
Element Free Galerkin Method: Theory,
Programming and Applications

By

Gohel Vivek P.

08MCL005

DEPARTMENT OF CIVIL ENGINEERING

AHMEDABAD-382481

May 2010

Element Free Galerkin Method: Theory,
Programming and Applications

Major Project

Submitted in partial fulfillment of the requirements

For the degree of

Master of Technology in Civil Engineering

(Computer Aided Structural Analysis and Design)

By

Gohel Vivek P.

08MCL005

Guide:

Dr. B. S. Munjal

Co. Guide:

Dr. H. V. Trivedi

DEPARTMENT OF CIVIL ENGINEERING

AHMEDABAD-382481

May 2010

iii

Declaration

This is to certify that

(i) The thesis comprises my original work towards the degree of Master of Tech-

nology in Civil Engineering (CASAD) at Nirma University and has not been

submitted elsewhere for a degree.

(ii) Due acknowledgement has been made in the text to all other material used.

Gohel Vivek P.

iv

Certificate

This is to certify that the Major Project entitled ”EFG Method:Theory, Program-

ming and Applications” submitted by Gohel Vivek P. (08MCL005), towards the par-

tial fulfillment of the requirements for the degree of Master of Technology in Civil

Engineering (CASAD)of Nirma University of Science and Technology, Ahmedabad is

the record of work carried out by him under our supervision and guidance. In our

opinion, the submitted work has reached a level required for being accepted for ex-

amination. The results embodied in this major project, to the best of our knowledge,

haven’t been submitted to any other university or institution for award of any degree

or diploma.

Dr. H. V. Trivedi Dr. B. S. Munjal

Co-Guide, Guide, Scientist/Engineer-SG at

Director, Academic Development Antenna Systems Area,

and Research cell, Space Applications Center(SAC),

Nirma University, Indian Space Research Organization (ISRO),

Ahmedabad. Ahmedabad.

Dr. P. H. Shah Dr K. Kotecha

Head of Department(Civil), Director,

Institute of Technology, Institute of Technology,

Nirma University, Nirma University,

Ahmedabad. Ahmedabad.

v

Abstract

With the advent of high speed digital computers and innovative numerical techniques,

there is volcanic proliferation in the domain of handling complex structural problem

using umpteen number of approximate methods viz. FEM, Finite Difference Method

(FDM), Finite Volume Method (FVM), Finite Strip Method, etc. In today’s world

of challenge, a buzz word in the corner is the development of an approach which is

not banking on the ”Meshing Concept” of the geometry or continuum but working

on the contemporary ”Mesh Free” approach. This can handle a large number of non-

conventional problems including those of fracture mechanics and non-linear domains

and thermal analysis field. Researchers are still working hard in the maze of this new

emerging research area and are still struggling and working very hard in the area of

the Mesh free methods.

An humble attempt has been made in this piece of work to first understand the

subject which is almost at its infancy in the world, with only handful of researchers

are working on this topic. The detailed literature survey has been carried out to

explore and understand various methods developed in mid 1990’s and their possible

application areas. Thrust has been given on the understanding of wide gamut of

approaches, with prime focus on Element Free Galerkin (EFG) method only. In the

present work, because of availability of limited literature in this domain; efforts have

been made in getting an insight into the modus-operandi involved. EFG method

uses, least square interpolants to construct the trial and test functions for variational

principle (weak form); the dependant variable and its gradient are continuous in the

entire domain. Procedure for construction of shape function using moving least square

(MLS) approximation is presented. Various terms related to EFG method such as

support domain, weak forms, choice of weight function and EFG formulations are

presented.

Software for analysis of 1D and 2D problems by EFG method are developed and

tested. First a step by step procedure to solve a 1D bar using EFG with interim

vi

computations is presented. Further a problem of 1D bar problem of temperature

domain is analyzed and results are plotted. In both the types of problems, results

are in good agreement with available results. A problem of 1D cantilever beam

is analyzed, here number of gauss point are taken as twice the number of nodes.

Results converge very fast as number of nodes increases. To check the versatility of

the method as well as of programs, various other boundary conditions such as simply

supported, propped cantilever and fixed beams are also considered for analysis.

