
“STUDY AND IMPLEMENTATION OF BIST FOR
65NM HIGH SPEED MEMORY”

Major Project Report

Submitted in Partial Fulfillment of the Requirements for

Semester III-IV

of

MASTER oF TECHNOLOGY
IN

ELECTRONICS & COMMUNICATION ENGINEERING
(VLSI Design)

By

Keerti Choubey
04MEC005

Department of Electronics & Communication Engineering

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY OF SCIENCE &
TECHNOLOGY,
AHMEDABAD 382 481

May 2006

 ii

CERTIFICATE

This is to certify that the M.Tech. Dissertation Report entitled “Study and

Implementation of BIST for high Speed 65nm Memory” submitted by Ms. Keerti

Choubey (Roll no. 04MEC005) towards the partial fulfillment of the requirements for

Semester III-IV of Master of Technology (Electronics and Communication

Engineering) in the field of VLSI Design of Nirma University of Science and

Technology, Ahmedabad at S.T. Microelectronics, Noida is the record of the work

carried out by her under our supervision and guidance. The work submitted has in our

opinion reached a level required for being accepted for examination. The results

embodied in this Dissertation-Project work to the best of our knowledge have not been

submitted to any other University or Institute for award of any degree or diploma.

Date:

Project Guide Internal Project Guide

Mr. Naveen Shrivastava Prof. Mrs. Usha S. Mehta

ST Microelectronics Institute of Technology

Noida (U.P.) Nirma University,

 Ahmedabad (Gujaraat)

Course Co-ordinator

Dr. N.M. Devashrayee

VLSI Design,

Institute of Technology,

Nirma University, Ahmedabad

HOD Director

Dr. M.D. Desai Dr. H.V. Trivedi

EE – Department Institute of Technology,

Nirma University, Ahmedabad Nirma University, Ahmedabad

 iii

ACKNOWLEDGEMENT

Any fruitful effort in a new work needs a direction and guiding hands that shows the way.

It is my proud privilege and pleasure to bring indebtedness and warm gratitude to respect

Mr. Ameet Mattoo, Section Manager, Modeling, Soft IP and Test Solution (MST) group,

ST Microelectronics, Noida, for giving me an opportunity to carry out my project work

with MST group.

I would like to express my profound gratitude to my project guide Mr. Naveen

Shrivastava, Senior Design Engineer, Test Solution group, STMicroelectronics, Noida,

for his outstanding support and guidance during my project work.

I am thankful to my team members Mr. Prashant Dubey, Mr. Akhil Garg, Mr. Nitin

Sharma, Mr. Shashi Bhusan Garg, Mr. Sravan Bhaskrani and Mr. D. R. Madhav who

have obliged me with their time-to-time guidance.

I would like to express my warm thanks to my internal project guide Prof. Mrs. Usha S.

Mehta for her kind support and guidance during my project work.

Also, I would like to express my warm gratitude to Dr. N. M. Devashrayee, Course

Coordinator, who has always been a constant source of encouragement and support.

I am delighted to express my warm thanks to all my colleagues and friends, especially,

Mr. Jatin Fultaria, Mr. Apurva Chaure, Mr. Pankaj Agrawal, Ms. Tripti Bhargava and

Ms. Payal Kapadia, for their continuous support and constant encouragement during

project work. I would also like to thank each and everybody who has directly or

indirectly helped me in the accomplishment of the project.

I am grateful to my parents and all other family members for their understanding, love

and endless support, which make my work possible.

And at last I am extremely thankful to ST Microelectronics, NOIDA for providing me

with an opportunity to work with them and undertake a project of such importance.

 (Keerti Choubey)

 iv

ABSTRACT

In today’s era of System on Chip (SoC) a custom chip is composed of different

embedded modules such as microprocessor, analog and mixed signal logic, digital logic

and of course the integral part of all i.e. memories. More than 50% of all the designs

today have embedded memories implemented in them which cover up more than 60% of

total die area. While embedded memory presents significant system performance and cost

reduction advantages, it also brings its own testing issues. Test vector style are not

suitable for verifying embedded memory arrays, as they are too costly because of the

time spent in the manufacturing tester grows exponentially as the embedded memory die

area increases. This problem can be alleviated by implementing embedded memory built

in self-test (BIST). In simplistic terms Memory BIST is an on-chip utility that enables the

execution of a proven set of algorithmic style verification tests directly on the memory

array. These tests can be executed at the design’s full operating frequency to prove the

memory array operations and identify errors caused by chip defects.

This thesis work consists of study and development of Memory BIST for memories of

different size and types. Analysis and modification work is done on new shared BIST

architecture for multiple memories. The analysis has proved that the new BIST

architecture greatly improves the speed performance of the BIST while reducing the area.

Study of BIST compiler development through C programming and shell scripting in

UNIX environment has been done to support the team for compiler development. Major

development work has been carried out on dedicated BIST for 65nm high speed Single-

Port SRAM memory.

After the insertion of BIST into the design, validation of new design is done which

includes simulation, synthesis, gate simulation, formal equivalence check between

different levels of RTL, and code coverage analysis. For the automation of these

validation tasks a tool has been made using the shell programming in UNIX environment.

The updation of the shell script of this tool is a part of this project work.

 v

 COMPANY PROFILE

Company

ST MICROELECTRONICS Pvt. Ltd.

Head Office

web site: http://www.st.com

Contact Phone

91 120 2512021-30

91 120 2515262-64

Incorporated in June 1987

CEO Carlo Bozotti

Address Plot No.1, Knowledge Park III

Greater Noida – 201308

No. of Employees

Approximately 50,000.

Branches in India

Bangalore, Greater Noida

 vi

About The Company:

ST Microelectronics is a global independent semiconductor company and is a leader in

developing and delivering semiconductor solutions across the spectrum of

microelectronics applications. ST is one of the world’s largest semiconductor companies,

with net revenues of US$8.88 billion in 2005.

According to the latest industry data, ST is the world’s fifth largest semiconductor

company and has leading positions in sales of Analog Products, Application Specific

Integrated Circuits (“ASICs”) and Application Specific Standard Products (“ASSPs”). ST

is also number one in camera modules, number two in discrete and analog, and number

three in NOR Flash, as well as in the application segments of Automotive, Industrial, and

Wireless. ST is also a leading supplier of semiconductors for set-top boxes, smart cards,

and power management devices.

Company’s Clients:

The Company currently offers over 3,000 main types of products to more than 1,500

customers worldwide.

Product Range:

ST Microelectronics produces a diverse range of semiconductors - from single transistors

to microprocessors with millions of components on the same 'silicon chip' - which can be

found in many disparate products or environments - from high performance

supercomputers to everyday items such as telephones, cars, toasters, or even light bulbs.

Dedicated ICs

These are integrated circuits that are designed for use in a specific application. Examples

include modem chips; digital set top box chips, motor control circuits, audio amplifiers

and even such highly specialized circuits as fluorescent lamp ballasts.

 vii

One of the most important application areas for dedicated ICs is the rapidly expanding

market for digital consumer products. These include multimedia PCs, set top boxes

(STB), and Digital Video Disc (DVD) players. At the heart of most of these products is

the digital image compression technology known as MPEG. ST is the world's number

one manufacturer of MPEG chips according to independent industry analysts Dataquest.

Microprocessors and Other Programmable Devices

ST offers a comprehensive range of microcontrollers, microprocessors and programmable

devices. These range from robust 8-bit Flash Microcontrollers that cost much less than a

dollar in volume through 16 and 32-bit Flash Microcontrollers to 32-bit RISC and CISC

microprocessors, multimedia accelerators, and complex SOCs embedding several micro

and DSP core architectures.

Semi custom Products

Semi custom devices are integrated circuits designed with the help of cell libraries and

powerful Computer-Aided Design (CAD) software. This technique allows devices that

meet a customer's specific requirements to be developed quickly and cost-effectively by

combining building blocks from libraries of tried and tested circuits.

Discrete Memories

ST's main focus in the memory market is on non-volatile memories, an area that includes

EPROM, EEPROM and flash memories. The Company is the world's number one

supplier of non-volatile EPROM memories and is one of the top five manufacturers of

flash memory. Other memory products include specialty SRAMs and ZEROPOWER

battery backed memories.

Standard ICs

ST offers a broad range of devices such as op amps, comparators, voltage regulators and

logic functions such as NAND gates and inverters, which perform standard functions that

 viii

are used in all types of applications. In recent years, the Company has achieved great

success in the standard linear market, raising its market share from 3.1% in 1991 to 6.9%

in 1995 (World Semiconductor Trade Statistics Ffures). Results for the same period from

another independent source, Dataquest, also show a rise in world ranking from No. 13

(1991) to No. 4 (1995).

Discrete

Discrete devices can be made to handle greater power levels and higher voltages than

integrated circuits and their main use is to act as power switches and power amplifiers.

ST is one of the world's leading suppliers of discrete power devices, with a product range

that includes MOSFETs, bipolar transistors, IGBTs and triacs.

 ix

Table of Contents

PROJECT TITLE (i)

CERTIFICATE (ii)

ACKNOWLEDGEMENT (iii)

ABSTRACT (iv)

COMPANY PROFILE (v)

LIST OF FIGURES (xii)

LIST OF TABLES (xiii)

1. CHAPTER 1: INTRODUCTION 1

 1.1 Digital Test Methodologies: ATE vs. BIST 3

 1.2 System-on-a-Chip Test Challenges 4

 1.2.1 Motivation For A Shift From ATE-Based SOC Testing To

BIST
5

 1.3 Embedded Memory Testing 9

 1.4 Thesis Organization 10

2. CHAPTER 2: Memory Testing Methodologies 12

 2.1 Memory Concepts 12

 2.1.1 RAM Basics 13

 2.1.2 Functional RAM Chip Model 14

 2.1.2.1 Basic Description Of The Blocks 15

 2.2 Memory Modeling 15

 2.2.1 Address And Data Scrambling And Descrambling 16

 2.2.1.1 Address Scrambling 17

 2.2.1.2 Address Descrambling 18

 2.2.1.3 Data Scrambling 18

 x

 2.2.1.4 Data Descrambling 19

 2.3 Fault Modeling 21

 2.3.1 Stuck-at Faults 23

 2.3.2 Transition Faults 23

 2.3.3 Coupling Faults 23

 2.3.4 Neighborhood Pattern Sensitive Faults 25

 2.3.5 Address Decoder Faults 25

 2.4 Functional Testing and March Test Algorithms 26

 2.4.1 Characteristics of March Algorithms 27

 2.4.2 March Algorithms with Diagnosis and Repair Support 28

3. CHAPTER 3: Memory BIST Methodologies 29

 3.1 Memory BIST Approaches 29

 3.2 Memory BIST Architectures 32

 3.2.1 Dedicated BIST Methodology 33

 3.2.1.1 Design Implementation 37

 3.2.2 Distributed MBIST Architecture 39

4. CHAPTER 4: BIST for 65nm High Speed Single-Port Memory 41

 4.1 Scrambling 41

 4.2 Redundancy 42

 4.3 Fault Models of Single-port High Speed SRAM 42

 4.4 Algorithm 43

 4.4.1 mMarchLR 14N 43

 4.4.2 Mask Bits Test 47

 4.4.3 Data Bit Coupling Test 48

 4.4.4 CSN Bit Coupling Test 49

 4.4.5 Address Delay Decoder Test 49

 4.4.5.1 Fully Decoded Memory 50

 4.4.5.2 Not Fully Decoded Memory 51

 4.5 Implementation 52

 xi

 4.5.1 52

 4.5.2 53

 4.5.3

I/O Pin Description

Full Pin Description

Operating Mode Description 54

 4.5.3.1 Scan ATPG Mode 54

 4.5.3.2 Transparent Mode 55

 4.5.3.3 Run BIST for RAMs 55

 4.5.3.4 IDDQ Fill 1/Fill 0 Modes and Retention Test 56

 4.5.3.5 Scan Collar Mode 58

 4.5.3.6 BITMAP Mode 60

5. CHPATER 5: VALIDATIONWIZARD & RESULTS 63

 5.1 63

 5.2

Validation

ValidationWizard 64

 5.2.1 Running the ValidationWizard 66

 5.3 66

 5.4

The Shell Scripts

Validation Of BIST for High Speed Single-port SRAM 67

 5.4.1 67

 5.4.2 68

 4.4.3 68

 4.4.4 68

 4.4.5

Simulation and Gate Simulation

Synthesis

Formal Verification

Test Coverage

HAL Run 68

 5.5 RESULTS 68

6. CHPATER 6: CONCLUSION & FUTURE SCOPE OF WORK 69

7. REFERENCES 70

 xii

List of Figures

Sr.
No.

