the data processing

operations can act on memory directly.

- 5 -

RTL Design of RISC Processor for DSP Application ARM PROCESSOR

CHAPTER 3
ARM PROCESSOR

3.1 Introduction

The ARM7TDMI* is a member of the Advanced RISC Machines (ARM) family of

general-purpose 32-bit microprocessors, which offer high performance for very low

power consumption and price. The ARM architecture is based on Reduced Instruction Set

Computer (RISC) principles, and the instruction set and related decode mechanism are

much simpler than those of micro programmed Complex Instruction Set Computers. This

simplicity results in a high instruction throughput and impressive real-time interrupt

response from a small and cost-effective chip. Pipelining is employed so that all parts of

the processing and memory systems can operate continuously. Typically, while one

instruction is being executed, its successor is being decoded, and a third instruction is

being fetched from memory. The ARM memory interface has been designed to allow the

performance potential to be realized without incurring high costs in the memory system.

Speed-critical control signals are pipelined to allow system control functions to be

implemented in standard low-power logic, and these control signals facilitate the

exploitation of the fast local access modes offered by industry standard dynamic RAMs.

A three-stage pipeline occupies minimal silicon area yet allows division of the execution

time of each instruction into three parts: instruction fetch from memory, instruction

decode, and instruction execution. The instruction execution stage is the most complex.

Register read, a shift applied to one operand, an ALU operation, and finally a register

writes all execute in one clock cycle. This limits the processor’s maximum clock speed to

around 80 MHz on a 0.35-micron silicon process.

* T-Thumb

 D-Debug

 M-Multiplier

 I-ICE

- 6 -

RTL Design of RISC Processor for DSP Application ARM PROCESSOR

ARM7TDMI-S(Synthesizable) soft IP processor top-level block diagram is shown in

Figure_3.1

Figure 3.1 ARM7TDI Top-level block diagram

However, that speed is more than enough for the cost-sensitive applications using ARM7.

The combined shift and ALU execution stage is also an important ARM feature. A single

instruction can specify one of its two source operands for shifting or rotation before it is

passed to the ALU. This allows very efficient bit manipulation and scaling code, and

- 7 -

RTL Design of RISC Processor for DSP Application ARM PROCESSOR

virtually eliminates single shift instructions from ARM code. (The ARM processor does

not have explicit shift instructions; a move instruction applies a shift to its operand.)

ARM7 also uses Von Neumann memory architecture; the instructions and data occupy a

single address space and are accessed with individual address and data buses. Though this

limits performance—instruction fetching (and hence execution) must stop for instructions

that access memory—the reduced cost of a single memory outweighs performance in

many embedded applications.

To reduce the penalty of data accesses stalling the pipeline, ARM implements load

multiple and store multiple instructions. These instructions can move any of the ARM

registers to and from memory, and update the memory address register automatically

after the transfer. This not only allows one instruction to transfer many words of data (in

a single bus burst), it also reduces the amount of instructions needed to transfer data. As a

result, ARM code is smaller than other 32-bit instruction sets.

Although the pipeline stalls during load and store operations, the ARM7 can continue

useful work. These instructions can specify an update of the base address register with a

new address after (or even before) the transfer. RISC architectures would normally use a

second instruction (add or subtract) to form the next address in a sequence. ARM does it

automatically with a single bit in the instruction, again a useful saving in code size.

The ARM instruction set has one further useful feature. Most architecture has conditional

branch instructions. These follow a test or compare instruction to control the flow of

execution through the program. Some architecture also has a conditional move

instruction, allowing data to be conditionally transferred between registers. The ARM

instruction set takes this functionality to its logical extreme, allowing all instructions to

be conditionally executed. Loads, stores, procedure calls and returns, and all other

operations may execute conditionally after some prior instruction to set the condition

code flags. (Any ALU instruction may set the flags.) This eliminates short forward

branches in ARM code. Once again, this improves code density and avoids flushing the

pipeline for branches, increasing execution performance.

- 8 -

RTL Design of RISC Processor for DSP Application ARM PROCESSOR

ARM8 is the next core in the ARM line. It extends the ARM7 implementation in two

fundamental ways: two additional pipeline stages and a new cache interface. ARM7’s

execute stage splits into three separate stages on ARM8, and register read moves back

into the decode stage. The two additional pipeline stages perform memory accesses and

register writes. Because each instruction executes over multiple cycles, register-

forwarding paths must pass data between successive instructions. This is necessary

because one instruction will not have written its result to the register file before the next

two instructions have read their source register values. ARM8 incorporates a single cache

interface that allows instruction fetches in parallel with data accesses. It retains ARM7’s

Von Neumann cache interface, but doubles the bandwidth of the interface to provide 64

bits every cycle. ARM8 also uses a sophisticated prefetch buffer and branch prediction

unit to fetch instructions ahead of the execution unit. On every cycle, one instruction is

fed to the processor from the prefetch buffer. When the cache is not in use for a data

access, two instructions are loaded into the prefetch buffer. This allows the single cache

to satisfy both data and instruction accesses.

ARM8 behaves similarly in performance to a Harvard machine with separate instruction

and data caches, yet retains the simplicity of a single cache machine. Static branch

prediction predicts the target of branch instructions; backward branches are assumed

taken (loops) and forward branches untaken (conditional code). Correctly predicted

branches do not enter the main execution engine and thus effectively execute in zero

cycles. Mispredicted branches take three cycles to correct. ARM8 delivers 100- MHz

operation in a typical 0.35-micron process, and lowers the average number of clock ticks

per instruction to around 1.5. This increases overall performance by about 70% over

ARM7. Digital Equipment Corporation code designed the StrongARM1, the fastest of

our current processors. Adoption of Harvard architecture to deliver maximum cache

throughput and a five-stage instruction pipeline to allow maximum clock rate produced

an embedded processor that is faster than some workstation processors. StrongARM110

incorporates two 16-Kbyte caches maintained even when the processor is coupled to a

relatively low-speed memory system. When coupled with Digital’s very fast 0.35-micron

process, which operates with a 2-volt supply, StrongARM1 machines deliver 233 MHz.

- 9 -

RTL Design of RISC Processor for DSP Application ARM PROCESSOR

With less than 1 Watt of power consumption, this makes the StrongARM power

consumption/performance ratio the best in the industry.

3.2 ARM7 register set

The ARM processor, like all RISC processors, uses load-store architecture. This means it

has two instruction types for transferring data in and out of processor: load instructions

copy data from memory to registers in the core, and conversely the store instructions

copy data from registers to memory. There are no data processing instructions that

directly manipulate data in memory. Thus, data processing is carried out solely in

registers.

Data items are placed in the register file- a storage bank made up of 32-bit registers.

• Register structure depends on mode of operation

• 16 pieces of 32-bit integer registers R0 - R15 are available in ARM-mode (usr, user)

• R0 - R12 are general-purpose registers

• R13 is Stack Pointer (SP)

• R14 is subroutine Link Register

• Holds the value of R15 when BL-instruction is executed

• R15 is Program Counter (PC)

• Bits 1 and 0 are zeroes in ARM-state (32-bit addressing)

• R16 is state register (CPSR, Current Program Status Register)

3.3 Processor modes

The processor mode determines which registers are active and the access rights to the

cpsr register itself. Each processor mode is either privileged or non privileged: a

privileged mode allows full read-write access to the CPSR. Conversely, a nonprivelleged

mode only allows read access to the control field in the cpsr but still allows read-write

access to the control flags. There are seven processor modes in total: six privileged

modes and one nonprivileged mode as mentioned below

- 10 -

RTL Design of RISC Processor for DSP Application ARM PROCESSOR

Nonprivileged mode

• User mode: Normal program execution state

Privileged mode

• FIQ (fast interrupt request) mode: Data transfer state (fast irq, DMA-type transfer)

• IRQ (interrupt request) mode: Used for general interrupt services

• Supervisor (svc) mode: Protected mode for operating system support

• Abort mode (abt) mode: Selected when data or instruction fetch is aborted

• System (sys) mode: Operating system ‘privilege’-mode for user

• Undefined (und) mode: Selected when undefined instruction is fetched

The processor enters abort mode when there is failed attempt to access memory. Fast

interrupt request and interrupt request modes correspond to the two-interrupt levels

available on the ARM processor. Supervisor mode is the mode that the processor is in

after reset and is generally the mode that an operating system kernel operates in.

Undefined mode is used when the processor encounters an instruction that is undefined or

not supported by the implementation. User mode is used for programs and applications.

 3.4 Instruction set

Arm architecture supports 32- bit ARM instruction set and 16- bit THUMB instruction

set.

