
INSTITUTE OF TECHNOLOGY, NIRMA UNIVERSITY, AHMEDABAD – 382 481, 27-29 NOVEMBER, 2008 1

Abstract-- Parallel programming techniques used in the

paper are for a shared memory multiprocessor computer
for performing Steganography and digital watermarking.
Steganography and digital watermarking is the art of
hiding information into the cover object taking care that
is imperceptible with the naked eye. There are computer
with many central processing units (CPUs), all of which
have equal access to a common pool of main memory.
Multiprocessor computers can be used for general-
purpose time sharing as well as for compute intensive
applications. If the user creates only single stream
applications, then a multiprocessor will not be any more
or less difficult to use than a uniprocessor i.e. it will be
quite sensible to run such a program on a uniprocessor
(one CPU).

This paper focuses on a technique through which

optimization is possible for embedding and extracting the
information in Steganography and digital watermarking
techniques exploiting the parallelization techniques. The
parallelization techniques are expected to be implemented
on almost all the applications running on Laptops, PDA,
Desktop and mobile phone. The demand for resource
hungry applications on mobile phones is expected to grow
exponentially hence the future of mobile phone is likely to
be with multicore embedded processors on mobile phones
too. Laptops and Desktops are already available in
market having dual-core computing power. The paper
draws an attention to highlight the possible parallelization
in Steganography and digital watermarking techniques to
get superior performance.

Index Terms—fork, join, spin_lock, barriers, steganogprahy,

watermarking.

I. INTRODUCTION TO PARALLEL PROGRAMMING

arallel programming is a kind of approach involving
apportioning the work what is normally thought of as an

indivisible calculation among many processors resulting into
more rapid completion of work than if it were done by a
single CPU. The type of parallelism that involves nearly

independent tasks, such as database management, parallel I/O
and Monte Carlo simulations of trajectories, are examples of
coarse-grained parallelism. On the other hand, the example in
which different iterations of a loop are executed by different
processors is called fine-grained parallelism. In coarse
grained parallelism, each calculation is conceptually nearly
independent of the others and normally involves relatively
infrequent communication among the individual calculations.

In fine grained parallelism, what is normally thought of as
a single, indivisible calculation is partitioned among
processors. This commonly involves subdividing a loop and
requires relatively frequent communication between programs
running on different CPUs. Fine grained parallel
programming is generally more difficult to do than coarse-
grained parallel programming. Our approach in this paper will
be a combination of coarse grained and fine grained
parallelism.

Our paper stresses simplicity and focuses on fundamentals.
It is possible to create a tremendous variety of parallel
programs with just five library functions. One for Sharing
memory, one for creating processes, one for destroying
processes, and two for interprocess synchronization (locks
and barriers).

Fig. 1: Schematic model of a shared memory multiprocessor

computer
Schematic model of a shared memory multiprocessor

computer is shown in figure1. This is a model of a shared
memory multiprocessor, so called because the processors
share a single pool of memory. In this model there are many

A Proposed Mechanism Using Parallelization
Techniques in Steganography and Digital

Watermarking for Multi Processor Systems

Samir B Patel, Shrikant N. Pradhan

Department of Computer Science & Engineering, Institute of Technology, Nirma University, Ahmedabad.

P

MEMORY

I/O I/O I/O

CPU CPU CPU

NATIONAL CONFERENCE ON CURRENT TRENDS IN TECHNOLOGY, ‘NUCONE – 2008’ 2

CPUs and I/O modules. The memory contains the instructions
executed by each CPU, as well as the data on which the
program operates.

The model in figure 1 is meant to imply that any CPU can
access any memory location at any time, with one exception
that no single memory location can be accessed by two CPUs
simultaneously. In the model, different processes can access
different memory locations simultaneously. Although this
schematic model is an idealization, fast overlapped access to
the memory can be implemented, so memory access is almost
simultaneous. The closer the implementation gets to the
idealized model of figure 1 the more effective the parallel
program will be in comparison with a comparable sequential
one.

When the programs are loaded from disk, the data and
instructions for such program go into the region of main
memory resulting into different sections of physical memory.
These regions are called processes. In UNIX operating
system, which is time shared, all that is necessary to know is
that it acts as an autonomous switch, allowing different
processes to execute on the single processor at different
times, and it protects the memory occupied by a given process
from being accessed by any of the other process.

II. LIBRARY MODULES

There are number of different methods of implementing
parallelism in UNIX. We propose to use Library modules
developed using various system calls available in UNIX to
achieve that objective.