Title Page
No.

1.1 VLSI circuit transistor density 2

1.2 Basic Principal of Digital Testing 3

2.1 Functional RAM chip model 14

2.2 Address descrambled block inserted in the test path 18

2.3 Data Descrambling Example 19

2.4 Data Descrambler Insertion 20

2.5 Address Decoder Faults 26

2.6 Combination of Address Decoder Faults 26

3.1 Generic BIST Architecture for Standalone memory 35

3.2 Elaborated BIST Execution diagram 38

3.3 Generic Shared MBIST Architecture 39

4.1 Pin connections (BIST AND MEMORY) 52

4.2 Scan ATPG Flow 54

4.3 Run BIST Execution 55

4.4 Fill 0 and Fill 1 operation 56

4.5 Fill 0/1 and Retention test flow 57

4.6 Scan Collar Implementation 58

4.7 Scan Collar Mode test Flow 59

4.8 BITMAP Mode Test Flow 61

 xiii

List of Tables

Sr.
No.

Title Page
No.

2.1 Functional Memory Faults 21

2.2 Reduced Functional Memory Faults 22

2.3 Relationship Between Functional and Reduced Functional Faults 22

4.1 Modified MarchLR algorithm 43

4.2 Mask Bits Algorithm 47

4.3 Mask Bits Algorithm (continued..) 47

4.4 Data bits coupling algorithm 48

4.5 CSN bit Coupling test 49

5.1 The Tools used for different validation tasks 64

BIST for 65nm High-speed Memory Introduction

 1

CHAPTER 1

INTRODUCTION

A VLSI chip is manufactured through a series of steps that involve chemical,

metallurgical, and optical processes. Out of a set of chips generated, if the yield of good

chip is 75% then on an average 25% of the manufactured chips will be faulty. Thus, at

the end of VLSI manufacturing process we always have “testing,” which isolates the

good chips from bad ones. Manufacturing test helps to detect physical defects (e.g.,

shorts or opens) prior to delivering the packaged circuits to end-users. Inadequate testing

will have some faulty chips shipped to the customer .At the same time, the cost of testing

directly increases the over all cost of the chip.

Due to the rapid progress in the very large-scale integrated (VLSI) technology, an

increasing number of transistors can be fabricated onto a single silicon die. Transistor

feature size on a VLSI chip reduces roughly by 10.5% every year, resulting in a transistor

density increase of roughly 22.1% every year. For example, a state-of-the-art 130 nm

complementary metal-oxide semiconductor (CMOS) process technology can have up to

eight metal layers, poly gate lengths as small as 80 nm and silicon densities of 200K-

300K gates/mm2 [10]. The on-chip clock frequency has also increased up to 1 GHz for

the latest VLSI circuits. However, although milliongates integrated circuits (ICs) can be

manufactured, the increased chip complexity requires robust and sophisticated test

methods. Hence, manufacturing test is becoming an enabling technology that can

improve the declining manufacturing yield, as well as control the production cost, which

is on the rise due to the escalating volume of test data and testing times. Therefore

reducing the cost of manufacturing test, while improving the test quality required to

BIST for 65nm High-speed Memory Introduction

 2

achieve higher product reliability and manufacturing yield, has already been established

as a key task in VLSI design.

Figure 1.1: VLSI circuit transistor density [1]

For a VLSI chip to be manufactured, we must have a verified design and a set of tests.

The following questions characterize testing of complex systems-

• Can tests that detect all faults be assured?

• Can test development time be kept low enough to be economical?

• Can test execution time be kept low enough to be economical?

Design for testability (DFT) refers to those design practices that allow us to answer the

above questions in the affirmative. There are specific DFT techniques for each type of

component in an electronic system.

BIST for 65nm High-speed Memory Introduction

 3

1.1 Digital Test Methodologies: ATE vs. BIST

Figure 1.2: Basic Principal of Digital Testing

The basic principle of manufacturing testing is illustrated in Figure 1.2. Circuit under test

(CUT) can be the entire chip or only a part of the chip (e.g., a memory core or a logic

block). Based on the techniques how the test vectors are applied to the CUT and how the

output responses are compared, there are two main directions to test electronic circuits:

external testing using automatic test equipment (ATE) and internal testing using built-in

self-test (BIST). When external testing is employed, the input test vectors and correct

response data are stored in the ATE memory. Input test vectors are generated using

ATPG tools, while correct response data is obtained through circuit simulation. For

external testing, the comparison is carried out on the tester. Although the ATE-based test

methodology has been dominant in the past, as transistor to pin ratio and circuit operating

frequencies continue to increase, there is a growing gap between the ATE capabilities and

circuit test requirements. The main limitations of ATE are:

• The time spent in the manufacturing the tester grows exponentially as the

embedded memory die area increases.

Input Test
Vectors

Circuit Under
Test(CUT)

Output
Response

Comparator Correct
Response

Data

 Pass/Fail

BIST for 65nm High-speed Memory Introduction

 4

• The up gradation of test equipment is not happening with the same rate due the

high cost involved.

• Design operating frequencies have increased up to 2 GHz.

• I/O pads fail at high frequencies (~ 400 MHz).

• Extra interconnects increase the routing congestion.

ATE limitations make BIST technology an attractive alternative to external test for

complex chips. Embedded RAM memories are perhaps the hardest type of digital circuit

to test, because memory testing requires delivery of a huge number of pattern stimuli to

the memory and the readout of an enormous amount of cell information. The difficulty

and time required to propagate all of that information through the various glue logic and

busses in an embedded core chip almost forces the use of memory BIST.

BIST is a design-for-test (DFT) method where part of the circuit is used to test the circuit

itself (i.e., test vectors are generated and test responses are analyzed on-chip). BIST

needs only an inexpensive tester to initialize BIST circuitry and inspect the final results

(pass/fail and status bits). However, BIST introduces extra logic, which may induce

excessive power in the test mode, in addition to potential performance penalty and area

overhead.

It is important to note that the main problem with logic BIST lies in the computational

overhead required to synthesize compact and scalable test pattern generators and

response analyzers such that high fault coverage is achieved in low testing time and with

limited interaction to external equipment. In contrast, due to the regular memory block

structure and simple operations of memory cores, memory BIST (MBIST) can be

implemented using compact and scalable test pattern generators and response analyzers

and it can rapidly achieve high fault coverage for certain functional fault models

1.2 System-on-a-Chip Test Challenges

As process technologies continue to shrink, designers are able to integrate all or most

BIST for 65nm High-speed Memory Introduction

 5

of the functional components found in a traditional system-on-a-board (SOB) onto a

single silicon die, called system-on-a-chip (SOC) . This is achieved by incorporating pre-

designed components, known as intellectual property (IP) cores (e.g., processors,

memories), into a single chip. While SOCs benefit designers in many aspects, their

heterogeneous nature presents unique technical challenges to achieve high quality test,

i.e., acceptable fault coverages for the targeted fault models.

1.2.1 Motivation For A Shift From ATE-Based SOC Testing To BIST

• Controllability and Observability:

 Since most of the input/output (I/O) ports of these embedded cores are not

directly connected to the SOC’s pins, the testability , i.e., both the controllability

and the observability [1], is reduced and, unless some special DFT techniques are

employed, the fault coverage will be lowered.

However, when ATE-based testing is employed (i.e., patterns and responses are

stored on the tester), since the number of tester channels is limited in practice, test

concurrency is bounded by the number of these channels, which can adversely

influence the cost of test. This problem can be addressed by moving the

generation and analysis functions on-chip and use an inexpensive tester to

initialize, control and observe the final results of the testing process.

• Volume of test data, tester channel capacity and testing time

The volume of test data is determined by the chip complexity and it grows rapidly

as more IP cores are integrated into a single SOC. The easiest way to deal with

increased volume of test data is to upgrade the tester memory and use more tester

channels to increase test concurrency, however this is infeasible since it will

prohibitively increase the ATE cost. A more cost effective approach is to use test

data compaction and/or compression. Test data compaction reduces the number of

test patterns in the test set (by discarding test patterns that target faults detected by

BIST for 65nm High-speed Memory Introduction

 6

other patterns in the test set) and test data compression decreases the number of

bits (that need to be stored for each pattern) and uses dedicated decompression

hardware (either off or on-chip) for real-time decompression and application [9].

Test data compaction reduces the volume of test data, however it is trading-off the

tester channel capacity against the testing time. If the decompression hardware is

placed on-chip, then test data compression eliminates this trade-off. Deterministic

BIST is a particular case of test data compression where the compressed bits are

used for BIST initialization (i.e., seeds) and BIST observation (i.e., signatures).

The benefits of memory BIST technology are justified mainly by its deterministic

nature.

• Heterogeneous IP cores

Many SOC designs incorporate cores that use different technologies, such as

random logic, memory blocks, and analog circuits. For SOC testing one can use

generic high-performance mixed-signal ATEs, however their high production cost

brings limited benefits to complex designs, since cores using heterogeneous

technologies still need to be tested sequentially, thus lengthening the testing time

and ultimately raising the manufacturing test cost.

In addition, embedded core controllability and observability issues cannot be

addressed without dedicated on-chip DFT hardware, whose necessity justifies a

shift toward BIST. The use of different BIST circuitry for the appropriate

technologies (logic, memory or analog BIST), increases both testability and test

concurrency of SOCs comprising heterogeneous IP cores.

• At-speed test

As VLSI technology moves below 100 nm, traditional stuck-at fault testing is not

sufficient. This is because unanticipated process variations, weak bridging

defects, and crosstalk violations (only to mention a few) may cause only timing

malfunctions, which cannot be detected by the stuck-at fault test vectors delivered

BIST for 65nm High-speed Memory Introduction

 7

by ATEs whose frequency is lower than the maximum CUT frequency. These

logical faults caused by timing-related defects are known as delay faults and they

can only be detected when the chip is tested at the functional (rated) speed. This

type of test is called at-speed test. at-speed test can be performed using high-speed

ATEs (however, even the highest performance/cost ATEs will be slower than the

fastest new chips), or more cost effectively, by BIST interacting with a low-speed

testers required only to activate the self-test circuitry and to acquire the BIST

signatures.

• Power dissipation

Power dissipation is becoming a key challenge for the deep sub-micron CMOS

digital integrated circuits. Placing more and more functions on a silicon die has

resulted in higher power/heat densities, which imposes stringent constraints on

packaging and thermal management in order to preserve performance and

reliability [11]. There are two major sources of power consumption in CMOS

VLSI circuits: dynamic power dissipation, due to capacitive switching, and static

power dissipation, due to leakage and subthreshold currents. The 2001

International Technology Roadmap for Semiconductors (ITRS) [12] anticipates

that power will be limited more by system level cooling and test constraints than

packaging. This is because, if packaging and thermal management parameters

(e.g., heat sinks) are determined only based on the functional operating

conditions, the higher test switching activity [12] and test concurrency will affect

both manufacturing yield and reliability [11].

On the one hand, dynamic power dissipation dominates the chip power

consumption for digital CMOS technology in 180 nm range or higher. Dynamic

power dissipation can be analyzed from two different perspectives. Average

power dissipation which stands for the average power utilized over a long period

of operation, and peak power dissipation which is the power required in a very

short time period such as the power consumed immediately after the rising or

BIST for 65nm High-speed Memory Introduction

 8

falling edge of the system clock. When considering SOC test, to achieve high

fault coverage with less test data, the test patterns are usually uncorrelated [2].

