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ABSTRACT  

In today’s era of System on Chip (SoC) a custom chip is composed of different 

embedded modules such as microprocessor, analog and mixed signal logic, digital logic 

and of course the integral part of all i.e. memories. More than 50% of all the designs 

today have embedded memories implemented in them which cover up more than 60% of 

total die area. While embedded memory presents significant system performance and cost 

reduction advantages, it also brings its own testing issues. Test vector style are not 

suitable for verifying embedded memory arrays, as they are too costly because of the 

time spent in the manufacturing tester grows exponentially as the embedded memory die 

area increases. This problem can be alleviated by implementing embedded memory built 

in self-test (BIST). In simplistic terms Memory BIST is an on-chip utility that enables the 

execution of a proven set of algorithmic style verification tests directly on the memory 

array. These tests can be executed at the design’s full operating frequency to prove the 

memory array operations and identify errors caused by chip defects. 

This thesis work consists of study and development of Memory BIST for memories of 

different size and types. Analysis and modification work is done on new shared BIST 

architecture for multiple memories. The analysis has proved that the new BIST 

architecture greatly improves the speed performance of the BIST while reducing the area. 

Study of BIST compiler development through C programming and shell scripting in 

UNIX environment has been done to support the team for compiler development. Major 

development work has been carried out on dedicated BIST for 65nm high speed Single-

Port SRAM memory.  

After the insertion of BIST into the design, validation of new design is done which 

includes simulation, synthesis, gate simulation, formal equivalence check between 

different levels of RTL, and code coverage analysis. For the automation of these 

validation tasks a tool has been made using the shell programming in UNIX environment. 

The updation of the shell script of this tool is a part of this project work. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

A VLSI chip is manufactured through a series of steps that involve chemical, 

metallurgical, and optical processes. Out of a set of chips generated, if the yield of good 

chip is 75% then on an average 25% of the manufactured chips will be faulty. Thus, at 

the end of VLSI manufacturing process we always have “testing,” which isolates the 

good chips from bad ones. Manufacturing test helps to detect physical defects (e.g., 

shorts or opens) prior to delivering the packaged circuits to end-users.  Inadequate testing 

will have some faulty chips shipped to the customer .At the same time, the cost of testing 

directly increases the over all cost of the chip. 

 

Due to the rapid progress in the very large-scale integrated (VLSI) technology, an 

increasing number of transistors can be fabricated onto a single silicon die. Transistor 

feature size on a VLSI chip reduces roughly by 10.5% every year, resulting in a transistor 

density increase of roughly 22.1% every year. For example, a state-of-the-art 130 nm 

complementary metal-oxide semiconductor (CMOS) process technology can have up to 

eight metal layers, poly gate lengths as small as 80 nm and silicon densities of 200K-

300K gates/mm2 [10]. The on-chip clock frequency has also increased up to 1 GHz for 

the latest VLSI circuits. However, although milliongates integrated circuits (ICs) can be 

manufactured, the increased chip complexity requires robust and sophisticated test 

methods. Hence, manufacturing test is becoming an enabling technology that can 

improve the declining manufacturing yield, as well as control the production cost, which 

is on the rise due to the escalating volume of test data and testing times. Therefore 

reducing the cost of manufacturing test, while improving the test quality required to 
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achieve higher product reliability and manufacturing yield, has already been established 

as a key task in VLSI design. 

 

 

 

Figure 1.1: VLSI circuit transistor density [1] 

 

For a VLSI chip to be manufactured, we must have a verified design and a set of tests. 

The following questions characterize testing of complex systems- 

 

• Can tests that detect all faults be assured? 

• Can test development time be kept low enough to be economical? 

• Can test execution time be kept low enough to be economical? 

 

Design for testability (DFT) refers to those design practices that allow us to answer the 

above questions in the affirmative. There are specific DFT techniques for each type of 

component in an electronic system. 
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1.1 Digital Test Methodologies: ATE vs. BIST 

 
Figure 1.2: Basic Principal of Digital Testing 

 

The basic principle of manufacturing testing is illustrated in Figure 1.2. Circuit under test 

(CUT) can be the entire chip or only a part of the chip (e.g., a memory core or a logic 

block). Based on the techniques how the test vectors are applied to the CUT and how the 

output responses are compared, there are two main directions to test electronic circuits: 

external testing using automatic test equipment (ATE) and internal testing using built-in 

self-test (BIST). When external testing is employed, the input test vectors and correct 

response data are stored in the ATE memory. Input test vectors are generated using 

ATPG tools, while correct response data is obtained through circuit simulation. For 

external testing, the comparison is carried out on the tester. Although the ATE-based test 

methodology has been dominant in the past, as transistor to pin ratio and circuit operating 

frequencies continue to increase, there is a growing gap between the ATE capabilities and 

circuit test requirements. The main limitations of ATE are: 

• The time spent in the manufacturing the tester grows exponentially as the 

embedded memory die area increases.  

Input Test 
Vectors 

Circuit Under 
Test(CUT) 

Output 
Response 

Comparator Correct 
Response 

Data 

     Pass/Fail 



BIST for 65nm High-speed Memory                                                                 Introduction  

 4 

• The up gradation of test equipment is not happening with the same rate due the 

high cost involved. 

• Design operating frequencies have increased up to 2 GHz. 

• I/O pads fail at high frequencies (~ 400 MHz). 

• Extra interconnects increase the routing congestion. 

 

ATE limitations make BIST technology an attractive alternative to external test for 

complex chips. Embedded RAM memories are perhaps the hardest type of digital circuit 

to test, because memory testing requires delivery of a huge number of pattern stimuli to 

the memory and the readout of an enormous amount of cell information. The difficulty 

and time required to propagate all of that information through the various glue logic and 

busses in an embedded core chip almost forces the use of memory BIST. 

BIST is a design-for-test (DFT) method where part of the circuit is used to test the circuit 

itself (i.e., test vectors are generated and test responses are analyzed on-chip). BIST 

needs only an inexpensive tester to initialize BIST circuitry and inspect the final results 

(pass/fail and status bits). However, BIST introduces extra logic, which may induce 

excessive power in the test mode, in addition to potential performance penalty and area 

overhead. 

It is important to note that the main problem with logic BIST lies in the computational 

overhead required to synthesize compact and scalable test pattern generators and 

response analyzers such that high fault coverage is achieved in low testing time and with 

limited interaction to external equipment. In contrast, due to the regular memory block 

structure and simple operations of memory cores, memory BIST (MBIST) can be 

implemented using compact and scalable test pattern generators and response analyzers 

and it can rapidly achieve high fault coverage for certain functional fault models 

 

1.2 System-on-a-Chip Test Challenges 

 

As process technologies continue to shrink, designers are able to integrate all or most 
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of the functional components found in a traditional system-on-a-board (SOB) onto a 

single silicon die, called system-on-a-chip (SOC) . This is achieved by incorporating pre-

designed components, known as intellectual property (IP) cores (e.g., processors, 

memories), into a single chip. While SOCs benefit designers in many aspects, their 

heterogeneous nature presents unique technical challenges to achieve high quality test, 

i.e., acceptable fault coverages for the targeted fault models. 

 

1.2.1 Motivation For A Shift From ATE-Based SOC Testing To BIST 

 

• Controllability and Observability:  

 Since most of the input/output (I/O) ports of these embedded cores are not 

directly connected to the SOC’s pins, the testability , i.e., both the controllability 

and the observability [1], is reduced and, unless some special DFT techniques are 

employed, the fault coverage will be lowered.  

However, when ATE-based testing is employed (i.e., patterns and responses are 

stored on the tester), since the number of tester channels is limited in practice, test 

concurrency is bounded by the number of these channels, which can adversely 

influence the cost of test. This problem can be addressed by moving the 

generation and analysis functions on-chip and use an inexpensive tester to 

initialize, control and observe the final results of the testing process.  

 

• Volume of test data, tester channel capacity and testing time  

The volume of test data is determined by the chip complexity and it grows rapidly 

as more IP cores are integrated into a single SOC. The easiest way to deal with 

increased volume of test data is to upgrade the tester memory and use more tester 

channels to increase test concurrency, however this is infeasible since it will 

prohibitively increase the ATE cost. A more cost effective approach is to use test 

data compaction and/or compression. Test data compaction reduces the number of 

test patterns in the test set (by discarding test patterns that target faults detected by 
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other patterns in the test set) and test data compression decreases the number of 

bits (that need to be stored for each pattern) and uses dedicated decompression 

hardware (either off or on-chip) for real-time decompression and application [9]. 

Test data compaction reduces the volume of test data, however it is trading-off the 

tester channel capacity against the testing time. If the decompression hardware is 

placed on-chip, then test data compression eliminates this trade-off. Deterministic 

BIST is a particular case of test data compression where the compressed bits are 

used for BIST initialization (i.e., seeds) and BIST observation (i.e., signatures). 

The benefits of memory BIST technology are justified mainly by its deterministic 

nature. 

 

• Heterogeneous IP cores 

Many SOC designs incorporate cores that use different technologies, such as 

random logic, memory blocks, and analog circuits. For SOC testing one can use 

generic high-performance mixed-signal ATEs, however their high production cost 

brings limited benefits to complex designs, since cores using heterogeneous 

technologies still need to be tested sequentially, thus lengthening the testing time 

and ultimately raising the manufacturing test cost.  

In addition, embedded core controllability and observability issues cannot be 

addressed without dedicated on-chip DFT hardware, whose necessity justifies a 

shift toward BIST. The use of different BIST circuitry for the appropriate 

technologies (logic, memory or analog BIST), increases both testability and test 

concurrency of SOCs comprising heterogeneous IP cores. 