1) Forking - Creating processes

int id, nproc, process_fork
……
id=process_fork(nproc)

The function process_fork(nproc), when called from an
executing process, creates nproc-1 additional processes. Each
additional process is an exact copy of the original (spawner)
process.

After returning from the process_fork function, there are

nproc-1 additional and identical processes to time share or to
execute in parallel. The original process, which called
process_fork(nproc) in the first place, is still running, so now
there are nproc processes in all. Each of the nproc processes
has a private copy of each of the variables of the parent,
unless the variables are explicitly shared. The process which
made the call is called the parent process and the nproc-1
additional processes are called the child processes. After the
return from fork function each process continues executing at
the next executable statement following the process_fork
function. The process_fork function returns an integer, called
the process-id, which is unique to each process. It returns 0 to
the parent and the integers 1, 2,..,nproc-1 to the children, each
child getting a different number. So apart from the value of

ID, the processes are identical.

• Joining Processes: The join is carried out by the
statement process_join(). The join is the opposite
of the fork - it destroys all the child processes,
leaving only the parent running. Whenever a process
makes the process_join call, if the process is a child
process, it is destroyed. If the process is the parent
process i.e. id = 0, it waits until all the child
processes are destroyed. The parent process
continues with the statement following the call to
process_join. In general for the parent process, the
joint is a wait and for the child process the join is a
kill. Hence, it becomes mandatory for all the
processes to execute the process_join function as
shown in figure 2.

Fig. 2: All processes must execute process_ join function.

2) Shared Memory

int num_of_bytes
any_declaration var_name e.g. int DCT,LSB
shared(var_name, num_of_bytes)

Where var_name is the name of the variable. It is actually a
pointer to the variable. The term num_of_bytes is the number
of bytes which the variable occupies in memory. The
subroutine shared is called by the parent, before forking. This
call arranges for var_name to be shared among all the
children created by the calling process. That is, when the
children are created, the shared variables occupy the same
physical region of memory. When the parent process calls
process_fork and spawns a number of children, each child is
an identical copy of the parent. All the variables and values
are copied, and, unless memory is declared to be shared
changes in the data of one process do not appear in the data of
another process.

The behaviour of parallel programs can be extremely
sensitive to shared memory. Very common errors in parallel
programming are not sharing variables which should be
shared, sharing variables which should not be shared, or
misusing shared variables. In analyzing shared-memory
parallel programs, it is essential to assume that all processes
are randomly scheduled. That is, any process can be idled and
restarted at any time. It can be idle for any length of time. It is
incorrect to assume that two processes will proceed at the

process_fork()

Parent Child 1 Child n

process_join()

Only parent continues

…

INSTITUTE OF TECHNOLOGY, NIRMA UNIVERSITY, AHMEDABAD – 382 481, 27-29 NOVEMBER, 2008 3

same rate or that one process will go faster because it has less
work to do than another process.

3) Spin-Locks, Contention, and self scheduling

One problem of loop splitting is that it could lead to an
uneven distribution of work among the processes. This may
lead to less than ideal speedup. Where,

Ideal speedup = Time required for sequential execution
Time required for parallel execution.

The general form of loop splitting is
for (i=id ; i < n ; i += nproc) { work section }.

If the value of n is small (i.e. <5) then there is an unequal
distribution of work among processes resulting into less than
ideal speedup. However, in our implementation process, the
value of n will be very large, distribution will be fairly even
and hence we will be able to achieve near ideal speedup.

The alternative is self scheduling-each process chooses its
next index value only when it is ready for one. Self-
scheduling allows some processes to execute only a few
iterations, while others may execute many iterations. The
situation in which two or more processes try to alter a shared
variable in parallel is called contention. The solution to avoid
contention is to have indivisible unit i.e. statements to be
executed in protected region or has mutual exclusion.

In order to enforce protection, it is necessary that one
process communicate to all other processes that it is in a
protected portion of the program and all other processes must
behave in a responsible manner by staying away. Such
communication is an example of interprocess communication
(IPC) or synchronization. This communication normally
involves the processes sharing one or more variables. The
required structure for implementing such synchronization is
the spin-lock. Spin lock internally makes use of a semaphore
which is nothing but a shared variable.

Following is a sample code showing addition of a constant
to each element of an array. This also illustrates the use of
spin-lock.