It supports different types of instructions:

• Data processing

• Arithmetic

• Multiplication

• Logical

• Comparison

• Shift rotate

• Branch

• Exception

- 11 -

RTL Design of RISC Processor for DSP Application ARM PROCESSOR

• Load/ store instruction

• Co-processor instruction

• In normal instruction execution (unconditional) condition field contents of AL is used

(Always)

• In conditional operations one of the 14 available conditions is selected

• For example, instruction known usually as BNZ in ARM is NE (Z-flag clear)

conditioned branch-instruction

3.5 ARM7TDMI Architecture

The ARM7TDMI processor employs a unique architectural strategy known as THUMB,

which makes it ideally suited to high-volume applications with memory restrictions, or

applications where code density is an issue.

3.6 The THUMB Concept

The key idea behind THUMB is that of a super-reduced instruction set. Essentially, the

ARM7TDMI processor has two instruction sets:

• The standard 32-bit ARM set

• A 16-bit THUMB set

The THUMB set’s 16-bit instruction length allows it to approach twice the density of

standard ARM code while retaining most of the ARM’s performance advantage over a

traditional 16-bit processor using 16-bit registers. This is possible because THUMB code

operates on the same 32-bit register set as ARM code. THUMB code is able to provide

up to 65% of the code size of ARM, and 160% of the performance of an equivalent ARM

processor connected to a 16-bit memory system.

 THUMB’s Advantages

THUMB instructions operate with the standard ARM register configuration, allowing

excellent interoperability between ARM and THUMB states. Each 16-bit THUMB

- 12 -

RTL Design of RISC Processor for DSP Application ARM PROCESSOR

instruction has a corresponding 32-bit ARM instruction with the same effect on the

processor model.

The major advantage of a 32-bit (ARM) architecture over a 16-bit architecture is its

ability to manipulate 32-bit integers with single instructions, and to address a large

address space efficiently. When processing 32-bit data, a 16-bit architecture will take at

least two instructions to perform the same task as a single ARM instruction. However,

not all the code in a program will process 32-bit data (for example, code that performs

character string handling), and some instructions, like Branches, do not process any data

at all. If a 16-bit architecture only has 16-bit instructions, and a 32-bit architecture only

has 32-bit instructions, then overall the 16-bit architecture will have better code density,

and better than one half the performance of the 32-bit architecture. Clearly 32-bit

performance comes at the cost of code density. THUMB breaks this constraint by

implementing a 16-bit instruction length on a 32-bit architecture, making the processing

of 32-bit data efficient with a compact instruction coding. This provides far better

performance than a 16-bit architecture, with better code density than a 32-bit architecture.

THUMB also has a major advantage over other 32-bit architectures with 16-bit

instructions. This is the ability to switch back to full ARM code and execute at full speed.

Thus critical loops for applications such as

• Fast interrupts

• DSP algorithms

can be coded using the full ARM instruction set, and linked with THUMB code. The

overhead of switching from THUMB code to ARM code is folded into sub-routine entry

time. Various portions of a system can be optimized for speed or for code density by

switching between THUMB and ARM execution as appropriate.

3.7 Exception and interrupt handling

At the heart of an embedded system lie the exception handlers. They are responsible for

handling errors, interrupts, and other events generated by the external system. Efficient

handlers can dramatically improve system performance. The process of determining a

good handling method can be complicated and challenging.

- 13 -

RTL Design of RISC Processor for DSP Application ARM PROCESSOR

An exception changes the normal sequential execution of instructions. The ARM

processor has seven exceptions that can halt the normal sequential executions: Data

Abort, FIQ, IRQ, Prefetch Abort, Software Interrupt, Reset, and Undefined Instruction.

Each exception has an associated ARM processor mode. When exception is raised, the

processor goes into a specific mode and branches to an entry in the vector table. Each

exception also has a priority level.

Interrupts are special type of exception that are caused by an external peripheral. The

IRQ exception is used for general operating system activities. The FIQ exception is

normally reserved for a single interrupt source.

3.8 Using FPGAs with ARM Processors

FPGAs are known for providing designers with several benefits in system design. One of

the most important has been lessening the time to market. The quicker a company gets its

products to market, the more market share it can capture from its competitors. This could

mean millions of dollars in income to an established company and make or break a young

company. Another major benefit that FPGAs provide is flexibility. Designers can modify

their design up to the day that the product is released to customers. And now with the

concept of Internet Reconfigurable Logic (IRL), designs can be modified even after they

are shipped to customers. More recently, FPGAs have become attractive for other

reasons. Because the FPGA cost per gate has come down significantly, there is no longer

a ‘price penalty’ associated with the benefits of programmable logic. FPGAs have

become an attractive option in many high volume applications. FPGA density having

dramatically increased, Xilinx is now shipping multi-million gate devices. Certainly, this

number will continue to climb in the future. This trend not only allows the design

engineer to consider programmable logic for larger designs, but also allows them to

absorb the functionality of other on-board chips. Fewer chips mean lower cost and easier

board layout. And finally, there is the benefit of performance. Application Specific

Integrated circuits (ASICs) built with cutting edge technology will always be faster, but

FPGAs are close behind. Along with better on-chip performance, the I/O performance in

Xilinx FPGAs has improved. One of the ways used to improve I/O performance and

provide more flexibility was the introduction of Select I/O, which gives the designer the

- 14 -

RTL Design of RISC Processor for DSP Application ARM PROCESSOR

ability to choose an I/O standard suited of his system design. With the Xilinx FPGA’s

flexible Select I/O feature, programmable logic chips can now interface with almost any

other component. Xilinx has already documented how to interface with an array of

memories and peripheral busses. Xilinx has created the Memory Corner as a one-stop

memory shop, providing solutions for leading edge memory technology.

Another component that is found in almost every system is the microprocessor, which

comes in many flavors to suit system needs. The ARM microprocessor has gained

popularity because of its features, peripherals, low power, and flexibility.

3.9 ARM as a standard component

Even tough ARM is mostly used as a processor core in SoC and other ASICs have some

manufacturers brought ARM based standard products to market. Examples of

manufacturers are Atmel, Cirrus Logic, Hyundai, Intel, Oki, Samsung and Sharp. Most of

the products are based on 7TDMI-core, some to 720Tand 920T-cores.In addition, there

are a number of ASSP (Application Specific Standard Product) -chips available for

example to communication applications (Philips VWS22100 = ARM7 based GSM base

band chip) using ARM processor as a core.

3. 10 Tool set of ARM processor

3.11 Applications of ARM processors

ARM processors are found in numerous market segments, including networking,

automotive, mobile and consumer devices, mass storage, and imaging. Within each

segment ARM processors can be found in multiple applications.

- 15 -

RTL Design of RISC Processor for DSP Application ARM PROCESSOR

 For example, the ARM processor is found in networking applications like home

gateways, DSL modems for high speed Internet communication, and 802.11 wireless

communications. The mobile device segment is the largest application area for ARM

processors because of mobile phones. ARM processors are also found in mass storage

devices such as hard drives and imaging products such as inkjet printers-applications that

are cost sensitive and high volume.

In contrast, ARM processors are not found in applications that require leading-edge high

performance. Because these applications tend to be low volume and high cost, ARM has

decided not to focus designs on these types of applications.

- 16 -

RTL Design of RISC Processor for DSP Application NIOS_II PROCESSOR

CHAPTER 4

NIOS_II PROCESSOR

4.1 Introduction

A Nios II processor system is equivalent to a microcontroller or “computer on a chip”

that includes a CPU and a combination of peripherals and memory on a single chip. The

term “Nios II processor system” refers to a Nios II processor core, a set of on-chip

peripherals, on chip memory, and interfaces to off-chip memory, all implemented on a

single Altera chip. Like a microcontroller family, all Nios II processor systems use a

consistent instruction set and programming model.

4.2 Nios II Processor System Basics

The Nios II processor is a general-purpose RISC processor core, providing:

• Full 32-bit instruction set, data path, and address space

• 32 general-purpose registers

• 32 external interrupt sources

• Single-instruction 32 *32 multiply and divide producing a 32-bit result

• Dedicated instructions for computing 64-bit and 128-bit products of

multiplication

• Floating-point instructions for single-precision floating-point operations

• Single-instruction barrel shifter

• Access to a variety of on-chip peripherals, and interfaces to off-chip

memories and peripherals

• Hardware-assisted debug module enabling processor start, stop, step and

trace under integrated development environment (IDE) control

• Software development environment based on the GNU C/C++ tool chain

and Eclipse IDE

- 17 -

RTL Design of RISC Processor for DSP Application NIOS_II PROCESSOR

• Integration with Altera's Signal Tap(r) II logic analyzer, enabling real

time analysis of instructions and data along with other signals in the

FPGA design

• Instruction set architecture (ISA) compatible across all Nios II processor

systems

• Performance up to 250 DMIPS

4.3 Performance Parameters (NIOS_II)

These parameters are the actual performance parameters of the system, which were

obtained after implementing the system design. The actual system performance

parameters are:

Power supply—DC voltage: 9 – 12 V; operating current: 600 mA (motherboard current

is about 200 mA); power consumption: 10 W

Environment—operating temperature: 0° C – 40° C; relative humidity: 8% – 95%

Input image—Mode: two-channel asynchronous image; data format after digitalization:

CCIR-656

Display—LCD resolution: 640 x 480; LCD display area: 16 cm² or 6.4 inch²; LCD

display color depth: 6-bit/RGB

Storage—Storage image resolution: 640 x 480; storage image color depth: 8-bit, JPEG;

storage image capacity: about 100 Kbytes/image; image storage total cycle: <

0.5 s/2 images

Transmission time—about 1 minute/image (depending on local network condition)

4.4 Configurable Soft-Core Processor

The Nios II processor is a configurable soft-core processor, as opposed to a fixed, off-the-

shelf micro controller. In this context, “configurable” means that features can be added or

removed on a system-by-system basis to meet performance or price goals. “Soft-core”

means the CPU core is offered in “soft” design form (i.e., not fixed in silicon), and can be

targeted to any Altera FPGA family. In other words, Altera does not sell “Nios II chips”;

Altera sells blank FPGAs. It is the users that configure the Nios II processor and

- 18 -

RTL Design of RISC Processor for DSP Application NIOS_II PROCESSOR

peripherals to meet their specifications, and then program the system into an Altera

FPGA. Configurability does not mean that designers must create a new Nios II processor

configuration for every new design. Altera provides readymade Nios II system designs

that system designers can use as-is. If these designs meet the system requirements, there

is no need to configure the design further. In addition, software designers can use the

Nios II instruction set simulator to begin writing and debugging Nios II applications

before the final hardware configuration is determined.

4.5 Designing with Nios II and SOPC Builder

SOPC Builder is a powerful system development tool for creating systems based on

processors, peripherals, and memories. SOPC Builder enables you to define and generate

a complete system-on-a-programmable-chip (SOPC) in much less time than using

traditional, manual integration methods. SOPC Builder is included in the Quartus II

software and is available to all Altera customers. Many designers already know SOPC

Builder as the tool for creating systems based on the Nios® II processor. However, SOPC

Builder is more than a Nios II system builder; it is a general-purpose tool for creating

arbitrary SOPC designs that may or may not contain a processor. SOPC Builder

automates the task of integrating hardware components into a larger system. Using

traditional system-on-chip (SOC) design methods, you had to manually write top-level

HDL files that wire together the pieces of the system. Using SOPC Builder, you specify

the system components in a graphical user interface (GUI), and SOPC Builder generates

the interconnect logic automatically. SOPC Builder outputs HDL files that define all

components of the system, and a top-level HDL design file that connects all the

components together. SOPC Builder generates both Verilog HDL and VHDL equally,

and does not favor one over the other.

In addition to its role as a hardware generation tool, SOPC Builder also serves as the

starting point for system simulation and embedded software creation. SOPC Builder

provides features to ease writing software and to accelerate system simulation.

- 19 -

RTL Design of RISC Processor for DSP Application NIOS_II PROCESSOR

An SOPC Builder component is a design module that SOPC Builder recognizes and can

automatically integrate into a system. SOPC Builder connects multiple components

together to create a top-level HDL file called the system module.

SOPC Builder components are the building blocks of the system module. SOPC Builder

components use the Avalon interface for the physical connection of components, and you

can use SOPC Builder to connect any logical device (either on-chip or off-chip) that has

an Avalon interface.

The Avalon interface uses an address-mapped read/write protocol that allows master

components to read and/or write any slave component.

Altera and third-party developers provide ready-to-use SOPC Builder components, such

as:

 Microprocessors, such as the Nios II processor

 Micro controller peripherals

 Timers

 Serial communication interfaces, such as a UART and a serial peripheral

interface (SPI)

 General purpose I/O

 Digital signal processing (DSP) functions

 Communications peripherals

 Interfaces to off-chip devices

• Memory controllers

• Buses and bridges

• Application-specific standard products (ASSP)

• Application-specific integrated circuits (ASIC)

• Processors

4.6 Custom instruction

With the Altera Nios_II embedded processor, system designers can accelerate time-

critical software algorithms by adding custom instructions to the Nios instruction set.

- 20 -

RTL Design of RISC Processor for DSP Application NIOS_II PROCESSOR

With custom instructions, system designers can reduce a complex sequence of standard

instructions to a single instruction implemented in hardware. System designers can use

this feature for a variety of applications, e.g., to optimize software inner loops for digital

signal processing (DSP), packet header processing, and computation-intensive

applications. The Nios II CPU configuration wizard, which is accessed via the Quartus_II

software’s SOPC Builder, provides a graphical user interface (GUI) used to add up to 256

custom instructions to the Nios II processor.

The custom instruction logic connects directly to the Nios II arithmetic logic unit (ALU)

as shown in Figure 4.1

Figure 4.1 Custom instruction logic

With Nios II processor custom instructions, system designers are able to take full

advantage of the flexibility of FPGAs to meet system performance requirements. Custom

- 21 -

RTL Design of RISC Processor for DSP Application NIOS_II PROCESSOR

instructions allow system designers to add custom functionality to the Nios II processor

ALU.

Nios II processor custom instructions are custom logic blocks adjacent to the ALU in the

CPU’s data path. This gives system designers the ability to tailor the Nios II processor

core to meet the needs of a particular application. System designers have the ability to

accelerate time critical software algorithms by converting them to custom hardware logic

blocks. Because it is easy to alter the design of the FPGA-based Nios II processor,

custom instructions provide an easy way to experiment with hardware/software trade-offs

during an embedded system’s implementation phase—rather than the specification phase.

4.7 Custom Instruction Architecture

Combinatorial custom instruction architecture consists of a logic block that is able to

complete in a single clock cycle.

Figure 4.2 shows a block diagram of combinatorial custom instruction architecture.

Figure 4.2 Combinatorial Custom Logic

The figure combinatorial custom instruction diagram uses data a [31..0] and data b[31..0]

ports as inputs and drives the results on the result [31..0] port. Because the logic is able to

complete in a single clock cycle, control signals are not needed.

Figure 4.3 shows a simple, multiply-accumulate custom logic block.

- 22 -

RTL Design of RISC Processor for DSP Application NIOS_II PROCESSOR

Figure 4.3 Multiply-Accumulate custom logic block

- 23 -

RTL Design of RISC Processor for DSP Application POWERPC PROCESSOR

CHAPTER 5

POWERPC PROCESSOR

5.1 Introduction

PowerPC is a microprocessor RISC-based instruction set architecture (ISA) developed in

1991 by IBM, Motorola (now Freescale Semiconductor), and Apple Computer. A new

version of the PowerPC ISA will be released in August 2006 by the Power.org™ Power

Architecture™ Advisory Council (PAAC). This new version—Power ISA™ 2.03—is a

component of the Power Architecture platform, which also consists of a broad

community of supporters, software and tools, and products that are built on the Power

Architecture platform. Given its wide use, PowerPC version 1.x will continue to be the

basis of some products in the marketplace.

The PPC405 is a 32-bit implementation of the PowerPC embedded-environment

architecture that is derived from the PowerPC architecture. Specifically, the PPC405 is an

embedded PowerPC 405D5 processor core.

The PowerPC architecture provides a software model that ensures compatibility between

implementations of the PowerPC family of microprocessors. The PowerPC architecture

defines parameters that guarantee compatible processor implementations at the

application-program level, allowing broad flexibility in the development of derivative

PowerPC implementations that meet specific market requirements.

5.2 PPC405 Features

The PPC405 processor core is an implementation of the PowerPC embedded-

environment architecture. The processor provides fixed-point embedded applications

with high performance at low power consumption. It is compatible with the PowerPC

UISA.

Key features of the PPC405 include:

- 24 -

RTL Design of RISC Processor for DSP Application POWERPC PROCESSOR

• Embedded PowerPC 405 (PPC405) core

• Embedded 400 MHz, 600+ DMIPS RISC core (32-bit Harvard

architecture)

• 5-stage data path pipeline

• Hardware multiply and divide

• 32 x 32-bit general-purpose registers

• 16 KB 2-way set-associative instruction and data caches

• Memory Management Unit (MMU) enables RTOS implementation

• Flexible memory management

• 64-entry unified Translation Look-aside Buffers (TLB)

• Variable page sizes (1KB - 16 KB)

• Enhanced instruction and data On-Chip Memory (OCM) controllers

interface directly to embedded Block RAM

• Supports IBM Core Connect bus architecture

• Debug and trace support

• Advanced power management support

• Minimized interrupt latency

• Timer facilities -programmable interval timer (PIT), fixed interval timer

(FIT), and watchdog timer (All are synchronous with the time base)

55..33 PPoowweerrPPCC AArrcchhiitteeccttuurree OOvveerrvviieeww

The PowerPC architecture is a 64-bit architecture with a 32-bit subset. In general, the

PowerPC architecture defines the following:

• Instruction set

• Programming model

• Memory model

• Exception model

• Memory-management model

• Time-keeping model

- 25 -

RTL Design of RISC Processor for DSP Application POWERPC PROCESSOR

Instruction Set

The instruction set specifies the types of instructions (such as load/store, integer

arithmetic, and branch instructions), the specific instructions, and the encoding used for

the instructions. The instruction set definition also specifies the addressing modes used

for accessing memory.