 

• At-speed test 

As VLSI technology moves below 100 nm, traditional stuck-at fault testing is not 

sufficient. This is because unanticipated process variations, weak bridging 

defects, and crosstalk violations (only to mention a few) may cause only timing 

malfunctions, which cannot be detected by the stuck-at fault test vectors delivered 
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by ATEs whose frequency is lower than the maximum CUT frequency. These 

logical faults caused by timing-related defects are known as delay faults and they 

can only be detected when the chip is tested at the functional (rated) speed. This 

type of test is called at-speed test. at-speed test can be performed using high-speed 

ATEs (however, even the highest performance/cost ATEs will be slower than the 

fastest new chips), or more cost effectively, by BIST interacting with a low-speed 

testers required only to activate the self-test circuitry and to acquire the BIST 

signatures. 

 

• Power dissipation 

Power dissipation is becoming a key challenge for the deep sub-micron CMOS 

digital integrated circuits. Placing more and more functions on a silicon die has 

resulted in higher power/heat densities, which imposes stringent constraints on 

packaging and thermal management in order to preserve performance and 

reliability [11]. There are two major sources of power consumption in CMOS 

VLSI circuits: dynamic power dissipation, due to capacitive switching, and static 

power dissipation, due to leakage and subthreshold currents. The 2001 

International Technology Roadmap for Semiconductors (ITRS) [12] anticipates 

that power will be limited more by system level cooling and test constraints than 

packaging. This is because, if packaging and thermal management parameters 

(e.g., heat sinks) are determined only based on the functional operating 

conditions, the higher test switching activity [12] and test concurrency will affect 

both manufacturing yield and reliability [11].   

On the one hand, dynamic power dissipation dominates the chip power 

consumption for digital CMOS technology in 180 nm range or higher. Dynamic 

power dissipation can be analyzed from two different perspectives. Average 

power dissipation which stands for the average power utilized over a long period 

of operation, and peak power dissipation which is the power required in a very 

short time period such as the power consumed immediately after the rising or 
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falling edge of the system clock. When considering SOC test, to achieve high 

fault coverage with less test data, the test patterns are usually uncorrelated [2].  

This means the switching activity during test can differ from that during 

functional operation. In most cases, the testing power consumption is the higher 

one. The switching activity is 35-40% more during scan-based transition test than  

that in normal functional mode. For traditional stuck-at fault test, one 

straightforward solution to meet the power constraints is to reduce the system 

clock frequency during test which implies longer testing time. However, as descry 

–bed in the previous challenge, to test time related faults, at-speed testing is 

necessary. Consequently, the power dissipation during at-speed test can exceed 

the maximum power limit which may lead to chip malfunctions or to burn the 

overheated chip. 

On the other hand, static power dissipation is becoming an important component 

for low power design and test in 130nm or lower CMOS technologies with low 

gate subthreshold. Power gating is an efficient method to reduce static power 

dissipation and it based on disconnecting the idle module(s) from the power and 

ground network to reduce the leakage currents. This technique is particularly 

useful for SOCs with a high number of embedded memories.  

All the above mentioned SOC test challenges need to be overcome in order to 

reduce the ever-growing cost of manufacturing test while enabling high 

manufacturing yield and reliability through satisfactory test quality. Although the 

cost of test is dominated by many factors, such as the cost of production ATEs, 

testing time, performance of test automation tools (e.g., ATPG), area and 

performance overhead caused by additional DFT or BIST circuitry, it is essential 

to balance this cost against the benefits of enabling high product reliability and a 

fast yield learning curve. As the SOC complexity increases and more physical 

defects manifest themselves only in the timing domain, at-speed BIST is 

emerging as an essential and necessary technology, which can enable short time-

to-volume and low cost of manufacturing test. This is also correlated to the fact 
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that, as total chip area continues to increase, the overhead associated with 

consciously designed BIST architectures is decreasing. The focus of this thesis is 

to development of cost-effective BIST architectures for embedded memory 

testing. 

 

1.3 Embedded Memory Testing 

Memory cells are designed using transistors and/or capacitors, and therefore logic gates 

cannot model them. Structural test based on gate level netlist cannot be applied to 

memory testing. However, as mentioned in the previous section, memory cores have a 

rather regular structure caused by identical memory cells and very simple functional 

operations (only read and write), which are very suitable for functional test. Unlike the 

case of random logic testing, which needs a large set of deterministic test patterns to 

reach the desired fault coverage, functional test programs for embedded memory cores 

can be generated by compact and scalable on-chip test pattern generators. Furthermore, 

since written data is unaltered in a fault-free memory, the expected responses can easily 

be re-generated on-chip and low overhead comparison circuitry can check the correctness 

of output responses. Therefore, the complexity of memory BIST circuit is lower than that 

of logic BIST. Due to the deterministic nature and high-test quality of memory test 

algorithms, memory BIST has emerged as the state-of-the-art practice in industry.  

Being parts of an SOC, embedded memories face the same test challenges as SOCs. 

However, the cost of testing embedded memories has unique characteristics and it is 

influenced by three major components: cost of ATEs, manufacturing testing time, and 

DFT and BIST area/performance overhead. When considering the challenges faced by 

SOC testing, reduced testability, high volume of test data, heterogeneous IP cores and at-

speed test, can implementing programmable embedded memory BIST architectures solve 

all. However, as tens or even hundreds of heterogeneous memory cores are embedded 

into a single SOC, power-constrained test scheduling is essential to lower the testing 

time. In addition, a large number of BISTed memory cores (i.e., memory blocks with 

BIST circuitry around them) will also induce high routing and gate area overhead, as well 
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as they may adversely influence the memory’s speed. Thus, to reduce the overall cost of 

manufacturing test, it is essential to investigate new memory BIST architectures for 

complex SOCs, which address the above issues.  

This thesis work involves the study; analysis and adding enhance features in such a new-

shared BIST architecture developed by the test solution team of STMicroelectronics 

company. Also major development work has been done for dedicated BIST architecture 

for an embedded individual memory (single-port SRAM, Dual-port SRAM) .The 

organization of this thesis and main contributions are summarized in the following 

section. 

 

1.4 THESIS ORGANIZATION 

The major development works carried out in this dissertation work are: 

 

• Development and validation of BIST for single-port SRAM memories with 

different test options and their combinations. 

o The development work is done in Verilog Hardware Description 

Language. 

o After the BIST insertion in memory the validation of the whole block is 

done which involves the basic validation steps as RTL simulation, GATE 

simulation, Synthesis, Formal equivalence check, test coverage analysis. 

of BIST for single-port SRAM.  

o According to the requirements of the end user fore such BISTs have been 

developed and delivered as a part of second phase of this major project 

work. 

• Adding Enhance features in Developed Shared BIST architecture. 

o Study and analysis of the new Shared BIST architecture developed by the 

team has been done for area and speed benchmarking of this architecture 

compared to the existing architecture. 
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o Enhanced feature such as Address delay decoder test has been added in the 

existing RTL code of this architecture. Validation of the whole block is 

done again. 

 

• BIST compiler development 

o The BIST compiler development work involves UNIX shell scripting and 

C programming. 

o Study of the whole development procedure has been done as a part of this 

project work in order to facilitate the team to understand the compiler 

development work. 

 

The organization of this thesis is as follows. Chapter 2 introduces the basic memory 

concepts and memory fault models and summarizes the March test algorithm that uses 

these functional models. Chapter 3 describes the design of BIST for Single-port SRAM 

memory, which is the key activity of this project work. Chapter 4 summarizes the other 

contributions done in the project period to facilitate the team for various tasks. Chapter 5 

summarizes the results.  

Finally, the conclusion and suggestions for further scope of work are given in Chapter 6.  
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                                                           CHAPTER 2 

 

MEMORY TESTING METHODOLOGIES 
 

This chapter introduces the basic theory behind memory testing. There are two kinds of 

memory test methods: electrical (technology-dependent) and functional (technology-

independent). Electrical memory testing consists of parametric testing, which includes 

testing DC and AC parameters, IDDQ and dynamic testing for recovery, retention and 

imbalance faults [1]. DC and AC parametric tests are used to verify that the device meets 

its specifications with regard to its electrical characteristics, such as voltage, current, and 

setup and hold time requirements of chip’s pins. Since embedded memories in SOCs 

usually do not have their I/O ports directly connected to chip’s pins, parametric testing 

for embedded memories is not a necessity. IDDQ and dynamic testing [6] need a detailed 

description of the specific process technology.  

This dissertation work focuses on technology-independent functional memory testing, 

whose purpose is to verify the logical behavior of a memory core. Because functional 

memory testing allows for the development of cost-effective short test algorithms 

(without requiring too much internal knowledge of the memory under test), it is widely 

accepted by industry as a low-cost/high-quality solution. This chapter provides a 

theoretical background and explains the memory functional test models and March 

algorithms. Most of the definitions and figures in this chapter are excerpted from [2, 1]. 

 

2.1 MEMORY CONCEPTS 

 
In this chapter we discuss about the basics of memory architecture and it’s functionality. 

The memory testing will be based upon these fundamentals. 
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This thesis focuses on technology-independent functional memory testing. A functional 

model of a memory is based on its specifications. In this model, the internals of the 

memory are partly visible; hence it is also referred to as the graybox model. One of the 

main advantages of functional models is that they have enough details of data paths and 

adjacent wires in the memory to adequately model the coupling faults.  

 

2.1.1 RAM Basics 

A RAM is an array of memory cells whose read ports control cell content output and 

whose write ports control cell content input. A RAM can have any number of read and 

write ports, with each port having its own separate inputs and outputs. The set of inputs 

for each read port includes one or more read control lines and N read address lines. A 

read port’s outputs consist of M data output lines. The number of address lines and data 

outputs must be the same for all read ports. 