This means the switching activity during test can differ from that during

functional operation. In most cases, the testing power consumption is the higher

one. The switching activity is 35-40% more during scan-based transition test than

that in normal functional mode. For traditional stuck-at fault test, one

straightforward solution to meet the power constraints is to reduce the system

clock frequency during test which implies longer testing time. However, as descry

–bed in the previous challenge, to test time related faults, at-speed testing is

necessary. Consequently, the power dissipation during at-speed test can exceed

the maximum power limit which may lead to chip malfunctions or to burn the

overheated chip.

On the other hand, static power dissipation is becoming an important component

for low power design and test in 130nm or lower CMOS technologies with low

gate subthreshold. Power gating is an efficient method to reduce static power

dissipation and it based on disconnecting the idle module(s) from the power and

ground network to reduce the leakage currents. This technique is particularly

useful for SOCs with a high number of embedded memories.

All the above mentioned SOC test challenges need to be overcome in order to

reduce the ever-growing cost of manufacturing test while enabling high

manufacturing yield and reliability through satisfactory test quality. Although the

cost of test is dominated by many factors, such as the cost of production ATEs,

testing time, performance of test automation tools (e.g., ATPG), area and

performance overhead caused by additional DFT or BIST circuitry, it is essential

to balance this cost against the benefits of enabling high product reliability and a

fast yield learning curve. As the SOC complexity increases and more physical

defects manifest themselves only in the timing domain, at-speed BIST is

emerging as an essential and necessary technology, which can enable short time-

to-volume and low cost of manufacturing test. This is also correlated to the fact

BIST for 65nm High-speed Memory Introduction

 9

that, as total chip area continues to increase, the overhead associated with

consciously designed BIST architectures is decreasing. The focus of this thesis is

to development of cost-effective BIST architectures for embedded memory

testing.

1.3 Embedded Memory Testing

Memory cells are designed using transistors and/or capacitors, and therefore logic gates

cannot model them. Structural test based on gate level netlist cannot be applied to

memory testing. However, as mentioned in the previous section, memory cores have a

rather regular structure caused by identical memory cells and very simple functional

operations (only read and write), which are very suitable for functional test. Unlike the

case of random logic testing, which needs a large set of deterministic test patterns to

reach the desired fault coverage, functional test programs for embedded memory cores

can be generated by compact and scalable on-chip test pattern generators. Furthermore,

since written data is unaltered in a fault-free memory, the expected responses can easily

be re-generated on-chip and low overhead comparison circuitry can check the correctness

of output responses. Therefore, the complexity of memory BIST circuit is lower than that

of logic BIST. Due to the deterministic nature and high-test quality of memory test

algorithms, memory BIST has emerged as the state-of-the-art practice in industry.

Being parts of an SOC, embedded memories face the same test challenges as SOCs.

However, the cost of testing embedded memories has unique characteristics and it is

influenced by three major components: cost of ATEs, manufacturing testing time, and

DFT and BIST area/performance overhead. When considering the challenges faced by

SOC testing, reduced testability, high volume of test data, heterogeneous IP cores and at-

speed test, can implementing programmable embedded memory BIST architectures solve

all. However, as tens or even hundreds of heterogeneous memory cores are embedded

into a single SOC, power-constrained test scheduling is essential to lower the testing

time. In addition, a large number of BISTed memory cores (i.e., memory blocks with

BIST circuitry around them) will also induce high routing and gate area overhead, as well

BIST for 65nm High-speed Memory Introduction

 10

as they may adversely influence the memory’s speed. Thus, to reduce the overall cost of

manufacturing test, it is essential to investigate new memory BIST architectures for

complex SOCs, which address the above issues.

This thesis work involves the study; analysis and adding enhance features in such a new-

shared BIST architecture developed by the test solution team of STMicroelectronics

company. Also major development work has been done for dedicated BIST architecture

for an embedded individual memory (single-port SRAM, Dual-port SRAM) .The

organization of this thesis and main contributions are summarized in the following

section.

1.4 THESIS ORGANIZATION

The major development works carried out in this dissertation work are:

• Development and validation of BIST for single-port SRAM memories with

different test options and their combinations.

o The development work is done in Verilog Hardware Description

Language.

o After the BIST insertion in memory the validation of the whole block is

done which involves the basic validation steps as RTL simulation, GATE

simulation, Synthesis, Formal equivalence check, test coverage analysis.

of BIST for single-port SRAM.

o According to the requirements of the end user fore such BISTs have been

developed and delivered as a part of second phase of this major project

work.

• Adding Enhance features in Developed Shared BIST architecture.

o Study and analysis of the new Shared BIST architecture developed by the

team has been done for area and speed benchmarking of this architecture

compared to the existing architecture.

BIST for 65nm High-speed Memory Introduction

 11

o Enhanced feature such as Address delay decoder test has been added in the

existing RTL code of this architecture. Validation of the whole block is

done again.

• BIST compiler development

o The BIST compiler development work involves UNIX shell scripting and

C programming.

o Study of the whole development procedure has been done as a part of this

project work in order to facilitate the team to understand the compiler

development work.

The organization of this thesis is as follows. Chapter 2 introduces the basic memory

concepts and memory fault models and summarizes the March test algorithm that uses

these functional models. Chapter 3 describes the design of BIST for Single-port SRAM

memory, which is the key activity of this project work. Chapter 4 summarizes the other

contributions done in the project period to facilitate the team for various tasks. Chapter 5

summarizes the results.

Finally, the conclusion and suggestions for further scope of work are given in Chapter 6.

BIST for 65nm High-speed Memory Memory Testing Methodologies

 12

 CHAPTER 2

MEMORY TESTING METHODOLOGIES

This chapter introduces the basic theory behind memory testing. There are two kinds of

memory test methods: electrical (technology-dependent) and functional (technology-

independent). Electrical memory testing consists of parametric testing, which includes

testing DC and AC parameters, IDDQ and dynamic testing for recovery, retention and

imbalance faults [1]. DC and AC parametric tests are used to verify that the device meets

its specifications with regard to its electrical characteristics, such as voltage, current, and

setup and hold time requirements of chip’s pins. Since embedded memories in SOCs

usually do not have their I/O ports directly connected to chip’s pins, parametric testing

for embedded memories is not a necessity. IDDQ and dynamic testing [6] need a detailed

description of the specific process technology.

This dissertation work focuses on technology-independent functional memory testing,

whose purpose is to verify the logical behavior of a memory core. Because functional

memory testing allows for the development of cost-effective short test algorithms

(without requiring too much internal knowledge of the memory under test), it is widely

accepted by industry as a low-cost/high-quality solution. This chapter provides a

theoretical background and explains the memory functional test models and March

algorithms. Most of the definitions and figures in this chapter are excerpted from [2, 1].

2.1 MEMORY CONCEPTS

In this chapter we discuss about the basics of memory architecture and it’s functionality.

The memory testing will be based upon these fundamentals.

BIST for 65nm High-speed Memory Memory Testing Methodologies

 13

This thesis focuses on technology-independent functional memory testing. A functional

model of a memory is based on its specifications. In this model, the internals of the

memory are partly visible; hence it is also referred to as the graybox model. One of the

main advantages of functional models is that they have enough details of data paths and

adjacent wires in the memory to adequately model the coupling faults.

2.1.1 RAM Basics

A RAM is an array of memory cells whose read ports control cell content output and

whose write ports control cell content input. A RAM can have any number of read and

write ports, with each port having its own separate inputs and outputs. The set of inputs

for each read port includes one or more read control lines and N read address lines. A

read port’s outputs consist of M data output lines. The number of address lines and data

outputs must be the same for all read ports.

The set of inputs for a write port includes one or more write control lines, N writes

address lines, and M data input lines. The number of address lines and data inputs must

be the same for all write ports. Additionally, the numbers of write address lines must

match the number of read address lines, and the number of data inputs must match the

number of data outputs.

Address lines identify which column of cells (set of values) to place on the data input or

output lines. A RAM can store values into ((2N)*M) memory cells. The read operation

places M values at a time on the outputs; likewise, the write operation receives M values

at a time on the inputs. Thus, assuming encoded address lines, you can place from 0 to

((2N)-1) addresses on the address lines.

To read a RAM value, you first write a value to the specified location. To perform a write

operation, you place the proper address on the write address lines, place the proper data

on the data inputs, and activate the write operation (typically, turn on write enable and

pulse write clock).To turn on the read operation, activate the read control lines. This

places the value stored at the location specified by the address lines on the data outputs.

When the read operation is off (not activated), the RAM places X's.

BIST for 65nm High-speed Memory Memory Testing Methodologies

 14

Some memories drive their outputs only when the enable signals are asserted.

2.1.2 Functional RAM Chip Model

Fig 2.1: Functional RAM chip model [1]

 Address Latch A

 C
 Column Decoder

 D

 Memory Cell
 Array

 E
Write
Driver

 B
Row
Decoder

 F
 Sense Amplifier

 G
 Data Register/
 I/O Buffer

Address

 H
Control Generator
/ Internal Clock
Generator

Data Out Data In

Control Flow

 Data Flow

Chip Select
Enable

Clock

Write
Enable

Internal Clock

BIST for 65nm High-speed Memory Memory Testing Methodologies

 15

2.1.2.1 BASIC DESCRIPTION OF ABOVE BLOCKS

1. Block’A’, address latch, contains the address.

2. The higher order bits of the address are connected to the row decoder ‘B’, which

selects a row in the memory cell array ‘D’.

3. The lower order address bits go to the column decoder ‘C’, which selects the required

columns. The number of column selected depends on the data width of the chip, that is

the number of data lines of chip, which determines how many bits can be accessed during

a read or write operation.

4. When the read/write line indicates read operation, the contents of the selected cells in

the memory cell array are amplified by the sense amplifiers ‘F’, loaded into the data

register ‘G’ & presented on the data-out line(s).

5. During a write operation the data on the data-in line(s) are loaded into the data register

& written in to the memory cell array through the write driver ’E’. Usually the data-in &

data-out lines are combined to form bidirectional data lines, thus reducing the number of

pins on the chip.

6. The chip-enable line enables the data register & together with read/write line, the write

driver.

7. Block “H” generates the internal clock with respect to the external clock edge.

2.2 MEMORY MODELLING

Memory modeling is very important in creation of Memory BIST. It provides necessary

information to the tool that is used to create the BIST controller. Usually it is provided by

BIST for 65nm High-speed Memory Memory Testing Methodologies

 16

the memory vendor, but if not, can be created also. The memory should be modeled in

DFT library format specifically for the memory BIST architecture tool.

2.2.1 ADDRESS AND DATA SCRAMBLING AND DESCRAMBLING

When looking externally at a memory, the words are stored consecutively with respect to

the address values, and the data bits within each word are stored in the order of their

sequential numbering. This arrangement is called logical mapping of a memory.

In many cases, the physical arrangement of memory cells does not correspond to the

assumed logical arrangement, as a result of different memory design requirements. Some

reasons for these differences include the following:

• In order to deal with small memory cells, memory designers sometimes fit the

periphery cells in the pitch of more than one memory cell. For instance, they lay

out sense amplifiers in the pitch of 4, 8, or more memory cells, so they place the

corresponding bits of different words next to each other in the memory core, to be

able to multiplex these corresponding bits onto one common senseamplifier

circuit.

• In order to balance the load on different address lines or (pre)decoded lines,

memory designers sometimes scatter the wordlines or bitlines.

• In order to minimize the size of address and column decoders, as well as the

length and hence propagation times of row and column select lines, memory

arrays are typically divided into several subarrays.

• In order to increase the yield for larger memories, spare (redundant) rows and/or

columns are often implemented, which typically disrupt the physical address

sequence.

