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ABSTRACT 
Structured ASIC is very latest concept in the field of Configurable Logic. It bridges  the 
gap between FPGA and Standard Cell based Design hence having advantages of both.  
With an optimized and programmable structure, the structured ASIC technology indeed 
introduces a dramatically reduce ASIC cost and manufacturing turn-around time. The 
structured ASIC implementation flow is more complex than the conventional cell-based 
flow. 
 
This project explore the differnt Structured ASIC architecture and  Implement variuos 
designs on available Structured ASIC core like eASIC, ViASIC and LightSpeed hence 
customer can get best option for their Silicon Implementation. 
 
 This report compares eASIC, ViASIC and LIghtSpeed architecture goodness using 
experimental techniques. Comparison is made with respect to each other in terms of 
frequency, utilization and capacity. 
 
As the design flow is complex various design issues encountered during the flow which 
may not occur in the ASIC flow. These issues are discussed and remedies for the same 
also proposed. 
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  Ch. 1 Introduction 

Chapter 1:  Introduction 

 
1.Gate Array 

Traditional gate-arrays used a “sea-of-gates” approach where pre-defined array of 

transistors is built on common base wafers that can be manufactured in advance and stored in a 

wafer bank. The transistors can then be interconnected using metal layers to implement a given 

design, which means that only the metal and VIA layer masks are specific to a given design and 

only the metalization steps need to be performed on the stored wafers. 

This solution worked well with older process geometries, but as the industry approached 

the 0.35μ technology node and beyond, the advantage of shrinking transistors was lost due to the 

limitations on contact and metal pitch that limited the utilization of the array. Using Gate Arrays 

could no longer save any significant cost or time. Hence, for many of today’s applications, gate-

array technology is not a viable option. 

2.Standard ASICs 

In the case of ASICs – of which the currently dominant form is that of standard cell (SC) 

devices – these are extremely expensive and time-consuming to develop. As IC implementation 

technologies move into the ultra-deepsubmicron (USDM) realm (specifically the 90 nanometer 

node and below), power, timing, and signal integrity issues become evermore complex. Reaching 

closure on these issues takes so much effort that the design team now spends more time 

addressing these aspects of the design than they spend architecting, capturing, and verifying the 

logical functionality of the device. In addition to protracted development times, the photomasks 

associated with a new ASIC are becoming prohibitively expensive (in the order of $1 million for 

a reasonably complex 90 nanometer device). Furthermore, the manufacturing turnaround time to 

actually fabricate these devices significantly impacts their time-to-market. The long                   

development and manufacturing times associated with standard cell ASICs pose particular 

problems with regard to today’s short product life cycles and the need to address constantly 

evolving standards and protocols. However, these devices do have the advantages that they can 

be used to implement the largest, most complex, high-performance designs. They also have a low 

per-unit cost when used in large production runs in the order of 50,000 units or more. 
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3.FPGAs 

Today’s state-of-the-art FPGAs can provide up to 10M system gates, which – depending 

on the application – equates to somewhere between 1M to 3M ASIC equivalent gates. The 

addition of features such as embedded RAM, embedded processor cores, and gigabit transceivers 

means that FPGAs can now be used to implement reasonably large and sophisticated designs 

(although the largest and most complex designs remain the domain of ASICs).  FPGAs are fully 

prefabricated by the vendor, which means that there is no manufacturing turnaround time to be 

accounted for in the design cycle. Furthermore, creating an FPGA design is, in many respects, 

simpler and faster than would be its ASIC counterpart. This is because considerations such as 

signal integrity have already been addressed by the device’s manufacturer and/or are 

automatically handled by the FPGA’s design tools (in both cases this occurs transparently to the 

end user). The fact that many FPGA families can be reconFig.d (reprogrammed) means that they 

are ideal for use with applications whose standards and protocols are constantly evolving. 

However, FPGAs also have significant disadvantages, in that their designs consume significantly 

more power and have much lower performance than equivalent ASIC implementations. 

Furthermore, FPGAs have a high per-unit cost, which makes them an extremely expensive option 

for anything other than prototyping applications or relatively small production runs. 

The requirement 

All of the above points serve to illustrate that there is a huge gap between the two main 

technologies currently used to implement custom digital IC designs (Fig. 1). 

 
Fig 1: FPGA-ASIC gap 

The rising cost of developing standard cell ASICs means that many companies can no 

longer afford to use these devices. At the same time, FPGAs aren’t appropriate for many of these 

designs due to capacity and performance issues and/or high per-unit costs. What is required is a 
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new implementation technology that overcomes the design size, complexity, performance, and 

power consumption limitations of FPGAs, but which also addresses the long development times, 

high development costs, and long manufacturing lead times associated with standard cell FPGAs. 

In addition, this new technology should offer a reasonably low per-unit cost, thereby making 

these components suitable for medium-size production runs (refer fig 2). The solution may well 

be a new class of devices known as structured ASICs (SAs). This chapter introduces the concept 

of structured ASICs along with some comparisons between standard cell, structured ASIC,  

and FPGA implementations. Also provided is an overview of some of the alternative structured 

ASIC architectures tht are currently being made available to the market. 

 

 
 

Fig 2: Total volume vs. total cost 

 
Fig 3: Density vs.  Masks. 
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4. The structured ASIC concept 

The underlying concept behind structured ASICs is actually fairly simple. Although there 

are a wide variety of alternative architectures, they are all based on a fundamental element called 

a “tile” by some or a “module” by others (this paper will use the term “tile” henceforth). This tile 

contains a small amount of generic logic implemented either as gates and/or multiplexers and/or a 

lookup table. Depending on the particular architecture (see also the discussions below), the tile 

may contain one or more registers and possibly a very small amount of local RAM. An array 

(sea) of these tiles is then prefabricated across the face of the chip. Structured ASICs also 

typically contain additional prefabricated elements, which may include configurable general-

purpose I/O, microprocessor cores, gigabit transceivers, embedded (block) RAM, and so forth 

Structured ASIC technology is especially suitable for platform ASIC designs that have integrated 

most of the IP blocks and leave some space for customer function changes or bugs fixing in the 

future. A structured ASIC is different from the traditional cell-based ASIC. It contains an array of 

well-structured and optimized elements across the entire chip. The structured element is designed 

for implementing the desired functional by making changes to fewer upper layer mask. The 

structured ASIC FPGA-based products uniquely address the economic issues for lower volume 

applications by being easy to design and program within the shortest possible time. However, 

FPGAs consume more power, are much lower in performance, and come with substantially 

higher units costs when compare to cell-based ASIC. 

 In many respects these devices are similar to modern, high-end gate array ASICs. The key 

differentiator with regard to Structured ASICs is that the majority of the metallization layers are 

also prefabricated. This means that the transistors forming the core logical functions comprising 

each tile (gates, multiplexers, etc) are already wired together. Also, much of the local and global 

interconnect has also been implemented. Depending on the architecture, the design engineers 

need specify only one, two, or very few metallization layers in order to complete the device. 
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Fig 4: The structured ASIC concept 

 

4.1 Advantages  

 These devices are much easier and faster. 

 Multiple global and local clock domains are typically prefabricated in the master fabric 

and are implemented in such a way that there are no skew problems that need be 

addressed by the design engineers.  

 Design-for-test considerations are addressed by the fact that functions such as  boundary 

scan (JTAG), full internal scan, and BIST are all typically embedded in the basic fabric. 

 Due to the fact that structured ASICs need only a limited number of metallization layers 

to complete them, the costs associated with generating the photo-masks are dramatically 

reduced.   

 Device is largely prefabricated radically shrinks the turnaround time to working silicon. 

This also means that structured ASICs can undergo faster and cheaper modification cycles 

in order to accommodate evolving standards and protocols.  
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 Overall, the capacity, performance, and power consumption of a structured ASIC is much 

closer to that of a standard cell realization of the design as opposed to an FPGA 

implementation.  

 Additionally, the faster design time, lower mask costs, and quicker turnaround to final 

silicon – along with the lower costs resulting from the fact that the majority of the device 

is pre-fabricated – means that the per-unit cost of structured ASICs is extremely 

reasonable for medium-low to medium-high production runs. 

4.2 Disadvantages 

 The current design tools – which are currently predominantly based on traditional ASIC 

offerings – are both expensive and not well-suited to the task. 

 The diverse architectures fielded by the various vendors are so new that they have not yet 

been subject to any form of formal evaluation and comparative analysis  

 Chip area/performance overhead 

 The area per unit gate would be 3 to 1.5 times in comparison with the conventional 

standard cell design; the average performance degrade would be 10% to 50%. It depends on 

the architectures. 

4.3 The Architectures of Structured ASICs 

The structured ASIC architecture mainly consists of two parts: 

1. Structured element,  

2. Array of structured element.  

 The general architecture of structured ASIC contains an array of structured elements. The 

structured element is similar to the gate array due to its well-structured nature. Gate array also 

contains many of gates across the entire chip. This gate is basically an array of uncommitted 

MOS transistors. The difference between gate array and structured ASIC is that the structured 

ASIC offers an array of partially formed elements. These elements are fully optimized in terms of 

area and performance. The structured element is also similar to the FPGA programmable element 

but does not have the additional overhead required for field programmability. There may exist 

one or more types of structured elements in the chip. These different types of elements form the 

array in the Structured ASIC. Each type of elements is activated for different purposes. For 

example, one type of element is for combination logic, and another type is for sequential element. 
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  Fig. 5 illustrates the general architecture of the structured ASIC. There are 2 types of 

structured element. The first one is the logical element, and the other is the storage element. The 

different structured elements can be different or the same size. Logical element Storage element 

 
Fig 5: The structured ASIC general architecture 

 

There are 2 types of structured elements.  

1. Based on look-up tables,  

2. Based on transmission gate.  

 

Look-up table style  

 Each structured element is designed as look-up table to implement logical function. The 

look-up table architecture is widely used in FPAG logic block design. The structured element can 

be programmed any n-input logical function, where n is the inputs  

of the structured element. Typically, the value of n is less than 5 for the circuit performance issue.  

 

Transmission gate style 

 Each structured element implements the logical function from generic transmission gates. 

Disadvantages to use transmission gate style are the restricted provided logical function in 

comparison with look-up table style. On the other hand, the transmission gate style can provide a 

substantially lower performance unit cost.  

There are 2 models of array: 

1. Uniform array styles.  

2. Non-uniform array styles. 
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Uniform array model  

 The uniform array model (refer fig 6) is setup as a regular grid array over the entire chip. 

There is one type of the structured element. That is, the structured element can be programmed as 

a logical element and sequential element. A typical uniform array is shown in Fig. 2. All 

structured elements are uniform. 

 
Fig 6: Uniform array model 

 

Non-uniform array model 

 In non-uniform model, there are two more types of the structured element. Each type 

element has to be allocated on the specific locations on the chip. The specific locations have to be 

designed before the structured ASIC implementation. Fig. 3 shows a typical non-uniform array 

model. There are 3 types of structured elements: FE, BUF and FF. The ratio of the number of 

different types is 4:2:1. The FE element is for logical function implementation, BUF element is a 

buffer for timing optimization, and FF element is for sequential function.  

 
Fig 7: Non-uniform array model 
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Alternative SA architectures 

 This is a somewhat “gray” area, because the majority of vendors with structured ASIC 

offerings are still working in “stealth mode,” which means that detailed descriptions of their 

internal architectures are not readily available. Thus, the following architectural descriptions are 

“composites” that have been gleaned from a variety of sources. In addition to its own unique 

version of a basic tile, each vendor offers its own selection of hard, firm, and soft IP. Hard IP 

comes in the form of configurable I/O blocks that can be modified (via the user-definable 

metallization layers) to handle a variety of standard I/O interfaces. Other hard IP blocks include 

standard interfaces like PCI, gigabit transceivers, microprocessor cores, embedded RAM, and so 

forth. Each vendor may offer a family of devices containing different combinations of hard IP 

blocks combined with various quantities of basic tiles. Firm IP comes in the form of a library of 

high-level functions that have been optimally mapped, placed, and routed for this vendors 

particular architecture, while soft IP is presented as a source-level library of high-level functions 

that can be included into the users’ designs. In many cases the hard, firm, and soft IP from the 

various vendors are simply variations on a theme. The real differentiator between devices comes 

in the contents and architecture of the basic tile. 