The set of inputs for a write port includes one or more write control lines, N writes 

address lines, and M data input lines. The number of address lines and data inputs must 

be the same for all write ports. Additionally, the numbers of write address lines must 

match the number of read address lines, and the number of data inputs must match the 

number of data outputs. 

Address lines identify which column of cells (set of values) to place on the data input or 

output lines. A RAM can store values into ((2N)*M) memory cells. The read operation 

places M values at a time on the outputs; likewise, the write operation receives M values 

at a time on the inputs. Thus, assuming encoded address lines, you can place from 0 to 

((2N)-1) addresses on the address lines. 

To read a RAM value, you first write a value to the specified location. To perform a write 

operation, you place the proper address on the write address lines, place the proper data 

on the data inputs, and activate the write operation (typically, turn on write enable and 

pulse write clock).To turn on the read operation, activate the read control lines. This 

places the value stored at the location specified by the address lines on the data outputs. 

When the read operation is off (not activated), the RAM places X's. 



BIST for 65nm High-speed Memory                                 Memory Testing Methodologies 

 14

Some memories drive their outputs only when the enable signals are asserted. 

 

2.1.2 Functional RAM Chip Model 

 

 

Fig 2.1: Functional RAM chip model [1] 
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2.1.2.1 BASIC DESCRIPTION OF ABOVE BLOCKS  

1. Block’A’, address latch, contains the address. 

2. The higher order bits of the address are connected to the row decoder ‘B’, which 

selects a row in the memory cell array ‘D’. 

3. The lower order address bits go to the column decoder ‘C’, which selects the required 

columns. The number of column selected depends on the data width of the chip, that is 

the number of data lines of chip, which determines how many bits can be accessed during 

a read or write operation. 

4. When the read/write line indicates read operation, the contents of the selected cells in 

the memory cell array are amplified by the sense amplifiers ‘F’, loaded into the data 

register ‘G’ & presented on the data-out line(s). 

5. During a write operation the data on the data-in line(s) are loaded into the data register 

& written in to the memory cell array through the write driver ’E’. Usually the data-in & 

data-out lines are combined to form bidirectional data lines, thus reducing the number of 

pins on the chip. 

6. The chip-enable line enables the data register & together with read/write line, the write 

driver. 

7. Block “H” generates the internal clock with respect to the external clock edge. 

 
2.2 MEMORY MODELLING 

 

Memory modeling is very important in creation of Memory BIST. It provides necessary 

information to the tool that is used to create the BIST controller. Usually it is provided by 
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the memory vendor, but if not, can be created also. The memory should be modeled in 

DFT library format specifically for the memory BIST architecture tool. 

 

2.2.1 ADDRESS AND DATA SCRAMBLING AND DESCRAMBLING  

 

When looking externally at a memory, the words are stored consecutively with respect to 

the address values, and the data bits within each word are stored in the order of their 

sequential numbering. This arrangement is called logical mapping of a memory. 

In many cases, the physical arrangement of memory cells does not correspond to the 

assumed logical arrangement, as a result of different memory design requirements. Some 

reasons for these differences include the following:  

• In order to deal with small memory cells, memory designers sometimes fit the 

periphery cells in the pitch of more than one memory cell. For instance, they lay 

out sense amplifiers in the pitch of 4, 8, or more memory cells, so they place the 

corresponding bits of different words next to each other in the memory core, to be 

able to multiplex these corresponding bits onto one common senseamplifier 

circuit.  

• In order to balance the load on different address lines or (pre)decoded lines, 

memory designers sometimes scatter the wordlines or bitlines.  

• In order to minimize the size of address and column decoders, as well as the 

length and hence propagation times of row and column select lines, memory 

arrays are typically divided into several subarrays.  

• In order to increase the yield for larger memories, spare (redundant) rows and/or 

columns are often implemented, which typically disrupt the physical address 

sequence. 

In order to physically preserve the patterns, it becomes necessary to describe the mapping 

between the physical and logical cell arrangements. The differences between the logical 

and physical cell arrangements are typically due to a scrambling of the rows and columns 

and/or data bit lines. This scrambling can be described by a logical transformation or 
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mapping between the address and data signals required to access the logical memory cell 

arrangement and those signals required to provide the same data pattern in the physical 

memory cell arrangement. 

 

2.2.1.1 ADDRESS SCRAMBLING 

 

Frequently in many designs, physically adjacent cells do not correspond to consequent 

external addresses. That is the memory translates the external address (logical address) 

supplied to some internal address (topological address) that it uses to access a specific 

memory cell. This translation is known as address scrambling. 

Address scrambling is supported through the address and data scrambling definition 

portion of the BIST definition inside the memory BIST model. 

 

Address Scrambling Uses: 

Address scrambling is important for accomplishing the following- 

• General-purpose reduction: - Decoders are often restricted in size in order to fit 

the following topology of certain cells. 

• Increased manufacturing yield: - Extra or left over rows or columns of memory 

cell can cause a discrepancy between logical and topological addresses. 

• Standard Address Pin Assignments: - Address pin number and allocation become 

standardized, leading to a mismatch between on-chip address pads and standard 

pin assignments in different designs. 

 

2.2.1.2 ADDRESS DESCRAMBLING  

 

To successfully test interaction between physically adjacent cells in a memory, a 

dedicated description of the address scrambling function is required in order to generate 

an address descrambler for testing purpose. The address descrambling block is added in 

the test path between the BIST controller and the mux. 
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  Figure 2.2: Address descrambled block inserted in the test path 

 

 

2.2.1.3 DATA SCRAMBLING  

 

Memory data is also communicated by a sequence of bits in an external data word 

(logical data) that might differ from the sequence of bits in data words that physically 

exists in the memory (topological data). The translation between these bit sequences is 

known as data scrambling. 
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Similar to the address scrambling, the data scrambling is important to accomplish the 

following. 

• Space Reduction: - Minimizing the size of column decoder. 

• Reduction of Bit/Bit capacitance effects. 

• Increased manufacturing yield. 

• Standard address pin assignment. 

 

2.2.1.4 DATA DESREMBLING 

 

The data descrambler added by the tool are the same functions as the data scrambling 

function provided by the memory, this is due to the fact that data scrambling is based 

upon bit inversion. 

Deriving The Address Descrambling Information: 

 

                             

                            

 

 

 A).      SC_A0   = A0 XOR A1 

            SC_A1   = A1 

    

  

 B).      DSC_A0  = A0 XOR A1 

            DSC_A1 = A1                             

 

Figure 2.3 Data Descrambling Example  
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Figure 2.4: Data Descrambler Insertion 

 

It is important to take into account these address and data scrambling effects when testing 

memories using checker board algorithm which is dependent upon following- 

1. Topological address/data information. 

2. Consistancy between logical data values and electrical data values. 
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In order to avoid routing congestion both the descrambler and muxes are implemented 

close to memory. 

 

2.3 Fault Modeling 

Based on the functional memory model shown in Figure 2.1, a subset of functional 

memory faults are listed in Table 2.1 [1].  

 

  Functional faults 

a 

b 

c 

d 

e 

f 

Cell stuck 

Driver stuck 

Read/write line stuck 

Chip–select stuck 

Data line stuck 

Open in data line 

g 

h 

Short between data lines 

Crosstalk between data lines 

I 

j 

k 

l 

m 

n 

Address line stuck 

Open in address line  

Shorts between address lines 

Open decoder  

Wrong access 

Multiple access  

o Cell can be set to 0 but not to 1 (or vice versa) 

p Pattern sensitive interaction between cells 

 

Table 2.1 Functional Memory Faults [1] 

 

In this table, a cell can be either a memory cell or a data register and a line is any wiring 

connection in the memory. In production manufacturing testing once a fault is detected 

the memory chip is discarded and no diagnosis needs to be undertaken immediately. 

Failure analysis through fault diagnosis is performed at a later time and more 
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comprehensive test sets (using fault-distinguishing patterns) are applied to identify the 

source of physical defects. Therefore, for production testing, the faults listed in Table 2.1 

[1] can be mapped onto the reduced functional faults shown in Table 2.2 [1]. Table 2.3 

[1] summarizes the relationship between the functional faults (Table 2.1) and the reduced 

functional faults (Table 2.2). 

Name  Functional faults 

SAF Stuck at Fault 

TF Transition Fault 

CF Coupling Fault 

NPSF Neighborhood Pattern Sensitive Faults 

AF Address Decoder Fault 

 

Table 2.2: Reduced Functional Memory Faults [1]. 

 

Reduced Functional Faults   Functional faults 

SAF a Cell Stuck 

SAF b Driver Stuck 

SAF c Read/Write line Stuck 

SAF d Chip Select line Stuck 

SAF e Data line Stuck 

SAF f Open in data line 

CF g Shorts between data lines 

CF h Crosstalk between data lines 

AF i Address line Stuck 

AF j Open in address lines 

AF k Shorts between address lines 

AF l Open decoder 

AF m Wrong Access 

AF  n Multiple access 

TF o Cell can only be set to either 0 or 1 

NPSF p Pattern sensitive interaction between cells 

 

Table 2.3: Relationship Between Functional and Reduced Functional Faults [1] 



BIST for 65nm High-speed Memory                                 Memory Testing Methodologies 

 23

For production testing of embedded memories, a great emphasis is placed on March-

based test algorithms, since they have high defect coverage with a very reasonable 

hardware cost. 

 

2.3.1 Stuck-at Faults 

The stuck-at fault (SAF) considers that the logic value of a cell or line is always 0 

(stuck-at 0 or SA0) or always 1 (stuck-at 1 or SA1). To detect and locate all stuck-at 

faults, a test must satisfy the following requirement: from each cell, a 0 and a 1 must 

be read [1]. 