In order to physically preserve the patterns, it becomes necessary to describe the mapping

between the physical and logical cell arrangements. The differences between the logical

and physical cell arrangements are typically due to a scrambling of the rows and columns

and/or data bit lines. This scrambling can be described by a logical transformation or

BIST for 65nm High-speed Memory Memory Testing Methodologies

 17

mapping between the address and data signals required to access the logical memory cell

arrangement and those signals required to provide the same data pattern in the physical

memory cell arrangement.

2.2.1.1 ADDRESS SCRAMBLING

Frequently in many designs, physically adjacent cells do not correspond to consequent

external addresses. That is the memory translates the external address (logical address)

supplied to some internal address (topological address) that it uses to access a specific

memory cell. This translation is known as address scrambling.

Address scrambling is supported through the address and data scrambling definition

portion of the BIST definition inside the memory BIST model.

Address Scrambling Uses:

Address scrambling is important for accomplishing the following-

• General-purpose reduction: - Decoders are often restricted in size in order to fit

the following topology of certain cells.

• Increased manufacturing yield: - Extra or left over rows or columns of memory

cell can cause a discrepancy between logical and topological addresses.

• Standard Address Pin Assignments: - Address pin number and allocation become

standardized, leading to a mismatch between on-chip address pads and standard

pin assignments in different designs.

2.2.1.2 ADDRESS DESCRAMBLING

To successfully test interaction between physically adjacent cells in a memory, a

dedicated description of the address scrambling function is required in order to generate

an address descrambler for testing purpose. The address descrambling block is added in

the test path between the BIST controller and the mux.

BIST for 65nm High-speed Memory Memory Testing Methodologies

 18

 Figure 2.2: Address descrambled block inserted in the test path

2.2.1.3 DATA SCRAMBLING

Memory data is also communicated by a sequence of bits in an external data word

(logical data) that might differ from the sequence of bits in data words that physically

exists in the memory (topological data). The translation between these bit sequences is

known as data scrambling.

Data Scrambling Uses :

 MUX

Address
Descrambler
 fz -1

 MEMORY
 UNDER
 TEST

Address
Scrambler
 fz

BIST
Controller

Response
Analyzer

To system

From
system

To
system

BIST for 65nm High-speed Memory Memory Testing Methodologies

 19

Similar to the address scrambling, the data scrambling is important to accomplish the

following.

• Space Reduction: - Minimizing the size of column decoder.

• Reduction of Bit/Bit capacitance effects.

• Increased manufacturing yield.

• Standard address pin assignment.

2.2.1.4 DATA DESREMBLING

The data descrambler added by the tool are the same functions as the data scrambling

function provided by the memory, this is due to the fact that data scrambling is based

upon bit inversion.

Deriving The Address Descrambling Information:

 A). SC_A0 = A0 XOR A1

 SC_A1 = A1

 B). DSC_A0 = A0 XOR A1

 DSC_A1 = A1

Figure 2.3 Data Descrambling Example

A0

 A1

SC_A0

SC_A1

Scrambling Information
provided by The manufacturer

Boolean Function

Reciprocal of manufacturer’s
Boolean function
(Descrambling information)
requested by Memory BIST
architecture

BIST for 65nm High-speed Memory Memory Testing Methodologies

 20

Figure 2.4: Data Descrambler Insertion

It is important to take into account these address and data scrambling effects when testing

memories using checker board algorithm which is dependent upon following-

1. Topological address/data information.

2. Consistancy between logical data values and electrical data values.

 MUX

Address

Descrambler

 MEMORY
 UNDER
 TEST

Address
Scrambler

BIST
Controller

Response
Analyzer

to system

System
data

Data
Descrambler

Data’

Data

Data

Data’

to
system

BIST for 65nm High-speed Memory Memory Testing Methodologies

 21

In order to avoid routing congestion both the descrambler and muxes are implemented

close to memory.

2.3 Fault Modeling

Based on the functional memory model shown in Figure 2.1, a subset of functional

memory faults are listed in Table 2.1 [1].

 Functional faults

a

b

c

d

e

f

Cell stuck

Driver stuck

Read/write line stuck

Chip–select stuck

Data line stuck

Open in data line

g

h

Short between data lines

Crosstalk between data lines

I

j

k

l

m

n

Address line stuck

Open in address line

Shorts between address lines

Open decoder

Wrong access

Multiple access

o Cell can be set to 0 but not to 1 (or vice versa)

p Pattern sensitive interaction between cells

Table 2.1 Functional Memory Faults [1]

In this table, a cell can be either a memory cell or a data register and a line is any wiring

connection in the memory. In production manufacturing testing once a fault is detected

the memory chip is discarded and no diagnosis needs to be undertaken immediately.

Failure analysis through fault diagnosis is performed at a later time and more

BIST for 65nm High-speed Memory Memory Testing Methodologies

 22

comprehensive test sets (using fault-distinguishing patterns) are applied to identify the

source of physical defects. Therefore, for production testing, the faults listed in Table 2.1

[1] can be mapped onto the reduced functional faults shown in Table 2.2 [1]. Table 2.3

[1] summarizes the relationship between the functional faults (Table 2.1) and the reduced

functional faults (Table 2.2).

Name Functional faults

SAF Stuck at Fault

TF Transition Fault

CF Coupling Fault

NPSF Neighborhood Pattern Sensitive Faults

AF Address Decoder Fault

Table 2.2: Reduced Functional Memory Faults [1].

Reduced Functional Faults Functional faults

SAF a Cell Stuck

SAF b Driver Stuck

SAF c Read/Write line Stuck

SAF d Chip Select line Stuck

SAF e Data line Stuck

SAF f Open in data line

CF g Shorts between data lines

CF h Crosstalk between data lines

AF i Address line Stuck

AF j Open in address lines

AF k Shorts between address lines

AF l Open decoder

AF m Wrong Access

AF n Multiple access

TF o Cell can only be set to either 0 or 1

NPSF p Pattern sensitive interaction between cells

Table 2.3: Relationship Between Functional and Reduced Functional Faults [1]

BIST for 65nm High-speed Memory Memory Testing Methodologies

 23

For production testing of embedded memories, a great emphasis is placed on March-

based test algorithms, since they have high defect coverage with a very reasonable

hardware cost.

2.3.1 Stuck-at Faults

The stuck-at fault (SAF) considers that the logic value of a cell or line is always 0

(stuck-at 0 or SA0) or always 1 (stuck-at 1 or SA1). To detect and locate all stuck-at

faults, a test must satisfy the following requirement: from each cell, a 0 and a 1 must

be read [1].

2.3.2 Transition Faults

The transition fault (TF) is a special case of the SAF because of the fact that once the

non-faulty transition occurs, the faulty cell can no longer transition and hence manifests

stuck-at behavior. In some cases, however, a coupling fault with another cell (see

Idempotent Coupling Faults, Inversion Coupling Faults , and Dynamic Coupling Faults

on subsequent pages) can flip the cell’s value, thereby masking the stuck-at behavior. For

this reason, transition faults must be considered separately from stuck-at faults..

To detect a transition fault, the following sequence of events must occur: A cell or line

that fails to undergo a 0 → 1 transition after a write operation is said to contain an up

transition fault. Similarly, a down transition fault indicates the failure of making a 1 → 0

transition. According to van de Goor [1], a test to detect and locate all the transition faults

should satisfy the following requirement: each cell must undergo an ↑ transition (cell

goes from 0 to 1) and a ↓ transition (cell goes from 1 to 0) and be read after each

transition before undergoing any further transitions.

2.3.3 Coupling Faults

A coupling fault (CF) between two cells causes a transition in one cell to force the

content of another cell to change. The 2-coupling fault model [1], which involves only

BIST for 65nm High-speed Memory Memory Testing Methodologies

 24

two cells, is defined as follows: a write operation that generates an ↑ or ↓ transition in

one cell changes the content of the second cell. The 2-coupling fault is a special case of

the k-coupling fault [1]. A k-coupling fault uses the same two cells as the 2-coupling

fault, however it allows the fault to occur only when another k − 2 cells are in a certain

state.

• The inversion coupling fault (CFin) is a special case of the 2-coupling fault. It

means that an ↑ or ↓ transition in one cell inverts the content of the second cell.

A test to detect all CFins must satisfy the following condition: for all the cells

which are coupled, each cell should be read after a series of possible CFins may

have occurred (by writing into the coupling cells), with the condition that the

number of transitions in the coupled cells is odd (i.e., the CFins do not mask each

other) [1].

• The idempotent coupling fault (CFid) is another particular case of the 2-coupling

fault. It means that an ↑ or ↓ transition in one cell forces a second cell to a

certain value, 0 or 1. A test to detect all CFids must satisfy the following

condition: for all the cells which are coupled, each cell should be read after a

series of possible CFids may have occurred (by writing into the coupling cells),

in such a way that the sensitized CFids do not mask each other [1].

• The dynamic coupling fault (CFdyn) is a more general case of the CFid.

According to its definition a read or write operation on one cell forces the

contents of the second cell either to 0 or 1 [2].

• The bridging fault (BF) is caused by a short circuit between two or more cells or

lines. It is determined by a logic level rather than a transition write operation.

There are two kinds of bridging faults: AND bridging fault (ABF), in which the

logic value of the bridge is the AND of the shorted cells or lines, and OR

bridging fault (OBF), in which the logic value of the bridge is the OR of the

shorted cells/lines.

BIST for 65nm High-speed Memory Memory Testing Methodologies

 25

• In the state coupling fault (SCF) a coupled cell or line is forced to a certain value

(0 or 1) only if the coupling cell is in a given state. It is also determined by a

logic level.

2.3.4 Neighborhood Pattern Sensitive Faults

A pattern sensitive fault (PSF) causes the content of a cell (or the ability to change the

content) to be influenced by the contents of other memory cells, which may be either a

pattern of 0s and 1s or transitions in memory contents. The PSF is the most general case

of the k-coupling fault, where k equals the number of cells in the memory. There are two

types of PSF: unrestricted PSF (UPSF) and restricted (or neighborhood) PSF (NPSF) .

For tractability reasons, all the known algorithms are tackling the NPSFs, which can be

further divided into three types: active NPSF (ANPSF), passive NPSF (PNPSF), and

static NPSF (SNPSF). NPSF testing algorithms are very complex when compared to

March test algorithms [1]. However, for certain process technologies, circuit techniques

or memory types, such as high-density DRAMs, testing NPSFs may be a requirement..

2.3.5 Address Decoder Faults

Address decoder faults (AFs) represent faults in the combinational logic of the address

decoder. Two assumptions are generally accepted: the faults do not introduce sequential

behavior in the address decoder and the faults will manifest identically during read and

write operations. To simplify the problem, we first consider bit-oriented memories, in

which only one bit data is stored in each memory location. The functional faults within

the address decoder can be classified into four AFs [1], as shown in Figure 2.3:

:

BIST for 65nm High-speed Memory Memory Testing Methodologies

 26

Cy

Cx Ax

Ay Cy

Cx Ax

Ay Cy

Cx Ax

Ay

Cx Cx Ax

Ay Cy

Cx

Ay

Fault 1 Fault 2 Fault 3 Fault 4

Figure 2.5: Address Decoder Faults [1]

Fault A (1+2) Fault B (1+3) Fault C (2+4) Fault D (3+4)

Figure 2.6: Combination of Address Decoder Faults [1]

• Fault 1: For a certain address, no cell will be accessed.

• Fault 2: A certain cell can never be accessed by any address.

• Fault 3: For a certain address, multiple cells are accessed simultaneously.

• Fault 4: A certain cell can be accessed by multiple addresses.

For bit-oriented memories, because each cell is linked to a dedicated address, none of the

faults listed above can stand alone. For example, when fault 1 occurs, then either fault 2

or fault 3 will occur as well. Therefore, in total, four fault combinations in the address

decoder are shown in Figure 2.4 [1].

2.4 Functional Testing and March Test Algorithms

Based on the used memory fault models, memory test algorithms can be divided into

Ax Cx

Ax

BIST for 65nm High-speed Memory Memory Testing Methodologies

 27

four categories [1] as described below:

1. Traditional tests including Zero-One, Checkboard, GALPAT and Walking 1/0, Sliding

Diagonal, and Butterfly [1]. They are not based on any particular functional fault models

and over time have been replaced by improved test algorithms, which result in higher

fault coverage and equal or shorter test time.