 

Extremely fine-grained 

 
Fig 8: An extremely fine-grained tile 

 

 These architectures are extremely close to those of modern high-end gate array devices. 

The difference being that – in the case of the structured ASIC, metallization has been added so as 
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to almost connect these components in a variety of pre-defined configurations. Thus, the 

userdefinable metallization layers are used to complete the appropriate connections, and to link 

the tiles into the local and global routing architecture. 

 

Medium-grained tiles 

 Other vendors have opted for a medium-grained architecture. In this case, the tile might 

contain some generic logic in the form of gates and/or multiplexers along with one or more flip-

flops (Fig. 9). 

 
Fig 9: Mux-based medium-grained tile 

 

Alternatively, some medium-grained architecture is based on tiles containing one or more lookup 

tables (LUTs) along with one or more flip-flops (Fig. 10).  

 

 
Fig 10: LUT-based medium-grained tile 
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In both of these cases the polarity of the flip-flops’ clock inputs (i.e., whether each register should 

be positive- or negative-edge-triggered) and the polarity of their set and reset inputs can be 

determined by the customized metallization layers. 

 

Hierarchical tiles 

As yet another alternative, some architecture commence with a base tile containing only 

generic logic in the form of prefabricated gates and/or multiplexers and/or lookup tables (Fig. 6). 

 

 
 

Fig 11: An example “base tile” 

An array of these base tiles (say 4 x 4, or 8 x 8, or 16 x 16) are combined with special tiles 

containing registers, memory elements, and other logic to form a master tile, then an array (sea) 

of these master tiles is prefabricated across the face of the chip. 

 

Fine versus medium versus coarse 

 One consideration with regard to the granularity of the architecture is that fine-grained 

implementations require a lot of connections into and out of each tile compared to the amount of 

functionality that can be supported by the time. By comparison, as the granularity of the tile 

increases to medium-grained and higher, the amount of connections into the tile compared to the 

functionality it can support decreases.  
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4.4 Key Market Players  

Standalone Structured ASICs 

Altera has HardCopy and HardCopy 2. These are meant to be designed using Altera 

FPGA and then converted to their structured products. 

 

Embedded Structured ASICs 

eASIC has the most unique product. The interconnects and routing are done by single 

mask customization. The logic section is handled by Look Up Tables. This part of design 

is field-reprogrammable and is loaded at power up. 

 

ViASIC uses simple logic gates (NAND, MUX) to map the design into, while 

connections are done by single via layer customization 

 

 LightSpeed uses pre-optimized, pre-characterized & pre-qualified standard cells 

and customize througth 2M2V to all Metal layers 
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4.5 Comparision 

 

 FPGA Structured ASIC Standard Cell Based ASIC 

Performance Low High Very High 

Cost of re-Spin Low Very High Very High 

Time to Market Low Medium Very High 

Power 

Consumption 

Very High Low Low 

Complexity Low Low High 

Density Low High Very High 

Unit Cost Depends on Volume 

 

 

Table 1: Comparision between FPGA, Str ASIC and Standard ASIC 

 

Area  

Keeping this in mind, it is generally accepted that standard cell architectures can support 

an equivalent gate density of approximately 100,000 gates/mm2, while FPGAs can only offer 

around 1,000 gates/mm2, which is a factor of 100:1. By comparison, some structured ASIC 

architectures are rumored to support around 33,000 gates/mm2, which is a factor of 3:1 compared 

to standard cells. That is, a structured ASIC can support 0.33x the number of gates as a standard 

cell device and 33x the number of gates in an FPGA component in the same area. 

 

Performance  

 With regard to performance, if the same design is implemented in standard cell and FPGA 

devices, it is typically the case that the FPGA can only achieve 10% to 20% of the performance if 

the standard cell implementation (in terms of clock frequency). By comparison, early results on 

structured ASICs suggest that these devices can achieve 70% to 80% of the performance of a 
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standard cell implementation. In the case of power, FPGAs typically dissipate 10x to 15x that of 

an equivalent standard cell implementation.  

 

Power Consumpsion  

 Once again, early results on structured ASICs suggest that these devices consume only 2x 

to 3x the power of their standard cell counterparts. Some additional metrics that are being quoted 

although not referenced) is that the development costs of a structured ASIC design are only 25% 

those of a standard cell equivalent. Furthermore, the production unit price of a structured ASIC is 

said to be only 10% of an equivalent FPGA (assuming that an FPGA can meet the design’s size, 

complexity, and performance requirements). 

 

 
 

Table 2: FPGA, structured ASIC, and cell-based ASIC development costs 

4.6 The Implementation Flow  

 The implementation flow for structured ASICs involves mainly 6 steps, which include 

logical synthesis, DFT insertion, placement, physical synthesis, clock tree synthesis and routing. 

Fig. 4 shows the structured ASIC implementation flow. The logical synthesis, which maps RTL 

design into structured elements, is the 

 DFT insertion adds the scan circuitry to improve the testability and fault coverage. 

Placement involves the mapping the smaller structured elements onto array elements.  
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 Physical synthesis improves the timing by placement-based optimization. Clock tree 

synthesis distributes the clock network to minimize the clock skew and delay. The final step is 

routing. 

 

 

 
Fig 12: Implementation flow of structured ASICs 

 

 Logical synthesis, placement and routing problems in structured ASICs are slightly more 

complex than logical synthesis problems in other design styles. The other DFT insertion, physical 

synthesis and clock tree synthesis problems are the similar to the conventional ones. 
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Chapter 2: Basics Terminilogy and ASIC Flow 

 

1. Generelize ASIC FLOW 

Figure 1 shows the simple and generalize ASIC flow. In the following session we will 

understand terminologies and proicess associate with it. 

 

Specifications 

RTL Coding 

RTL Functional 
Verification

RTL Synthesis 

Floorplanning, 
Placement and 
Routing 

 
 

 

Fig 1: Generalize ASIC Flow 

STA 

OK 
? 

Modification 
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1.1 Specification  

 The first step in a high-level design flow is the design specification process. This 

process involves specifying the behavior expected of the final design. The designer puts 

enough detail into the specification so that the design can be built. The specification is usually 

written in the designer’s native language and specifies the expected function and behavior of 

the design using textual description and graphic elements. 

1.2 RTL Coding 

 After the specification has been completed, the designer or designers can begin the 

process of implementation. Some design teams create a high- level behavioral or algorithmic 

description of the design to verify design intent, then convert that description to RTL 

(Register Transfer Level) later. However, most design teams skip the behavioral description 

and implement the RTL directly.  

1.3 RTL Functional Verification 

 The RTL Functional Verification step is used to verify the correctness of the RTL 

VHDL description. The designer has described the clock-by-clock behavior of the design. 

Now, the designer uses stimulus that represents the design environment to drive the design 

and check to make sure that the results are correct. A standard VHDL simulator can be used 

to read the RTL VHDL description and verify the correctness of the design. 

1.4 Synthesis  

Definition  

 It is the process to convert RTL code to the gate level netlist.  

 It also optimize the netlist and this generated netlist contain components which are 

specified in the library.It can be area driven, power driven or timing driven. 

1.5 Floorplanning  

Definition:  

 Floorplannig is the placement of flexible blocks that is block of fix area and but 

unknown dimensions.it is much more difficult than the placement. Here several layout 

alternatives for each block considered.  

 

Floorplanning is the process of: 
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 Positioning blocks on the die or within another block, thereby defining routing areas 

between them 

 Creating and developing a physical model of the design in the form of an initial 

optimized layout because floorplanning significantly affects circuit timing and 

performance, especially for complex hierarchical designs, the quality of your floorplan 

directly affects the quality of your final design.  

You have refined your floorplan and before you continue on to detailed cell placement and 

detailed routing. 

1.6 Placement 

Definition:  

 In the placement placement phase blocks are assign a specific shape and are positioned 

on a layout surface in such a fatshion that no two blocks are overlapping and enough space is 

left on layout to complete the interconnections.the blocks are position such that it will take 

minimum area.   

        Fixed blocks the blocks for which dimensions are known and blocks for which 

dimensions are yet to determine called as flexible blocks.Problem of assingning locations to 

fix block called as placement problems. If some or all blocks are flexible than problem called 

as floorplanning problem Standard cell placement and physical optimization occurs during the 

fix cell stage. 

Placement stages include: 

 

Global placement 

 Global placement distributes the cells uniformly across the available core area, 

minimizing wire length and ensuring constant delay. The global placer uses a gain-based wire 

delay model, in which the cell area (and not wire capacitance) affects timing. After achieving 

an initial placement, you can incrementally run the global placer (for designs with greater 

timing considerations than congestion considerations). 

 

 

 

Coarse placement 

 Coarse placement can be used to refine the preliminary placement of a design that has 

greater congestion considerations than timing considerations. It adjusts the placement to 
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distribute the standard cells evenly among the sea of buckets, while minimizing wire length. 

Coarse placement does not eliminate cell overlap or place cells precisely into rows. 

1.7 STA  

Definition: 

Static Timing Analysis is a method for determining if a circuit meets timing constraints 

without having to simulate 

A static timing analyzer traces each path in the design and keeps track of the timing from 

a clock edge or an input. A timing report is then generated in a number of formats. For 

instance, the designer can ask for all paths and get an enormous listing of every path in the 

design. 

1.8 Routing 

Definition:  

 The process of finding the goematric layout of all nets is called routing. 

Global routing generates ‘loose’ route for each net.in detailed routing actual geometric layout 

of net assigned. 

 It handles crosstalk avoidance, electromigration issues, and constrained wire patterns 

while ensuring that all design spacing requirements are followed. If design rule violations 

occur, the router uses rip-up and reroute methods to repair them. Design rule violations that 

cannot be repaired are reported. There are five routing stages, in the following order: 

 

Stub routing 

 The first step in signal routing. During stub routing, the detailed router identifies very 

short nets and routes them on the Metal1 layer only. The purpose of stub routing is to utilize 

the otherwise unused Metal1 resources and to avoid inaccuracy during the global routing of 

short nets. 

 

 

 

Global routing 

 Focuses on resolving congestion and timing issues. The global router creates net 

segments and defines the initial bucket-level routing topologies and spreads wire density 

evenly over the design by assigning each net segment to buckets and layers. 
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Track routing 

 Track routing also works on the bucket level. It orders and spaces the net segments 

and assigns them to legal track positions. Proper ordering and spacing greatly reduces 

crosstalk coupling and noise. The track router does not adjust the topologies set by the global 

router; therefore, the congestion picture predicted by the global router is not altered. Track 

routing processes the layout, within buckets, row by row or column by column to assign the 

routing segments generated by the global router to legal track positions, define segment order 

and spacing, and resolve alignment, crosstalk 

 

Detailed routing 

 It  analyzes the net-segment topologies, converts the segments to actual wires and vias 

that connect all pins of all nets, and begins the process of correcting design rule  violations 

The detailed router is region-based. It reads the content of a general rectangular region 

containing several buckets, performs ripup-and-reroutes, and updates the region when it 

accepts the resulting routing (or leaves it unchanged if unacceptable).  
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2. Detailed ASIC Flow 

RTL 

 
 

Fig 2: Detailed ASIC Flow 
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2.1 Synthesis  

 Synthesis is an automatic method of converting a higher level of abstraction to a lower 

level of abstraction. There are several synthesis tools available currently, including commercial 

as well as university-developed tools. The current synthesis tools available today convert 

Register Transfer Level (RTL) descriptions to gate level netlists. These gate level netlists consist 

of interconnected gate level macro cells. Models for the gate level cells are contained in 

technology libraries for each type of technology supported. 