Programming Model

The programming model defines the register set and the memory conventions, including

details regarding the bit and byte ordering, and the conventions for how data are stored.

Memory Model

The memory model defines the address-space size and how it is subdivided into pages. It

also defines attributes for specifying memory-region cacheability, byte ordering (big-

endian or little endian), coherency, and protection.

Exception Model

The exception model defines the set of exceptions and the conditions that can cause those

exceptions. The model specifies exception characteristics, such as whether they are

precise or imprecise, synchronous or asynchronous, and maskable or non-maskable. The

model defines the exception vectors and a set of registers used when interrupts occur as a

result of an exception. The model also provides memory space for implementation-

specific exceptions.

Memory-Management Model

The memory-management model defines how memory is partitioned, configured, and

protected. The model also specifies how memory translation is performed, defines special

memory-control instructions, and specifies other memory-management characteristics.

Time-Keeping Model

The time-keeping model defines resources that permit the time of day to be determined

and the resources and mechanisms required for supporting timer-related exception

- 26 -

RTL Design of RISC Processor for DSP Application POWERPC PROCESSOR

5.4 PPC405 Organization

As shown in Figure 5.1 the PPC405 processor contains the following elements:

• A 5-stage pipeline consisting of fetch, decode, execute, write-back, and load write

back stages

• A virtual-memory-management unit that supports multiple page sizes and a variety

of storage-protection attributes and access-control options

• Separate instruction-cache and data-cache units

• Debug support, including a JTAG interface

• Three programmable timers

The following sections provide an overview of each element.

Figure 5.1 PPC405 Organization

5.5 PowerPC Embedded-Environment Architecture

The PowerPC embedded-environment architecture is optimized for embedded

controllers. This architecture is a forerunner to the PowerPC Book-E architecture. The

- 27 -

RTL Design of RISC Processor for DSP Application POWERPC PROCESSOR

PowerPC embedded-environment architecture provides an alternative definition for

certain features specified by the PowerPC VEA and OIA. Implementations that adhere to

the PowerPC embedded-environment architecture also adhere to the PowerPC UISA.

PowerPC embedded-environment processors are 32-bit only implementations and thus do

not include the special 64-bit extensions to the PowerPC UISA. Also, floating-point

support can be provided either in hardware or software by PowerPC embedded-

environment processors.

5.6 Timer Resources

The PPC405 supports several timer resources that can be used for a variety of time-

keeping functions. Possible uses of these timer resources include:

 Time-of-day computation.

 Data-logging for system-service routines.

 Periodic servicing of time-sensitive external devices.

 Preemptive multitasking.

The timer resources supported by the PPC405 consist of:

• Two timer registers:

• A 64-bit incrementing timer called the time-base.

• A 32-bit decrementing timer called the programmable-interval timer.

• Three timer-event interrupts:

• A watchdog-timer interrupt that provides the ability to set critical interrupts that

can aid in recovery from system failures.

• A programmable-interval timer interrupt that provides the ability to set non

critical variable-time interrupts.

• A fixed-interval timer interrupt that provides the ability to set non-critical

interrupts with a fixed, repeatable time period.

• A timer-control register for setting up and controlling the timer events.

• A timer-status register for recording timer-event status.

5.7 Tool set of PowerPC processor

- 28 -

RTL Design of RISC Processor for DSP Application Comparison of Arm
 & Nios II Processor

CHAPTER 6
COMPARISION OF ARM PROCESSOR AND NIOS II PROCESSOR

Based on the study of ARM processor and NIOS_II processor the summary of features

are listed out and shown in Table 6.1

Table 6.1 Summary of features of ARM processors and NIOS_II processor

Sr.

no

Parameter Nios_II Arm7TDMI

1. Type of processor RISC RISC

2. Size of data bus 32 bit 32 bit

3. Size of address bus 32 bit 32 bit

4. No. of general-purpose

registers

32# of 32 bit size 31# of 32 bit size (16

are visible)

5. No. of control registers 06# of 32 bit size 06# of 32 bit size

6. Form of processor Soft processor (to be

implemented on FPGA)

In form of soft

processor as well as

hard processor

7. Type of architecture Havard type

(Separate instruction bus and

Data Bus)

Von Neumann type

8. Exception support 32 external interrupt sources Interrupt controller is

required

9. Exception Types

1. Hardware interrupt (32#)

2. Software interrupt- TRAP

instruction

3 Unimplemented

instruction- Mul, muli,

mulxss, mulxsu, Mulxuu, div,

divu

1. Fast interrupt

2. Normal interrupt

3. Memory aborts

4. Attempted

execution of

undefined

instruction

- 30 -

RTL Design of RISC Processor for DSP Application Comparison of Arm
 & Nios II Processor

4. Other-defined at the time of

publishing e.g. for MMU

5. Software interrupt

(SWI-instruction)

10. Instruction customization Possible (example-MAC) Not possible

(MACRO is possible)

11. Nature of memory and

I/O organization

As NIOS-II is configurable

memory and I/O mapping is

done at system generation

system time.

12. I/O organization Memory-mapped -32 bit. Same

space is used for memory and

I/O

Memory-mapped -32

bit. Same space is

used for memory and

I/O

13. Software development

environment/

Cross compiler support

C/C++ Armasm assembler

14. Performance 31 DMIPS (nios_II/e)

127 DMIPS (nios_II/s)

218 DMIPS (nios_II/f)

0.97 MIPS/MHz

15. Reset Signals Global and cpu_reset Global and cpu_reset

16. Cache memory For both data and instruction For both data and

instruction

17. Cache memory size (on

chip)

512 bytes to 64 Kbytes 512 bytes to 96

Kbytes

18. Debug Using JTAG Using JTAG

19. Mode of operation 1. User mode

2. Supervisor mode

 1. User mode

3. Supervisor

mode

4. System mode

5. Interrupt

request

- 31 -

RTL Design of RISC Processor for DSP Application Comparison of Arm
 & Nios II Processor

6. Fast interrupt

7. Abort mode

8. Undefined

mode

20. Addressing Modes

1. Register addressing

2. Displacement

addressing

3. Immediate addressing

4. Register indirect

addressing

5. Absolute addressing

1. data processing

2. load and store

coprocessor

3. load store

multiple

4. load and store

word or

 unsigned byte

miscellaneous

loads/ stores

21. Instruction Set 32- bit instruction set 32- bit ARM

instruction set

16- bit THUMB

instruction set

22. Instruction Set category

1. Data Transfer -LDW-

load from memory

2. Arithmetic & Logical –

XOR, SUB

3. Move-MOVI

4. Comparison -CMPGT

5. Shift & Rotate-ROL,

SLL

6. Program Control-

CALL, JMP

7. Other Control

Instructions-TRAP,

1. Data

processing

2. Arithmetic

3. Multiplication

4. Logical

5. Comparison

6. Shift rotate

7. Branch

8. Exception

9. Load/ store

instruction

10. Co-processor

- 32 -

RTL Design of RISC Processor for DSP Application Comparison of Arm
 & Nios II Processor

BREAK

8. Custom Instructions-

can be implemented

9. No Operation-NOP

instruction

23. Device Support

Altera FPGAs

1. Stratix®

2. Stratix II

3. CycloneTM

 4. Cyclone II

Actel FPGAs

24. No. of pipe line stages Six stage (nios_II/f)

Fetch-Decode-Execute-

Memory-Align-Write back

3 stage

Fetch-Decode-

Execute

25. Instruction word format

Three categories:

1. I-type-

 6 bit opcode field

 Two 5-bit reg, fields

 16-bit immediate data

Exe. ADDI RB RA 16- BIT

DATA

2. R-type, and

 6 bit opcode field

 three 5-bit reg, fields

 11-bit opcode

extension field

Exe. ADD RB RA RC

3. J-type.

 6 bit opcode field

 26-bit immediate data

Exe CALL label

32-bit format (no

various cateqories)

26. Max frequency of 200 MHz (nios_II/e) 60-110 MHz

- 33 -

RTL Design of RISC Processor for DSP Application Comparison of Arm
 & Nios II Processor

operation:

Fmax

 165 MHz (nios_II/s)

 185MHz (nios_II/f)

27. Power Consumption System specification stratix

based - DC voltage: 9 – 12 V;

operating current: 600 mA

(motherboard current is about

200 mA);

Voltage- 1.8 V

Power consumption-

.25mW

28. Parallelism in

FPGA…?How..?