2. Tests for stuck-at, transition, and coupling faults that are based on the reduced

functional fault model and are called March test algorithms [1].

3. Tests for neighborhood pattern sensitive faults.

4. Other memory tests: any tests, which are not based on the functional fault model, are

grouped in this category.

 As mentioned previously, March test algorithms can efficiently test

embedded memories and, therefore, the rest of this section provides more details about

them.

March Test Notation

A March test consists of a finite sequence of March elements [1]. A March element is a

finite sequence of operations or primitives applied to every memory cell before

proceeding to next cell [1]. For example, ⇓ (r1,w0) is a March element and r0 is a March

primitive. The address order in a March element can be increasing (⇑), decreasing (⇓),

or either increasing or decreasing (χ). An operation can be either writing a 0 or 1 into a

cell (w0 or w1), or reading a 0 or 1 from a cell (r0 or r1).

2.4.1 Characteristics of March Algorithms

March-based memory test algorithms have several important characteristics:

• Up (down) address sequence must be the exact reverse down (up) sequence,

however its internal order is irrelevant. For example, if a 3 bits up address

sequence is {0, 5, 2, 3, 7, 1, 4, 6}, then the down sequence must be {6, 4, 1, 7, 3,

2, 5, 0}.

BIST for 65nm High-speed Memory Memory Testing Methodologies

 28

• Most March algorithms are only a simple combination of several March elements.

The background pattern during execution can be inferred by the previous

operation. For example, a read operation infers the same background data used in

the last operation. Similarly, a write operation infers the reversed background data

used in the last operation. Based on this observation, one can reduce the number

of March elements and the complexity of their implementation. The total number

of March elements for the most practical March algorithms is less than ten.

• Using the test generation method proposed in [2], one can generate novel March

algorithms (based on a limited number of March elements implemented in

hardware), to detect new technology-specific faults.

• For word-oriented memories, one needs to run the March test several times using

different background patterns [1, 8] to improve the fault coverage or to use

modified March algorithms, such as March-CW [12], to reduce the testing time.

2.4.2 March Algorithms with Diagnosis and Repair Support

When a memory is fabricated using new technology, it is desirable to have a fast yield

learning curve [12]. Therefore, it is critical to perform very detailed failure analysis

through fault diagnosis to identify the particular defects. The ultimate outcome of failure

analysis is a redesigned set of masks for the next fabrication run, which will improve the

manufacturing yield. A new set of March algorithms will be used for the best process-

specific fault coverage. For large memory chips or SOCs with large embedded SRAMs or

DRAMs, to increase the yield, it is crucial to also use redundant memory locations to

repair the faulty rows (columns) [12].

A complete solution targeting fault diagnosis and fault location has three components: A

memory BIST architecture with diagnosis support to save and send out the diagnostic

information, a diagnostic test algorithm and a tool to analyze the collected diagnostic data

and generate a detailed fault report for failure analysis and a fault bitmap for repair

purposes.

BIST for 65nm High-speed Memory Memory BIST Methodologies

 29

CHAPTER 3

MEMROY BIST METHODOLOGIES

This chapter describes the relevant approaches to embedded memory BIST, summarizes

their strengths and limitations and gives the detailed information of the relevant work

done in the development of BIST for different memories especially 65nm high speed

single-port SRAM.

3.1 Memory BIST Approaches

A typical embedded memory BIST (MBIST) approach comprises an MBIST wrapper, an

MBIST controller and the interconnect between them. The MBIST wrapper further

includes an address generator to provide complete memory address sequences (i.e., for n

address lines all the 2n locations are visited in a complete sequence); a background

pattern generator to produce data patterns; a comparator to check the memory output

against the expected correct data pattern; and a finite state machine (FSM) to generate

proper test control signals based on the commands received from the MBIST controller.

 The MBIST controller pre-processes the commands received from upper-level controller

(either on-chip microprocessor or off-chip ATE) and then sends them to the MBIST

wrapper. The interconnect between the wrapper and the controller could be either serial

(i.e., a single command line is shared by all the wrappers) or parallel (i.e., dedicated

multiple command lines are linking different wrappers to the controller).

BIST addresses most of the challenges faced by testing embedded memories in an SOC

(see Chapter 1 for a full description of SOC testing challenges). However, the increasing

size and number of embedded memory cores and the rapid development in VLSI process

technologies lead to unique requirements for embedded memory BIST.

BIST for 65nm High-speed Memory Memory BIST Methodologies

 30

1. Support multiple test algorithms: The conventional MBIST approaches usually

implement a single March test algorithm. However, deep submicron process

technologies and design rules introduce physical defects that are not screened when

using the memory test algorithms developed for previous process generations.

Therefore MBIST architectures should be programmable to support multiple memory

test algorithms to increase the fault coverage and to find the most suitable algorithms

for the manufacturing process at hand.

2. Diagnosis and repair support: Diagnosis support in an MBIST architecture is

mandatory for manufacturing yield enhancement for new process technology and a

rapid transition from the yield ramp phase to the volume production phase [12].

Furthermore, since embedded memories are subject to more aggressive design rules,

they are more prone to manufacturing defects (caused by process variations) than

other cores in an SOC. For large embedded memory cores, the manufacturing yield

can be unacceptable low (e.g., for a 24Mbits memory core, the yield is around 20%

[12]). Hence, to achieve a certain manufacturing yield, in addition to diagnosis

support, it is also beneficial to introduce self-repair features comprising redundant

memory cells.

3. Test heterogeneous memories: State-of-the-art SOCs include many types of

memory cores, such as, among others, SRAM, DRAM, flash and ROM. Traditional

MBIST approaches were designed to test only one type of memory. However, to

reduce area and routing overhead via hardware resource sharing, as well as to

decrease the testing time, it is advantageous to develop MBIST architectures that

support testing heterogeneous memories simultaneously.

4. Power dissipation constraints: As introduced in Chapter 1, more power

dissipation is expected during test mode than power consumed during normal

BIST for 65nm High-speed Memory Memory BIST Methodologies

 31

functional mode for scan-based SOC testing. However, because memory test is

functional test, for each memory the power dissipation will be identical in both test

mode and normal functional mode. Therefore, if all memory blocks in an SOC can be

activated simultaneously during functional mode, power dissipation will not exceed

the maximum power constraint during test. Hence, no test scheduling is required in

this case. However, to reduce the overall testing time, test scheduling is still necessary

for memory testing as described in the following.

On the one hand, for bus-connected memories (BCMs), which are connected to a

single-master bus architecture [4], only one BCM can be accessed at any time during

functional mode. If all BCMs are wrapped, then all of them can be activated

simultaneously during test. Consequently, the power dissipation will be higher during

test than during functional operation, and therefore, test scheduling is necessary.

On the other hand, memory testing is part of SOC testing. It was proven in [12] that

cores, which use scan-based test methodology, will consume more power during test

than during functional mode. If the testing time of these scan-based cores is longer

than that of memory cores, then by relaxing the power constraints for scan-based core

testing and carefully scheduling memory testing with tightened power constraints, the

overall testing time for the SOC can be reduced.

Since test scheduling under power constraints is highly interrelated to the resource

sharing mechanisms used in the MBIST architecture, it is essential to develop new

power-constrained test scheduling algorithms that will get the maximum usage of the

available hardware resources for embedded memory testing.

5. Reuse the available on-chip processing/communication resources: SOCs

usually contain one or more processing elements (e.g., microprocessors), which use

on-chip system busses to communicate with other cores. Hence the embedded

memory cores in an SOC can be divided into two groups: bus-connected memories

(BCMs) and non bus-connected memories (NBCMs). Although all the embedded

memory cores can be tested by adding dedicated memory BIST wrappers, the high

BIST for 65nm High-speed Memory Memory BIST Methodologies

 32

area overhead of BIST circuitry, as well as the performance penalty caused by

intrusive DFT hardware may prove to be the main drawback of this approach.

Therefore, reusing the available on-chip resources for testing the embedded memories

can lower the area and performance overhead associated with a high number of

dedicated MBIST wrappers for BCMs. Furthermore, by implementing non-time-

critical tasks in software using a processor, the complexity of the controller can also

be reduced.

6. Design reuse: Reusing IP cores in an SOC can greatly simplify the design phase

and cut down the time to market. The Reuse Methodology Manual [12] lists various

features to make a core reusable. A reusable MBIST core with a scalable and portable

architecture, associated with a clear methodology for design flow integration, can

significantly reduce the cost of test preparation.

The objective of memory BIST approaches is to meet some or all of the above

requirements while reducing the cost of test by targeting low area and performance

penalty and low testing time. The existing approaches have explored three main

directions to gain improvements: memory BIST architectures, test scheduling

algorithms, and special design implementations. Due to their interrelation, without a

good architectural support it is hardly possible to achieve any significant

improvements through test scheduling or special design techniques. The following

sections will review the relevant MBIST approaches presented in the literature.

3.2 Memory BIST Architectures

A memory BIST architecture is defined by the integration of its three components:

(controller, wrapper and interconnect). A standalone approach uses a dedicated wrapper

and controller for each memory core (or memory cluster with several identical memory

BIST for 65nm High-speed Memory Memory BIST Methodologies

 33

cores), while a distributed approach shares one controller to manage some or all of the

MBIST wrappers in an SOC.

3.2.1 Dedicated BIST Methodology

In dedicated memory BIST architecture the BIST is located physically close to the

memory so as to minimize routing congestion as well as increasing the speed. The

MBIST approach of each memory is independent of other memory’s BIST approaches ,

which makes the implementation of this approach straight forward. However, based on

the specific test requirements of different memories and technologies, it needs to be

improved in one or more aspects, as described in the following.

MBIST approaches which support multiple March test algorithms are called

programmable MBIST architectures . Based on the structure of March algorithms , to

support multiple March test algorithms, one can either implement all the March

primitives or several March elements. Since there are only four March primitives (r0, w0,

r1, w1), by implementing all of them with different combinations of background patterns

and address sequences, any March algorithm can be supported. One programmable

MBIST approach using March primitives was investigated in [12] and it includes an

instruction memory to store the test instructions and a decoding logic to process the test

instructions. March element-based approaches implement only several most commonly

used March elements. Based on the implemented March elements, only a limited number

of March algorithms can be supported.

 However, its main advantage lies in less area overhead (simpler decoding logic

and less test instructions) when compared to March primitive-based approaches. In

addition, by carefully selecting the March elements, new March test algorithms can be

generated [2] to target memory faults in new process technologies.

 Diagnosis support is another important feature of MBIST architectures. A builtin self-

diagnosis (BISD) scheme was introduced in [12]. It sends out faulty memory cell

BIST for 65nm High-speed Memory Memory BIST Methodologies

 34

information (such as faulty address, data, and test session number) for failure analysis. To

reduce the control complexity of this approach when testing numerous memory cores, a

P1500 MBIST approach with diagnosis enhancement was proposed in [12]. To reduce

the testing time in the diagnosis mode (caused by the serial scan-chain structure required

to shift out the diagnosis information), a test response compression method was

introduced in [10]. Using this method, less I/O pins can be used to send out the faulty

response data compared with the uncompressed parallel solution. Due to the increased

size of embedded memories, support for memory self-repair is becoming necessary to

increase the overall SOC yield. Using the detailed location and information of faulty

memory cells (provided by diagnosis support approaches discussed above), one can

perform memory redundancy allocation and use fuse-boxes or other methods to repair the

faulty memories. However, to collect enough information on fault locations for various

memory faults, more complex March test algorithms are required, which implies longer

testing time. An MBIST solution was introduced in [12] to test and repair large

embedded DRAMs using on-chip redundancy allocation.To reduce the testing time, a

memory BIST architecture was proposed in [12] with revised March test algorithms.