 

2.3.2 Transition Faults 

The transition fault (TF) is a special case of the SAF because of the fact that once the 

non-faulty transition occurs, the faulty cell can no longer transition and hence manifests 

stuck-at behavior. In some cases, however, a coupling fault with another cell (see 

Idempotent Coupling Faults, Inversion Coupling Faults , and Dynamic Coupling Faults 

on subsequent pages) can flip the cell’s value, thereby masking the stuck-at behavior. For 

this reason, transition faults must be considered separately from stuck-at faults.. 

To detect a transition fault, the following sequence of events must occur: A cell or line 

that fails to undergo a 0 →  1 transition after a write operation is said to contain an up 

transition fault. Similarly, a down transition fault indicates the failure of making a 1 →  0 

transition. According to van de Goor [1], a test to detect and locate all the transition faults 

should satisfy the following requirement: each cell must undergo an ↑  transition (cell 

goes from 0 to 1) and a ↓  transition (cell goes from 1 to 0) and be read after each 

transition before undergoing any further transitions. 

 

2.3.3 Coupling Faults 

A coupling fault (CF) between two cells causes a transition in one cell to force the 

content of another cell to change. The 2-coupling fault model [1], which involves only 
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two cells, is defined as follows: a write operation that generates an ↑  or ↓  transition in 

one cell changes the content of the second cell. The 2-coupling fault is a special case of 

the k-coupling fault [1]. A k-coupling fault uses the same two cells as the 2-coupling 

fault, however it allows the fault to occur only when another k − 2 cells are in a certain 

state. 

• The inversion coupling fault (CFin) is a special case of the 2-coupling fault. It 

means that an ↑  or ↓  transition in one cell inverts the content of the second cell. 

A test to detect all CFins must satisfy the following condition: for all the cells 

which are coupled, each cell should be read after a series of possible CFins may 

have occurred (by writing into the coupling cells), with the condition that the 

number of transitions in the coupled cells is odd (i.e., the CFins do not mask each 

other) [1]. 

• The idempotent coupling fault (CFid) is another particular case of the 2-coupling 

fault. It means that an ↑  or ↓  transition in one cell forces a second cell to a 

certain value, 0 or 1. A test to detect all CFids must satisfy the following 

condition: for all the cells which are coupled, each cell should be read after a 

series of possible CFids may have occurred (by writing into the coupling cells), 

in such a way that the sensitized CFids do not mask each other [1].  

• The dynamic coupling fault (CFdyn) is a more general case of the CFid. 

According to its definition a read or write operation on one cell forces the 

contents of the second cell either to 0 or 1 [2]. 

• The bridging fault (BF) is caused by a short circuit between two or more cells or 

lines. It is determined by a logic level rather than a transition write operation. 

There are two kinds of bridging faults: AND bridging fault (ABF), in which the 

logic value of the bridge is the AND of the shorted cells or lines, and OR  

bridging fault (OBF), in which the logic value of the bridge is the OR of the 

shorted cells/lines. 
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• In the state coupling fault (SCF) a coupled cell or line is forced to a certain value 

(0 or 1) only if the coupling cell is in a given state. It is also determined by a 

logic level. 

 

 

2.3.4 Neighborhood Pattern Sensitive Faults 

A pattern sensitive fault (PSF) causes the content of a cell (or the ability to change the 

content) to be influenced by the contents of other memory cells, which may be either a 

pattern of 0s and 1s or transitions in memory contents. The PSF is the most general  case 

of the k-coupling fault, where k equals the number of cells in the memory. There are two 

types of PSF: unrestricted PSF (UPSF) and restricted (or neighborhood) PSF (NPSF) . 

For tractability reasons, all the known algorithms are tackling the NPSFs, which can be 

further divided into three types: active NPSF (ANPSF), passive NPSF (PNPSF), and 

static NPSF (SNPSF). NPSF testing algorithms are very complex when compared to 

March test algorithms [1]. However, for certain process technologies, circuit techniques 

or memory types, such as high-density DRAMs, testing NPSFs may be a requirement.. 

 

2.3.5 Address Decoder Faults 

Address decoder faults (AFs) represent faults in the combinational logic of the address 

decoder. Two assumptions are generally accepted: the faults do not introduce sequential 

behavior in the address decoder and the faults will manifest identically during read and 

write operations. To simplify the problem, we first consider bit-oriented memories, in 

which only one bit data is stored in each memory location. The functional faults within 

the address decoder can be classified into four AFs [1], as shown in Figure 2.3: 

: 
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Figure 2.5: Address Decoder Faults [1] 
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Figure 2.6: Combination of Address Decoder Faults [1] 

 

• Fault 1: For a certain address, no cell will be accessed. 

• Fault 2: A certain cell can never be accessed by any address. 

• Fault 3: For a certain address, multiple cells are accessed simultaneously. 

• Fault 4: A certain cell can be accessed by multiple addresses. 

 

For bit-oriented memories, because each cell is linked to a dedicated address, none of the 

faults listed above can stand alone. For example, when fault 1 occurs, then either fault 2 

or fault 3 will occur as well. Therefore, in total, four fault combinations in the address 

decoder are shown in Figure 2.4 [1]. 

 

2.4 Functional Testing and March Test Algorithms 

Based on the used memory fault models, memory test algorithms can be divided into 

Ax Cx 

Ax 
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four categories [1] as described below: 

 

1. Traditional tests including Zero-One, Checkboard, GALPAT and Walking 1/0, Sliding 

Diagonal, and Butterfly [1]. They are not based on any particular functional fault models 

and over time have been replaced by improved test algorithms, which result in higher 

fault coverage and equal or shorter test time. 

2. Tests for stuck-at, transition, and coupling faults that are based on the reduced 

functional fault model and are called March test algorithms [1]. 

3. Tests for neighborhood pattern sensitive faults. 

4. Other memory tests: any tests, which are not based on the functional fault model, are 

grouped in this category. 

                   As mentioned previously, March test algorithms can efficiently test 

embedded memories and, therefore, the rest of this section provides more details about 

them. 

 

March Test Notation 

A March test consists of a finite sequence of March elements [1]. A March element is a 

finite sequence of operations or primitives applied to every memory cell before 

proceeding to next cell [1]. For example, ⇓  (r1,w0) is a March element and r0 is a March 

primitive. The address order in a March element can be increasing (⇑ ), decreasing (⇓ ), 

or either increasing or decreasing (χ ). An operation can be either writing a 0 or 1 into a 

cell (w0 or w1), or reading a 0 or 1 from a cell (r0 or r1).  

 

2.4.1 Characteristics of March Algorithms 

March-based memory test algorithms have several important characteristics: 

• Up (down) address sequence must be the exact reverse down (up) sequence, 

however its internal order is irrelevant. For example, if a 3 bits up address 

sequence is {0, 5, 2, 3, 7, 1, 4, 6}, then the down sequence must be {6, 4, 1, 7, 3, 

2, 5, 0}. 
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• Most March algorithms are only a simple combination of several March elements. 

The background pattern during execution can be inferred by the previous 

operation. For example, a read operation infers the same background data used in 

the last operation. Similarly, a write operation infers the reversed background data 

used in the last operation. Based on this observation, one can reduce the number 

of March elements and the complexity of their implementation. The total number 

of March elements for the most practical March algorithms is less than ten. 

• Using the test generation method proposed in [2], one can generate novel March 

algorithms (based on a limited number of March elements implemented in 

hardware), to detect new technology-specific faults. 

• For word-oriented memories, one needs to run the March test several times using 

different background patterns [1, 8] to improve the fault coverage or to use 

modified March algorithms, such as March-CW [12], to reduce the testing time.  

 

2.4.2 March Algorithms with Diagnosis and Repair Support 

When a memory is fabricated using new technology, it is desirable to have a fast yield 

learning curve [12]. Therefore, it is critical to perform very detailed failure analysis 

through fault diagnosis to identify the particular defects. The ultimate outcome of failure 

analysis is a redesigned set of masks for the next fabrication run, which will improve the 

manufacturing yield. A new set of March algorithms will be used for the best process-

specific fault coverage. For large memory chips or SOCs with large embedded SRAMs or 

DRAMs, to increase the yield, it is crucial to also use redundant memory locations to 

repair the faulty rows (columns) [12]. 

A complete solution targeting fault diagnosis and fault location has three components: A 

memory BIST architecture with diagnosis support to save and send out the diagnostic 

information, a diagnostic test algorithm and a tool to analyze the collected diagnostic data 

and generate a detailed fault report for failure analysis and a fault bitmap for repair 

purposes.  
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CHAPTER 3 

 

MEMROY BIST METHODOLOGIES 
 

 

This chapter describes the relevant approaches to embedded memory BIST, summarizes 

their strengths and limitations and gives the detailed information of the relevant work  

done in the development of BIST for different memories especially 65nm high speed 

single-port SRAM. 

 

3.1 Memory BIST Approaches 

A typical embedded memory BIST (MBIST) approach comprises an MBIST wrapper, an 

MBIST controller and the interconnect between them. The MBIST wrapper further 

includes an address generator to provide complete memory address sequences (i.e., for n 

address lines all the 2n locations are visited in a complete sequence); a background 

pattern generator to produce data patterns; a comparator to check the memory output 

against the expected correct data pattern; and a finite state machine (FSM) to generate 

proper test control signals based on the commands received from the MBIST controller.  

 The MBIST controller pre-processes the commands received from upper-level controller 

(either on-chip microprocessor or off-chip ATE) and then sends them to the MBIST 

wrapper. The interconnect between the wrapper and the controller could be either serial 

(i.e., a single command line is shared by all the wrappers) or parallel (i.e., dedicated 

multiple command lines are linking different wrappers to the controller).  