Multiprocesor support in

HW(Max.. how many..In

what

configuration…Linear-

mesh.- Matrix, Cube and

SW-(C/C++ and IDE

support)

 Possible- multiprocessor

design is possible

Possible-

multiprocessor design

is possible

29. External memory

addressing and size

Automated & 2GB 4 GB

30. DMA Data transfer

support

Yes Yes

In order to get best RISC processor for DSP application, the studies of various processor

cores such as ARM processor, NIOS_II processor, PowerPC. is carried out. The reason to

study said cores is that these are available in form of soft core module so it can be down

loaded to FPGA. We can modify the logic as per our application or we can do value

addition

As a conclusion, based on study of various cores, I have following points

ARM processor is better compared to others in following aspects

1. barrel shifter

- 34 -

RTL Design of RISC Processor for DSP Application Comparison of Arm
 & Nios II Processor

In line barrel shifter is a hardware component that preprocessed one of the

input registers before it is used by an instruction. This expands the

capability of many instructions to improve core performance and density

e.g Suppose R0=0x00000000

 R1=0x00000005

ADD RO R1, R1, LSL #1

After execution of above instruction

The content of above two registers will be as below

 R0=0x0000000F

 R1=0x00000005

2. Load store multiple instructions

To transfer multiple registers between memory and the processor

in a single instructions.

 e.g to load three registers from memory

 LDMIA R0!, {R1-R3}

 R0 is the base address

 IA -increment after (specify addressing mode)

 Other addressing modes are IB, DA, DB

3. Thumb instruction set

That permits the ARM core to execute either 16 or 32 bit

instructions. The 16-bit instructions improve code density by about

30% over 32-bit fixed length instructions.

e. g. To Divide the content of R0 by R1

 ARM CODE

 MOV R3, #0

LOOP1: SUB R0, R0, R1

 ADDGE R3, R3, #1

 BGE LOOP1

 ADD R2, R0,R1

- 35 -

RTL Design of RISC Processor for DSP Application Comparison of Arm
 & Nios II Processor

Code size: 5*4=20 bytes

THUMB CODE

 MOV R3, #0

LOOP2: ADD R3, #1

 SUB R0, R1

 BGE LOOP2

 SUB R3, #1

 ADD R2, R0, R1

Code size: 6*2=12 bytes

3. conditional execution

An instruction is only executed when specific condition has been satisfied.

This feature improve performance and code density by reducing branch

instructions

e.g. ADDEQ R1, R2, #4

4. Enhanced instructions:

a. Parallel arithmetic

 Half word or byte wise addition or substraction

 e. g. ADD16 R2, R3, R4

 SUB8 R3, R4, R5

 Half word or byte wise exchange, addition and substraction

 e. g. ADDSUBX R1, R3,R4

b. The enhanced DSP instructions were added to standard Arm Instruction to

support fast multiplier operation

 DSP instructions

• Multiply, add and accumulate

 e. g. MLA R1, R2, R3, R4

- 36 -

RTL Design of RISC Processor for DSP Application Comparison of Arm
 & Nios II Processor

Parallel arithmetic

• Half word or byte wise addition or subtraction

 e. g. ADD16 R2, R3, R4

 SUB8 R3, R4, R5

• Half word or byte wise exchange, addition and subtraction

 e.g ADDSUBX R1, R3,R4

5. Has count leading zero instructions

This instruction counts the no. of zeros between the MSB and first bit set to 1

CLZ R0, R1

About 75 % of core in embedded system is of ARM processor.

PowerPC is better compared to others in following regards

1. Performance

Processor Maximum

frequency

Performance

PowerPC 450Mhz 700 MIPS

NIOS_II 185 Mhz 218 MIPS

ARM 60-110 Mhz 0.97 MIPS/Mhz

Table 6.2 Processor Performance Evaluation

2. Timer facility

16-bit incremental count timer for three modes

 a. watchdog timer

 b. fixed interval timer

 c. programmable timer

Nios_II is better compared to others in following

- 37 -

RTL Design of RISC Processor for DSP Application Comparison of Arm
 & Nios II Processor

Custom Instruction

The soft-core nature of the Nios II processor lets designers integrate custom logic into the

arithmetic logic unit (ALU). Similar to native Nios II instructions, custom instructions

accept values from up to two 32-bit source registers and optionally write back a result to

a 32-bit destination register. By using custom instructions, The system designers can fine-

tune the system hardware to meet performance goals and also the designer can easily

handle the instruction as a macro in C/C++.

Custom Peripherals

System designers also can create their own custom peripherals that can be integrated with

Nios II processor systems. For performance-critical systems that spend most CPU cycles

executing a specific section of code, it is a common technique to create a custom

peripheral that implements the same function in hardware. Using this approach,

performance is doubled: the hardware implementation is faster than software; and the

processor is free to perform other functions in parallel while the custom peripheral

operates on data.

Based on Instruction set strength, we can compare processors as below:

Parameter ARM NIOS_II PowerPC

 Size 32-bit & 16-bit 32 bit 32 bit

 Code compactness Possible using

 Thumb instruction

 Not possible Not possible

 Custom instruction Not possible By adding custom

 logic

 Not possible

 Types of instructions 10 9 9

 Special instructions Parallel arithmetic

 CLZ

- Timer based

Table 6.3 Instruction Set Evaluation

Processors are compared based on exceptions/interrupts are as follow

- 38 -

RTL Design of RISC Processor for DSP Application Comparison of Arm
 & Nios II Processor

Parameter ARM NIOS_II PowerPC

H/w interrupt Support Support Support

Software interrupt SWI TRAP TW

Other interrupts Undefined

instruction

Unimplemented

instruction-

Timer out

Table 6.4 Exception Evaluation

Hence ARM processor is more suitable for DSP application. We can customize some

instructions based on DSP application to get the best outcomes.

- 39 -

RTL Design of RISC Processor for DSP Application RISC processor
 Specifications

CHAPTER 7
RISC PROCESSOR SPECIFICATIONS

GENERAL SPECIFICATIONS OF RISC PROCESSOR

Sr. no Parameter Value

1. Type of processor RISC

2. Size of data bus 32 bit

3. Size of address bus 32 bit

4. ALU 32 bit

5. No. of general-purpose registers 32# of 32 bit size

6. Form of processor Soft processor (to be implemented on

FPGA)

7. I/O organization Memory-mapped -32 bit. Same space is

used for memory and I/O

8. Reset Signals Global and cpu reset

9. Addressing Modes All general purpose

10. Instruction Set 32- bit instruction set

11. Instruction Set category

All general purpose –data transfer to

branch operations

Table 7.1 RISC processor specifications

- 40 -

RTL Design of RISC Processor for DSP Application RTL Design of Processor

CHAPTER 8

RTL DESIGN OF PROCESSOR

8.1 Introduction
The processor contains a number of basic blocks. There is a register bank of thirty two

32-biut registers, an ALU, a Shifter, a program counter, an Instruction register, a

comparator, an address register and instruction decoder. All these units communicate

through common 32-bit tristate data bus. A block diagram is shown in Figure 8.1

8.2 Arithmetic Logic Unit

The first entity described is the ALU. This entity performs a number of arithmetic or

logical operations on one or more input busses. A symbol is shown in Figure 8.2

Figure 8.2 ALU

ARITHMATIC LOGIC UNIT

 32-BIT A 32-BIT B

SEL

 32-BIT C

Inputs A and B are the two 32-bit input busses upon which the ALU Operations are

performed. Output bus C returns the result of the ALU operation. Input SEL determines

which operation is performed as specified by Table 8.1

- 41 -

RTL Design of RISC Processor for DSP Application RTL Design of Processor

Block diagram of processor

- 42 -

RTL Design of RISC Processor for DSP Application RTL Design of Processor

Sel Input Operation Description

0000 C<=A Data pass

0001 C<=A AND B Addition

0010 C<=A OR B Subtraction

0011 C<=NOT A Logical NOT

0100 C<=A XOR B Logical AND

0101 C<=A + B Logical OR

0110 C<=A - B Logical XOR

0111 C<=A +1 Increment

1000 C<=A -1 Decrement

1001 C<=0 Zero

Table 8.1 ALU Function Table

As we can see, the ALU can perform some arithmetic operations such as add & subtract,

and some logical operations such as AND OR, XOR and NOT

8.3 Comparator

 Compout=‘1’ or ‘0’

COMPARATOR

 32-BIT A 32-BIT B

SEL

Figure 8.3 Comparator

- 43 -

RTL Design of RISC Processor for DSP Application RTL Design of Processor

The next component described is the comparator. This entity compares two values and

returns either a ‘1’ or ‘0’ depending on the type of comparison requested and values

being compared. A symbol showing the ports of the comparator is shown in figure 8.3.