While most of the previously-described MBIST approaches are focused on testing single

port SRAMs, as long as the test algorithms have the features of March algorithms, they

are suitable for testing other types of memories with minor modifications. For example, a

flash memory BIST architecture was proposed in [12] using a March-like test algorithm.

A multiple port SRAM BIST with diagnosis support scheme was introduced in [12] using

a modified March algorithm.

 In summary, most of the standalone MBIST architectures focus only on solving the test

problems related to a single memory core or a standalone memory chip. They do not

account for the specific requirements for integrating the design for test hardware for

hundreds of embedded memory cores. They also do not provide any support for test

scheduling under power dissipation constraints, which needs a flexible control

mechanism for the memory BIST hardware.

BIST for 65nm High-speed Memory Memory BIST Methodologies

 35

Figure 3.1 shows the generic Dedicated MBIST architecture :

Figure 3.1: Generic BIST Architecture for Standalone memory [1]

The detailed design implementation of all the modules shown in Figure 3.1 can only be

described with a specific architecture and it is beyond the scope of this thesis. What are

common, however, to most of the known BIST architectures are the comparator, address

generator, and background pattern generator in the MBIST wrapper.

Address
Generator

Expected
Data
Generator

Comparator

 Read Column Decoder

 Write Column Decoder

Data
Generator

R
o
w

D
e
c
o
d
e
r

Data in
n

 Data
Out n

MEMORY

FSM

 Pass/Fail

BIST for 65nm High-speed Memory Memory BIST Methodologies

 36

1. Comparator: The comparator checks the memory output data against the correct

background patterns in order to find any mismatch and its implementation is

straightforward. A comparator compares the values read out of the memory with

expected values generated by the expected data generation block on a cycle-by-cycle

basis. The result of each comparison is accumulated into a status flip-flop in order to

provide a go/no-go result at the end of the test. Often, the comparison result is

brought out to a chip-pin for real-time monitoring.

2. Address Generator (AG): The address generator for March-based memory testing

has several requirements . The most important features of the address generator are

that it must cover the entire address space, the internal order of the sequence is

irrelevant, however, the down sequence must be in the reverse order of the up

sequence. According to these requirements, an automatically synthesized up/down

binary counter is sufficient to be the address generator. However, the area of a binary

up/down counter is too high for large address spaces [1 , 11]. Linear feedback shift

registers (LFSR) [5] may overcome this problem, however, since a traditional LFSR

does not cover the all 0s pattern, which is necessary for memory testing, it has to

undergo some modifications. Furthermore, the LFSR must also be controlled to

generate the reversed (down) sequence. A modified LFSR was described in [1 , 2] to

address these two issues. Another address generator was proposed in [11] to reduce

the switching activity on the address lines for power reduction. The activity is

minimized when two successive addresses differ in exactly one position. This code

sequence is known as Gray-code [12]. However, the area of a Gray-code counter

(regardless of the implementation type, i.e., FSM-based or conversion from a binary

counter [12]) is much larger than that of an LFSRs[2]. In this thesis a ripplecarry

adder has been used for address generation which reduces the area.

3. Background Pattern Generator (Data Generator) : Most embedded memories

are wordoriented (i.e., they store more than one bit of data in each address location).

In [1], the author listed several background patterns for different fault coverages.

BIST for 65nm High-speed Memory Memory BIST Methodologies

 37

Wang and Lee [8] recently presented a hardware implementation for a word-oriented

BPG, however, their solution is very complex and has large area overhead. Since

there are only log2 N + 1 states for a BPG, where N is the word-width, we can use a

simple FSM to generate all the background patterns very efficiently with much lower

area overhead than [8].

4.Finite State Machine (FSM): A finite state machine (FSM) is used to control the

overall sequence of events. For example, the FSM determines whether the address

counter should be counting up or down or if the data being generated should be a

marching 0 or marching 1 pattern.

3.2.1.1 Design Implementation
A BIST block is an offline verification of the memory under test. The basic operation of

memory BIST is straightforward: First, the memory is put into a test mode by the use of

muxes placed on every data, address, and control line. A finite state machine writes a test

pattern to a memory cell, reads it back, and compares it to the original value. If a

mismatch occurs, a flag is set to show that the memory cell under test has a failure.

The test hardware for memory BIST includes-

1. A memory BIST controller (FSM)

2. An Address Generator.

• Address Counter

• Address Direction : Row Fast / Column Fast

• Address Increment / Decrement

3. A background pattern inserter or Data Generator for inserting test patterns into

memory columns.

4. A MUX circuit feeding the memory during self-tests from the controller.

5. A comparator for response checking.

BIST for 65nm High-speed Memory Memory BIST Methodologies

 38

The address is incremented and the process continues recursively. The process of

stepping through the entire memory space can be done multiple times, using different

patterns to more fully exercise the memory.

This basic process can quickly detect all stuck-at faults. However, smaller geometry

memories are prone to having neighborhood faults caused by particular values of

aggressor neighboring cells. Because a cell may have many physical neighbors, test-

pattern algorithms that expose these neighborhood faults can become quite complex, with

long test times.

A more elaborated figure is shown below-

Figure 3.2: Elaborated BIST Execution diagram

S
Y
S
T
E
M

L
O
G
I
C

 BIST

OEN
S

WENS
 Bist_oen

 Bist_wen

 Bist_csn

 Bist_addr

 Bist_data

CSNS

AGS

DGS

PATTERN GENERATOR

MEMORY

 Q

OEN

WEN

CSN

 AG

 DG

Memroy Bypass

OEN

WEN

CSN

 AG

 DG

 DGRS

DGR

TM

C
O
M
P
A
R
A
T
O
R

S
Y
S
T
E
M

L
O
G
I
C

BAD
STATUS

END
STATUS

BAD
COUNT

 BIST Methodology

BIST for 65nm High-speed Memory Memory BIST Methodologies

 39

3.2.2 Distributed MBIST Architecture

To reduce the BIST area and routing overhead as well as the test control complexity

associated with complex and heterogeneous SOCs, distributed approaches are necessary.

In a distributed memory BIST architecture, each memory core still has a dedicated

technology-dependent wrapper. However, depending on the complexity of the SOC, there

are only one (or a few) BIST controllers used to direct the test of all the embedded

memory cores. Since hardware resource sharing is introduced, to reduce the routing

congestion and to facilitate rapid power-constrained testing, the interconnect between the

wrappers and the controller(s) must be carefully considered. Distributed BIST

Figure 3.3 : Generic Shared MBIST Architecture

BIST

Controller

Memory
1

Memory
2

Memory
3

Wrapper

Wrapper Wrapper

Control Bus

BIST for 65nm High-speed Memory Memory BIST Methodologies

 40

architectures have been advocated for over a decade. Zorian [12] presented a distributed

BIST control scheme to test the building blocks of a complex VLSI circuit. Due to the

increasing ratio of the memory area in a state-of-the-art SOC, dedicated memory BIST

architectures can be used to reduce the cost of memory test.

In Shared BIST methodology ,multiple memories can be tested either sequentially or in

parallel. The advantage of testing the memories in parallel is a reduced test time.

However, parallel testing has the following disadvantages:

• The power consumption that results from testing several memories together can

be high.

• Certain BIST controller resources must be duplicated. For example, a separate

comparator is needed for every memory tested in parallel.

There is also a potential disadvantage to using a single controller for multiple embedded

memories. If the memories are not localized to one area of the chip, a large amount of

wiring might be needed to route the address and data lines from the controller to each of

the memories. This disadvantage is especially true for the data lines, given the large data

widths (64 bits, 128 bits, and so on) that many memories currently have. To solve this

problem, LogicVision’s memory BIST offers a patented approach that requires only one

data line to be routed to each embedded memory, regardless of the memory’s data width.

This is referred to as a serial memory BIST approach, because the data values for each

test pattern are provided serially to the memory.

BIST for 65nm High-speed Memory BIST for 65nm High-speed
Single-port Memory

 41

CHAPTER 4

BIST FOR 65NM HIGH SPEED SINGLE-PORT

MEMORY

This chapter describes the design of BIST for high-speed single-port memory. The

execution flow for each test operation has been discussed. On the basis of these flow

diagram the RTL code has been written in Verilog HDL for BIST with different test

options and their combinations

SPHS65 memory is a high-speed full synchronous single port memory. The main features

of the memory are-

• Mux: 4, 8 or 16

• Words: 16 to 16384, in step of 4*mux

• Bits: 4 to 512, in step of one

• Rows: 4 to 1024

• Columns:4 to 1024

4.1 SCRAMBLING

The address bus is split into 2 different parts:

• Row selection: A[n:w]

• Column mux selection: A[w-1:0]

With: w = log2(mux)

• Here w is always an integer de to the constraint on the mux (4,8 or 16)

BIST for 65nm High-speed Memory BIST for 65nm High-speed
Single-port Memory

 42

4.2 REDUNDANCY

• Two additional rows are present in the bottom of the core of memory to provide

reparability.

o Any two consecutive faulty rows can be replaced with redundant rows.

o If the faults are not at consecutive rows, the memory will not be

repairable.

Note: This constraint is used as in most cases the faults occur due to

misconnections developed during fabrication of Via’s. Wrong connection in one

via causes fault in two consecutive cells, which share the same via for metal

connection. Thus if there is a fault in one particular row then there will be

possibility of faults in its neighboring rows/columns depending on the memory

layout.

4.3 FAULT MODELS of single-port high speed SRAM

• Stuck At Faults

• Stuck Open Faults

• Address Decoder Faults

• Sense amplifier faults

• RY functional faults

• Coupling Faults between Global bitlines with local bitlines.

• Transition coupling faults

• Linked Coupling faults

• Disturb Fault

BIST for 65nm High-speed Memory BIST for 65nm High-speed
Single-port Memory

 43

4.4 ALGORITHM

During the BIST run an algorithm is executed which is composed of a sequence of events

in order to cover the different modelized faults inside the memory. For single-port

memories the most widely used algorithm is 14nMarchLR algorithm.

4.4.1 mMARCHLR 14N

The mMarchLR 14N algorithm is based on the basic 14nMarchLR 14N described below-

Address

Number

S0

Addresses

Increased

S1

Addresses

Decreased

S2

Addresses

Increased

S3

Addresses

Increased

S4

Addresses

Increased

S5

Addresses

Increased

O

1

…

…

K

…

N-1

N

 WB

 WB

 …

 …

 WB

 …

 WB

WB

RBWI

RBWI

 ….

 ….

 RBWI

 …

 RBWI

 RBWI

RIWBRBWI

RIWBRBWI

 …

 …

RIWBRBWI

 …

RIWBRBWI

RIWBRBWI

 RIWB

 RIWB

 …

 …

 RIWB

 …

 RIWB

RIWB

RBWIRIWB

 RBWIRIWB

 …

 …

 RBWIRIWB

 …

 RBWIRIWB

 RBWIRIWB

 RB

 RB

 …

 …

 RB

 …

 RB

 RB

Table 4.1: Modified MarchLR algorithm

Here the different symbols have following meaning-

• wB: Write background

• wI: Write inverted background

• rB: Read background and compare to the expected value

• rI: Read inverted background and compare to the expected value.

BIST for 65nm High-speed Memory BIST for 65nm High-speed
Single-port Memory

 44

The modified MarchLR 14N is an additional layer to the MarchLR 14N. It takes in

consideration the physical organization of the memory, and works not with a logical

addressing, but with a physical addressing. One more thing is the written data, which

change during the algorithm execution inside the different stages to create a physical

map. This is what is termed as the address scrambling and data scrambling.

 The mMarchLR 14N increases the fault coverage because it creates more layout

configurations, susceptible to highlight memory defects. This algorithm is adapted to

interleaved memory type (also called bit oriented memory), using a multiplexer to

dispatch the words.

Example of a 16 words of 3 bits memory page. The mux factor is 4 inside a page.

The algorithm is run four times for each physical layout configuration defined below.

b1 b2 b0

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Address 6 = b2 b1 b0

rows

Columns

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

BIST for 65nm High-speed Memory BIST for 65nm High-speed
Single-port Memory

 45

 1. Solid

All the memory is filled with 0 (wB). The column address is incremented first.