 

 

 
 

Fig 3: Synthesis environment 

 

These gate level netlists currently can be optimized for area, speed, testability, and so on. 

The synthesis process is shown in Figure 3. The inputs to the synthesis process are an RTL 

(Register Transfer Level) VHDL description, circuit constraints and attributes for the design, and 

a technology library. The synthesis process produces an optimized gate level netlist from all of 

these inputs. In the next few sections, each of these inputs is described, and we discuss the 

synthesis process in more detail.  
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Constraints 

 Constraints are used to control the output of the optimization and mapping process. They 

provide goals that the optimization and mapping processes try to meet and control the structural 

implementation of the design. They represent part of the physical environment that the design has 

to interface with. The constraints available in synthesis tools today include area, timing, power, 

and testability constraints. In the future, we will probably see packaging constraints, layout 

constraints, and so on. Today, the most common constraints in use are timing constraints. A 

block diagram of a design with some possible constraints is shown in Figure 4. Again, the design 

is shown using the cloud notation. The combinationl logic between registers is represented as 

clouds, with wires going in and out representing the interconnection to the registers. There are a 

number of constraints shown on the diagram including required time constraints, late arrival 

constraints, and clock cycle constraints. 

 

 

 
 

Fig 4: Constraints in Synthesis process 

 

1. Timing Constraints 

 Typical uses for timing constraints are to specify maximum delays for particular paths in 

a design. For instance, a typical timing constraint [refer figure 4] is the required time for an 

output port. The timing constraint guides the optimization and mapping to produce a netlist that 

meets the timing constraint. Meeting timing is usually one of the most difficult tasks when 
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designing an ASIC or FPGA using synthesis tools. There may be no design that meets the timing 

constraints specified. 

 

2. Clock Constraints 

 One method to constrain a design is to add a required_time constraint to every flip-flop 

input with the value of a clock cycle. The resulting design would be optimized to meet the one 

clock cycle timing constraint. An easier method, however, is to add a clock constraint to the 

design. A clock constraint [refer figure 4] effectively adds an input required_time constraint to 

every flip-flop data input. 

 

Attributes 

 Attributes [refer figure 5] are used to specify the design environment. For instance, 

attributes specify the loading that output devices have to drive, the drive capability of devices 

driving the design, and timing of input signals. All of this information is taken into account by 

the static timing analyzer to calculate the timing through the circuit paths. 

 

 
Fig 5: Attributes in Synthesis process 

 

1. Load 

 Each output can specify a drive capability that determines how many loads can be driven 

within a particular time. Each input can have a load value specified that determines how much it 
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will slow a particular driver. Signals that are arriving later than the clock can have an attribute 

that specifies this fact. 

 

2. Drive 

 The Drive attribute specifies the resistance of the driver, which controls how much 

current it can source. This attribute also is specified in the units of the technology library. The 

larger a driver is the faster a particular path will be, but a larger driver takes more area, so the 

designer needs to trade off speed and area for the best possible implementation. 

 

Synthesis Process 

 To convert the RTL description to gates, three steps typically occur. First, the RTL 

description is translated to an unoptimized Boolean description usually consisting of primitive 

gates such as AND and OR gates, flip-flops, and latches. This is a functionally correct but 

completely unoptimized description. Next, Boolean optimization algorithms are executed on this 

Boolean equivalent description to produce an optimized boolean equivalent description. Finally, 

this optimized Boolean equivalent description is mapped to actual logic gates by making use of a 

technology library of the target process. 

 

1. Translation 

 The translation from RTL description to Boolean equivalent description is usually not 

user controllable. The intermediate form that is generated is usually a format that is optimized for 

a particular tool and may not even be viewable by the user. All IF, CASE, and LOOP statements, 

conditional signal assignments, and selected signal assignment statements are converted to their 

Boolean equivalent in this intermediate form. Flip-flops and latches can either be instantiated or 

inferred; both cases produce the same flip-flop or latch entry in the intermediate description. 
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Fig 6: Synthesis process 

 

 

2. Boolean Optimization 

 The optimization process takes an unoptimized boolean description and converts it to an 

optimized boolean description. In many designers’ eyes, this is where the real work of synthesis 

gets done. The optimization process uses a number of algorithms and rules to convert the 

unoptimized boolean description to an optimized one. One technique is to convert the 

unoptimized boolean description to a very low-level description (a pla format), optimize that 

description (using pla optimization techniques), and then try to reduce the logic generated by 

sharing common terms (introducing intermediate variables). 

 

3. Flattening 

 The process of converting the unoptimized boolean description to a pla format is known 

as flattening, because it creates a flat signal representation of only two levels: an AND level and 

an OR level. The idea is to get the unoptimized boolean description into a format in which 

optimization algorithms can be used to optimize the logic. A pla structure is a very easy 
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description in which to perform boolean optimization, because it has a simple structure and the 

algorithms are well known. An example of a boolean description is shown here:  

 

Original equations 

a = b and c; 

b = x or (y and z); 

c = q or w; 

after flattening, 

 

a = (x and q) or (q and y and z) or (w and x) or (w and y and z); 

 

 This second description is the boolean equivalent of the first, but it has no intermediate 

nodes. This design contains only two levels of logic gates: an AND plane and an OR plane. This 

should result in a very fast design because there are very few logic levels from the input to the 

output. In fact, the design is usually very fast. There are, however, a number of problems with 

this type of design. this type of design can actually be slower than one that has more logic levels. 

The reason is that this type of design can have a tremendous fanout loading on the input signals 

because inputs fan out to every term. Second, this type of design can be very large, because there 

is no sharing between terms. 

 Flattening gets rid of all of the implied structure of design whether it is good or not. 

Flattening works best with small pieces of random control logic that the designer wants to 

minimize. Used in conjunction with structuring, a minimal logic description can be generated. 

Usually, the designer wants a design that is nearly as fast as the flattened design, but is much 

smaller in area. To reduce the fanout of the input pins, terms are shared. Some synthesis vendors 

call this process structuring or factoring. 

 

4. Factoring 

 Factoring is the process of adding intermediate terms to add structure to a description. It is 

the opposite of the flattening process. Factoring is usually desirable because, as was mentioned in 

the last section, flattened designs  are usually very big and may be slower than a factored design 

because of the amount of fanouts generated. Following is a design before factoring:   
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x = a and b or a and d; 

y = z or b or d; 

 After factoring the common term, (b or d), is factored out to a separate intermediate node. 

The results are shown here: 

x = a and q; 

y = z or q; 

q = b or d; 

 The ideal case is one in which the critical path was flattened for speed and the rest of the 

design was factored for small area and low fanout. After the design has been optimized at the 

boolean level, it can be mapped to the gate functions in a technology library. 

 

5. Mapping to Gates 

 The mapping process takes the logically optimized boolean description created by the 

optimization step and uses the logical and timing information from a technology library to build a 

netlist. This netlist is targeted to the user’s needs for area and speed. There are a number of 

possible netlists that are functionally the same but vary widely in speed and area Some netlists 

are very fast but take a lot of library cells to implement, and others take a small number of library 

cells to implement but are very slow. 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 28



  Ch. 2 Basic Terminology and ASIC Flow 

 

Synthesis Result 

 

Cell                      Reference       Library             Area  Attributes 

------------------------------------------------------------------------------

-- 

U3                        NR_NOR4BX4      lst90b_gp_ss125 19.756800  

U4                        NR_NOR2X4       lst90b_gp_ss125 6.585600   

U5                        NR_OR2X4        lst90b_gp_ss125 10.976000  

U6                        NR_OR4X4        lst90b_gp_ss125 19.756800  

U7                        NR_OR4X4        lst90b_gp_ss125 19.756800  

U8                        NR_NOR2X4       lst90b_gp_ss125 6.585600   

U9                        I_INVX4         lst90b_gp_ss125 4.390400   

U10                       NR_NOR3X4       lst90b_gp_ss125 17.561600  

U30                       NR_AND4BX4      lst90b_gp_ss125 24.147200  

U31                       ND_NAND2X4      lst90b_gp_ss125 6.585600   

U32                       NR_AND4X4       lst90b_gp_ss125 19.756800  

U33                       NR_AND4X4       lst90b_gp_ss125 19.756800  

U35                       NR_NOR3X4       lst90b_gp_ss125 17.561600  

U44                       NR_OR4X4        lst90b_gp_ss125 19.756800  

U45                       NR_OR4X4        lst90b_gp_ss125 19.756800  

U46                       NR_OR4X4        lst90b_gp_ss125 19.756800  

U47                       NR_OR4X4        lst90b_gp_ss125 19.756800  

U48                       NR_OR4X4        lst90b_gp_ss125 19.756800  

U49                       NR_OR4X4        lst90b_gp_ss125 19.756800  

U77                       M2_MX2X4        lst90b_gp_ss125 13.171200  

U78                       M2_MX2X4        lst90b_gp_ss125 13.171200  

U79                       M2_MX2X4        lst90b_gp_ss125 13.171200  

U80                       M2_MX2X4        lst90b_gp_ss125 13.171200  

U81                       M2_MX2X4        lst90b_gp_ss125 13.171200  

U82                       M2_MX2X4        lst90b_gp_ss125 13.171200  

U83                       M2_MX2X4        lst90b_gp_ss125 13.171200  

U84                       M2_MX2X4        lst90b_gp_ss125 13.171200  

U85                       M2_MX2X4        lst90b_gp_ss125 13.171200  

U86                       M2_MX2X4        lst90b_gp_ss125 13.171200  

U87                       M2_MX2X4        lst90b_gp_ss125 13.171200  
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2.2 Static Timing Analysis 

Defination  

It is an effective methodology for verifying the timing characteristics of a design without the 

use of test vectors or Static Timing Analysis is a method for determining if a circuit meets 

timing constraints without having to simulate 

 

Advantages 

 Fast, exhaustive 

 Better analysis checks against timing requirements 

 Conventional verification techniques are inadequate for complex designs 

 

Disadvantage 

 Less accurate 

 Must define timing requirements/exceptions 

 Difficulty handling asynchronous designs, false paths 

 Proper circuit functionality is not checked 

 

Clock Latency 

 It is a difference between the reference (source) clock slew to the clock tree 

 endpoint signal slew values here rise latency and fall latency are specified [refer figure 7] 

 

INV 

RRiissee==77  
FFaallll==44  

RRiissee==77  
FFaallll==44  

RRiissee==77  
FFaallll==44  

RRiissee==77  
FFaallll==44  

RRiissee==77  
FFaallll==44  

RRiissee==77  
FFaallll==44  

RRiissee==77  
FFaallll==44  

CCLLKK  

CCLLKKAA 

CCLLKKBB 

CCLLKKCC  

IINNVV  

IINNVV  

IINNVV  IINNVVIINNVV

BBUU

BBUU

 
Fig 7: Clock Latency 
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Input Arrival time 

 An arrival time defines the time interval during which a data signal can arrive at  an 

input pin in relation to the nearest edge of the clock signal that triggers the data  transition 

 

Output required time 

 It specifies the data required time on output ports 

 

Slack 

 It is the difference between the required (constraint) time and the arrival time  (inputs 

and delays).Negative slack indicates that constraints have not been met,  while positive s lack 

indicates that constraints have been met. Slack analysis is  used to identify timing critical paths 

in a design by the static timing analysis tool 

 

Critical path 

 Any logical path in the design that violates the timing constraints or the longest  delay 

path in the circuit called as critical path. 

 

Recovery time 

 It is like setup time for asynchronous port (set, reset) It is the time available 

 between the asynchronous signal going inactive to the active clock edge 

 

Removal time 

 It is like hold time for asynchronous port (set, reset) 

 It is the time between active clock edge and asynchronous signal going inactive 

 

False paths 

 Paths that physically exist in a design but are not logic/functional paths  

 These paths never get sensitized under any input conditions [refer figure 8]  
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Fig 8: False Path 

 

 

Multi-cycle paths 

 Data Paths that require more than one clock period for execution [refer figure 9] 

 

 

 

2 clock period 

 

Fig 9: Multi-Cycle Paths 

 

Clock Skew 

 If a clock edge does not arrive at different flip-flops at exactly the same time, then 

 the clock is said to be skewed between these flip-flops. The difference between  the 

times of arrival at the flip-flops is said to be the amount of clock skew. 
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Clock skew [refer figure 10] is due to different delays on different paths from the clock generator 

to the various flip-flops. 