Finally two dimensional plane stress problems are studied. Detailed flowchart is

presented. The program in C language is developed for structural analysis. The

Timoshenko beam problem analysis is carried out by two methods i.e. Lagrange

multiplier method and Penalty method. The results are discussed and difficulties of

both the methods are enumerated.

In chapter 7, important conclusions, summary and future scope are described.

vii

Acknowledgements

I am deeply indebted to my thesis supervisors Dr. H. V. Trivedi and Dr. B. S.

Munjal for their constant guidance and motivation. They have devoted significant

amount of their time to plan and discuss the thesis work. Without their experience

and insights, it would have been very difficult to do such a quality work.

I also like to extend my gratitude to Dr. P. H. Shah, Dr. P. V. Patel, Prof. N.

C. Vyas, Prof. G. N. Patel and all other teachers for their moral and constructive

support.

Special thanks to Dr. S. Bordas, Dr. V. P. Nguyen and S. Natrajan for their sup-

port and suggestions through Internet which provided deeper insight of the subject.

I also like to thanks my parents, my wife Sejal and my family. Their support to

me in hundred little ways means a lot.

Last, but not the least, no words are enough to acknowledge constant support of

friends and classmates for fruitful discussions during preparation of this thesis.

- Gohel Vivek P.

08MCL005

viii

Abbreviation \ Nomenclature

FEM . Finite Element Method

FDM . Finite Difference Method

FVM . Finite Volume Method

EFG . Element Free Galerkin

MLPG . Meshless Local Petrov Galerkin

DEM . Diffuse Element Method

SPH . Smooth Particle Hydrodynamics

RKPM .Reproducing Kernel Particle Method

SEFGM . Stochastic Element Free Galerkin Method

RBF . Radial Basis Funtion

PIM .Point Interpolation Method

ds . Dimension of support domain

φi . Shape function

σ . Stress vector

ε . Strain vector

L .Differential operator

E .Young’s modulas

µ .Poisson’s ratio

Ŵ . Weight function

Γ . Boundary function

Ω. .Support domain

K . Nodal stiffness matrix

G . Nodal matrix for boundary nodes

ft . Force vector

u . Displacement

t . traction

Contents

Declaration iii

Certificate iv

Abstract v

Acknowledgements vii

Abbreviation Notation and Nomenclature viii

Contents ix

List of Tables xii

List of Figures xiii

1 INTRODUCTION 1
1.1 Introduction . 1
1.2 Why mesh free methods? . 2
1.3 Objective of work . 4
1.4 Scope of work . 5
1.5 Organization of thesis . 6

2 LITERATURE REVIEW 8
2.1 General . 8
2.2 History of mesh free methods . 14

2.2.1 The Smoothed Particle Hydrodynamics 15
2.2.2 The Diffuse Element Method (DEM) 15
2.2.3 Element Free Galerkin (EFG) Method 16
2.2.4 Reproducing Kernel Particle Method 16
2.2.5 Finite Point Method . 16
2.2.6 Meshless Local Petrov-Galerkin 17
2.2.7 Radial Basis Functions . 17
2.2.8 Point Interpolation Method 18

ix

CONTENTS x

2.3 Different Mesh free methods . 19
2.4 Comparison between FEM and Mesh Free Methods 19

3 MESH FREE APPROACH 22
3.1 Introduction . 22
3.2 Engineering mechanics problems . 24
3.3 Theoretical Background of Mesh Free Methods 26

3.3.1 Modeling the Geometry . 26
3.3.2 Node Generation . 29
3.3.3 Shape Function Creation . 30

3.4 Determination of the Dimension of a Support Domain 31
3.5 Property of Mesh free Shape Functions 32
3.6 Equations of elasticity . 33
3.7 Concept of weak form . 35
3.8 Weak forms of the governing equations 35

4 MESH FREE SHAPE FUNCTION CREATION 38
4.1 Introduction . 38
4.2 Choice of Weight Function . 41
4.3 Moving Least Squares Approximation 44
4.4 MLS Procedure . 46
4.5 1D shape functions creation . 50
4.6 2D shape functions creation . 50