The comparison type is determined by the value on input port SEL. The full table of

comparison is shown in Table 8.2

SEL input Comparison

EQ Compout=’1’ when A equals B

NEQ Compout=’1’ when A is not equal B

GT Compout=’1’ when A is greater than B

GTE Compout=’1’ when A is greater than or equal to B

LT Compout=’1’ when A is less than B

LTE Compout=’1’ when A is less than or equal to B

Table 8.2-comparison operation table

8.4 Register

Figure 8.4 Register

REGISTER

 32-BIT A

CLOCK

 32-BIT C

The register entity is used for address register and instruction register. These registers

need to be able to capture the input data (32-bit A) on a rising edge of the clock input and

- 44 -

RTL Design of RISC Processor for DSP Application RTL Design of Processor

drive output C with the captured data. Thus the value of input A is assigned to output C

when a rising edge occurs on input clock. A symbol for the register entity is shown in

figure 8.4

8.5 Tri-State Register

This is one more component of the CPU. The tristate register is connected to main data

bus and can store information from the data bus as well as drive information to the data

bus. It has four ports as shown in Figure 8.5

Figure 8.5 Tristate Register

TRI-STATE REGISTER

 32-BIT A

CLOCK

 32-BIT C

ENABLE

 Input A is data input to the register, and port C is the data output from register. Input

clock is used to store a new value into register. When a rising edge is applied to input

clock, the data on input A is stored in the register. The Enable is used to control output C.

when enable is a ‘1’ value the register state is driven to output C . when it is a ‘0’, output

C is a high impedance value and not driving.

8.6 Register Array

There are 32# of 32-bit registers. The register array entity is used to model the set of

registers within the CPU that are used to store intermediate values during instruction

- 45 -

RTL Design of RISC Processor for DSP Application RTL Design of Processor

processing. These registers are read from and written to during the execution of

instructions. The set of registers is modeled as a RAM of thirty-two 32-bit words. The

symbol for the register array is shown in figure 8.6. To write a location in the

regarray, set the input SEL to the location to be written, input data with the data to be

written, and put the rising edge on input clock. To read a location from regarray, set the

input SEL to the location to be read and set input enable to a ‘1’. The data is output on

port C

REGISTER ARRAY

 32-BIT A

CLOCK

 32-BIT C

ENABLE

 SEL

Figure 8.6 Register Array

8.7 Shift And Rotate Logic Circuit

The next device to be described is the shift rotate entity. This entity is used to perform

shifting and rotation operations within the CPU. Te shift rotate entity has a 32-bit input

bus(A) , a 32-bit output bus(C) and SEL input that determines which shift/rotate

operation to perform. This entity is shown by the symbol in Figure 8.7

Shift pass mode allows the shifter to pass the input data to the output without any shift

operations. This mode is quite common because all of the ALU operations flow through

the shift entity. Table 8.3 shows a list of operations, which can perform by shift rotate

logic.

- 46 -

RTL Design of RISC Processor for DSP Application RTL Design of Processor

 32-BIT C

SHIFT ROTATE LOGIC

 32-BIT A

SEL

Figure 8.7 Shift Rotate Entity

SEL Operation

Shiftpass Shift pass

SHL Shift left

SAR Shift right (logical)

SAR Shift right (arithmetic)

ROTL Rotate Left

ROTR Rotate right

Table 8.3-shift operations

- 47 -

RTL Design of RISC Processor for DSP Application RTL Design of Processor

8.8 Instruction Decoder And control logic

Instruction Decoder entity provides the necessary signal interactions to data flow

properly through CPU and performs the expected functions. This design is based on the

state machine. For state machine the next state is produced based on the current state and

input signals. The instruction decoder unit has very less no.s of inputs and large no.s of

output. A symbol for the instruction decoder is shown in Figure 8.8

 Reset ALU Sel

 Clock Shift Sel

 Comp Sel

 Instruction Reg Reg Sel

 VMA

 Compout R/W

 PC Write

 Ready Addr Reg Write

 Out Reg Write

 Op Reg Write

 Instr Reg Write

 Reg Write

 PC read

 Addr Reg Read

 Out Reg Read

 Op Reg Read

 Reg Read

Instruction
Decoder and
control logic

Figure 8.8 Instruction Decoder Entity

Instructions can be divided into a number of different types as follows:

- 48 -

RTL Design of RISC Processor for DSP Application RTL Design of Processor

Load-these instructions load register values from other registers, memory locations, or

with immediate value given in the instruction.

Store- these instructions store register values to memory locations.

Branch-these instructions cause the processor to go to another location in the instruction

stream. Some branch instructions test values before branching; others branch without

testing.

ALU- these instructions perform arithmetic and logical operations such as ADD,

SUBTRCT, OR, AND, and NOT.

Shift-These instructions use the shift unit to perform shift operations on the data passed to

it.

8.8.1 Types of instructions:

1. Data transfer instructions

2. Arithmetic instructions

3. Logical instruction

4. Shift-rotate instructions

5. Branch instructions

8.8.2 Instruction Set

Following Table 8. 4 shows the details of instructions

Types Instruction Description Opcode

(D31-

D27)

NOP No operation 00000

LOAD R from

memory

Load register (memory

address is specified by

register)

00001

STORE R to memory Store register (memory

address is specified by

register)

00010

Data

transfer

instructions

MOVE R to R Move register to register 00011

- 49 -

RTL Design of RISC Processor for DSP Application RTL Design of Processor

LODI Data to R Load register with

immediate value

00100

ZERO R Zero a register 01111

ADD R1 R2 R3 R1+R2->R3 01101

SUB R1 R2 R3 R1-R2->R3 01110

INC R Increment 00111

Arithmetic

instructions

DEC R Decrement 01000

NOT R Not a register value 01100

AND R1 R2 R3 R1 and R2->R3 01001

OR R1 R2 R3 R1 or R2->R3 01010

Logical

instruction

XOR R1 R2 R3 R1 xor R2->R3 01011

SHL R1 R2 Shift left R1 -> R2 11010

SHR R1 R2 Shift right R1 -> R2 11011

ROTL R1 R2 Rotate left R1 -> R2 11101

Shift-rotate

instructions

ROTR R1 R2 Rotate right R1 -> R2 11100

BRANCHI ADDRESS Direct unconditional branch 00101

BRANCH R Indirect unconditional

branch (address is in

register)

10101

BRANCHGTI R1 R2

ADDRESS

Direct conditional branch

If R1 is greater then R2

00110

BRANCHGT R3 R1 R2 Indirect conditional branch

If R1 is greater then R2,

(address is in register R3)

10100

Branch

instructions

BRANCHGT

EI

R1 R2

ADDRESS

Direct conditional branch

If R1 is greater then or

equal to R2

11110

- 50 -

RTL Design of RISC Processor for DSP Application RTL Design of Processor

BRANCHGT

E

R3 R1 R2 indirect conditional branch

If R1 is greater then or

equal to R2, (address is in

register R3)

11111

BRANCHLTI R1 R2

ADDRESS

Direct conditional branch

If R1 is less then R2

10000

BRANCHLT R3 R1 R2 Indirect conditional branch

If R1 is less then R2,

(address is in register R3)

10001

BRANCHLT

EI

R1 R2

ADDRESS

Direct conditional branch

If R1 is less then or equal to

R2

11000

BRANCHLT

E

R3 R1 R2 Indirect conditional branch

If R1 is less then or equal to

R2, (address is in register

R3)

11001

BRANCHEQI R1 R2

ADDRESS

Direct conditional branch

If R1 equal to R2

10111

BRANCHEQ R3 R1 R2 Indirect conditional branch

If R1 is equal to R2,

(address is in register R3)

10110

BRANCHNE

QI

R1 R2

ADDRESS

Direct conditional branch

If R1 is not equal to R2

10011

BRANCHNE

Q

R3 R1 R2 Indirect conditional branch

If R1 is not equal to R2,

(address is in register R3)

10010

Table8. 4 Instruction Set

8.8.3 Instruction representation

All instructions contain the opcode in five most significant bits of the instruction. Single

word instructions also contain one or two or three 5-bit register field at LSB side

- 51 -

RTL Design of RISC Processor for DSP Application RTL Design of Processor

e.g.

 MOV R1, R2 (1-word instruction)

5-BIT OPCODE

(5-bit)

XXXXX……XX CODE FOR R1(5-

bit)

CODE FOR R2(5-

bit)

ADD R1, R2, R3 (1-word instruction)

5-BIT OPCODE

(5-bit)

XXXXXX

……XX

CODE FOR

R1(5-bit)

CODE FOR R2(5-

bit)

CODE FOR

R2(5-bit

BRANCHI ADRDRESS (2-word instruction)

 5-BIT OPCODE (5-bit) XXXXXX……XX

ADRDRESS (32-bit)

8.9 System Level Design

If the instruction is an add of two registers, the decoder would cause the first value to be

written to Opreg for temporary storage. The second register value would be placed on the

data bus. The ALU would be placed in add mode and result would be stored in register

OutReg. Outreg would store the resulting value until it is copied to the final destination.