• Different length wires (wires have delay) 

• Gates (buffers) on the paths 

• Flip-Flops that clock on different edges (need to invert clock for some flip-flops) 

• Gating the clock to control loading of registers (a very bad idea) 

FF1 FF2

Q1 Q2

CLOCKD

A  LONG SLOW PATH

 
 

Fig 10: Clock Skew 

 

Propagation delay (tclk−q):  

 The amount of time needed for a change in the flip-flop clock input D to result in  a 

change at the flip-flop output Q. When the clock edge arrives, the D input value  is transferred 

to output Q. After time tclk−q the output is guaranteed not to change  value again until another 

clock edge trigger arrives. 

 

Contamination delay (tcd):  

 This value indicates the amount of time needed for a change in the flip-flop clock  input to 

result in the initial change at the flip-flop output Q. The output of the  flip-flop maintains its 
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initial value until time tcd has passed and is guaranteed not  to show any output change in 

response to an input change until after tcd has  passed. 

 

Setup time (tsu):  

 The amount of time before the clock edge that data input D must be stable the  rising 

clock edge arrives [refer figure 11].  

 

Hold time (thold):  

 This indicates the amount of time after the clock edge arrives that data input D  must be 

held stable in order for the flip-flop to latch the correct value. Hold time  is always measured 

from the rising clock edge (for positive edge-triggered) to a  point after the clock edge 

[refer figure 11]. 

 

 

 

 
Fig 11: Setup and Hold time 

 

 Setup and hold times are restrictions that a flip-flop places on combinational or sequential 

circuitry that drives a flip-flop D input. The circuit has to be designed so the D 

input signal arrives at least tsu time units before the clock edge and does not change until 

at least thold time units after the clock edge. If either of these restrictions is violated for any of the 

flip-flops in the circuit, the circuit will not operate correctly. These restrictions 

limit the maximum clock frequency at which the circuit can operate.  
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Delay Modeling 
 

Gate propagation delay (tPHL and tPLH):  

 Gate propagation delay [refer figure 12] is measured from 50% input to 50% of the 

output. tPHL is  measured from 50% of the rising edge of the input voltage to 50% of the rising 

 edge of the output voltage. Similarly, tPLH is measured from 50% of the falling edge of the 

input voltage to 50% of the falling edge of the output voltage. 

 

 
Fig 12: Propagation delay 

 

 

Interconnect Delay:  

 This is delay caused by wires. Interconnect introduces three types of parasitic effects – 

capacitive, resistive, and inductive – all of which influence signal integrity and degrade the 

performance of the circuit.  

 After the signal frequencies of our interests (up to several GHz), we can ignore the effects 

of inductance of interconnect. When gate G1 drives gate G2, we can model the circuit as the one 

showing below in the right-hand side figure where Rout is the output resistance of G1, Rin and Cin 

are the interconnect resistance and capacitance, and CL is the input capacitance of G2. 
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Fig 13: Interconnect Delay 

 

This model can be further simplified as the one shown in the right. Now if Vin (i.e. output of G1) 

switches from 0V to VDD, the waveform at Vout (i.e. input of G2) can be expressed as:  

Vout = VDD (1- e-t/RC) 

 

 
 

Rise time (Fall time) –  

 The time it takes for a waveform to rise from 10% to 90% (90% to 10%) of its  steady 

state value – as illustrated in figure 14. 

 

 
Fig 14: fall time 
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The time for the waveform Vout = VDD (1- e-t/RC) to rise from 0.1VDD from 0.9VDD can be 

easily calculated: 

Rise Time ~= 2.2 * R * C 

Note that the rise time is linearly proportional to the product of (Rout+Rin) and 

(Cin+CL).So, if the interconnect is long, Rin and Cin will be large, and, in turn, the rise time will 

belong. Similarly, if a gate drives a large number of gates, the rise time will be long too asCL, 

which is proportional to the number of driven gates, is large. 

 

 

 

Max. Frequency under Clock Skew and Clock Jitter 

 

Clock Skew (δ):  

 The spatial variation in arrival time of a clock transition is known as clock skew.  

The clock skew between two points j and k is given by tj – tk, where tj – tk are the rising edge of 

the clock with respect to the reference. Clock skew is constant from cycle to cycle and does not 

cause clock period variation, but only phase shift. Clock skew might cause the race problem – 

illustrated in the lecture slides. 

 

Clock Jitter: 

  Clock jitter refers to the temporal variation of the clock period, that is, the clock period 

can expand or reduce on a cycle-by-cycle basis. 
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Fig 15: Clock Jitter 

 

 

Positive Skew: Clock and data flow in the same direction. 

 

 
 

 

 
 

Fig 16: Positive Skew 

 

Minimum cycle time: Tclk + δ ≥ tclk-q + CriticalPathDelay+ tsu 
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This means that clock skew has the potential to improve the performance of the circuit 

(minimum required clock period reduces!). However, increasing clock skew makes the circuit 

more susceptible to race conditions. 

 

Negative Skew: Clock and data flow in opposite directions 

 

 
 

 
 

Fig 17: Negative Skew 

 

Note: Receiving edge arrives before the launching edge On one hand, negative skew 

adversely impacts the performance (increase the clock period). On the other hand, negative skew 

implies that the system never has the race problem (since receiving edge happens before). 
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Slack 

Setup Check in BC-WC Timing Analysis Mode 

At each node is a group of events modeling signal transitions 

 

 

 
 

Fig 18: Setup Check 

 

The software uses the Max library to scale all delays at WC conditions. 

The following values are assumed in this example: 

Clock source latency = none 

Wire delay = 0 

Clock period = 4 

Clock Mode = Propagated clock mode 

The software computes the slack as follows: 

Launch clock late path delay = 0.7 + 0.6 = 1.3 

Data late path delay = 3.5 

Capture clock early path delay = 0.7 + 0.5 = 1.2 

Setup = 0.2 

Data arrival time = 1.3 + 3.5 = 4.8 

Data required time = 4 + 1.2 – 0.2 = 5 

Slack = 5 - 4.8 = 0.2 
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Hold Check in BC-WC Timing Analysis Mode 

 

 
Fig 19: Hold Check 

 

The software uses the Min library to scale all delays at BC conditions. 

The following values are assumed in this example: 

Clock source latency = none 

Wire delay = 0 

Clock period = 4 

Clock Mode = Propagated clock mode 

The software computes the slack as follows: 

Launch clock early path delay = 0.5 + 0.4 = 0.9 

Data early path delay = 1.0 

Capture clock late path delay = 0.3 + 0.5 = 0.8 

Hold = 0.1 

Data arrival time = 0.9 + 1 = 1.9 

Data required time = 0.1 + 0.8 = 0.9 

Slack = 1.9 - 0.9 = 1 

 

STA Results for FPU Design 
 

Summary  

Timing Path Group 'clk_i' (max_delay/setup) 

  --------------------------------------------- 

  Levels of Logic:                           46 
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  Critical Path Length:                    4.61 

  Critical Path Slack:                     0.19 

  Total Negative Slack:                    0.00 

  No. of Violating Paths:                     0 

  --------------------------------------------- 

 

  Timing Path Group 'pis' (max_delay/setup) 

  --------------------------------------------- 

  Levels of Logic:                           14 

  Critical Path Length:                    2.42 

  Critical Path Slack:                     2.23 

  Total Negative Slack:                    0.00 

  No. of Violating Paths:                     0 

  --------------------------------------------- 

 

 Detail 

  Startpoint: s_opb_i_reg_24_ 

               (rising edge-triggered flip-flop clocked by clk_i) 

  Endpoint: i_serial_div_s_dvsor_i_reg_18_ 

               (rising edge-triggered flip-flop clocked by clk_i) 

  Path Group: clk_i 

  Path Type: max 

 

  Point                       Fanout    Cap      Trans       Incr       Path 

  ----------------------------------------------------------------------------

- 

  clock clk_i (rise edge)                       0.0000     0.0000     0.0000 

  clock network delay (ideal)                              0.0000     0.0000 

  s_opb_i_reg_24_/CP (FD1QSVTX2)                0.0000     0.0000     0.0000 r 

  s_opb_i_reg_24_/Q (FD1QSVTX2)                 0.1526     0.2525 &   0.2525 f 

  n175 (net)                     2   0.0572  

  U9197/A (IVSVTX2)                             0.1526     0.0000 &   0.2525 f 

  U9197/Z (IVSVTX2)                             0.1075     0.1180 &   0.3705 r 

  n9799 (net)                    6   0.0335  

  U9802/C (ND3SVTX8)                            0.1075     0.0000 &   0.3705 r 

  U9802/Z (ND3SVTX8)                            0.0467     0.0536 &   0.4241 f 

  n11878 (net)                   1   0.0115  

  U13217/B (NR2SVTX8)                           0.0467     0.0000 &   0.4241 f 
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  U13217/Z (NR2SVTX8)                           0.0768     0.0574 &   0.4815 r 

  i_pre_norm_mul_s_opb_dn (net) 

                                 7   0.0422  

  U11725/A (AN2BSVTX4)                          0.0768     0.0000 &   0.4815 r 

  U11725/Z (AN2BSVTX4)                          0.0315     0.0908 &   0.5723 r 

  n4251 (net)                    2   0.0121  

  U11424/C (AO6ASVTX4)                          0.0315     0.0000 &   0.5723 r 

  U11424/Z (AO6ASVTX4)                          0.0362     0.0411 &   0.6134 f 

 

………………….. 

2.3 Wire Load Models 

For flows that run timing-based logic optimization before placement, there are three basic types 

of WLMs that can be used: 

 

Statistical WLMs are based on averages over many similar designs using the same or similar 

physical libraries. 

 

Structural WLMs use information about neighboring nets, rather than just fanout and module 

size information. 

 

Custom WLMs are based on the current design after placement and routing, but before the 

current iteration of preplacement synthesis. 

 

Custom WLMs further divided into three subcatagary 

1. Top 

 It is the most pessimistic WLM and it considers full top design area taken into account for 

net delay calculation. 

2. enclosed 

 It considers the module size in which the net belong in order to find out the net delay. 

3. segmented 

 It is most pessimistic WLM and it consider individual module thru which net passes for 

the net delay calculation. 
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 Wire load models (WLMs) are generally perceived to be inaccurate and inadequate for 

good optimization. The traditional wisdom is that accuracy of WLMs will worsen as die sizes 

expand and feature sizes shrink, and as wire loads become less predictable and more dominant 

over pin loads. In many industry white papers and academic works, the weaknesses of WLMs are 

used to motivate the unification of logic synthesis and physical layout into a single tool. We 

believe, however, that care must be taken in how we derive our motivations for new flows. In 

previous studies, evidence against WLMs was generally anecdotal or based on limited data (e.g., 

from a single design). Today, the maturation of Cadence Design Systems’ PKS design tool 

affords us a unique opportunity to study WLMs in greater depth, and to quantify the timing 

improvements achieved by the unification of synthesis and layout. Using PKS, we have 

performed extensive experiments on fifteen real industry test cases. Our results confirm much of 

the conventional wisdom about WLMs, but also indicate that WLMs probably can still perform a 

useful function in the design flow.  

 The typical chip implementation flow starts with an RTL description and moves through 

logic synthesis and optimization in the front end – to placement, routing, extraction and 

performance analysis in the back end. At each step of the flow, the designer must ensure that 

design constraints are met with respect to timing, signal integrity, power and area. If at any step 

the constraints are violated, the design will need to be sent back one or more steps to be re-

optimized. Backward iterations – those that use current layout solutions as estimates for the next 

pass of logic synthesis – have been necessary because of a fundamental chicken-and-egg 

problem:  

 

(1) The front-end designer needs knowledge of placement to estimate net parasitics during 

timing-driven optimization, while 

 (2) timing-driven placement requires knowledge of the actual netlist area, connectivity, and 

timing. To reduce time-to-market, minimizing the number of backward iterations is a high-

priority objective for CAD tools. 