#include <stdio.h>
#include "fork_join.h"
#include "sharedmemory.h"
#include "semaphore.h"

int main()
{
int *arr, nproc, num, *nextindex,*lock,shmid,id,i=0,c;
 printf("\nEnter the no of processes:");
 scanf("%d",&nproc);
// lock variable is declared as shared
 lock=(int *)shared(sizeof(int),&shmid);
 nextindex = (int *)shared(sizeof(int),&shmid);
 arr = (int *)shared(sizeof(int)*num,&shmid);
 setbuf(stdout,NULL);

printf("\nEnter the no of elements u want to enter in an array
:");
 scanf("%d",&num);
 arr = (int *)malloc(sizeof(int)*num);
 for(i=0;i<num;i++)
 {
 printf("\nEnter the value of an array %d :",i);
 scanf("%d",&arr[i]); }

 printf("\nEnter the constant value :");
 scanf("%d",&c);
 // initialization of spinlock
 spin_lock_init(lock);

 *nextindex=num-1;
 i=*nextindex;

 id=process_fork(nproc);
 while(i > 0)
 {spin_lock(lock); // lock is acquired
 i =*nextindex;
 *nextindex = *nextindex - 1;
 spin_unlock(lock); // lock is released
 if(i < 0)
 break;
printf("\n The old array[%d] : %d",i,arr[i]);
 arr[i]=arr[i]+c;
printf("\n The new array[%d] : %d",i,arr[i]);
printf("\n The value of nextindex:%d",*nextindex);
 }
 process_join(nproc,id);
 cleanup_memory(&shmid);
}

The program for an operating system may involve
thousands of different spin-locks. When the function
spin_lock is called by a process, the logical action is that a
check is made to see if the lock is unlocked. If it is, then the
lock is locked and the process that called spin_lock is allowed
to continue executing instructions. Thus, when a process finds
the lock as unlocked, it locks it and then proceeds into the
protected region. However if the lock was already locked
when the process called the function spin_lock, then the
calling process must wait (spin its wheels) until the lock
becomes unlocked. It is also occupying a processor
completely, executing a set of nonproductive instructions. As
a result spin_locks should be used sparingly, and the
protected regions should be as small as possible, so as to
minimize the overhead of processes spinning unproductively
at the locks.

The function spin_lock takes care of the details of checking
the state of the lock, allowing the process to continue or
causing it to spin. Spin-lock is used to eliminate contention
and is used to enforce that only one process should ever be
able to update a shared variable at a time. Using spin_locks
inefficiently can make a parallel program actually run slower

NATIONAL CONFERENCE ON CURRENT TRENDS IN TECHNOLOGY, ‘NUCONE – 2008’ 4

than the sequential version. If there were a large number of
processes (nproc is large), then the processes could pile up at
the lock, waiting to enter the protected region. This can cause
the self-scheduling program to execute more slowly than the
loop-splitting version. A general feeling is that, if the
calculation are long and involved, then the self-scheduling
technique will be more efficient that the loop-splitting
version. So it is upto the programmer to decide which
technique is appropriate for the particular situation.

4) Barriers
A barrier causes processes to wait and allows them to

proceed only after a predetermined number of processes are
waiting at the barrier. It is used to ensure that one stage of a
calculation has been completed before the processes proceed
to a next stage which requires the results of the previous
stage. Barriers are used to eliminate race conditions, in which
the result of a calculation depends on the relative speed at
which processes execute. Along with spin_locks barriers are
the most important synchronization mechanism for fine
grained parallel programming.

The following section illustrates the use of barriers

 int bar_array[4], blocking_no
• Declared a bar_array as shared
 shared(bar_array, size)
• Initialize the barrier
 barrier_init(bar_array, blocking_no)
• nproc processes starts their work i.e.

id=process_fork(nproc)
• Logic to compute partial data will start from this place.
• No process can continue past the barrier until all the

processes have executed the barrier call.
 barrier(bar_array)
• All processes will continue past the barrier call
• At the end all the processes will have to execute the

process_join function
• At this place, all the child processes get terminated, only

parent process remains and ultimately it also dies.

The barrier function has two phases: a trapping phase and
a release phase. At trapping phase the subroutine checks to
see how many processes have already made this call. If the
number of processes, including the newly arrived one, is less
than the blocking number, the newly arrived process must
wait (along with all the processes that have already arrived at
the barrier). On the other hand, if the number of processes
which have made the call, inclusive of the new one, equals the
blocking number, then all the processes that are waiting are
allowed to proceed, including the last one to make the call.
This later releasing of processes must occur before any other
process can be trapped further.