5 ELEMENT FREE GALERKIN METHOD 53
5.1 Introduction . 53
5.2 EFG formulation . 54
5.3 Flowchart . 62
5.4 Background integration . 63
5.5 Boundary condition . 65

5.5.1 Lagrange multiplier approach 65
5.6 Penalty parameter approach . 66
5.7 EFG formulation of one dimensional bar 68

5.7.1 One dimensional bar problem 69
5.8 EFG procedure for 1D beam problem 72
5.9 Programming EFG method . 74

6 EFG APPLICATIONS 75
6.1 Introduction . 75
6.2 One dimensional bar problem . 75
6.3 Temperature domain problem . 82
6.4 1D beam problem . 84
6.5 EFG procedure for 2D beam problem 94
6.6 Timoshenko beam by Lagrange method 101

CONTENTS xi

6.7 Timoshenko beam by Penalty method 115
6.8 Plate with hole . 117
6.9 Deep beam problem . 120

7 CONCLUSIONS, SUMMARY AND FUTURE SCOPE 122
7.1 Conclusions . 122
7.2 Summary . 124
7.3 Future scope . 125

A 1D EFG Bar Program (V1) 126

B 1D Beam EFG Program (V2) 149

C 2D Plane Stress EFG Program (V3) 177

D Web-pages 213

References 214

List of Tables

2.1 Different Mesh free methods and their features[18] 20
2.2 Comparison of FEM and Mesh free methods[18] 21

6.1 Displacement results for 6 nodes . 80
6.2 Displacement results for 11 nodes . 80
6.4 Displacement results for 21 nodes . 81
6.5 Comparison of temperature distribution along the bar axis 83
6.6 Comparison of vertical displacement at end 113
6.7 Comparison of vertical displacement at end by penalty method 115

xii

List of Figures

2.1 Cantilever beam with parabolic shear end load 8
2.2 Regular data points . 9
2.3 1D Bi-material rod . 11
2.4 Discretization using meshless methods: nodes, domains of influence

(circular shape) . 13
2.5 Integration in Galerkin-based MMs: background mesh (left) and back-

ground structure cells (right) . 13
2.6 Infinite cracked plate under remote tension: geometry and loads. . . . 14
2.7 Computed deformed configuration (scaled). 14

3.1 Processes that lead to building an engineered system 23
3.2 Flowchart for Mesh Free Method and FEM procedure 25
3.3 Smoothed boundary is represented in FEM by straight lines of the

edges of triangular elements . 27
3.4 Smoothed boundary is represented in the mesh free method by nodes 28
3.5 Support domain . 32

4.1 Methods of function representation at x using the information in its
vicinity. (a) Finite integral representation. Ŵ : weight or smoothing
function. (b) Finite series representation. pi(x) are basis functions. (c)
Finite differential representation, where derivatives of function are used. 42

4.2 Weight functions. W1: cubic spline weight function; W2: quartic spline
weight function; W3: exponential weight function (cα = 0.3); W4: new
quartic weight function . 45

4.3 The first derivative of weight functions. W1: cubic spline weight func-
tion; W2: quartic spline weight function; W3: exponential weight func-
tion (a = 0.3); W4: new quartic weight function 46

4.4 The approximation function uh(x) and the nodal parameters ui in the
MLS approximation . 48

xiii

LIST OF FIGURES xiv

4.5 MLS shape function in 1D space for the node at x = 0 obtained using
five nodes evenly distributed in the support domain of [-1, 1]. Quartic
spline weight function (W2) is used. (a) MLS shape function; (b)
derivative of the shape function. Note that the MLS shape function
does not possess the Kronecker delta function property. 51