2. Column stripe
The address scrambling of solid is kept, but the data scrambling will create an alternate

column stress.

Columns

b0

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

rows

b0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

b0

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

rows

Columns

b0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

BIST for 65nm High-speed Memory BIST for 65nm High-speed
Single-port Memory

 46

3. Row stripe
The address scrambling increments the row fast in this configuration. The goal is to

create an alternate pattern in the row direction.

4. Checkerboard

With the columns stripe address scrambling, the final layout configuration is a

checkerboard.

b0

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

rows

Columns

b0

1 1 1 1

0 0 0 0

1 1 1 1

0 0 0 0

b0

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

rows

Columns

b0

1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1

BIST for 65nm High-speed Memory BIST for 65nm High-speed
Single-port Memory

 47

The total number of cycle necessary to execute fully the algorithm:

 N cycles = 14.N.4

Where N is the number of words in the tested memory.

The faults that are detected by this algorithm are –

• Address Faults

• Stuck at Faults

• Coupling faults

• Linked Coupling faults

• Some Neighborhood Pattern Sensitive Faults.

4.4.2 MASK BITS TEST

The Mask Bits Algorithm consists of 12 stages-

Table 4.2: Mask Bits Algorithm [3]

Table 4.3: Mask Bits Algorithm (continued..) [3]

BIST for 65nm High-speed Memory BIST for 65nm High-speed
Single-port Memory

 48

The faults detected by this test are-

• Stuck at zero.

• Coupling fault between M bit neighborhood pins

• Coupling faults detected between D bit neighborhood pins

• Coupling faults detected between Q bit neighborhood pins

• Coupling between D,M,Q bus of memory

4.4.3 DATA BIT COUPLING TEST

This test is done to detect the coupling between the data pins of the memory. This test

consists of 4 stages-

Address S1 S2 S3 S4

Any

WRITE

D0101

QXXXX

READ

D1010

Q0101

WRITE

D1010

Q0101

READ

D0101

Q1010

Table 4.4: Data bits coupling algorithm

This test takes 4 cycles to complete, and is usually run at one address at the end of the

main algorithm.

The faults detected by this algorithm are-

• Stuck at fault

• Faults detected by the Data line coupling faults

BIST for 65nm High-speed Memory BIST for 65nm High-speed
Single-port Memory

 49

4.4.4 CSN BIT COUPLING TEST

This test is done to check the faults on CSN pin of the memory.

S0 S1 S2 S3 S4

WRITE

WEN0

CSN0

D0000

QXXXX

A…..00

FALSE WRITE

WEN0

CSN1

D1111

QXXXX

A…..00

READ

WEN1

CSN0

D1111

Q0000

A….00

WRITE

WEN0

CSN0

D1111

Q0000

A….00

FALSE READ

WEN1

CSN1

D1111

Q0000

A….00

Table 4.5: CSN bit Coupling test

This test is completed in 5 clock cycles, and is usually run one time at one address at the

end of the 14N MarchLR checkerboard algorithm run.

The faults detected are:

• Stuck At zero on CSN bit of the memory

4.4.5 Address Delay Decoder Test

This specific test is used to highlight delay fault in address decoder by stressing it. Using

algorithms specially designed for this test, it can be tested whether address decoders are

fast enough while jumping from one address to another.

BIST for 65nm High-speed Memory BIST for 65nm High-speed
Single-port Memory

 50

In other words, the purpose is to see if the address decoder can make the jump from the

base address (A1) to the target address (A2), which is offered one cycle later where A1

and A2 are generated as described below.

In this algorithm, the base address (A1) will be generated from zero to maximum address

(MAXADDR) in incrementing order, and the target address (A2) will be generated by

taking complement of the base address (A1) as and when needed, depending on the

operation.

4.4.5.1 Fully Decoded Memory

In case of fully decoded memory, the base address will be generated from zero to

maximum address (MAXADDR) in incrementing order and the target address (A2) will

be generated by taking complement of the base address (A1).

Example : In case of a MAXADDR of 1111 , the jumping table will be-

 A1: 0000 A2: 1111

A1: 0001 A2: 1110

A1: 1111 A2: 0000

The sequence of operations applied will be-

• Fill 1 (All addresses) Initially

• WB at A1

• RIB at A2

• RB at A1

• WIB at A1

BIST for 65nm High-speed Memory BIST for 65nm High-speed
Single-port Memory

 51

4.4.5.2 Not Fully Decoded Memory

In case of not fully decoded memory when we take the complement of the base address

A1, the last addresses are skipped (which are greater that the MAXADDR specified) and

the complement of msb of the base address is taken to be zero.

Example: In case of a MAXADDR of 1100 the addresses from 1101 to 1100 will be

skipped and the jumping table will be-

A1: 0000 A2: 0111

A1: 0001 A2: 0110

 …….

A1: 0011 A2: 1100

A1: 0100 A2: 1011

And the sequence of operations will be-

• Fill 1 (All addresses) Initially

• WB at A1(0000), A2(1100)

• RIB at A2(0111)

• RB at A1 (0000)

• WIB at A1(0000)

BIST for 65nm High-speed Memory BIST for 65nm High-speed
Single-port Memory

 52

4.5 IMPLEMENTATION

4.5.1 I/O Pin Description:

Figure 4.1: Pin connections (BIST AND MEMORY) [3]

SLEEP

CK

TBYPASS
 RY

 Single-port
 MEMORY
 Q
D
A
WEN
CSN

MG

OEN

Clk_m
Bypass tbypass
Rbact
Rst_n
Test_se
Debug
Iddq
Ret
ags ag
dgs dg
wens wen
csns csn

mgs mg
oens oen

scan_en
scan_in

 BIST

 ry

dgr dgrs

 end status
 bad staus
 fail status

scan_out

sleep pin

clk_m

BIST for 65nm High-speed Memory BIST for 65nm High-speed
Single-port Memory

 53

4.5.2 The Full Pin Description:

NAME DIRECTION FUNCTION
ag OUT Address bus to memory
ags IN Address bus from design
dg OUT Data bus to memory
dgs IN Data input from system logic
dgr IN Data output bus from memory
dgrs OUT Data output to system logic
csn OUT Chip select signal to memory
csns IN Chip select from system logic
wen OUT Write enable signal to memory
wens IN Write enable from system logic

tbypass OUT Memory bypass control from memory
debug IN Debug mode pin

ret IN Retention test pin purpose
iddq IN Iddq mode pin

bad status OUT BIST test failed
fail status OUT BIST word failed again
end status OUT BIST test end signal

clk_m IN BIST clock
bypass IN Test mode pin
rbact IN Run BIST active to launch the BIST

test_se IN Scan chain enable
rst_n IN BIST reset

Tristate output
oens IN Output enable from system logic

Redundancy
rras OUT The row repair address from system
rraes OUT The row repair address enable from system
rra OUT The row repair address to ram
rrae OUT The row repair enable to ram

Scan_en IN Shift out enable
Scan_in IN Shift in

Scan_out OUT Shift out
Bitmap

clk_bmp IN The bitmap clock
Rst_bmp_n IN The bitmap reset

bmpout OUT The bitmap shift out

BIST for 65nm High-speed Memory BIST for 65nm High-speed
Single-port Memory

 54

4.5.3 OPERATING MODE DESCRIPTION

4.5.3.1 Scan ATPG Mode:

During the scan mode, all the design is tested by a set of vectors generated by an

automatic Test Pattern Generator (ATPG). At this stage of the flow, the state of the

memory is unknown (bad or good memory which can be a black box). Then it’s

necessary to switch the BIST in the scan mode which bypasses the memory and activates

observability points to increase the fault coverage.

The goal of memory bypass is to test independently design logic and memory. This mode

allows user to run the atpg pattern on his chip, bypassing the memory output and hence

avoiding the ram shadow i.e. without being impacted by the memory yield. It is important

for debug capability.

Figure 4.2: Scan ATPG Flow

BBeeggiinn

SSccaann mmooddee

AAppppllyy AATTPPGG PPaatttteerrnnss

AAnnaallyyssiiss

eenndd

BIST for 65nm High-speed Memory BIST for 65nm High-speed
Single-port Memory

 55

4.5.3.2 Transparent Mode:

This mode allows user to access the memory directly in the functional mode. In this mode

the memory pins are connected to the system pins and the BIST pins are deselected.

Inherently the rbact pin decides between the functional mode and BIST active modes.

This saves a lot of glitches on the memory pins.

4.5.3.3 Run BIST for RAMs

Figure 4.3: Run BIST Execution

BBeeggiinn

GGoooodd MM eemmoorryy

eenndd

EEnndd SSttaattuuss??

RReeppaaiirraabbllee 00 ??

RRuunn BBII SSTT MM ooddee

BBaadd SSttaattuuss??

NNoo

Yes

NNoo

 yyeess

NNoo

RReeppaaiirraabbllee MM eemmoorryy

SShhiiff tt oouutt tthhee FFuussee II nnffoo

FFuussee PPrrooggrraammmmiinngg//EEmmuullaatt iioonn

BBaadd SSttaattuuss??

RReeppaaiirreedd MM eemmoorryy

RRuunn BBII SSTT MM ooddee

NNoo

DDeeaadd MM eemmoorryy

BIST for 65nm High-speed Memory BIST for 65nm High-speed
Single-port Memory

 56

The Run BIST program is generated through a synchronous FSM which runs at the same

clock as memory under test. The high speed is achieved through pipelining in FSM

stages.

 During Run BIST mode a sequence of operations are done on memory

according to the chosen algorithms.

 The different test performed during run BIST for single-port SRAM are:

• Main algorithm run

• Data bit coupling test

• CSN bit coupling test

• Address decoder test

4.5.3.4 IDDQ Fill 0/Fill 1 Modes and Retention Test:

Fill 0/1: The IDDq fill 0 and IDDq fill 1 are useful and fast to write respectively 0 and 1

in the entire memory array especially for the IDDq test.

Figure 4.4: Fill 0 and Fill 1 operation

 XXXXXX
 XXXXXX

 MEMORY

 11111111
 11111111

 MEMORY

 IDDq fill 1 operation

 XXXXXX
 XXXXXX

 MEMORY

 00000000
 00000000

 MEMORY

 IDDq fill 0 operation

BIST for 65nm High-speed Memory BIST for 65nm High-speed
Single-port Memory

 57

Read 0/1 : The Read 0 and Read 1 features are intended to test the memory retention

after a delay defined on tester.

 The goal is to check the entire memory to check if the memory contents is set at 0

or 1.

Retention Test: This test is intended to detect the memory cells, which fail to retain a

written value after a period of time. This type of faults cannot be detected by the main

algorithm of the memory BIST because of the large amount of time requested to highlight

this kind of problems.

Figure 4.5: Fill 0/1 and Retention test flow

BBeeggiinn

SSttaabbllee MMooddee

eenndd

FFii llll 00//11

AAppppllyy iiddddqq aattppgg ppaatttteerrnnss

CClloocckk OOFFFF

WWaaiitt qquuiieesscceenntt ssttaattee

RReeaadd 00//11

BBaadd SSttaattuuss??

 yyeess

RReetteennttiioonn tteesstt FFaaii lleedd

CClloocckk OONN

RReetteennttiioonn tteesstt PPaasssseedd

 NNoo

CCuurrrreenntt ccoonnssuummppttiioonn mmeeaassuurree

BIST for 65nm High-speed Memory BIST for 65nm High-speed
Single-port Memory

 58

4.5.3.5 Scan Collar Mode

The memory inputs will be controlled by the BIST. BIST will keep the memory inputs

like csn gated with test_se (scan chain enable pin) Hence when test_se is 1 no operation

will happen on the memory. During capture modes when test_se goes low, any operation

will be possible on the memory.