 

BIST addresses most of the challenges faced by testing embedded memories in an SOC 

(see Chapter 1 for a full description of SOC testing challenges). However, the increasing 

size and number of embedded memory cores and the rapid development in VLSI process 

technologies lead to unique requirements for embedded memory BIST. 
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1. Support multiple test algorithms: The conventional MBIST approaches usually 

implement a single March test algorithm. However, deep submicron process 

technologies and design rules introduce physical defects that are not screened when 

using the memory test algorithms developed for previous process generations. 

Therefore MBIST architectures should be programmable to support multiple memory 

test algorithms to increase the fault coverage and to find the most suitable algorithms 

for the manufacturing process at hand.  

 

2. Diagnosis and repair support: Diagnosis support in an MBIST architecture is 

mandatory for manufacturing yield enhancement for new process technology and a 

rapid transition from the yield ramp phase to the volume production phase [12]. 

Furthermore, since embedded memories are subject to more aggressive design rules, 

they are more prone to manufacturing defects (caused by process variations) than 

other cores in an SOC. For large embedded memory cores, the manufacturing yield 

can be unacceptable low (e.g., for a 24Mbits memory core, the yield is around 20% 

[12]). Hence, to achieve a certain manufacturing yield, in addition to diagnosis 

support, it is also beneficial to introduce self-repair features comprising redundant 

memory cells. 

 

3. Test heterogeneous memories: State-of-the-art SOCs include many types of 

memory cores, such as, among others, SRAM, DRAM, flash and ROM. Traditional 

MBIST approaches were designed to test only one type of memory. However, to 

reduce area and routing overhead via hardware resource sharing, as well as to 

decrease the testing time, it is advantageous to develop MBIST architectures that 

support testing heterogeneous memories simultaneously.  

 

4. Power dissipation constraints: As introduced in Chapter 1, more power 

dissipation is expected during test mode than power consumed during normal 
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functional mode for scan-based SOC testing. However, because memory test is 

functional test, for each memory the power dissipation will be identical in both test 

mode and normal functional mode. Therefore, if all memory blocks in an SOC can be 

activated simultaneously during functional mode, power dissipation will not exceed 

the maximum power constraint during test. Hence, no test scheduling is required in 

this case. However, to reduce the overall testing time, test scheduling is still necessary 

for memory testing as described in the following.  

On the one hand, for bus-connected memories (BCMs), which are connected to a 

single-master bus architecture [4], only one BCM can be accessed at any time during 

functional mode. If all BCMs are wrapped, then all of them can be activated 

simultaneously during test. Consequently, the power dissipation will be higher during 

test than during functional operation, and therefore, test scheduling is necessary. 

On the other hand, memory testing is part of SOC testing. It was proven in [12] that 

cores, which use scan-based test methodology, will consume more power during test 

than during functional mode. If the testing time of these scan-based cores is longer 

than that of memory cores, then by relaxing the power constraints for scan-based core 

testing and carefully scheduling memory testing with tightened power constraints, the 

overall testing time for the SOC can be reduced. 

Since test scheduling under power constraints is highly interrelated to the resource 

sharing mechanisms used in the MBIST architecture, it is essential to develop new 

power-constrained test scheduling algorithms that will get the maximum usage of the 

available hardware resources for embedded memory testing. 

 

5. Reuse the available on-chip processing/communication resources: SOCs 

usually contain one or more processing elements (e.g., microprocessors), which use 

on-chip system busses to communicate with other cores. Hence the embedded 

memory cores in an SOC can be divided into two groups: bus-connected memories 

(BCMs) and non bus-connected memories (NBCMs). Although all the embedded 

memory cores can be tested by adding dedicated memory BIST wrappers, the high 
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area overhead of BIST circuitry, as well as the performance penalty caused by 

intrusive DFT hardware may prove to be the main drawback of this approach. 

Therefore, reusing the available on-chip resources for testing the embedded memories 

can lower the area and performance overhead associated with a high number of 

dedicated MBIST wrappers for BCMs. Furthermore, by implementing non-time-

critical tasks in software using a processor, the complexity of the controller can also 

be reduced. 

 

6. Design reuse: Reusing IP cores in an SOC can greatly simplify the design phase 

and cut down the time to market. The Reuse Methodology Manual [12] lists various 

features to make a core reusable. A reusable MBIST core with a scalable and portable 

architecture, associated with a clear methodology for design flow integration, can 

significantly reduce the cost of test preparation.  

 

The objective of memory BIST approaches is to meet some or all of the above 

requirements while reducing the cost of test by targeting low area and performance 

penalty and low testing time. The existing approaches have explored three main 

directions to gain improvements: memory BIST architectures, test scheduling 

algorithms, and special design implementations. Due to their interrelation, without a 

good architectural support it is hardly possible to achieve any significant 

improvements through test scheduling or special design techniques. The following 

sections will review the relevant MBIST approaches presented in the literature. 

 

3.2 Memory BIST Architectures 

 

A memory BIST architecture is defined by the integration of its three components: 

(controller, wrapper and interconnect). A standalone approach uses a dedicated wrapper 

and controller for each memory core (or memory cluster with several identical memory 
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cores), while a distributed approach shares one controller to manage some or all of the 

MBIST wrappers in an SOC. 

3.2.1 Dedicated BIST Methodology  

In dedicated memory BIST architecture the BIST is located physically close to the 

memory so as to minimize routing congestion as well as increasing the speed. The 

MBIST approach of each memory is independent of other memory’s BIST approaches , 

which makes the implementation of this approach straight forward. However, based on 

the specific test requirements of different memories and technologies, it needs to be 

improved in one or more aspects, as described in the following. 

MBIST approaches which support multiple March test algorithms are called 

programmable MBIST architectures . Based on the structure of March algorithms , to 

support multiple March test algorithms, one can either implement all the March 

primitives or several March elements. Since there are only four March primitives (r0, w0, 

r1, w1), by implementing all of them with different combinations of background patterns 

and address sequences, any March algorithm can be supported. One programmable 

MBIST approach using March primitives was investigated in [12] and it includes an 

instruction memory to store the test instructions and a decoding logic to process the test 

instructions. March element-based approaches implement only several most commonly 

used March elements. Based on the implemented March elements, only a limited number 

of March algorithms can be supported. 

               However, its main advantage lies in less area overhead (simpler decoding logic 

and less test instructions) when compared to March primitive-based approaches. In 

addition, by carefully selecting the March elements, new March test algorithms can be 

generated [2] to target memory faults in new process technologies. 

    Diagnosis support is another important feature of MBIST architectures. A builtin self-

diagnosis (BISD) scheme was introduced in [12]. It sends out faulty memory cell 
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information (such as faulty address, data, and test session number) for failure analysis. To 

reduce the control complexity of this approach when testing numerous memory cores, a 

P1500 MBIST approach with diagnosis enhancement was proposed in [12]. To reduce 

the testing time in the diagnosis mode (caused by the serial scan-chain structure required 

to shift out the diagnosis information), a test response compression method was 

introduced in [10]. Using this method, less I/O pins can be used to send out the faulty 

response data compared with the uncompressed parallel solution. Due to the increased 

size of embedded memories, support for memory self-repair is becoming necessary to 

increase the overall SOC yield. Using the detailed location and information of faulty 

memory cells (provided by diagnosis support approaches discussed above), one can 

perform memory redundancy allocation and use fuse-boxes or other methods to repair the 

faulty memories. However, to collect enough information on fault locations for various 

memory faults, more complex March test algorithms are required, which implies longer 

testing time. An MBIST solution was introduced in [12] to test and repair large 

embedded DRAMs using on-chip redundancy allocation.To reduce the testing time, a 

memory BIST architecture was proposed in [12] with revised March test algorithms. 

While most of the previously-described MBIST approaches are focused on testing single 

port SRAMs, as long as the test algorithms have the features of March algorithms, they 

are suitable for testing other types of memories with minor modifications. For example, a 

flash memory BIST architecture was proposed in [12] using a March-like test algorithm. 

A multiple port SRAM BIST with diagnosis support scheme was introduced in [12] using 

a modified March algorithm. 

  In summary, most of the standalone MBIST architectures focus only on solving the test 

problems related to a single memory core or a standalone memory chip. They do not 

account for the specific requirements for integrating the design for test hardware for 

hundreds of embedded memory cores. They also do not provide any support for test 

scheduling under power dissipation constraints, which needs a flexible control 

mechanism for the memory BIST hardware.  
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Figure 3.1 shows the generic Dedicated MBIST architecture : 

Figure 3.1: Generic BIST Architecture for Standalone memory [1] 

The detailed design implementation of all the modules shown in Figure 3.1 can only be 

described with a specific architecture and it is beyond the scope of this thesis. What are 

common, however, to most of the known BIST architectures are the comparator, address 

generator, and background pattern generator in the MBIST wrapper. 
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1. Comparator: The comparator checks the memory output data against the correct 

background patterns in order to find any mismatch and its implementation is 

straightforward. A comparator compares the values read out of the memory with 

expected values generated by the expected data generation block on a cycle-by-cycle 

basis. The result of each comparison is accumulated into a status flip-flop in order to 

provide a go/no-go result at the end of the test. Often, the comparison result is 

brought out to a chip-pin for real-time monitoring. 