4.6 MLS shape function for 2D . 52
4.7 First derivative of MLS shape function in x and y direction 52

5.1 Background mesh . 62
5.2 Flowchart of EFG method . 64
5.3 Support domain in 1D EFG bar problem 70

6.1 Discretization for 1D analysis . 76
6.2 Displacement results by exact and EFG method 82
6.3 1D heat conduction in a bar . 83
6.4 Temp. variation along bar length . 84
6.5 Details of cantilever beam . 84
6.6 Cantilever beam with U.D.L. (a) Displacement (b)Rotation 90
6.7 Simply supported beam with U.D.L. (a) Displacement (b) Rotation . 91
6.8 Propped cantilever with U.D.L. (a) Displacement (b) Rotation 92
6.9 Fixed beam with U.D.L. (a) Displacement (b) Rotation 93
6.10 Flow of 2D beam by EFG method . 100
6.11 The Timoshenko beam details . 101
6.12 Gauss points generation . 104
6.13 Fig. show the domain of influence of gauss point 1 105
6.14 Normal stress (σxx) distribution . 113
6.15 Distribution of normal stress (σxx) on the section of x = L/2 of the

cantilever beam. 114
6.16 Distribution of shear stress(σxy) on the section of x = L/2 of the can-

tilever beam . 114
6.17 Distribution of normal stress σxx at x = L/2 of the cantilever beam . 116
6.18 Distribution of shear stress σxy at x = L/2 of the cantilever beam. . . 116
6.19 The plate with hole : (a) Whole domain; (b) 1/4 model with irregular

nodes . 117
6.20 Gauss points: (a) Background mesh; (b) Structure cells 118
6.21 Gauss points distribution: 4x4 Gauss quadrature for each sub cell . . 119
6.22 Stress plot: (a) EFG σxx stress (b) Exact σxx stress 119
6.23 Deep beam . 120
6.24 Shear stress distribution in deep beam at dist. 121

Chapter 1

INTRODUCTION

1.1 Introduction

Designing advanced engineering systems require the use of computer aided design

(CAD) tools. In such tools, computational simulation techniques are often used to

model and investigate physical phenomena in an engineering system. The simulation

requires solving the complex differential or partial differential equations that gov-

ern these phenomena. Traditionally, such complex partial differential equations are

largely solved using numerical methods, such as the finite element method (FEM)

and the finite difference method (FDM). In these methods, the spatial domain where

the partial differential governing equations are defined is often discretized into mesh.

A mesh is defined as any of the open spaces or interstices between the strands of a

net that is formed by connecting nodes in a predefined manner. In FDM, the meshes

used are also often called grids; in the finite volume method (FVM), the meshes are

called volumes or cells; and in FEM, the meshes are called elements. The terminolo-

gies of grids, volumes, cells, and elements carry certain physical meanings as they are

defined for different physical problems. However, all these grids, volumes, cells, and

elements can be termed meshes according to the above definition of mesh. The key

here is that a mesh must be predefined to provide a certain relationship between the

1

CHAPTER 1. INTRODUCTION 2

nodes, which is the base of the formulation of these conventional numerical methods.

By using a properly predefined mesh and by applying a proper principle, complex

differential or partial differential governing equations can be approximated by a set

of algebraic equations for the mesh. The system of algebraic equations for the whole

problem domain can be formed by assembling sets of algebraic equations for all the

meshes. The mesh free method is used to establish a system of algebraic equations

for the whole problem domain without the use of a predefined mesh. Mesh free meth-

ods use a set of nodes scattered within the problem domain as well as sets of nodes

scattered on the boundaries of the domain to represent (not discretized) the problem

domain and its boundaries. These sets of scattered nodes do not form a mesh, which

means that no information on the relationship between the nodes is required, at least

for field variable interpolation.

1.2 Why mesh free methods?

FEM is robust and has been thoroughly developed for static and dynamic, linear or

nonlinear stress analysis of solids, structures, as well as fluid flows. Most practical

engineering problems related to solids and structures are currently solved using a large

number of well-developed FEM packages that are commercially available. However,

the following limitations of FEM are becoming increasingly evident:

a. Creation of a mesh for the problem domain is a prerequisite in using FEM

packages. Usually the analyst spends the majority of his or her time in creating

the mesh, and it becomes a major component of the cost of a simulation project

because the cost of CPU (central processing unit) time is drastically decreasing.