When executing an instruction, a number of steps take place. The PC holds the address in

memory of current instruction. After an instruction has finished execution, the PC is

advanced to where the next instruction is located. If the processor is executing a linear

stream of instructions, this is the next instruction. If a branch was taken, the PC is loaded

with the next instruction location directly

- 52 -

RTL Design of RISC Processor for DSP Application RTL Design of Processor

Instruction decoder copies the PC value to the address register, which outputs the new

address on the address bus. At the same time decoder sets R/W (read write signal) to a ‘0’

value for a read operation and sets VMA to a ‘1’, signaling the memory that the address

is now valid. The memory decodes the address and places the memory data on the data

bus , when the data has been placed on the data bus, the memory has set the ready signal

to a ‘1’ value indicating that the memory data is ready for consumption.

 RESET

CLOCK

32-BIT

PROCESSOR

VMA

ADREESS LINES

R/W

DATA LINES

 MEMORY

READY

Figure 8.9-system level Design

The decoder causes the memory data to be written into instruction register. The decoder

now has access to the instruction and decodes the instruction. The decoded instruction

executes, and the process starts over again

- 53 -

RTL Design of RISC Processor for DSP Application

 32-bit Data Bus

 Op Sel

 Inst Sel

 Comp Sel
 ALU Sel

 Comp Out

 Shift Sel

 Out Sel

 clock
 PC Sel

 Reg Sel Reset

 Add Sel

32-bit address Bus Ready R/W VMA
 Figure 8.1 Block diagram of 32-bit processor

REG0
REG1
REG2
REG3
REG4
REG5
REG6

.

.

.

.
REG31

ARITHMATIC
LOGIC UNIT

SHIFT LOGIC

OUT. REG.

PROGRAM
COUNTER

ADDRESS
REGISTER

INSRUCTION DECODER

(CONTROL UNIT)

COMPARATOR

OP . REG.

 INSTR. REG.

RTL Design of RISC Processor for DSP Application Results and Analysis

CHAPTER 9

RESULTS AND ANALYSIS
9.1 Synthesis result

Device utilization summary:

Selected Device: v300pq240-6

 Number of Slices: 2597 out of 3072 84%

 Number of Slice Flip Flops: 2984 out of 6144 48%

 Number of 4 input LUTs: 3787 out of 6144 61%

 Number of bonded IOBs: 2 out of 170 1%

 Number of TBUFs: 161 out of 3072 5%

 Number of GCLKs: 1 out of 4 25%

Total memory usage is 132580 kilobytes

9.2 block of data transfer

Problem statement for system

The program (shown in Appendix-b) will copy the block of data available at

memory location 0000008H to 0000001B to new memory locations starting from

00000020H and onwards

Simulation results showing the address and data, VMA. Ready and R/w signals

9.2.1 Initial phase

Figure 9.1 simulation result for data transfer program (initial phase)

- 54 -

RTL Design of RISC Processor for DSP Application Results and Analysis

9.2.2 Phase shows the repetition of execution

Figure 9.2 simulation results for data transfer program (phase shows repetition)

Various control signals generated by Instruction decoder

Figure 9.3 simulation for data transfer program (control signals from instruction

decoder)

- 55 -

RTL Design of RISC Processor for DSP Application Results and Analysis

Contents of memory before data transfer

// Memory data file (do not edit the following line - required for mem load use)

// Instance=/processor/mem1/mem_data

// Format=mti address radix=h data radix=s version=1.0

 0: 00010000000000000000000000000001 00000000000000000000000000001011

 2: 00110100000000000000010000100001 00101100000000000000010000100101

 4: 00010000000000000000000000000011 00000000000000000000000000001010

 6: 00010000000000000000000000000010 00000000000000000000000000010000

 8: 00110100000000000000100001000010 00010000000000000000000000000110

 a: 00000000000000000000000000100000 00100000000000000000000000000110

 c: 00000100000000000000000000100100 00001000000000000000000010000010

 e: 01010000000000000001010000100110 00011100000000000000000000000001

10: 00011100000000000000000000000010 00010100000000000000000000001111

12: 00000000000000000000000000001100 00000000000000000000000000000000

14: 00000000000000000000000000000000 00000000000000000000000000000001

16: 00000000000000000000000000000010 00000000000000000000000000000100

18: 00000000000000000000000000001000 00000000000000000000000000010000

1a: 00000000000000000000000000100000 00000000000000000000000001000000

1c: 00000000000000000000000010000000 00000000000000000000000100000000

1e: 00000000000000000000001000000000 00000000000000000000010000000000

20: 00000000000000000000000000000000

00000000000000000000000000000000

22: 00000000000000000000000000000000

00000000000000000000000000000000

24: 00000000000000000000000000000000

00000000000000000000000000000000

- 56 -

RTL Design of RISC Processor for DSP Application Results and Analysis

26: 00000000000000000000000000000000

00000000000000000000000000000000

28: 00000000000000000000000000000000

00000000000000000000000000000000

2a: 00000000000000000000000000000000

00000000000000000000000000000000
2c: 00000000000000000000000000000000 00000000000000000000000000000000

2e: 00000000000000000000000000000000 00000000000000000000000000000000

30: 00000000000000000000000000000000 00000000000000000000000000000000

32: 00000000000000000000000000000000 00000000000000000000000000000000

Contents of memory before data transfer

// Memory data file (do not edit the following line - required for mem load use)

// Instance=/processor/mem1/mem_data

// Format=mti address radix=h data radix=s version=1.0

 0: 00010000000000000000000000000001 00000000000000000000000000001011

 2: 00110100000000000000010000100001 00101100000000000000010000100101

 4: 00010000000000000000000000000011 00000000000000000000000000001010

 6: 00010000000000000000000000000010 00000000000000000000000000010000

 8: 00110100000000000000100001000010 00010000000000000000000000000110

 a: 00000000000000000000000000100000 00100000000000000000000000000110

 c: 00000100000000000000000000100100 00001000000000000000000010000010

 e: 01010000000000000001010000100110 00011100000000000000000000000001

10: 00011100000000000000000000000010 00010100000000000000000000001111

12: 00000000000000000000000000001100 00000000000000000000000000000000

14: 00000000000000000000000000000000 00000000000000000000000000000001

16: 00000000000000000000000000000010 00000000000000000000000000000100

18: 00000000000000000000000000001000 00000000000000000000000000010000

- 57 -

RTL Design of RISC Processor for DSP Application Results and Analysis

1a: 00000000000000000000000000100000 00000000000000000000000001000000

1c: 00000000000000000000000010000000 00000000000000000000000100000000

1e: 00000000000000000000001000000000 00000000000000000000010000000000

20: 00000000000000000000000000000010

00000000000000000000000000000100

22: 00000000000000000000000000001000

00000000000000000000000000010000

24: 00000000000000000000000000100000

00000000000000000000000001000000

26: 00000000000000000000000010000000

00000000000000000000000100000000

28: 00000000000000000000001000000000

00000000000000000000010000000000

2a: 00000000000000000000000000000010

00000000000000000000000000000000
2c: 00000000000000000000000000000000 00000000000000000000000000000000

2e: 00000000000000000000000000000000 00000000000000000000000000000000

30: 00000000000000000000000000000000 00000000000000000000000000000000

32: 00000000000000000000000000000000 00000000000000000000000000000000

9.3 Shift logic

Simulation result

Figure 9. 4 Simulation result for shifter

- 58 -

RTL Design of RISC Processor for DSP Application Results and Analysis

Chip scope result

Figure 9. 5 Chip scope result for shifter

9.4 ALU Result

Simulation result

Figure 9. 6 simulation result for ALU

- 59 -

RTL Design of RISC Processor for DSP Application Results and Analysis

Chip scope result

Figure 9. 7 Chip scope result for ALU

- 60 -

RTL Design of RISC Processor for DSP Application Summary and Future scope

CHAPTER 10
SUMMARY AND FUTURE SCOPE OF WORK

10.1 Summary

The project work entitled as “RTL design of RISC processor for DSP Application” is

selected to carry out the work during September 2006-April 2007. During first phase of

project work, literature survey is carried out to understand the basic architecture of

Processor, general block diagram of the same, function of each block, instruction set of

processor. The detailed study of various processors like ARM, NIOS_II, and PowerPC is

also carried out

RTL coding for RISC processor has been carried using VHDL. The design was download

on Xilinx FPGA. The functionality is verified by executing a program for processor to

transfer a block of data from memory to memory through register of register bank. The

individual blocks like ALU and Shifter are simulated using Modelsim simulator. After

down loading the same on the FPGA, the result is verified using Chip scope.

10.2 Future work

As in this dissertation work, the RTL design of RISC processor has been carried out;

there is scope of further work. It is possible to design the DSP module and integration of

the same can be done with designed processor. As memory is designed on same FPGA on

which RISC processor is designed, it is also possible to enhance the performance of RISC

processor by allocating more are of programmable Logic device and interface the same

with external memory. The work can be extended by value addition in form to support

the exceptions, enhancing the instruction set also.