III. INTRODUCTION TO STEGANOGRAPHY AND
DIGITAL WATERMARKING

Steganography and Digital watermarking as mentioned
earlier is the ability of sending message within the image such
that the existence of the message is not known to the user.
The objective is to avoid the awareness of hidden message
within the image during the relay. If there is suspicion then
the goal is not satisfied. Steganalysis is the ability of
identifying and mining such covert messages.

Cryptography and Steganography form the foundation for a
large number of digital watermarking concepts. The stego
system is conceptually similar to the crypto system.

Figure 3 shows the overall representation of the stego
system whereby a key is additional data needed for
embedding and extracting. The Embedding function and the
Extracting function are opposite to each other in the sense
that reverse operation will take place in extracting the
message than that of embedding the message in the cover
object.

Fig. 3: Block diagram of Stego System

Watermarking is very similar to steganography in a number

of respects. Both seek to embed information inside a cover
object with little to no degradation of the cover object.
Watermarking however adds the additional requirement of
robustness. An ideal steganography system would embed a
large amount of information, perfectly securely with no
visible degradation to the cover object. An ideal
watermarking system however would embed an amount of
information that could not be removed or altered without
making the cover object entirely unusable. As a side effect of
these different requirements, a watermarking system will
often trade capacity and perhaps even some security for
additional robustness. Some methods of steganography and
watermarking are as under.

• LSB (Least Significant Bit)
• Transformation based schemes [9]

A major advantage of LSB algorithm is that it is quick and

easy, whereas using transformation techniques like Discrete
Cosine Transform (DCT) and Discrete Wavelet Transform
(DWT) takes a large amount of time to embed and the
embedding capacity is also less. There are number of other
ways in which embedding can be carried out like redundant

Cover
Image

Message
to embed

key

Embedding
function

Stego Image

Extracting
Function

key

Extracted Image

INSTITUTE OF TECHNOLOGY, NIRMA UNIVERSITY, AHMEDABAD – 382 481, 27-29 NOVEMBER, 2008 5

pattern encoding, spread spectrum method etc.
Applications: There is a growing importance of

steganography and watermarking in intelligence work, as
what is viewed as a serious threat to some governments. Even
the spying agencies can use it for the secret data transmission.
Most researchers believe that steganography’s niche in
security is to supplement cryptography, not to replace it.
Description like place, person’s name, time, event, ownership,
accessibility, etc. can be piggybacked with the original cover
image/video/audio and retrieved at the destination end.

IV. STEGANOGRAPHY ON IMAGE USING PARALLEL
PROGRAMMING APPROACH

Steganography is the art of hiding information inside the
cover object like image, audio or video, whereas adaptive
steganography - an intelligent approach to hide messages
through the techniques like LSB, Matrix Encoding and PN-
Sequences - serves as a capable solution to latest security
assurance concerns. Incorporating the above data hiding
concepts with established cryptographic protocols in wireless
communication would greatly increase the security and
privacy of transmitting sensitive or non-sensitive information.

Here, we propose a technique through which ASCII gets
converted to Base64. These Base64 bits get inserted into
every pixel of an RGB image, so that, each pixel will have
one character to carry, as a result if the image is of 256 x 256
pixels then it can carry as many as 65536 characters in an
image for us. On the sender and receiver sides there will be
Base64 encoding table of our choice. This is how this
technique is adaptive. It can even convert non ASCII values
(image) to our Base64 table values. A simple example of
converting capital ‘A’ to base64 is resulting into ‘QQ==’.

The first thing to note is the '=' at the end of the Base64
encoded string. A Base 64 encoded string will have zero, one
or two '='s at the end. As '=' is not part of the Base 64
encoding, it can only ever appear at the end and has a special
meaning. If there is one = then there are 2 inserted zeros and
if there are two = characters then there are 4 inserted zeros at
the end.

ASCII of A is 01000001 and gets converted to 010000

010000 i.e. 16 in our table and that is QQ and four zeros at
the end results into ==. The reverse will happen at the
decoder side and will combine all the pixel values to form the
actual data.

The concept is as follows:

• Let the cover image be the shared image.
• Convert the message to be embedded into Base64

using the conversion table.
• Let there be three processes in the system. Operating

upon Red, Green and Blue pixel values.
• Fix the insertion pattern for Red as bits 1 and 2, for

Green as bits 3 and 4, and Blue as bits 5 and 6.