2. Address Generator (AG): The address generator for March-based memory testing 

has several requirements . The most important features of the address generator are 

that it must cover the entire address space, the internal order of the sequence is 

irrelevant, however, the down sequence must be in the reverse order of the up 

sequence. According to these requirements, an automatically synthesized up/down 

binary counter is sufficient to be the address generator. However, the area of a binary 

up/down counter is too high for large address spaces [1 , 11]. Linear feedback shift 

registers (LFSR) [5] may overcome this problem, however, since a traditional LFSR 

does not cover the all 0s pattern, which is necessary for memory testing, it has to 

undergo some modifications. Furthermore, the LFSR must also be controlled to 

generate the reversed (down) sequence. A modified LFSR was described in [1 , 2] to 

address these two issues. Another address generator was proposed in [11] to reduce 

the switching activity on the address lines for power reduction. The activity is 

minimized when two successive addresses differ in exactly one position. This code 

sequence is known as Gray-code [12]. However, the area of a Gray-code counter 

(regardless of the implementation type, i.e., FSM-based or conversion from a binary 

counter [12]) is much larger than that of an LFSRs[2]. In this thesis a ripplecarry 

adder has been used for address generation which reduces the area.  

3. Background Pattern Generator (Data Generator) : Most embedded memories 

are wordoriented (i.e., they store more than one bit of data in each address location). 

In [1], the author listed several background patterns for different fault coverages. 
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Wang and Lee [8] recently presented a hardware implementation for a word-oriented 

BPG, however, their solution is very complex and has large area overhead. Since 

there are only log2 N + 1 states for a BPG, where N is the word-width, we can use a 

simple FSM to generate all the background patterns very efficiently with much lower 

area overhead than [8].  

4.Finite State Machine (FSM): A finite state machine (FSM) is used to control the 

overall sequence of events. For example, the FSM determines whether the address 

counter should be counting up or down or if the data being generated should be a 

marching 0 or marching 1 pattern. 

 

3.2.1.1 Design Implementation  
A BIST block is an offline verification of the memory under test. The basic operation of 

memory BIST is straightforward: First, the memory is put into a test mode by the use of 

muxes placed on every data, address, and control line. A finite state machine writes a test 

pattern to a memory cell, reads it back, and compares it to the original value. If a 

mismatch occurs, a flag is set to show that the memory cell under test has a failure.  

 

The test hardware for memory BIST includes- 

 

1. A memory BIST controller (FSM) 

2. An Address Generator.  

•   Address Counter 

•   Address Direction : Row Fast / Column Fast 

•   Address Increment / Decrement 

 

3. A background pattern inserter or Data Generator for inserting test patterns into 

memory columns. 

4. A MUX circuit feeding the memory during self-tests from the controller. 

5. A comparator for response checking. 
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The address is incremented and the process continues recursively. The process of 

stepping through the entire memory space can be done multiple times, using different 

patterns to more fully exercise the memory. 

This basic process can quickly detect all stuck-at faults. However, smaller geometry 

memories are prone to having neighborhood faults caused by particular values of 

aggressor neighboring cells. Because a cell may have many physical neighbors, test-

pattern algorithms that expose these neighborhood faults can become quite complex, with 

long test times. 

A more elaborated figure is shown below- 

 

Figure 3.2: Elaborated BIST Execution diagram 
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3.2.2 Distributed MBIST Architecture 

To reduce the BIST area and routing overhead as well as the test control complexity 

associated with complex and heterogeneous SOCs, distributed approaches are necessary. 

In a distributed memory BIST architecture, each memory core still has a dedicated 

technology-dependent wrapper. However, depending on the complexity of the SOC, there 

are only one (or a few) BIST controllers used to direct the test of all the embedded 

memory cores. Since hardware resource sharing is introduced, to reduce the routing 

congestion and to facilitate rapid power-constrained testing, the interconnect between the 

wrappers and the controller(s) must be carefully considered. Distributed BIST 

 

Figure 3.3 : Generic Shared MBIST Architecture 
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architectures have been advocated for over a decade. Zorian [12] presented a distributed 

BIST control scheme to test the building blocks of a complex VLSI circuit. Due to the 

increasing ratio of the memory area in a state-of-the-art SOC, dedicated memory BIST 

architectures can be used to reduce the cost of memory test.  

In Shared BIST methodology ,multiple memories can be tested either sequentially or in 

parallel. The advantage of testing the memories in parallel is a reduced test time. 

However, parallel testing has the following disadvantages: 

• The power consumption that results from testing several memories together can 

be high.  

• Certain BIST controller resources must be duplicated. For example, a separate 

comparator is needed for every memory tested in parallel. 

There is also a potential disadvantage to using a single controller for multiple embedded 

memories. If the memories are not localized to one area of the chip, a large amount of 

wiring might be needed to route the address and data lines from the controller to each of 

the memories. This disadvantage is especially true for the data lines, given the large data 

widths (64 bits, 128 bits, and so on) that many memories currently have. To solve this 

problem, LogicVision’s memory BIST offers a patented approach that requires only one 

data line to be routed to each embedded memory, regardless of the memory’s data width. 

This is referred to as a serial memory BIST approach, because the data values for each 

test pattern are provided serially to the memory. 
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CHAPTER 4 
 

BIST FOR 65NM HIGH SPEED SINGLE-PORT 

MEMORY 

 

This chapter describes the design of BIST for high-speed single-port memory. The 

execution flow for each test operation has been discussed. On the basis of these flow 

diagram the RTL code has been written in Verilog HDL for BIST with different test 

options and their combinations 

SPHS65 memory is a high-speed full synchronous single port memory. The main features 

of the memory are- 

• Mux: 4, 8 or 16  

• Words: 16 to 16384, in step of 4*mux 

• Bits: 4 to 512, in step of one 

• Rows: 4 to 1024 

• Columns:4 to 1024 

 

4.1 SCRAMBLING  

 

The address bus is split into 2 different parts: 

• Row selection: A[n:w] 

• Column mux selection: A[w-1:0] 

 

With:  w = log2(mux) 

 

• Here w is always an integer de to the constraint on the mux (4,8 or 16) 
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4.2 REDUNDANCY 

• Two additional rows are present in the bottom of the core of memory to provide 

reparability. 

o Any two consecutive faulty rows can be replaced with redundant rows. 

o If the faults are not at consecutive rows, the memory will not be 

repairable. 

 

Note: This constraint is used as in most cases the faults occur due to 

misconnections  developed  during fabrication of  Via’s. Wrong connection in one 

via causes fault in two consecutive cells, which share the same via for metal 

connection. Thus if there is a fault in one particular row then there will be 

possibility of faults in its neighboring rows/columns depending on the memory 

layout. 

 

4.3 FAULT MODELS of single-port high speed SRAM 

 

• Stuck At Faults 

• Stuck Open Faults 

• Address Decoder Faults 

• Sense amplifier faults 

• RY functional faults 

• Coupling Faults between Global bitlines with local bitlines. 

• Transition coupling faults 

• Linked Coupling faults 

• Disturb Fault 
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4.4 ALGORITHM  

During the BIST run an algorithm is executed which is composed of a sequence of events 

in order to cover the different modelized faults inside the memory. For single-port 

memories the most widely used algorithm is 14nMarchLR algorithm. 

 

4.4.1 mMARCHLR 14N 

The mMarchLR 14N algorithm is based on the basic 14nMarchLR 14N described below- 

 

Address 

Number 

S0 

Addresses 

Increased 

S1 

Addresses  

Decreased 

S2 

Addresses 

Increased 

S3 

Addresses 

Increased 

S4 

Addresses 

Increased 

S5 

Addresses 

Increased 

O 

1 

… 

… 

K 

… 

N-1 

N 

 WB  

   WB 

     … 

      … 

       WB 

         … 

          WB 

            

WB 

        

RBWI 

        

RBWI 

          ….  

        ….     

       RBWI 

      … 

    RBWI 

   RBWI    

RIWBRBWI  

RIWBRBWI  

      … 

       … 

RIWBRBWI  

         … 

RIWBRBWI  

RIWBRBWI  

 RIWB  

  RIWB 

     … 

      … 

    RIWB 

         … 

      RIWB 

        

RIWB 

RBWIRIWB 

 RBWIRIWB 

 … 

   …                      

 RBWIRIWB 

         … 

 RBWIRIWB  

  RBWIRIWB  

  RB  

   RB 

     … 

      … 

      RB 

         … 

         RB 

            RB 

 

Table 4.1: Modified MarchLR algorithm 

 

Here the different symbols have following meaning- 

• wB: Write background 

• wI: Write inverted background 

• rB: Read background and compare to the expected value 

• rI: Read inverted background and compare to the expected value. 
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The modified MarchLR 14N is an additional layer to the MarchLR 14N. It takes in 

consideration the physical organization of the memory, and works not with a logical 

addressing, but with a physical addressing. One more thing is the written data, which 

change during the algorithm execution inside the different stages to create a physical 

map. This is what is termed as the address scrambling and data scrambling. 

             The mMarchLR 14N increases the fault coverage because it creates more layout 

configurations, susceptible to highlight memory defects. This algorithm is adapted to 

interleaved memory type (also called bit oriented memory), using a multiplexer to 

dispatch the words.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example of a 16 words of 3 bits memory page. The mux factor is 4 inside a page. 

The algorithm is run four times for each physical layout configuration defined below.  