The concern is more the manpower time, and less the computer time. Therefore,

ideally the meshing process would be fully performed by the computer without

human intervention.

b. In stress calculations, the stresses obtained using FEM packages are discontin-

CHAPTER 1. INTRODUCTION 3

uous and less accurate.

c. When handling large deformation, considerable accuracy is lost because of the

element distortions.

d. It is very difficult to simulate both crack growth with arbitrary and complex

paths and phase transformations due to discontinuities that do not coincide

with the original nodal lines.

e. It is very difficult to simulate the breakage of material into a large number

of fragments as FEM is essentially based on continuum mechanics, in which

the elements formulated cannot be broken. The elements can either be totally

”eroded” or stay as a whole piece. This usually leads to a misrepresentation of

the breakage path. Serious error can occur because the nature of the problem

is nonlinear, and therefore the results are highly path dependent.

f. Re-mesh approaches have been proposed for handling these types of problems

in FEM. In the re-mesh approach, the problem domain is re-meshed at steps

during the simulation process to prevent the severe distortion of meshes and to

allow the nodal lines to remain coincident with the discontinuity boundaries. For

this purpose, complex, robust, and adaptive mesh generation processors have

to be developed. However, these processors are only workable for 2D problems.

There are no reliable processors available for creating hexahedral meshes for 3D

problems due to the technical difficulty.

g. Adaptive processors require ”mappings” of field variables between meshes in

successive stages in solving the problem. This mapping process often leads to

additional computation as well as a degradation of accuracy. In addition, for

large 3D problems, the computational cost of re-meshing at each step becomes

very high, even if an adaptive scheme is available.

h. FDM works very well for a large number of problems, especially for solving fluid

dynamics problems. It suffers from a major disadvantage in that it relies on

CHAPTER 1. INTRODUCTION 4

regularly distributed nodes. Therefore, studies have been conducted for a long

time to develop methods using irregular grids. Efforts in this direction are still

ongoing.

A close examination of these difficulties associated with FEM reveals the root of

the problem: the need to use elements, which are the building block of FEM. A mesh

with predefined ”connectivity” is required to form the elements. As long as elements

must be used, the problems mentioned above will not be easy to solve. Therefore,

the idea of eliminating the elements and hence the mesh has evolved naturally. The

concept of element free or mesh free methods has been proposed, in which the do-

main of the problem is represented by a set of arbitrarily distributed nodes. The

Mesh Free method has great potential for solving the difficult problems mentioned

above. Adaptive schemes can be easily developed, as there is no mesh, and hence

no connectivity concept involved. Thus, there is no need to provide a priori any in-

formation about the relationship of the nodes. This provides flexibility in adding or

deleting points/nodes whenever and wherever needed. For stress analysis of a solid

domain, for example, there are often areas of stress concentration, even singularity.

One can relatively freely add points in the stress concentration area without worry-

ing about their relationship with the other existing nodes. In crack growth problems,

nodes can be easily added around the crack tip to capture the stress concentration

with desired accuracy. This nodal refinement can be moved with a propagation crack

through a background arrangement of nodes associated with the global geometry.

Adaptive meshing for a large variety of problems, 2D or 3D, including linear and

nonlinear, static and dynamic stress analysis, can be very effectively treated in Mesh

free methods in a relatively simple manner.

1.3 Objective of work

a. FEM is very powerful method for analysis of complex structural problems. The

major effort required is in discretization of given problem into elements. This

CHAPTER 1. INTRODUCTION 5

step involves choice of type of element (from wide range available) and number

of elements.

b. Mesh free methods recently developed obviate these difficulties. These methods

are still in infancy stage. More study is required to be done so that practitioners

can use with confidence.

c. In this study, objective is to examine various mesh free methods, choose one of

the method after literature survey for further detailed study.

d. Next objective is to study theory of the chosen method in detail, write computer

program for application for analysis of different types of structures.

e. To carry out structural analysis of different problems.

1.4 Scope of work

In order to fulfill the objectives mentioned above, the scope of the present study is as

follows:

a. Literature survey to examine various mesh free methods.

b. From the literature survey described in chapter 2, it is observed that Element

Free Galerkin method can be studied in detail i.e. fundamentals of theory and

studying each step in detail for applying to different types of structural analysis

problems.

c. Based on the understanding developed, detailed flowchart is to be written and

subsequently computer program is to be developed and to be tested for various

problems.

d. Finally to discuss the outcome of results as a part of total study of structural

analysis by EFG method.