The most popular way to solve the chicken-and-egg dilemma is to estimate parasitics 

during logic optimization with a wire load model (WLM), a lookup table that maps the fanout of 

a net to the corresponding estimated capacitance and resistance.1 We formally define a WLM as 
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a pair of functions cap( f o) and res( f o) where the integer parameter f o denotes the net fanout. 

Each WLM lookup table should contain a set of capacitance pairs 

and resistance pairs, such as: 

fanout_capacitance (1, 0.007250) 

fanout_resistance (1, 0.036048) 

... 

e.g., fanout-1 nets have wire capacitance 0.00725 pF and wire resistance of 0.036048 ohms. In 

general, not all fanouts are mentioned in a given WLM lookup table. For example, a WLM 

lookup table might only have capacitance and resistance values for fanouts 1, 2, 3, 4, 5, 10, 20, 

and 99. Estimates for fanouts in the gaps (e.g., from 6 to 9) are calculated using (linear) 

interpolation. Estimates for fanouts outside the range of WLM table fanouts (e.g., greater than 

99) are calculated using extrapolation based on the values for the two closest fanouts in the table. 

WLMs are often used in pre-placement optimization to drive speedups of critical paths. Since 

timing-driven placement plausibly makes nets on critical  paths shorter than average, some 

optimism may be incorporated into the WLM. Thus, a WLM may actually consist of more than 

one lookup table, with each table corresponding to a different optimism level. There are several 

ways to incorporate the optimism level. If we use the WLMs that come from the (ASIC vendor’s) 

design library, usually there are several tables from which we can select. We can also increase the 

optimism level of a WLM by multiplying all values in the WLM by some factor less than 1.2 For 

example; we can use 0.25, 0.5, or 0.75.3  

 

2.4 Formal Verification  

Defination 

Formal verification can be used to verify a design against a reference design as it progresses 

through the different levels of abstraction and it verifies functionality without test vectors 

Advantages  

 

• Need for reliable hardware validation 

• compare to simulation, which explores some of possible behaviors if correct, all behaviors 

are verified if incorrect, a counter-example (proof) is presented 
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• It can be used to verify a design against a reference design as it progresses through the 

different levels of  abstraction 

• Verifies functionality without test vectors 

• Obtaining a complete FSM description of the system.  

• BDD operates on sets of points. 

• The formula representing the property, i.e., the system is a model of the property. 

• Correctness guaranteed mathematically, regardless the input values 

• No need to generate expected output sequences 

• Formal verification useful to detect and locate errors in designs 

 

 

 

 

RTL Model 

 
 

Fig 20: Formal Verification requirement 

 

 

Simulation vs. Formal Verification 

• Simulation: complete model, partial verification 

• Simulation still needed to tune specifications; for large complete designs 

• The techniques are complementary - formal verification gives additional confidence 

• Common difficulty in all verification methods: 

 

 

 ?? 

Gate Model 

 
?? 

Transistor Model 
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Three main categories: 

Model Checking 

• Compare a design to an existing set of logical properties (that are a direct representation 

of the specifications of the design). 

• Properties have to be specified by the user (far from a “push-button” methodology) 

• To check Reachability of states, Deadlock avoidance and Completion of transaction in an 

interface 

• Properties about the system are expressed as formulas in temporal logic of which the state 

transition system is to be a ``a model''.  

• Model checking consists of traversing the graph of the transition system and of verifying 

that it satisfies the formula representing the property, i.e., the system is a model of the 

property. 

 

Theorem Proving 

 It requires that the design is represented using a “formal” specification language. Present-

day HDLs are not suitable for this purpose. 

 

Equivalence Checking 

• It is the most widely used. It performs an exhaustive check on the two designs to 

ensure they behave identically under all possible conditions. 

• Compares two netlists or two RTL codes 

• To check: scan chain insertion, clock tree synthesis, manual modification. 

• Tools verify the combinational equivalence of two flattened networks  

• Any set of functions (the roots), defined over any set of intermediate variables (the 

leaves), can be checked for equivalence between two networks. 

• Roots and leaves are subsets of the nodes of a network, with the restriction that the 

leaves should form a complete support for the roots  

• Two networks are declared combinationally equivalent if they have the same outputs 

for all combinations of inputs and pseudo-inputs.  
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Compare Points in Formality (A Synopsys Tool) 

 A compare point is a design object used as a combinational logic endpoint during 

verification. A compare point can be an output port, register, latch, black box input pin, or net 

driven by multiple drivers. Formality uses the following design objects to automatically create 

 

Compare points 

•  Primary outputs 

•  Sequential elements 

•  Black box input pins 

•  Nets driven by multiple drivers, where at least one driver is a port or black box 

 

 Formality verifies a compare point by comparing the logic cone [refer fig 21] from an 

implementation compare point against a logic cone for a matching compare point from the 

reference design. 

 

 

 
Fig 21: Formality logic cone 

 

 

 When functions defining the cones of logic for a matched pair of compare points (one 

from the reference design and one from the implementation design) are proved by Formality to 

be functionally equivalent, the result is that both the reference and the implementation compare 

points have passing status. If all compare points in the reference design pass verification, the final 

verification result for the entire design is a successful verification. Prior to design verification, 

Formality tries to match each primary output, sequential element, black box input pin, and 

qualified net in the implementation with a comparable design object in the reference design. 
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Chapter: 3 Physical Synthesis and results 

 

 Physical synthesis starting from the netlist and up to the corrects GDS file sign off.It 

includes the Floorplanning, placement and routing. The individual processes discussed in 

previous chapter.here practical aspect of those given with the relevant images.  

 

Step 1: Synthesis 

 First RTL code is given to Synthesizer which will generate optimized netlist as per the 

given library. Synthesis result gives us design characteristics like no of componenents required, 

total area , no of pins , no of nets , combination area , sequential area etc.    

 

Step 2: Globle placement 

  Global placement distributes the cells uniformly across the available core area, 

minimizing wire length and ensuring constant delay.the cells are placed optimally with the highest 

performance possible but the placement is not legal as the cells are overlapped and orientation is 

not proper.[refer figure 1] 

 
 

Fig 1: Globle placement 
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Step 3: Floorplanning  

By applying suitable floorplan parameters you can have rectilinear floorplan as shown in 

below Fig 2.actually floorplan also consist Macro placement but in this design no Macros.In this 

case the task of floorplaning is to differtiate the cells and places them at assign locations as shown 

in figure 2. 

 

Step 4: Detail Placement  

Detailed placement minimizes local congestion, reduces routing complexity, and places 

cells in final positions.After detail placement all cells are placed legally and having propere 

orientation. 

 

 
 

Fig 2:  Detailed placement 

 

Step 5: Global Routing 

Global routing generates ‘loose’ route for each net.in detailed routing actual geometric 

layout of net assigned. 

It handles crosstalk avoidance, electromigration issues, and constrained wire patterns 

while ensuring that all design spacing requirements are followed. If design rule violations occur, 
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the router uses rip-up and reroute methods to repair them. Design rule violations that cannot be 

repaired are reported. There are five routing stages, in the following order: 

 

 
 

Fig 3: Global Routing 

 

Step 6: Detail Routing 

 Track routing also works on the bucket level. It orders and spaces the net segments and 

assigns them to legal track positions.Detailed routing converts the segments to actual wires and 

vias that connect all pins of all nets 
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Fig 4 : Detailed Routing (Segmented) 

 

 

 
 

Fig 5 : Detailed Routing (Wire) 
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Chapter: 4 About Strucrured ASIC Core 

 
1. eASIC 

1.1 Architecture:   

 eASIC consists of 8 eCores which are made up from 8 eUnit each consists of 256 eCells  

 The eASIC Architecture is an array of logic cells, called eCells with SRAM based LUTs 

(Look Up tables) and flip flops built with bulk silicon and a few metal layers. 

 The eCells are connected to a segmented wiring grid built with upper metal layers that can 

be customized with a single via mask to implement a specific design 

 Logic functionality of the eCell is achieved by downloading a bit stream to conFig. the 

LUTs and flip flops after powering up the device. 

 

 
 

Fig 1: eCell Structure 
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The wafers for Structured eASIC are pre-processed and stored in a wafer bank at the 

designated foundry. These wafers can be processed all the way up to the metal 6, since all layers 

starting with bulk silicon up to metal 6 are identical for all customer designs. 

 When a customer completes his design, the relevant design files are sent to eASIC. After 

performing layout verification, eASIC will generate the GDSII file for the custom VIA6 layer 

based on the customer design. Thereafter, a singleVIA6 mask is generated in the mask shop in 

order to customize VIA6 and fabricate the required volume. Optionally, an eBeam machine can 

be used at the foundry to cost effectively customize VIA6 (per the GDSII data) for prototypes or 

low volume runs (refer fig 4).  

The main advantage of eBeam customization is in eliminating the mask cost, since the 

design data is written directly on the wafer. This mask-less method is performed on a per-die 

basis as opposed to the conventional lithography approach that uses masks and a stepper where 

the same reticle is stepped across the entire wafer.With eBeam customization, multiple designs 

from various customers can be written on the same wafer, allowing for very flexible and 

economical prototyping and low volume production. Standard wafer processing with one custom 

mask can be then used for high volume production for a given design. 

 

 
Fig 2: Single Via Mask Customization 
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1.2 Implementation Flow 

 The eASIC design flows use standard tools from either Synopsys or Magma to create a 

netlist-level design. The Magma design flow creates a fully-placed design that is routed using 

the eASIC eVrouter (refer fig 3). 

 

 
 

Fig 3: eASIC Design Flow 

Logic Synthesis: 

Tool: Synopsys DC 

Process: IT converts RTL to gaet lavel netlist. Here netlist includes basic gates    

 

Mapping and Placement:  

Tool: Magma- SA 

Process:  

 After logic synthesis Magma-SA tool maps the netlist to he LUTs and Muxes followed by 

tile packing.Tile packing place the LUT and Muxes tile by tile.Finally Magma-SA tool places all 

the tile withing given core area and try to optimize the performance. 

 

CTS: Clock is pre-routed and balaced. 

 

Routing: 

Tool: eTool 

Process: Simply configure via 6 layers as per the connectivity. 
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 There are several ways in which eASICore technology can be used for implementing 

ASPP platforms (refer fig 4). The design flow and operating model depend on the mode in which 

eASICore technology is deployed. 

 

Some suggested modes of operation are: 

  ASPP mode in which eASICore is used by the FPGA vendor to implement industry 

segment-specific IP combinations to offer a value-added platform to customers. In this mode, the 

manufacturing flow remains very similar to the traditional standard product flow used for generic 

FPGA products. 

  CSPP mode in which the customer determines which IP blocks as well as portions of 

their design containing re-usable logic need to be implemented using eASICore. This mode can 

be very attractive for major customers who want to implement a differentiated platform based on 

their particular needs. In this mode, the manufacturing flow is similar to as ASIC flow. 

 

 

 
 

                                   Fig. 4: eASIC Design Flow ASPP and CSPP mode 
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1.3 Advantages 

 The upper metal layers are only used to customize the routing, and not to customize the 

logic within each eCell. 

 Logic customization is achieved by downloading a bit stream. There is no need to have a 

connection go all the way from upper layers to the diffusion and poly layers. This 

increases the effective density. 

 Since, only one VIA mask needs to be customized, it can be done by direct eBeam 

lithography, instead of masks. This further lowers NRE costs. 

 The interconnects are fully implemented with metals, thereby minimizing routing delays. 

 Testing and debugging the design becomes easier as different bit patterns can be 

downloaded to isolate different section of the chip. 