• Each process is having identical work to do for
insertion. Let process id=0 (Parent) read two bits
1,2, process id=1(Child 1) read next two bits 3,4 and
process id=2 (Child 2) read the remaining two bits
5,6 of the Base64 value of the first character. Each
process replaces the Least Significant Bits (LSB) of
Red, Green and Blue pixels respectively.

• There will be a barrier call after insertion of each
character by all the processes, so that all the 3
processes will read the next character for further
insertion and will continue till all the message is
inserted into the image (probably multiple times).

• The embedding algorithm which is applied at this
point has to be very fast and the capacity of
embedding also has to be considered. It must be
possible to embed the information multiple times so
that even though if some attack takes place
intentionally/un-intentionally at the destination or in
between then the information can be extracted error
free.

• The embedding of information in to the cover object
i.e. image, movie or audio should not have any
artifacts.

• There are other data hiding techniques which focus
on robustness of the hidden data rather than capacity
of data. If the robustness is to be considered then
such a technique can be classified as Digital
watermark or else a simple steganography technique.

Layout for Inserting Message in parallel Technique 1:

Read the message to be embedded in ASCII also
read the cover media image. Let this be shared.

Convert ASCII message to Base64 message

If id =0
(Parent)
operate
on Red
pixel

matrix

If id =1
(Child1)
operate

on Green
pixel

matrix

If id =2
(Child2)
operate
on Blue

pixel
matrix

Create nproc=3 processes for embedding into
R,G,B matrix of an image

A

NATIONAL CONFERENCE ON CURRENT TRENDS IN TECHNOLOGY, ‘NUCONE – 2008’ 6

• In the earlier discussion we assumed the storing of the
message will be in row wise. However, the data can be
inserted column wise using a loop splitting technique.
Example if there are three processes then process 0
(Red), process 1 (Green) and process 2 (Blue) will iterate
over column number 1,4,7…, 2,5,8…. and 3,6,9….
respectively. Using this technique the data is more
scattered and improves the level of security.

• This technique is quite capable of defending attacks.
Since data is inserted multiple times, we can extract the
contents from the other remaining un-attacked pixels.

Layout for Inserting Message in parallel Technique 2:

• This technique may not be acceptable if there is an attack
since the data is inserted in block scattered manner.
Here, if there is an attack on just one pixel three
characters are affected. Whereas in the earlier technique
only one character was affected.

V. ATTACKS ON EMBEDDED
MESSAGE/WATERMARKS

A watermarked image is likely to be attacked intentionally
or unintentionally. Some intentional attacks include cropping,
filtering, rotation, scaling etc. and unintentional attacks
include compression, transmission noise etc. Summarization
of these different types of attacks [10]:

VI. CONCLUSION

In this paper the author has identified an area whereby
parallelization techniques can be used for performing
Steganography and Digital watermarking techniques. A
simple idea about loop splitting, self scheduling, barriers and
spin lock has to be used to perform the operations in parallel.
These techniques if implemented on a time shared single
processor system will not gain any computation advantage but
if implemented on a multi core will have tremendous
advantage. The speed up will be very good and the whole
operation will be performed faster. Next generation of PCs
are going to be only with multi core processors. Even the
mobiles are also expected to be with multi core embedded

Extract
bit no 1
and 2 of

respective
character
and insert
into LSB
of Red
pixel

Extract
bit no 3
and 4 of

respective
character
and insert
into LSB
of Green

pixel

Extract
bit no 5
and 6 of

respective
character
and insert
into LSB
of Blue
pixel

Iterate for the next Base64 character
insertion into the pixel matrix of R, G
and B until all the pixels are covered
with message inserted multiple times

Read the message to be embedded in ASCII.
Also read the cover media image. Let these be
shared.

Divide the message into equal blocks. Let there be
3 processes then there will be three blocks of

ASCII characters

 Block 1 Block 2 Block 3

 Base64 of Base64 of Base64 of
 Block 1 Block 2 Block 3

Process
Id=0

(Parent)
operates
on Red

Matrix to
insert

Base64
bits of
Block1

Process
Id=1

(Child 1)
operates
on Green
Matrix to

insert
Base64
bits of
Block2

Process
Id=2

(Child 2)
operates
on Blue

Matrix to
insert

Base64
bits of
Block3

After everything is inserted all the
processes die calling a process join.

After everything is inserted all the
processes die calling a process join.

Call a barrier routine so that all
processes must reach this place

A

B

B

INSTITUTE OF TECHNOLOGY, NIRMA UNIVERSITY, AHMEDABAD – 382 481, 27-29 NOVEMBER, 2008 7

devices. Hence designing a technique to perform
watermarking in parallel is of very high significance.