Figure 4.6: Scan Collar Implementation

 Q

 MEMORY

CSN

WEN

 D

 BIST
 test_si

 test_se

 test_so

BIST for 65nm High-speed Memory BIST for 65nm High-speed
Single-port Memory

 59

Figure 4.7: Scan Collar Mode test Flow

BBeeggiinn

SSccaann CCoollllaarr MMooddee

eenndd

SShhiifftt IINN vvaalluueess

WWrriittee
WWrr ii ttee oorr

RReeaadd

RReeaadd

SShhiifftt IINN vvaalluueess

RReeaadd OOppeerraattiioonn

CCaappttuurree

CCoommppaarree

SShhiifftt OOUUTT vvaalluueess

WWrriittee OOppeerraattiioonn

FFiinniisshh ??

YYeess

NNoo

11

22

33

33

44

BIST for 65nm High-speed Memory BIST for 65nm High-speed
Single-port Memory

 60

1. Shift In

At this stage the CSN and WEN values are shifted in scan chain along with other values.

The test_se pin is kept high during this mode to disable any operation on memory.

2. Write Operation

During write operation WEN= 0 and CSN = 0. The write operation can’t be disassociated

with the shift in operation, because it’s one of the two possible continuations. test_se goes

low to allow write operation on memory.

3.Read Operation and Capture

The read operation is similar to the write operation. CSN = 0, WEN = 1

Once the data are outputed from the memory, it’s necessary to save them into the scan

registers to shift them out. This very important operation is called Capture. During this

stage, test_se pin remains low during one clock cycle.

4. Shift out values

This stage is done just after a read and capture operation. The memory data output is

serially shifted out, msb first.

4.5.3.6 BITMAP MODE

The BITMAP feature is a powerful feature to easily diagnose a memory by creating a

memory error map. It’s an additional layer to the classical RUNBIST.

During a BITMAP mode, the BIST is run.

• Each detected fault, the faulted addresses, datas and BIST parameters are stored

into the FIFO, and the tester read, through the shift out register, the information

about this fault.

BIST for 65nm High-speed Memory BIST for 65nm High-speed
Single-port Memory

 61

Figure 4.8: BITMAP Mode Test Flow

• The information is shifted out by the tester at a lower speed, without disturbing

the correct execution of the BIST.

BBeeggiinn

NNoo

EEnndd

BBIITTMMAAPP MMooddee

RREESSEETT

BBaadd SSttaattuuss??
YYeess

SShhiifftt OOUUTT//RReeaadd
NNoo

EEnndd SSttaattuuss??

eess
II nnccrr eessee

BIST for 65nm High-speed Memory BIST for 65nm High-speed
Single-port Memory

 62

• This fifo stack works like a buffer between the BIST and the tester to avoid

problem of clock speed.

Each FIFO stack contains:

• Address: the address where a fault occurs.

• State: Machine state value where the memory fault is detected.

• Pattern: describe the type of the pattern used to create the fault. This register had a

fixed size of 2 bits.

• Data: Content of the memory faulty data.

BIST for 65nm High-speed Memory ValidationWizard & Results

 63

CHAPTER 5

VALIDATIONWIZARD & RESULTS

After the BIST insertion in the functional model of the memory .The whole design is to

be validated to ensure the correctness of BIST designed measured according to following

criteria’s-

• Functional correctness of BIST at different levels of RTL.

• Area overhead measurement on the chip because of BIST insertion.

• Speed performance of BIST.

• Formal verification.

• Design rule check

• Test coverage.

5.1 VALIDATION

The different validation tasks have been performed for each BIST developed through out

the project period. Table 5.1 lists the validation tasks and the tools used during the project

work for the above validation tasks. These tools have been operated in UNIX

environment through shell commands (Manually) and though UNIX shell scripts

(Automatic Procedure).

The development and validation of BIST RTL’s have been done for 6 live projects to

release the product to the end user on scheduled date. Major development work is done

for 65nm high-speed Single-port SRAM memories. Apart from this validation work has

been done for Shared BIST, Dual-port RAM and ROM.

BIST for 65nm High-speed Memory ValidationWizard & Results

 64

Validation

Task

Tool
used

Comments

RTL Simulation
SIMVISION from

 CADANCE

rtl simulation on a given test bench in

verilog , vhdl or mixed language.

RTL Synthesis
DESIGN COMPILER

From SYNOPSYS
rtl synthesis on user defined constraints

GATE

Simulation

SIMVISION from

 CADANCE

Gate simulation on a given test bench in

verilog , vhdl or mixed language.

Formal

verification

FORMALITY

From SYNOPSYS

Equivalence check between rtl vs. netlist,

or netlist vs. netlist with user defined

constraints

Rule check
HAL

From CADANCE
Based on rule file.

Testability Run
TETRAMAX

From SYNOPSYS

Test coverage and fault coverage analysis

to check for >98% ,using user defined

constraints.

Table 5.1: The Tools used for different validation tasks

5.2 VALIDATIONWIZARD

ValidationWizard is a tool developed by the testsolution team of STMicroelectronics.

The objective of this tool is to validate multiple memory BIST designs, netlist or RTL.

This tool can automate one or more combination of the above validation tasks.

The tool contains following three components

• Tools: Contains tasks, subtasks, executable files and templates.

• BIN: ValidationWizard executable.

• Configuration files: Template files for design configuration and test configuration.

BIST for 65nm High-speed Memory ValidationWizard & Results

 65

The two configuration files used by the tool to automate the whole process are –

1. Design.config file

 This file contains the following information-

• Information about design.

• Search Path

• Global search path

• Top design name

• Testbench

• Constraint files

2. test.config file

this file contains the following information-

• Informationabout the task to be performed.

• Task specific design file

• Executable files

• Pass code/failcode

The different features provided by these files are-

• One or more number of validation tasks can be made run or not run with an

assertion bit associated with each task.

• We can pass the information about type of input file which is read from the search

path. Valid file types supported are – rtl, netlist, model, model, testbench, link

library, target library, script.

• The valid languages and formats are – VHDL, verilog , db, txt, ascii .

• We may give the type of output file to be generated after the task which may be

used by any subsequent tool in the task list.

BIST for 65nm High-speed Memory ValidationWizard & Results

 66

• Pass code and fail code can have user defined strings which will be used for

validation results.

• This helps validationWizard to generate a complete log report after the execution

of the tool.

• There is an option to check the correctness of the configuration file itself.

• Separate directories are generated for each individual task which contains the log

files and other generated report.

• After the validation run we can automatically check with the help of a checklist

whether all the required tasks have been performed or not.

• Level reports give the detailed information of the Pass/Fail status of the validation

task.

5.2.1 Running the ValidationWizard

After making the configuration files the tool is run from the command line following

some particular steps.

The tool generates two reports after the execution.

• Level 1 report:

Like a checklist for all the tasks run and gives a combined information for all the

designs mentioned in design.config file.

• Level 2 Report:

Gives detailed information about each design. It gives the error messages and

location for each design and each test case.

5.3 The Shell Scripts

The executable scripts of the tool have been written with shell programming in UNIX

environment. The tool is still in the development process with several modifications

being made based on the feedback from the team members and other associates. As a part

BIST for 65nm High-speed Memory ValidationWizard & Results

 67

of this project work the scripts of this tool have been modified for different validation

tasks. This modification concerns with changes in the format of the configuration file, the

error checking process for the configuration files and the design files etc.

Note : Detailed information can not be revealed here as that is company confidential.

5.4 Validation of BIST for High Speed Single-port SRAM

Validation of BIST RTL for SPHS65 memory has been done with the ValidationWizard

tool as well as manually.

5.4.1 SIMULATION & GATE SIMULATION:

The simulation and gate simulation of the design was done with the help of a testbench.

This testbench will exercise memory BIST in full HWDefault test mode on all memories

and for the complete memory address range. It is important to simulate the assembly

completely to verify correct operation of the memory BIST.

Different modes of the BIST operation and tests described in chapter 3 have been verified

by simulating the entire design (MEMORY+ BIST).

 First the simulation of the RTL description of the assembly module. When RTL

simulation is successfully completed, the RTL code is synthesized to obtain gate-level

descriptions and again the simulation is re-run, which is called as gatesimulation.

 The simulation consists –

• Compilation

• Elaboration

• Simulation

BIST for 65nm High-speed Memory ValidationWizard & Results

 68

5.4.2 SYNTHESIS

Synthesis is done with help of a synthesis script written according to the tool used .

Synthesis of the whole design is done based on the constraints for the 65 nm technology.

The synthesis consists-

• Read

• Compile

5.4.3 FORMAL VERIFICATION

Formal verification is done to check the equivalence of the RTL description of the design

with the Gate level netlist.

5.4.4 TEST COVERAGE

The minimum test coverage should be 98%. Test coverage analysis has been done for the

applied test vectors.

5.4.5 HAL RUN

 HAL run refers to the process of checking the developed RTL code in reference to

the design rules established by the company.

5.5 RESULTS

• Simulation results - Passed

• Synthesis results –

 Area of MEMORY+ BIST - Approximately 2500 micron

 Minimum clock period - About 1.4 ns

• Gate Simulation result - PASSED

• Test coverage - Above 98%

• Formal verification - Passed

• HAL Run - Passed

NOTE: The exact results can not be shown as that is company confidential.

BIST for 65nm High-speed Memory Conclusion & Future Scope of Work

 69

CHAPTER 6

CONCLUSION & FUTURE SCOPE OF WORK

The simulation results for the BIST for high-speed 65 nm memories have proved the

functional correctness of the BIST design as well as the area and speed performance of

the BIST confirms to the expected results.

As more and more memory cores are embedded in state-of-the-art SOCs, embedded

memory testing has emerged as a key issue in the VLSI design, implementation and

fabrication flow. Low power, low area overhead, low routing congestion, low testing time

and reduced performance overhead are a few key issues that need to be tackled.

 The Memory BIST has become an integral part of the modern integrated

circuits as it provides the best features to test the embedded memories most efficiently

with low area overhead and at-speed operation. As the number of memories increases on

a chip there is need to develop efficient BIST architectures, which meet the two main

criteria’s high-speed performance and minimum area overhead.

BIST for 65nm High-speed Memory References

 70

REFERENCES

[1] A. J. van de Goor. Testing Semiconductor Memories: Theory and Practice. A.J. van

de Goor, 1998.

[2] “ Essentials of electronic testing for digital, memory and mixed signal VLSI circuits”

Michael L. Bushnell & Vishwani D. Agrawal, Kluwar Academic Publishers,2001.

[3] Documents from ST Microelectronics

[4] P.K. Veenstra, F. P. M. Beenker , and J.J. M. Koomen, “ Testing of Random Access

memories: theory and Practice,” IEE Proceedings G. vol. 135. no. 1, pp. 24-28 Feb. 1988

[5] A.J. van de Goor and C.A. verruijit, “ An overview of deterministic Functional RAM

Chip Testing,” ACM Computing surveys, vol. 22, no. 1, pp. 5-33, Mar. 1990.

[6]P. A. Thakar, Register transfer level fault modeling and test evolution techniques for

VLSI circuits. PhD thesis, george Washington university, Washington D. C. , May 2000.

[7] Y. Zorian, E. J. Marinissen, and S. Dey. Testing Embedded-Core Based System

Chips. In Proc. IEEE International Test Conference, pages 130–143, 1998.

[8] W. L. Wang, K. J. Lee, and J. F. Wang. An On-Chip March Pattern Generator for

Testing Embedded Memory Cores. IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, 9(5):730–735, October 2001.

[9] P. T. Gonciari, B. M. Al-Hashimi, and N. Nicolici. Test Data Compression: the

System Integrator’s Perspective. In Proc. of the Design, Automation and Test in Europe

Conference, pages 726–731, 2003.

[10] Taiwan Semiconductor Manufacturing Corporation. TSMC Web Site.

http://www.tsmc.com.

[11] N. Nicolici and B. M. Al-Hashimi. Power-Constrained Testing of VLSI Circuits.

Kluwer Academic Publishers, Frontiers in Electronic Testing (FRET) Series, 2003.

[12]Embedded Memory Bist For Systems-On-A-Chip By Bai Hong Fang, B.Eng.

(Electrical) October 2003