1.4 Limitations 

 Due to LUT based architecture, it doesn’t correlate with standard cell utilization for all the 

designs 

 Flow limitations with hold violation correction 

 Pre-routed clocks, placement is constrainted by clock distribution 

 

2. Vi ASIC 

2.1 Architecture: 

 It consist array of logic cells which are composed of optimized simple gates and SRAM 

cell bits. (Refer Fig. 5) 

 
Fig 5:  ViASIC Logic Cell 
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2.2 Implementation Flow 

Software for the physical implementation of modular arrays including ViASIC own 

ViaMask array architecture.It takes in gate level netlist in Verilog or VHDL and produces the 

physical design . Placement, clock & power insertion, ATPG, routing, timing closure and design 

optimization perform by ViASIC dedicated tool 

 

Logic Synthesis: 

Tool: Synopsys DC 

Process: IT converts RTL to gaet lavel netlist. Here netlist includes Muxes and Nand Gates   

 

Placement and Buffering:  

Tool: ViaPath 

Process: After logic synthesis ViaPAth tool maps the netlist to the Muxes and Nand gates 

available on tile.Buffering also get done as per the timing requirement using Nand gates available 

on the tile. 

 
Fig 6:  ViaPath 
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CTS: Clock is pre-routed and balaced. 

 

Routing: 

Tool: ViaPath 

Process: Configure via 3 layer as per the connectivity as shown in below figure. 

2.3 Advantages 

 economic sense with FPGA, gate array or standard cell solutions 

 Faster times to markets 

 Low NRE & part cost 

 Excellent gate density 

 FPGA like design flows 

 

 
Fig 6A: ViaPath Routing 

2.4 Limitations 

 There is no buffers in the architecture so it makes higher strength by connecting two cells 

in paralle.This cell arrangement do not understand by prime time. 
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Fig 7: Via Customization 

3. LightSpeed 

3.1 Architecture: 

• Logic Tile built from existing standard cells 

Pre-characterized & qualified 

Pre-optimized 

• Customization Layers:   

Range from 2M2V to All-Layer 

Diffusion & remaining metal/vias are invariant across multiple chip designs 

Density & performance scale with # of customization layers 

• Logic Array is independent of embedded SRAM, analog or other blocks 

• Mask Reconfigurable I/Os may also be used  
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Fig 8: LightSpeed Logic Tile 

 

3.2 Design Flow 

Logic Synthesis: 

Tool: Synopsys DC 

Process: IT converts RTL to gaet lavel netlist. Here netlist includes few ST standard cells and 

Macro cells like AOI, adders, AB+CD made up from the sane standard cells. 

 

Placement and Buffering:  

Tool: DesignBuilder 

Process:  

Clustering & Mapping Placement 

 Timing driven 

 Standard SDC support 

 Groups related logic & critical paths 

 Minimizes global interconnect by maximizing short routes 

 Maps logic to maximize utilization 

Buffering 

 Timing driven 

 Low skew clock trees 

 Fully gated-clock aware 
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 Buffer high fan-out and long nets 

 FastFlow Incremental ECO 

 Common ECO commands  

 Fully incremental 

L ig h ts p e e d
D e s ig n B u ild e r

S yn th e s is

F o rm a l
V e r if ic a tio n A T P G

L V S  / D R C

T a p e o u t

R T L

S o u rc e :
L ig h ts p e e d

In d u s try  T o o l

T im in g  /S I A n a lys is

R o u tin g

F u ll C h ip
E x tra c tio n

S yn th e s is  L ib ra ry

O rig in a l
S ta n d a rd  C e ll

L ib ra ry

 

Fig 9: LightSpeed Design flow 

CTS:  

Tool: Nanorouter- Cadence 

Clock tree synthesized at the time of routing as per design constraints given and design placement 

already done by the DesignBuilder Tool 
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Routing: 

Tool: Nanorouter- Cadence 

Process: Here as per the core various routing customizationoption available ranging from 2M2V, 

3M3V to 4M4V. 

3.3 Advantages  

 The Industry’s leading Reconfigurable Logic Array 

 Best density and performance in the industry 

 Portable to any standard cell library & foundry 

 Significantly reduces deep submicron effects 

 Lowers cost  & improves time-to-market 

3.4 Limitation 

 8-layer change 

 Tool maturity is an issue 
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3.5 Comparision 

Feature Lightspeed ViASIC eASIC 

Architecture Few mask re-configurable: 

2M2V to 6M6V 

Only one via mask 

reconfig. 

Need mask reconfig & 

external PROM 

Basic Element Logic Block consisting of 

combination of various 

Standard Cells 

Buffer,AOI,NAND,NOR 

Logic Cells Consisting 

of 4 NAND gates, 2  

MUX and 1  FLOP and 

also dedicated memories

eCells Consisting of 2 3 

– input LUTs, Flip – 

Flop and some 

additional logic 

Max. Capacity 250KGates 150KGates 150KGates 

Performance 

(Max Freq.) 

0.7   0.3 0.2 

RAM No Dedicated RAM Block Dedicated RAM Blocks Dedicated RAM Block 

Granularity Fine Grain Fine Grain Coarse Grain as having 

LUTs 

Clock Tree Synthesized on Metal Via Synthesizable Pre Synthesized 

EDA Flow 

 

 

Table 1: Structured ASIC architecture comparision 

 

Std ASIC synthesis 

Vendor placement 

Vendor CTS 

Std ASIC routing 

Std ASIC synthesis 

Vendor placement 

Vendor CTS 

Std ASIC synthesis 

Magma-SA placement 

Vendor routing 

Vendor routing 

Density ~75% Standard Cell ~33% Standard Cell ~33% Standard Cell 

Logic Flexibility 

customization 

No No Up to some extend as 

configuration by bit 

stream 

Clock Tree Synthesized on Metal Via Synthesizable Pre Synthesized 

Multi Clock Any no. of Clock Any no. of Clock Limited no. of clock 
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4. Other Cores  

 Worldwide merchant market dollar shipments of structured ASIC products are forecast to 

soar from the $209.8 million reached last year to $2.53 billion by 2009, eports In-Stat 

(http://www.in-stat.com). While the use of this technology will be dominated by ASIC designs 

throughout the forecast period, it will find growing applications in the world of Application-

Specific Standard Products (ASSPs), whose revenues will reach nearly 30% of the market’s total 

by 2009. 

 We enter a domain that will probably become the exclusive property of structured and 

platform ASIC. With 90nm offerings moving this range up to 10-million ASIC gates with 

copious amounts of on-chip memory and robust IP libraries, there is no technology that threatens 

serious competition with these devices. FPGAs don’t match their density, performance, power 

consumption, or unit cost. Full-blown ASICs cost ten to a hundred times more to develop 

because of mask, NRE, tool, and design team costs. 

 eASIC’s structured Asic product enables the ARM926EJ processor to be made available 

in a configurable fabric for mass usage 

4.1 Altera: Hardcopy 

Altera's HardCopy® structured ASICs gives a design process with the flexibility of FPGAs 

and the low cost of ASICs for your high-volume applications. Develop your design and test it in-

system with an Altera® FPGA. When your design is fully tested to meet your requirements, the 

Altera HardCopy Design Center migrates the design to a functionally equivalent, pin-compatible 

HardCopy device. You get: 

• A complete production solution, from prototype to high volume  

o Devices, tools, and intellectual property (IP)  

o Single vendor from prototype to production  

• Minimal design risk and guaranteed functionality  

o FPGA-proven functionality preserved—netlist is unchanged  

o Proven process technology (same as the FPGA)  

o Same package and pin-outs as the FPGA  

• Fast device turnaround  

• Minimal effort during the migration process  
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 Altera’s HardCopy structured ASICs  are unique because they embed hard functions from 

the Stratix  FPGA series (and equivalent I/O) into the base layers, delivering unprecedented 

design flexibility. HardCopy devices allow you to: 

• Use Altera's Quartus® II software along with the EDA tools of your choice to generate 

your design  

• Test your design in-system and at-speed with a Stratix or Stratix II FPGA  

• Migrate seamlessly from your FPGA design to a low cost, pin-compatible HardCopy 

device with no risk and very little effort   

• Switch back to FPGAs if you need to change the design to accommodate a new standard, 

customize for a specific market or application, or if production volumes decrease  

4.2 Faraday Technology: MPCA 

 
Metal Programmable Cell Array (MPCA) Library™  

Faraday's metal programmable standard cell library is optimized for deep sub-micron designs 

with a focus on optimizing routability, speed and minimizing power consumption. As shown 

below, only the top three metal layers are needed to program the library cells as well as place and 

route the design.  

• UMC 0.35µm, 0.25µm, 0.18µm, 0.15µm, 0.13µm and 90nm CMOS technologies  

• Supports unlimited clock domains and gated clocks  

• Area and performance close to that of the standard cell implementation  

• Very low system power  

• Built-in scan-based storage elements  

• Supports tri-state designs  

• Uses conventional standard cell design flow, works smoothly with most EDA tools  

• Provides complete EDA views for most popular design flows  
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Fig 10 cross section view MPCA 

Metal Programmable I/O (MPIO) Library 

 Imagine one I/O capable of meeting various applications! By changing just one top metal 

mask, Faraday's MPIO can support various types of I/O. During chip implementation, Faraday's 

MPIO can be blended with any other Faraday I/O for easy integration.  

• UMC 0.25µm, 0.18µm, 0.15µm, 0.13µm and 90nm CMOS technologies  

• Require only one metal layer to program MPIO to support  

• LVTTL/CMOS  

• SSTL-2 

-Class I 

-Class II : Support DDR266, 333 and 400  

• PCI-66  

• PCI-X  

• Input buffer with programmable pull-up, pull-down, keeper and Schmitt-trigger  

• Different output driving strengths Output slew rate control  

• Built-in level-shifter  

• ESD robustness and latch-up immunity proven by silicon 
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4.3 ChipX: CX5000 Structured  

 The CX5000 Structured ASIC family is based on 0.18µ technology using 3 layers of 

programmable metal, and supports performance levels up to 200 MHz. The 0.18µ CX5000 is a 

Structured ASIC that utilizes the combination of advanced metal programmable gate array 

technology and an optimized EDA system to implement high performance ASIC designs while 

reducing application tooling costs and design turnaround time. ASIC designers using the CX5000 

are able to meet or exceed their design schedules and budgets without compromising technical 

objectives. 

Key Features 

• 30K to 1.1M usable ASIC gates 

• Up to 2.6M bits of fast block memory 

• 2ns access time single-port/dual-port SRAM and ROM 

• Configurable I/O: PCI, PCI-X, SSTL, HSTL, USB FS, RSDS, LVTTL, LVCMOS, 

LVPECL and LVDS up to 622Mbps as well as Power & Ground 

• Up to 1,152 total pads 

• 200MHz general core logic operation, 500MHz in constrained clock domains 

• 1.5V or 1.8V or mixed supply voltage operation 

• 4 Low-jitter APLLs macro with internal loop filter 

• 3-4 week lead time for tested prototypes 

 ChipX: CX2000  

 The CX2000 Structured ASIC family is based on 0.6µ technology using 2 layers of 

programmable metal, and supports performance up to 50 MHz. This family is favored for legacy 

applications with industrial and military customers for its proven reliability, 5V operation and 

radiation resistance. This mature family has a long established record of reliability and a long 

future for assured supplies continuity. 

Key Features 

• 23k to 100k usable ASIC gates 

 68



     Ch. 4 About Structured ASIC Core 

• Up to 96k bits total SRAM configurable as single-port RAM, dual-port RAM or ROM 

• Configurable I/O: PCI(3V/5V) 

• 5V drive or 3.3V with 5V tolerance 

• 50 MHz general core logic operation, 100 MHz in constrained clock domains operation 

• Analog PLL 

• 5-6 weeks lead time for tested prototypes 

4.4 NEC: ISSP90 

 The ISSP90 employs a leading-edge 90 nm CMOS process and features an operating 

frequency of 500 MHz, double that of the ISSP1. In addition, the number of user gates is four 

times higher (6.5 million gates), and a two-fold SRAM capacity of 5.7 Mb is provided.  