VII. ACKNOWLEDGEMENT

We would like to thank all the members of NIRMA
UNIVERSITY for providing continuous support and
inspiration.

REFERENCES
[1] Rajmohan, ”Watermarking of Digital Images”, ME Thesis Report,

Dept. Electrical Engineering, Indian Institute of Science, Bangalore,
India, 1998.

[2] S.P.Mohanty, ”Watermarking of Digital Images”, Masters Project
Report, Dept. of Electrical Engineering, Indian Institute of Science,
Bangalore - 560 012, India, Jan 1999.

[3] B.Pfitzmann, ”Information Hiding Terminology”, Proc. of First Int.
Workshop on Information Hiding, Cambridge, UK, May30-June1,
1996, Lecture notes in Computer Science, Vol.1174, Ross
Anderson(Ed.), pp.347-350.

[4] W. Bendor, et. al., ”Techniques for Data Hiding”, IBM Systems
Journal, Vol.35, No.3 and 4, pp. 313-336, 1996.

[5] B.M.Macq and J.J.Quisquater, ”Cryptography for Digital TV
Broadcasting”, Proc. of the IEEE, Vol.83, No.6, June 1995, pp. 944-
957.

[6] David Kahn, ”The History of Steganography”, Proc. of First Int.
Workshop on Information Hiding, Cambridge, UK, May30-June1
1996, Lecture notes in Computer Science, Vol.1174, Ross
Anderson(Ed.), pp.1-7.

[7] R.J. Anderson and Fabien A.P. Petitcolas, ”On the Limits of
Steganography”, IEEE Journal on Selected Areas in Comm., Vol.16,
No.4, May 1998, pp.474-481.

[8] R.J. Anderson, ”Stretching the Limits of Steganography”, Proc. of First
Int. Workshop on Information Hiding, Cambridge, UK, May30-June1

1996, Lecture notes in Computer Science, Vol.1174, Ross Anderson(
Ed.).

[9] Samir B. Patel, “Image Based Watermarking and Authentication
mechanism” of the “National Conference on Current Trends in
Technology” NUCONE 2007, Ahmedabad, India, pp 295 - 300, 29th
Nov. -1st Dec., 2007.

[10] Samir B. Patel, “Proposed secure mechanism for identification of
ownership of undressed photographs captured using camera based
mobile phones” of the 2nd IEEE International conference on Digital
Information Management, pp 442 - 447 , 28-31 October 2007.

[11] C.Cachin, ”An Information-Theoritic Model for Steganography”, Proc.
of the 2nd International Workshop on Information Hiding, Portland,
Oregon, USA, 15-17 Apr 1998, Lecture notes in CS, Vol.1525,
Springer-Verlag.

[12] S.Craver, ”On Public-Key Steganography in the Presence of an Active
Warden”, Proc. of the 2nd International Workshop on Information
Hiding, Portland, Oregon, USA, 15-17 Apr 1998, Lecture notes in
Comp Sc, Vol.1525, Springer-Verlag.

[13] N.F.Johnson and Sushil Jajodia, ”Exploring Steganography: Seeing the
Unseen”, IEEE Computer, Vol.31, No.2, pp.26-34, feb.1998.

[14] J. M. Acken, ”How Watermarking Value to Digital Content?”,
Communications of the ACM, July 1998, Vol.41, No.7, pp.75-77.

[15] S. Craver, et. al., ”Technical Trials and Legal Tribulations”,
Communications of the ACM, July 1998, Vol.41, No.7, pp.45-54.

[16] I. J. Cox and M. Miller, ”A Review of Watermarking and Importance
of Perceptual Modelling”, Proc. SPIE Human Vision and Imaging,
SPIE-3016, Feb 1997.

[17] F. Mintzer, et. al., ”Opportunities for Watermarking Standards”,
Communications of the ACM, July 1998, Vol.41, No.7, pp.57-64.

[18] R. Mehul and R. Priti, “Discrete Wavelet Transform based Multiple
Watermarking Scheme,” Proceedings of IEEE Region 10 Technical
Conference on Convergent Technologies for the Asia-Pacific,
Bangalore, India, October 14-17, 2003.

[19] A Survey of Digital Image Watermarking Techniques Vidyasagar M.
Potdar, Song Han, Elizabeth Chang presented at 2005 3rd IEEE
International Conference on Industrial Informatics (INDIN)