- 61 -

RTL Design of RISC Processor for DSP Application References

REFERENCES

1. Modern Processor Design by John Paul Shen, Mikko H. Lipasti

2. Computer Architecture A Quantitive Approach by John Hennesy and D Patterson

3. Advanced digital Design with the Verilog HDL by Michael D. Ciletti.

4. Nios_II Processor Reference Handbook

5. Nios_II Custom instruction user guide

6. Arm system developer’s guide by Sloss, Chris Wright

7. Arm Architecture reference manual edited by David Seal

8. Arm system-on-chip architecture by Steve Furber

9. PowerPC processor user guide

10. http://www.xilinx.com

11. http://www.altera.com

12. http://www.arm.com

- 62 -

RTL Design of RISC Processor for DSP Application Appendices

APPENDIX-A

RISC VS CISC

A. What is RISC?

RISC (Reduced Instruction Set Computer): A computer architecture that reduces chip

complexity by using simpler instructions. RISC compilers have to generate software

routines to perform complex instructions that were previously done in hardware by CISC

computers. In RISC, the microcode layer and associated overhead is eliminated.

RISC keeps instruction size constant, bans the indirect addressing mode and retains only

those instructions that can be overlapped and made to execute in one machine cycle or

less. The RISC chip is faster than its CISC counterpart and is designed and built more

economically.

B. What is the comparison between RISC and CISC?

The main characteristics of CISC microprocessors are:

1) Extensive instructions.

2) Complex and efficient machine instructions.

3) Micro encoding of the machine instructions.

4) Extensive addressing capabilities for memory operations.

5) Relatively few registers.

RISC processors have following traits:

1) Reduction of the instruction set.

2) Instruction pipelining (the interleaved execution of many instructions).

3) Load/store architecture (only the load and store instructions have access to

memory, all others work with the internal processor registers).

4) Unity of RISC processors and compilers (the compiler is no longer developed for

- 63 -

RTL Design of RISC Processor for DSP Application Appendices

a specific chip, but instead, at the outset, the compiler is developed in conjunction with

the chip to produce one unit).

C. Explain the performance evaluation of RISC and CISC

The following equation is commonly used for expressing a computer's performance

ability:

TIME / PROGRAM = (TIME / CYCLE) * (CYCLES / INSTRUCTION) *

(INSTRUCTIONS / PROGRAM)

The CISC approach attempts to minimize the number of instructions per program,

sacrificing the number of cycles per instruction. RISC does the opposite, reducing the

cycles per instruction at the cost of the number of instructions per program.

RISC Vs CISC instruction execution flow

Figure A.1 RISC Vs CISC instruction execution flow

- 64 -

RTL Design of RISC Processor for DSP Application Appendices

Block Diagram of typical RISC Processor

Figure A.2 Block Diagram of typical RISC Processor

- 65 -

RTL Design of RISC Processor for DSP Application Appendices

APPENDIX-B

Assembly language Program to transfer a block of data

This program will copy the block of data available at memory location 0000008H

to 0000001B to new memory locations starting from 00000020H and onwards

label Instruction description

XX: LOADI R1,08H Starting address of block of data is stored is R1

 ADD R1,R1,R1 R1+R1->R1 (New Content Will Be 10H)

 LOADI R5,00H Starting address of program is stored in R5

 LOADI R2,10H Starting address of memory where data is to be

transferred is stored is R2

 SHL R2, R2 Shift the content of R2 by 1 (new content in R2 is 20H)

 LOADI R6,1BH Last address of block of data is stored is R6

 DEC R6 Decrement R6 by 1 (new content in R6 is 1AH)

YY: LOAD R4, R1 Load the data in dummy register R4 from memory

location whose address is in R1

 STORE R2 ,R4 Store the data from dummy register R4 to memory

location whose address is in R2

 BRANCHGTI R1,R6,

R5

Indirect jump to memory location specified by R5 based

on content of R1 and R6

 INC R1 To locate next memory location from where new data is

to be transferred

 INCR2 To locate next memory location to where new data is to

be transferred

 BRANCHI YY To jump for next data transfer

Table A.1 Assembly Language programme

- 66 -

	certificate_final.pdf
	Submitted in Partial Fulfillment of the Requirements for
	
	Degree
	 of
	Master of Technology
	CERTIFICATE
	CERTIFICATE
	Prof. N. P. Gajjar Dr. N. M. Devashrayee
	Nirma University PG Coordinator-VLSI Design
	Ahmedabad
	
	ABSTRACT
	TABLE OF CONTENTS

	Applications of ARM processors……………...…………
	Comparison of ARM and NIOS II processor..
	Comparator…………………………………………………
	Figure 8.9
	System level Design………………………………………..
	Features of ARM processors and NIOS_II processor…

	ALU Function Table…………………………….……
	
	OBJECTIVES OF ISRO

	
	INTRODUCTION TO ADCTG

	chapter_1.pdf
	CHAPTER 1
	INTRODUCTION

	chapter_2.pdf
	Figure 2.1 CISC vs. RISC

	chapter_3.pdf
	3.1 Introduction
	
	ARM7TDMI-S(Synthesizable) soft IP processor top-level block diagram is shown in Figure_3.1
	Nonprivileged mode
	
	Privileged mode

	3.5 ARM7TDMI Architecture
	
	3.7 Exception and interrupt handling

	3.8 Using FPGAs with ARM Processors

	FPGAs are known for providing designers with several benefits in system design. One of the most important has been lessening the time to market. The quicker a company gets its products to market, the more market share it can capture from its competitors. This could mean millions of dollars in income to an established company and make or break a young company. Another major benefit that FPGAs provide is flexibility. Designers can modify their design up to the day that the product is released to customers. And now with the concept of Internet Reconfigurable Logic (IRL), designs can be modified even after they are shipped to customers. More recently, FPGAs have become attractive for other reasons. Because the FPGA cost per gate has come down significantly, there is no longer a ‘price penalty’ associated with the benefits of programmable logic. FPGAs have become an attractive option in many high volume applications. FPGA density having dramatically increased, Xilinx is now shipping multi-million gate devices. Certainly, this number will continue to climb in the future. This trend not only allows the design engineer to consider programmable logic for larger designs, but also allows them to absorb the functionality of other on-board chips. Fewer chips mean lower cost and easier board layout. And finally, there is the benefit of performance. Application Specific Integrated circuits (ASICs) built with cutting edge technology will always be faster, but FPGAs are close behind. Along with better on-chip performance, the I/O performance in Xilinx FPGAs has improved. One of the ways used to improve I/O performance and provide more flexibility was the introduction of Select I/O, which gives the designer the ability to choose an I/O standard suited of his system design. With the Xilinx FPGA’s flexible Select I/O feature, programmable logic chips can now interface with almost any other component. Xilinx has already documented how to interface with an array of memories and peripheral busses. Xilinx has created the Memory Corner as a one-stop memory shop, providing solutions for leading edge memory technology.
	Another component that is found in almost every system is the microprocessor, which comes in many flavors to suit system needs. The ARM microprocessor has gained popularity because of its features, peripherals, low power, and flexibility.
	
	
	3. 10 Tool set of ARM processor
	3.11 Applications of ARM processors
	ARM processors are found in numerous market segments, including networking, automotive, mobile and consumer devices, mass storage, and imaging. Within each segment ARM processors can be found in multiple applications.
	 For example, the ARM processor is found in networking applications like home gateways, DSL modems for high speed Internet communication, and 802.11 wireless communications. The mobile device segment is the largest application area for ARM processors because of mobile phones. ARM processors are also found in mass storage devices such as hard drives and imaging products such as inkjet printers-applications that are cost sensitive and high volume.
	In contrast, ARM processors are not found in applications that require leading-edge high performance. Because these applications tend to be low volume and high cost, ARM has decided not to focus designs on these types of applications.
	
	

	chapter_4.pdf
	NIOS_II PROCESSOR
	Environment—operating temperature: 0° C – 40° C; relative humidity: 8% – 95%

	chapter_5.pdf
	chapter_6.pdf
	Based on the study of ARM processor and NIOS_II processor the summary of features are listed out and shown in Table 6.1
	Table 6.1 Summary of features of ARM processors and NIOS_II processor
	Sr. no
	Parameter
	
	 Not possible

	chapter_7.pdf
	Sr. no
	Parameter

	chapter_8.pdf
	Data pass
	Shiftpass
	 Comp Sel
	 Reg Read
	Instruction decoder copies the PC value to the address register, which outputs the new address on the address bus. At the same time decoder sets R/W (read write signal) to a ‘0’ value for a read operation and sets VMA to a ‘1’, signaling the memory that the address is now valid. The memory decodes the address and places the memory data on the data bus , when the data has been placed on the data bus, the memory has set the ready signal to a ‘1’ value indicating that the memory data is ready for consumption.

	chapter_8_block_diagram.pdf
	chapter_9.pdf
	chapter_10.pdf
	reference.pdf
	appendix.pdf
	C. Explain the performance evaluation of RISC and CISC
	RISC Vs CISC instruction execution flow