  Through the use of a 90 nm process, ISSP90 enables high-performance devices 

that could not be realized heretofore. A wide range of applications ranging from next-generation 

high-speed and high-capacity (broadband) communications or network equipment and servers to 

high-performance measuring instruments and industrial/consumer equipment is supported. 

ISSP90 is already widely acclaimed and used as a solution that realizes high-performance devices 

at inimal cost. 

 Using the 90 nm process technology, the ISSP90 achieves high density. Besides, two 

customization layers are embedded. The separation of the common layers that contain power-

supply, clock-circuit, and testing lines from the user logic layers (customization layers) achieves 

a structure that is highly effective for signal integrity (SI). Accordingly, high quality is 

guaranteed. 

4.5 AMIS: Xpress Array 

 Targeted at medium-density, high-speed, 1.5V ASIC applications and high-density 

FPGA-to-ASIC conversions, the XPressArray®-II 0.15µm structured ASIC is an innovative 

next-generation technology platform that reduces time-to-market for system-on-chip (SoC) 

applications while delivering significant NRE and unit cost savings. 

 XPressArray-II offers a true drop-in replacement for Xilinx Virtex-II, Virtex-II Pro, 

Altera APEX-II, and Stratix FPGAs, making it the industry's lowest cost FPGA conversion 

solution. The result is a simplified route to cost reductions for OEMs looking to combine the 

flexibility of FPGA prototyping with a path to low cost ASICs for final production. 
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 Operating with system clock speeds up to 210MHz for 18x18 soft multipliers and local 

clocks up to 500MHz, XPressArray-II 0.15µm devices deliver high performance, low power 

ASIC solutions with densities to 4.8M ASIC gates. 

 Configurable memory ranges from 258kbits to 4.8Mbits, which increases up to 6.1Mbits 

of memory with the addition of distributed configurable memory, assuming 50 percent of the 

logic sites are used for memory.  

 Flexible I/O technology includes support for a comprehensive array of common standards 

and compatibility with 1.5V, 1.8V, 2.5V, and 3.3V I/O schemes. I/Os support digital controlled 

impedance (DCI) on-chip termination. Dual data rate (DDR) support for high-speed memory 

interface is built-in. High fault coverage is provided through integrated scan-test, memory BIST 

and JTAG support. 

PA For FPGA conversions, rapid access to XPressArray technology can be achieved via AMI 

Semiconductor's NETRANS® FPGA-to-ASIC design flow. Alternatively, the availability of 

XPressArray synthesis libraries for leading commercial synthesizers allows conversion of FPGA 

designs to ASICs by simply re-targeting fro an FPGA library to an XPressArray library.  

 
 

Company Product Tech. Layers Embedded 

Altera HardCopy 90nm 2M No 

Farada Tech. MPCA 90nm 3M Yes 

AMIS Xpressarray 180nm 3M No 

ChipX CX5000 180nm 3M Yes 

NEC ISPP 90nm 2M Yes 

LightSpeed LS Reconf. IP 90nm 3M Yes 

ViASIC Std. Metal 130nm 1Via Yes 

eASIC Nextreme 90nm 1Via Yes 

Table 2: Structured ASIC Products 
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Chapter: 5 Flow Automization and Banchmarming 

 

1. Flow Automation 

Flow Automization makes the flow fast and very readable to the user so that even novice also 

can use the tool for initial results. Various optimization options available to the user like scan 

chain insertion, testability, tools and run time. So that user can have flexibility to realize design 

with available options.So for initial results knowledge of tool handling is not required 

 

 

 
 

Fig 1: Automization 
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Requrement and Expected Results 

• Automatic Report generation irrespective of design  

• User should be reported if any file missing because It is possible that if any file missed 

than initially tool will run but lateron it gives error and all in vain. 

• Minimum interfearance with thew user. 

• Make maximum possible flow options available to the user. 

• User should be notified for any type of error rather than Tool crashing. 

• If required report should be in form of table or excel sheet. 

• Temporary files and log files should be removed after execution completed. 

• Database format should be uniform for all the designs. 

• User able to change the generated scripts and run it. 

• Options like Script generation and execution, generation only, generation and 

modification, generation, modification and execution should be available. 

• It should check the tool updates. 

• Other groups can use it without any trouble.  

  

Benefit to the Group 

• Easy design implementation. 

• No need to check background processes. 

• Short run time. 

• Early result prediction and exhaustive flow setup. 

• Less chance of any accidental errors like missing file, missing parameters wrong 

commands. 

• Benchmarking takes 90% less time compare to the earlier flow. 

 

Limitations 

• No dirtect tool interfearance with the tools unless explicitly specify. 

• If any error occurs, it is hard to debug. 

• Sometimes need to modify the script for better results.  
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2. Benchmarking  

  It is a procedure to find out the architecture suitability and flow suitability fot the 

different designs and available Structured ASIC cores like ViASIC, eASIC and LIghtSpeed.

 This procedure deals with the implementation on eASIC, ViASIC, LightSpeed and its 

architecture comparision and Synthesis tool effect on the respective implementation. This report 

compares their architecture goodness using experimental techniques. Comparison is made with 

respect to each other. A design suite is defined for the experiments, upon which different flows 

are executed. Along with the results, various assumptions and observations are highlighted in the 

report. 

2.1 Banchmark Siute 

 The benchmark suite consists of designs collected in-house as well as from different open 

source communities. The benchmark suite is intended to cover all application domains and design 

character. Also, we have ensured that the design suite covers designs with wide variety of gate 

counts. We have designs rich in arithmetic operators as well as ones with heavy control logic in 

them. All the designs have been customized to successfully pass the flow. This customization is 

required to overcome Synthesis issues or to workaround unsupported features. Table below 

describes the design suite, along with approximate ASIC gate count for the design. As an on-

going activity, the benchmark suite is updated as and when suitable designs are found. 

Few common modifications are listed below: - 

1. All asynchronous reset signals should follow strictly active-low behaviour 

2. All asynchronous set signals should be converted to asynchronous reset signals 

3. Remove all logic associated with asynchronous reset signal 

4. All tri-state buffers should be converted to multiplexors 

5. Remove all unsupported constructs in Verilog / VHDL 

Table 1 shows the different designs taken for the benchmarking along with the design size in 

terms of the equivavalent KGates. 
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Designs 

Approx. GateCount (Kgates) 

=CellArea/Area of 2input NAND 

gate 

AC97_CNTRL 18.36 

AES_CORE_INV 34.81 

C3V2 149.84 

DCT 129.07 

FPU 19 

IRDA 22.39 

JPEG 120.91 

NoC_70K 76.05 

OC_8051 28.31 

OCIDEC2_VER 2.95 

PANCHAM 20.11 

PIC 1.97 

PROG_V 0.49 

RGB2YCRCB 4.88 

SPI 3.49 

SXP 27.97 

TV_80 6.82 

USB2 18.77 

VGA 7.47 

 

Table 1: Bencmark Suite 

 

Libraries 

The libraries used in this flow are as following  

 

1. eASIC Libraries  

It consists of various possible combination of eCell configuration. 
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2. LightSpeed Libraries 

 It consists of basic gates of different driving capability and various boolean functions 

 realize using these Gates. 

 NOR, Xor, XNOR, NAND, AND, OR, AOI, OAI, MUX, ADDER, 3-input function etc 

 

3. ViASIC Libraries 

 It also consist of basic gates made up from NAND gate and Mux. 

 NAND, AND, OR, NOR, XOR, ANDXOR (A&B^C), XORAND, MUX, FULL ADDER 

2.2 Benchmark Flow  

 Here design suite is taken for the Benchmarking which has already discussed. The 

Benchmarking flow has shown in figure 2.First same RTL code and constraints given to the all 

Structutred ASIC Flow which has automized. 

After complition of the Frontend and Backend flow reports are generated as per the core. 

Here if design satisfied the constraints for any of the core than the constraints are squeezed until 

it does not meet the same. Here area is not the constraints so the aim of bencmarking is to find 

out maximum frequency it can support for the given design 

 75



  Ch. 5 Flow Automization and Banchmarking 

 
 

Fig 2: Benchmarking flow 

 

3. Architecture Comparision 

 Flow (refer Fig 2) intends to constraint the design for area. The flow compares usage of 

architecture resources in eASIC, ViASIC and LightSpeed architectures.  

 Firstly, the designs are run through Design Compiler, once using the respective Structured 

ASIC core libraries, setting very relaxed timing constraint and stringent cell area constraints. 

Total number of real estate resources occupied by the core is calculated from the reports. The 

verilog netlist obtained is then targeted for the respective Structured ASIC cores (LightSpeed, 
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eASIC and ViASIC) available. The final report highlights number of basic building blocks in 

Structured ASIC cores required for the implementation.  

 

4.  Reports and Conclusions 

 Table 2 shows the relation between area and frequency for eASIC,ViASIC and 

LightSpeed Cores.The table shows the maximum frequency achieve for the given designs.The 

results are normalized with respect to the same of LightSpeed as LighSpeed can achieve 

maximum frequency among all of the cores. 

 Based on the results we can draw following conclusions and trade-offs. 

Figure 3 the timing results for the all designs. Here the minimum possible clock period is 

nomaliza with respect to the same of LightSpeed as it has smallest clock period.from the figure 

we can conclude that the minimum clock period in case of eASIC is 2.5 to 4.2 times that of the 

LightSpeed and in case of ViSIC it is varying between 1.5 to 3 times that of the LightSpeed.On 

an average the clock time period ratio between LightSpeed, ViASIC and eASIC is 1:2.26: 3.3. 
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LightSpeed eASIC ViASIC  

 

 

Design Cell Area 

Time 

Period 

(ns) 3-LUT FF 

Time 

Period 

(ns) 

norm

alize  

Time 

Period 

(ns) 

nor

mali

ze  

AC97_CNTRL 117351 1.09 3499 2259 2.73 2.50 1.56 1.43 

AES_CORE_INV 4629 0.82 225 41 2.15 2.62 1.54 1.88 

C3V2 514919 1.41 6898 7976 3.91 2.77 2.98 2.11 

DCT 23053 0.93 1090 304 2.66 2.86 1.89 2.03 

FPU 6961 0.7 175 117 2.11 3.01 1.74 2.49 

IRDA 155919 1.17 9226 739 3.59 3.07 2.66 2.27 

JPEG 34571 1.09 2074 362 3.39 3.11 2.25 2.06 

NoC_70K 87887 1.33 6868 815 4.14 3.11 3.37 2.53 

OC_8051 284936 2.03 19963 2096 6.48 3.19 4.98 2.45 

OCIDEC2_VER 52816 1.8 2815 246 5.78 3.21 3.87 2.15 

PANCHAM 34510 1.87 1608 159 6.09 3.26 5.5 2.94 

PIC 1614492 4.22 82675 4501 13.91 3.30 8.62 2.04 

PROG_V 1177545 1.41 63317 8808 4.84 3.43 2.98 2.11 

RGB2YCRCB 15020 1.41 899 172 4.92 3.49 2.98 2.11 

SPI 1527053 3.67 73541 5067 12.97 3.53 8.94 2.44 

SXP 120255 0.7 5714 1758 2.66 3.80 1.58 2.26 

TV_80 277028 6.72 11928 1861 27.03 4.02 18.98 2.82 

USB2 58150 2.34 3625 347 9.53 4.07 4.85 2.07 

VGA 163419 5.47 10397 1022 23.28 4.26 15.36 2.81 

 

Table 2: Bencmarking Results 
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Respective Timing Results
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Fig 3: Timing Results 

 

 eASIC has prodused the worst timing results because the architecture consist of LUTs and 

it is slower compare to the basic gates which are used in LightSpeed and ViASIC.the advantage 

of eASIC is that it only one layer configurable and programmability up to some extend possible 

by changing the bit stream of LUTs.LightSpeed is the fastest among all because it can achieve 

higher architecture utilization as compare to other cores as LightSpeed is 4M4V configurable.In 

case  of LightSpeed the cost being paid in terms of Mask cost. 