 

b1 b2 b0 

0 1 2 3 

4 5 6 7 

8 9 10 11 

12 13 14 15 

 

Address 6 =  b2 b1 b0 

rows

Columns 

0 1 2 3 

4 5 6 7 

8 9 10 11 

12 13 14 15 

 

0 1 2 3 

4 5 6 7 

8 9 10 11 

12 13 14 15 
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 1. Solid  
 

All the memory is filled with 0 (wB). The column address is incremented first.  
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
2. Column stripe  
The address scrambling of solid is kept, but the data scrambling will create an alternate 

column stress.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Columns 

b0 

0 1 2 3 

4 5 6 7 

8 9 10 11 

12 13 14 15 

 

rows

b0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

 

b0 

0 1 2 3 

4 5 6 7 

8 9 10 11 

12 13 14 15 

 

rows

Columns 

b0 

1 0 1 0 

1 0 1 0 

1 0 1 0 

1 0 1 0 
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3. Row stripe  
The address scrambling increments the row fast in this configuration. The goal is to 

create an alternate pattern in the row direction.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4. Checkerboard  
 
With the columns stripe address scrambling, the final layout configuration is a 

checkerboard. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

b0 

0 1 2 3 

4 5 6 7 

8 9 10 11 
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rows

Columns 

b0 

1 1 1 1 

0 0 0 0 

1 1 1 1 

0 0 0 0 

 

b0 

0 1 2 3 

4 5 6 7 

8 9 10 11 

12 13 14 15 

 

rows

Columns 

b0 

1 0 1 0 

0 1 0 1 

1 0 1 0 

0 1 0 1 
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The total number of cycle necessary to execute fully the algorithm:  

 

                                           N cycles = 14.N.4 

 

Where N is the number of words in the tested memory.  

 

The faults that are detected by this algorithm are – 

• Address Faults 

• Stuck at Faults 

• Coupling faults 

• Linked Coupling faults 

• Some Neighborhood Pattern Sensitive Faults. 

 

4.4.2 MASK BITS TEST 
 
The Mask Bits Algorithm consists of 12 stages- 
 

 
 

Table 4.2: Mask Bits Algorithm [3] 
 
 

 
 

Table 4.3: Mask Bits Algorithm (continued..) [3] 
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The faults detected by this test are- 

 

• Stuck at zero. 

• Coupling fault between M bit neighborhood pins 

• Coupling faults detected between D bit neighborhood pins 

• Coupling faults detected between Q bit neighborhood pins 

• Coupling between D,M,Q bus of memory 

 
 
4.4.3 DATA BIT COUPLING TEST 
 
This test is done to detect the coupling between the data pins of the memory. This test 

consists of 4 stages- 

 

Address  S1 S2 S3 S4 

Any  

WRITE 

D0101 

QXXXX 

READ 

D1010 

Q0101 

WRITE 

D1010 

Q0101 

READ 

D0101 

Q1010 
 

Table 4.4: Data bits coupling algorithm 

 

This test takes 4 cycles to complete, and is usually run at one address at the end of the  

main algorithm. 

 

The faults detected by this algorithm are-  

 

• Stuck at fault 

• Faults detected by the Data line coupling faults 

 

 
 



BIST for 65nm High-speed Memory                                         BIST for 65nm High-speed                                 
Single-port Memory                                           

 49

4.4.4 CSN BIT COUPLING TEST 
 
 
This test is done to check the faults on CSN pin of the memory. 
 

S0 S1 S2 S3 S4 

WRITE 

WEN0 

CSN0 

D0000 

QXXXX 

A…..00 

FALSE WRITE 

WEN0 

CSN1 

D1111 

QXXXX 

A…..00 

READ 

WEN1 

CSN0 

D1111 

Q0000 

A….00 

WRITE 

WEN0 

CSN0 

D1111 

Q0000 

A….00 

FALSE READ 

WEN1 

CSN1 

D1111 

Q0000 

A….00 
 

 
Table 4.5: CSN bit Coupling test 

 
 

This test is completed in 5 clock cycles, and is usually run one time at one address at the 

end of the 14N MarchLR checkerboard algorithm run.  

 

The faults detected are: 

 

• Stuck At zero on CSN bit of the memory 

 

 

4.4.5 Address Delay Decoder Test  

 

This specific test is used to highlight delay fault in address decoder by stressing it. Using 

algorithms specially designed for this test, it can be tested whether address decoders are 

fast enough while jumping from one address to another.  
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In other words, the purpose is to see if the address decoder can make the jump from the 

base address (A1) to the target address (A2), which is offered one cycle later where A1 

and A2 are generated as described below.  

In this algorithm, the base address (A1) will be generated from zero to maximum address 

(MAXADDR) in incrementing order, and the target address (A2) will be generated by 

taking complement of the base address (A1) as and when needed, depending on the 

operation.  

 

4.4.5.1 Fully Decoded Memory 

 

In case of fully decoded memory, the base address will be generated from zero to 

maximum address (MAXADDR) in incrementing order and the target address (A2) will 

be generated by taking complement of the base address (A1). 

Example : In case of a MAXADDR of 1111 , the jumping table will be- 

 

 A1: 0000       A2: 1111 

A1: 0001      A2: 1110 

                                                      ....... 

A1: 1111       A2: 0000 

The sequence of operations applied will be- 

 

• Fill 1 (All addresses) Initially 

• WB at A1 

• RIB at A2 

• RB at A1  

• WIB at A1 
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4.4.5.2 Not Fully Decoded Memory 
 
 
In case of not fully decoded memory when we take the complement of the base address 

A1, the last addresses are skipped (which are greater that the MAXADDR specified) and 

the complement of msb of the base address is taken to be zero. 

 

Example: In case of a MAXADDR of 1100 the addresses from 1101 to 1100 will be 

skipped and the jumping table will be- 

 

A1: 0000 A2: 0111 

A1: 0001 A2: 0110 

                                                         ……. 

A1: 0011 A2: 1100 

A1: 0100 A2: 1011 

 

And the sequence of operations will be- 

 

• Fill 1 (All addresses) Initially 

• WB at A1(0000), A2(1100) 

• RIB at A2(0111) 

• RB at A1 (0000) 

• WIB at A1(0000) 
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4.5 IMPLEMENTATION 
 
4.5.1 I/O Pin Description: 

Figure 4.1: Pin connections (BIST AND MEMORY) [3] 
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4.5.2 The Full Pin Description: 
 

NAME DIRECTION FUNCTION 
ag OUT Address bus to memory 
ags IN Address bus from design  
dg OUT Data bus to memory 
dgs IN Data input from system logic 
dgr IN Data output bus from memory 
dgrs OUT Data output to system logic  
csn OUT Chip select signal to memory 
csns IN Chip select from system logic 
wen OUT Write enable signal to memory 
wens IN Write enable from system logic 

tbypass OUT Memory bypass control from memory 
debug IN Debug mode pin 

ret IN Retention test pin purpose 
iddq IN Iddq mode pin 

bad status OUT BIST test failed 
fail status OUT BIST word failed again 
end status OUT BIST test end signal 

clk_m IN BIST clock 
bypass IN Test mode pin 
rbact IN Run BIST active to launch the BIST 

test_se IN Scan chain enable 
rst_n IN BIST reset 

Tristate output 
oens IN Output enable from system logic 

Redundancy 
rras OUT The row repair address from system 
rraes OUT The row repair address enable from system 
rra OUT The row repair address to ram 
rrae OUT The row repair enable to ram 

Scan_en IN Shift out enable 
Scan_in IN Shift in 

Scan_out OUT Shift out 
Bitmap 

clk_bmp IN The bitmap clock 
Rst_bmp_n IN The bitmap reset 

bmpout OUT The bitmap shift out 
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4.5.3 OPERATING MODE DESCRIPTION 
 

4.5.3.1 Scan ATPG Mode: 

 

During the scan mode, all the design is tested by a set of vectors generated by an 

automatic Test Pattern Generator (ATPG). At this stage of the flow, the state of the 

memory is unknown (bad or good memory which can be a black box). Then it’s 

necessary to switch the BIST in the scan mode which bypasses the memory and activates 

observability points to increase the fault coverage. 

The goal of memory bypass is to test independently design logic and memory. This mode 

allows user to run the atpg pattern on his chip, bypassing the memory output and hence 

avoiding the ram shadow i.e. without being impacted by the memory yield. It is important 

for debug capability. 

 

Figure 4.2: Scan ATPG Flow 
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4.5.3.2 Transparent Mode:  

This mode allows user to access the memory directly in the functional mode. In this mode 

the memory pins are connected to the system pins and the BIST pins are deselected. 

Inherently the rbact pin decides between the functional mode and BIST active modes. 

This saves a lot of glitches on the memory pins. 

 

4.5.3.3 Run BIST for RAMs 

 

Figure 4.3: Run BIST Execution 
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The Run BIST program is generated through a synchronous FSM which runs at the same 

clock as memory under test. The high speed is achieved through pipelining in FSM 

stages. 

                During Run BIST mode a sequence of operations are done on memory 

according to the chosen algorithms. 

                 The different test performed during run BIST for single-port SRAM are: 

• Main algorithm run 

• Data bit coupling test 

• CSN bit coupling test 

• Address decoder test 

 

4.5.3.4 IDDQ Fill 0/Fill 1 Modes and Retention Test: 

 

Fill 0/1: The IDDq fill 0 and IDDq fill 1 are useful and fast to write respectively 0 and 1 

in the entire memory array especially for the IDDq test. 

 

 

Figure 4.4: Fill 0 and Fill 1 operation 

 

 
  XXXXXX  
  XXXXXX  
   
  MEMORY 

 
  11111111 
  11111111 
   
  MEMORY 

              IDDq fill 1 operation 

 
  XXXXXX  
  XXXXXX  
   
  MEMORY 

 
   00000000 
   00000000 
 
  MEMORY 

              IDDq fill 0 operation 
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Read 0/1 : The Read 0 and Read 1 features are intended to test the memory retention 

after a delay defined on tester. 

           The goal is to check the entire memory to check if the memory contents is set at 0 

or 1.  

Retention Test: This test is intended to detect the memory cells, which fail to retain a 

written value after a period of time. This type of faults cannot be detected by the main 

algorithm of the memory BIST because of the large amount of time requested to highlight 

this kind of problems. 