 As per the results ViASIC is proved always better than the eASIC in terms of 

performance and cost.but to achieve good performance in ViASIC takes more design time than 

the eASIC.So time to market point of view eASIC is best among all. 
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Chapter: 6 Design Implementation 

 

Design Implementaion  

 In bechmarking flow the idea is to find out the archirtecture suitability and goodness for 

various designs ranging from 10K gates to 10M gates, arithmetic designs to sequential designs.In 

the bencmarking flow timing constraints was not stringent but in this implementation flow timing 

constraints are given as per the specifications and the the duty of the engineer is to meet the 

specified criteria in terms of area or timing.  

 Generally for structured ASIC area is not the stringent requirement as core is going to 

occupy   fix area but timing constraints are very critical in this flow as it is not easy to 

satisfy.Thoug there is tradeoff between area and timing but it is not always and you cannot go 

beyond some point as far as maximum possible frequency is concern. 

Here one design is taken which is having following characterstics and specification. 

 

Design A 

1. Constraints 

 HCLK = 7.5ns 

 HCLK_n = 7.5ns 

 EXT_CLK_clk = 15ns 

 CUSTOM_CLK = 15ns 

 CUSTOM_CLK_n = 15ns 

 

2. Nature 

 Design is with 85K gates. 

 5 clock domain 

 Hard Macro RAM 

 Around 45000 nets 

 

3. Flow 

 As shown in figure 1 here same RTL code and the constraints are given to the 
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LightSpeed, eASIC and ViASIC Flows which have discussed in earlier chapters.After the PnR 

flow .def file can be extractracted. The .def file contains all theinformation related to cell 

placements, its connectivity and the parasitics associate with it. Post layout STA will give you the 

timing results and reports that can be generated so that the we can make sure the critical paths of 

the design can be found and verified to be within the required specifications.If paths are not 

within the specifications, the static timing analyzer shows the entire path so that the designer can 

try to fix the problem. 

 As shown in figure 1 front end and backend flow we hace discussed in earlier chapter. 

[refer figure 3,6,8 Chapter 5]. In Analysis process the faulty path or problem found out and based 

on that some modification done in the script.In the next section all the potential problems 

encountered and possible remedies for the same has discussed. 
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Fig 1: Implementation Flow 
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4. Design Issues  

 The main challenge lies here is to meet the timing requirements and for that designer has 

to follow several approches. The difficulities encounter during this design flow is discusses 

below. 

4.1 LightSpeed 

 
 Routing Violations 

 In LightSpeed the routing is being done by the third party tool.here nanorouter from 

cadence has used.because of poor or congested placement by DesignBuilder tool routing is not 

possible or getting to mauch routing violations.in these cases following stratagies has used. As 

Placement is the starting phase of Physical synthesis it has significant impact on routing so 

Placement should be such a way that later Design can be easily routed 

 

Strategy 1: 

If the no of violations are very few then violations can be removed by just moving the 

particular set of cells. Movement of those cells should not be too much. 

 

Strategy 2:  

If no. of violations are too much and clustered i.e. concentrated on particular region then 

Blockage of that region for some percentage should be applied without changing Placement. 

Here the shape of region defined under Blockage and percentage of Blockage is very critical. 

Check Overflow and Cell density for the Violated Region which helps to 

 Select suitable Blockage region  

 Select suitable Blockage percentage  

After applying Suitable Blockages run incremental Placement and then re route the design. 
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Fig 2: Hierarchical Blockage 

 
 Library bug 

Found out problem in the scan flop  

In normal mode  

D = Q but in test mode it shows Q = D’  

So synthesis tool consoder the cell functionality as Q = D but Formalty tool took Q = D’ for the 

formal verification. Formal verification shown the mismatch between RTL and netlist and bug 

get detected. 

 

 Memories  

 As LightSpeed architecture doesn’t support the memories so the memory Macros in the 

RTL code has to be modified and made new wrapper for the LightSpeed core.here memories are 

placed outside of the core as a Hard micro in the chip so that LightSpeed design flow will be 

memoryless. 
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Fig 3: Original Design with RAM Macro 

 

 

Hard 
macro 
Memory 

 
 

Fig 4: Modified wrapper for LS 
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4.2 eASIC 

 
 Asynchronous RAM 

 As much timing violations are found in the memory paths because of Asyncronous reset 

so the Asynchronous RAM has converted to the Synchronous using a flop flop. Now path will be 

broken into two parts so path lengh will be reduced. 
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                                             Fig 5: Asynchronous read RAM   

                                                      

Path length = D1 + D2 + D3 
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Fig 6: Async. RAM converted to Sync. Read RAM 

 

Path1 length = D1 

Path2 length = D2 + D3 
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Formality Checks 

 Formality is used for the formal verification between RTL code and generated netlist , 

netlist to netlist or RTL to RTL.After placement eTools are using different notations for flops so 

formality tool is not able to match it. 

 So to get formal verification checked it is required to have manual interference with the 

tool.So the script has written which found out the unmatched point and modify register name as 

specified in the script so that the formality can find the proper match point. 

Here it needs to again and again until you get the match or found real unmatched point. 

 

Exp.  

Following name is generated after synthesis but it is not matched with the netlist name. 

 

Name in netlist: 

/WORK/EASIC_MACRO/iDESIGN_TOP_u_Ahb2AhbAsync32_uAsyncMaster32_HADDRM_

reg [0]/dff_ecell_u1/dff_1_dffx/C1/OUT_reg 

 

 

Name in RTL  

r:/WORK/EASIC_MACRO/iDESIGN_TOP/u_Ahb2AhbAsync32/uAsyncMaster32/HADDRM_

reg[0] i 

So first potential problem found out and according to that name has changed and mentioned in 

the formality script. 

 

Set_user_match 

r:/WORK/EASIC_MACRO/iDESIGN_TOP/u_Ahb2AhbAsync32/uAsyncMaster32/HADDRM_

reg[0] i 

 

/WORK/EASIC_MACRO/iDESIGN_TOP_u_Ahb2AhbAsync32_uAsyncMaster32_HADDRM_

reg [0]/dff_ecell_u1/dff_1_dffx/C1/OUT_reg 
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4.3 ViASIC 

 In ViASIC the driving strength doubled by connecting two cells in parallel so two 

different nets Make one nets at output as shown in figure 7. 

At the time of STA prime time infer the differn net delay on the nets so it gives warning but 

actually nothing wrong in that.so this issue is reported and still under process and reported to the 

ViASIC technical team working with us. 

 

Different 
net delay 

NAND 

NAND 

 

Fig 7: Multidriven nets in ViASIC 

Here clock is not prefabricated so at the time of clock tree synthesis same problem occurs with 

the clock net also. 

 The proposed solution is to create combine wrapper for both of the cell and represent both 

as one combine cell to the Primetime. 

4.4 General Issues 

In the design the longest paths are from primary inputs to the register and register to the 

primary outputs [refer figure] 

 

Approach 1: 

 We can overconstraint the design and can achieve desired timings. The problem with this 

approach is that unnecessarily it overconstraints the reg to reg paths and synthesis tool will try to 

optimize the whole paths.This approache leads to higher design area. 
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Exp .If we want 10ns clock period, we can give clock constrints of 8ns to the synthesis  

tool. And Synthesis tool will optimize whole path  

 

Approach 2: 

 

 By inserting the dummy clock (pis and pos) we can group the input and output path 

separately.Now tool will treat this path under different clocks.now designer can give different 

constraints to the pis and pos clock paths.[refer figure 9 ] 
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Fig 8: Timing Paths 
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Input to 
reg. Path 
 
    8ns 

Reg to reg 
path 
 
    10ns 

Reg to 
output path 
 
     8ns 

 
 

Fig 9: Overconstrainted I/O paths 

4.5 Results and Comparision 

ViASIC 

Path Group Worst Slack 

(ns) 

Constraints 

(ns) 

CUSTOM_CLK -0.51 15 

CUSTOM_CLK_n 5.51 15 

HCLK_clk -0.23 7.5 

HCLK_clk_n 4.73 7.5 

EXT_CLK_clk 10.87 15 

 

Table 1: ViASIC Results 

 Total Logic Cells = 23.04K 

 Tile = 256  Tile size = 10*9 

 Utilized Logic Cells = 8780  

 Tile Size = 9x10 

 Percentage Utilization = 38.11 % 
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After so many iterations the minimum negative slack observed is -0.51ns in the reg to reg path.so 

this design implementation on ViASIC gives maximum performance of 14.4 ns clock period 

(CUSTOM_CLK). 

 

eASIC  

Path Group Worst Slack 

(ns) 

Constraints 

(ns) 

CUSTOM_CLK -2.67 15 

CUSTOM_CLK_n 5.20 15 

HCLK_clk -1.23 7.5 

HCLK_clk_n 3.92 7.5 

EXT_CLK_clk 9.42 15 

 

Table 2: eASIC results 

 

 eCore = 8 

 Total eCells = 8K 

 Utilized eCells = 4.3K 

 Percentage Utilization = 53.7 % 

 

LightSpeed  

 

Path Group Worst Slack 

(ns) 

Constraints 

(ns) 

CUSTOM_CLK 0.02 15 

CUSTOM_CLK_n 5.62 15 

HCLK_clk 0.12 7.5 

HCLK_clk_n 4.22 7.5 

EXT_CLK_clk 11.21 15 
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Table 3: LightSpeed result 

 
 Total Logic Tile  = 35 * 30 = 1050 

 Utilized Logic Tile = 767 

 Utilizatio = 72.9 % 

 

As shown in table LightSpeed implementation met the constrain. The reason being 4M4V 

configurability in this case so the place can place blocks nearby and the net delay can reduce 

significantly.As technology shrinking the net delay become more significant to the gate 

delay.The advantage with the LightSpeed is that it has less net delay compare to ViASIC. 

 

 

 

Core Spesifications Post Route 

STA 

Conf. Utilization 
MHz Layers 

 LightSpeed 66.7(15ns) 66.7 (15ns) 4 72.9% 
 eASIC 66.7(15ns) 55.6(18ns) 1 53.8% 
 VIASIC 66.7(15ns) 62.5(16ns) 1 37.6% 
 

Table 4: Overall result 
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Chapter: 7 Conclusion 

 

 It is not the purpose of this report to suggest that structured ASICs will displace any of the 

existing implementation technologies. However, structured ASICs are closer to FPGAs in terms 

of the low costs and fast turnaround associated with creating a design. At the same time, they are 

much closer to standard cell implementations in terms of capacity, performance, low power 

consumption, and low per-unit costs for medium-low to medium-high production runs.  

 The benchmarking results show that there is clear cut trade off between the mask cost and 

the performance.In LightSpeed achived performace is better than the others because it is 2M2V 

configurable.As eASIC is LUT base its design flow is simplest but produced worst timing results 

so the nature of eASIC is near to the FPGA.LightSpeed is near to the ASIC as its performance is 

good and 4 configurable layers. For Structured ASIC design flow designer has to work with the 

different third party tools and ASIC tools unlike FPGA and ASIC technology so that design flow 

for structured ASIC is complex than the ASIC and FPGA design flow.Designer has to judge the 

suitability of the architecture before design implementation on particular SA.At the time of 

implementation issues of Hard Macros, Memories, buffers must be taken into account.  

Currently Structured ASIC actually supports 400Kgates (LightSpeed) implementation 

which is very good and this figure further expected to increase.Cost wise mid volume designs 

(Hundreds of Kilo Gates ) are now becoming  exclusively for Structured ASIC. 
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 Compare the performance of Structured ASIC, Standard ASIC and FPGA with given 

timing constraints and find out maximum possible operation frequency.So we can have 

technology comparision and feel of the Structured ASIC. 

 Design flow and performance can be further improved using different synthesis tools lile 

RTL compiler (Cadence) and Magma blast_create. 

 Automized buffer insertion flow for eASIC. 
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