 

 

 
 

Figure 4.5: Fill 0/1 and Retention test flow 
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4.5.3.5 Scan Collar Mode 

 

The memory inputs will be controlled by the BIST. BIST will keep the memory inputs 

like csn gated with test_se (scan chain enable pin) Hence when test_se is 1 no operation 

will happen on the memory. During capture modes when test_se goes low, any operation 

will be possible on the memory. 

 

 

Figure 4.6: Scan Collar Implementation
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Figure 4.7: Scan Collar Mode test Flow
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1.  Shift In 

At this stage the CSN and WEN values are shifted in scan chain along with other values.  

The test_se pin is kept high during this mode to disable any operation on memory.  

 

2. Write Operation 

During write operation WEN= 0 and CSN = 0. The write operation can’t be disassociated 

with the shift in operation, because it’s one of the two possible continuations. test_se goes 

low to allow write operation on memory. 

 

3.Read Operation and Capture 

The read operation is similar to the write operation. CSN = 0, WEN = 1 

Once the data are outputed from the memory, it’s necessary to save them into the scan 

registers to shift them out. This very important operation is called Capture. During this 

stage, test_se pin remains low during one clock cycle. 

 

4. Shift out values 

This stage is done just after a read and capture operation. The memory data output is 

serially shifted out, msb first. 

 

 
4.5.3.6 BITMAP MODE 
 
The BITMAP feature is a powerful feature to easily diagnose a memory by creating a 

memory error map. It’s an additional layer to the classical RUNBIST. 

During a BITMAP mode, the BIST is run.  

• Each detected fault, the faulted addresses, datas and BIST parameters are stored 

into the FIFO, and the tester read, through the shift out register, the information 

about this fault. 
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Figure 4.8: BITMAP Mode Test Flow 
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• This fifo stack works like a buffer between the BIST and the tester to avoid 

problem of clock speed.  

 

Each FIFO stack contains: 

 

• Address: the address where a fault occurs. 

• State: Machine state value where the memory fault is detected.  

• Pattern: describe the type of the pattern used to create the fault. This register had a 

fixed size of 2 bits. 

• Data: Content of the memory faulty data. 
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CHAPTER 5  

 

VALIDATIONWIZARD & RESULTS 
 

After the BIST insertion in the functional model of the memory .The whole design is to 

be validated to ensure the correctness of BIST designed measured according to following 

criteria’s- 

• Functional correctness of BIST at different levels of RTL. 

• Area overhead measurement on the chip because of BIST insertion. 

• Speed performance of BIST. 

• Formal verification. 

• Design rule check 

• Test coverage. 

 

5.1 VALIDATION   

 

The different validation tasks have been performed for each BIST developed through out 

the project period. Table 5.1 lists the validation tasks and the tools used during the project 

work for the above validation tasks. These tools have been operated in UNIX 

environment through shell commands (Manually) and though UNIX shell scripts 

(Automatic Procedure).  

 

The development and validation of BIST RTL’s have been done for 6 live projects to 

release the product to the end user on scheduled date. Major development work is done 

for 65nm high-speed Single-port SRAM memories.   Apart from this validation work has 

been done for Shared BIST, Dual-port RAM and ROM. 
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Validation 

Task 

 
Tool 
used 

 

Comments 

 

RTL Simulation 
SIMVISION from 

 CADANCE  

rtl simulation on a given test bench in 

verilog , vhdl or mixed language. 

RTL Synthesis 
DESIGN COMPILER 

From SYNOPSYS 
rtl synthesis on user defined constraints 

GATE 

Simulation  

SIMVISION from 

 CADANCE  

Gate simulation on a given test bench in 

verilog , vhdl or mixed language. 

Formal 

verification 

FORMALITY 

From SYNOPSYS 

Equivalence check between rtl vs. netlist, 

or netlist vs. netlist with user defined 

constraints 

Rule  check 
HAL  

From CADANCE 
Based on rule file. 

Testability Run 
TETRAMAX 

From SYNOPSYS 

Test coverage and fault coverage analysis 

to check for >98% ,using user defined 

constraints. 

 

Table 5.1: The Tools used for different validation tasks 

 

5.2 VALIDATIONWIZARD  

ValidationWizard is a tool developed by the testsolution team of STMicroelectronics.  

The objective of this tool is to validate multiple memory BIST designs, netlist or RTL. 

This tool can automate one or more combination of the above validation tasks. 

The tool contains following three components  

• Tools: Contains tasks, subtasks, executable files and templates. 

• BIN:  ValidationWizard executable. 

• Configuration files: Template files for design configuration and test configuration.  
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The two configuration files used by the tool to automate the whole process are – 

 

1. Design.config  file  

      This file contains the following information- 

• Information about design. 

• Search Path 

• Global search path  

• Top design name 

• Testbench 

• Constraint files 

 

2. test.config file  

this file contains the following information- 

• Informationabout the task to be performed. 

• Task specific design file 

• Executable files 

• Pass code/failcode 

 

The different features provided by these files are- 

 

• One or more number of validation tasks can be made run or not run with an 

assertion bit associated with each task. 

• We can pass the information about type of input file which is read from the search 

path. Valid file types supported are – rtl, netlist, model, model, testbench, link 

library, target library, script. 

• The valid languages and formats are – VHDL, verilog , db, txt, ascii  . 

• We may give the type of output file to be generated after the task which may be 

used by any subsequent tool in the task list. 



BIST for 65nm High-speed Memory                                       ValidationWizard & Results                                           

 66

• Pass code and fail code can have user defined strings which will be used for 

validation results. 

• This helps validationWizard to generate a complete log report after the execution 

of the tool. 

• There is an option to check the correctness of the configuration file itself. 

• Separate directories are generated for each individual task which contains the log 

files and other generated report. 

• After the validation run we can automatically check with the help of a checklist 

whether all the required tasks have been performed or not.  

• Level reports give the detailed information of the Pass/Fail status of the validation 

task. 

 

5.2.1 Running the ValidationWizard  

 
After making the configuration files the tool is run from the command line following 

some particular steps.  

 

The tool generates two reports after the execution. 

• Level 1 report:  

Like a checklist for all the tasks run and gives a combined information for all the                                                                                

designs mentioned in design.config file. 

• Level 2 Report: 

Gives detailed information about each design. It gives the error messages and       

location for each design and each test case. 

 

5.3 The Shell Scripts 

The executable scripts of the tool have been written with shell programming in UNIX 

environment. The tool is still in the development process with several modifications 

being made based on the feedback from the team members and other associates. As a part 
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of this project work the scripts of this tool have been modified for different validation 

tasks. This modification concerns with changes in the format of the configuration file, the 

error checking process for the configuration files and the design files etc. 

 

Note : Detailed information can not be revealed here as that is company confidential. 

 

5.4 Validation of BIST for High Speed Single-port SRAM  

 

Validation of BIST RTL for SPHS65 memory has been done with the ValidationWizard 

tool as well as manually.  

 

5.4.1 SIMULATION & GATE SIMULATION: 

 

The simulation and gate simulation of the design was done with the help of a testbench. 

This testbench will exercise memory BIST in full HWDefault test mode on all memories 

and for the complete memory address range. It is important to simulate the assembly 

completely to verify correct operation of the memory BIST. 

Different modes of the BIST operation and tests described in chapter 3 have been verified 

by simulating the entire design (MEMORY+ BIST). 

       First the simulation of  the RTL description of the assembly module. When RTL 

simulation is successfully completed, the RTL code is synthesized to obtain gate-level 

descriptions and again the simulation is re-run, which is called as gatesimulation. 

 The simulation consists – 

• Compilation 

• Elaboration 

• Simulation 
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5.4.2 SYNTHESIS  

Synthesis is done with help of a synthesis script written according to the tool used . 

Synthesis of the whole design is done based on the constraints for the 65 nm technology. 

The synthesis consists- 

• Read 

• Compile 

 

5.4.3 FORMAL VERIFICATION 

Formal verification is done to check the equivalence of the RTL description of the design 

with the Gate level netlist.  

 

5.4.4 TEST COVERAGE 

The minimum test coverage should be 98%. Test coverage analysis has been done for the 

applied test vectors. 

 

5.4.5 HAL RUN 

         HAL run refers to the process of checking the developed RTL code in reference to 

the design rules established by the company. 

 

5.5 RESULTS 

• Simulation results                       -     Passed 

• Synthesis results – 

          Area of MEMORY+ BIST     -    Approximately 2500 micron  

                Minimum clock period           -     About 1.4 ns               

• Gate Simulation result                -     PASSED 

• Test coverage                              -     Above 98% 

• Formal verification                      -    Passed 

• HAL Run                                     -    Passed 

NOTE:   The exact results can not be shown as that is company confidential. 
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CHAPTER 6 
 

CONCLUSION & FUTURE SCOPE OF WORK 
 

The simulation results for the BIST for high-speed 65 nm memories have proved the 

functional correctness of the BIST design as well as the area and speed performance of 

the BIST confirms to the expected results. 

 

As more and more memory cores are embedded in state-of-the-art SOCs, embedded 

memory testing has emerged as a key issue in the VLSI design, implementation and 

fabrication flow. Low power, low area overhead, low routing congestion, low testing time 

and reduced performance overhead are a few key issues that need to be tackled. 

 

                The Memory BIST has become an integral part of the modern integrated 

circuits as it provides the best features to test the embedded memories most efficiently 

with low area overhead and at-speed operation.   As the number of memories increases on 

a chip there is need to develop efficient BIST architectures, which meet the two main 

criteria’s high-speed performance and minimum area overhead. 
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