CHAPTER 1. INTRODUCTION 6

1.5 Organization of thesis

The content of major project is divided into various chapters as follows:

Chapter 1, Introduction, presents the introduction and overview of the mesh free

approach. It states various difficulties faced in various analysis tools available in mar-

ket and suitability of mesh free approach for it. It gives objective of study and scope

of work of major project.

Chapter 2, Literature review, presents the literatures which have been studied and

used for the preparation of this thesis. It highlights various problems attainted and

its suitability studied by the author. Chapter 3, Mesh free approach, presents the

introduction part of the mesh free approach. It gives understanding about various

engineering mechanics problems present in practice. The chapter presents solution

procedure followed for analysis of problem by FEM and Mesh free method. It also

gives understanding of various terminologies used for mesh free methods. Chapter

gives list of various mesh free methods in table form with what type of system of

equation it has used and which approximation method has been used for shape func-

tion creation.

Chapter 4, Mesh free shape function creation, presents various methods used for

creation of shape function in mesh free methods. It gives procedure for creation of

shape function for one dimensional and two dimensional problems by Moving Least

Square method.

Chapter 5, Element Free Galerkin (EFG) method, presents the theory and proce-

dure of the EFG method. Chapter also presents the analysis steps to be followed for

one dimensional bar problem, one dimensional beam problem and two dimensional

beam problems.

Chapter 6, EFG application, presents the application of EFG method for various

structural engineering problem. Analysis of one dimensional bar has been given with

sample problem. Analysis of one dimensional beam problem has been given with a

sample problem. A cantilever beam with parabolic end load is analysed and studied

CHAPTER 1. INTRODUCTION 7

by parametric studies. Analysis of plate in tension with circular hole in centre has

been done. Analysis of deep beam problem is done and results have been compared

with those of Krishnamoorthy[14].

Chapter 7, Conclusions summary and future scope, the chapter contains the impor-

tant conculsions, summary and the future scope of work.

Chapter 2

LITERATURE REVIEW

2.1 General

In the present chapter, review of various technical papers is presented.

T. Belytschko, Y. Y. Lu and L. Gu [28] In this paper the authors have

described a new method for analysis of the 1D and 2D solid mechanics. It is an

extension of Diffuse Element Method given by Nayroles et al. The method developed

is called as Element Free Galerkin (EFG) method. In this method, only a mesh nodes

and boundary description is needed for generation of Galerkin equation. The Moving

Least Square approximation is used as an interpolant for curve and surface fitting.

In this paper methodology for using this method has been given. Various examples

are given to validate the method.

Figure 2.1: Cantilever beam with parabolic shear end load

8

CHAPTER 2. LITERATURE REVIEW 9

Figure 2.2: Regular data points

They are, Patch test for square plate, cantilever beam with parabolic shear load

at the end, a square plate with circular hole in center, plate with edge crack under

uniaxial stress. Figs. 2.1 and 2.2 shows the example of cantilever beam with parabolic

shear end load and with its equally distributed nodes.

Y. Krongauz, T. Belytchko[33] In this paper a technique for easily treating

essential boundary conditions for approximations which are not interpolants, such as

Moving Least Square approximations in the Element-Free Galerkin (EFG) method,

Smooth Particle Hydrodynamics (SPH) and Reproducing Kernel Particle Method

(RKPM) is presented. The rates of convergence are compared to those obtained for

essential boundary conditions imposed via a modified variational principle. These

comparisons show that the accuracy of the new method is somewhat better. Fur-

thermore, the new method can be directly applied to different systems of partial

differential equations without developing a modified variational principle. Various

problems such as patch test, cantilever beam and plate with hole are presented.

P. Krysl and T. Belytschko[24] In this paper a mesh free approach to the

analysis of arbitrary Kirchhoff shells by the Element-Free Galerkin (EFG) method

is presented. The method is mesh free, which means that the discretization is inde-

pendent of the geometric subdivision into “finite elements”. The satisfaction of the

C0 continuity requirements is easily met by EFG since it requires only C1 weights;

therefore, it is not necessary to resort to Mindlin-Reissner theory or to devices such

as discrete Kirchhoff theory. The numerical examples which are studied are pinched

cylinder, Scordelis-Lo barrel vault, hemispherical shell and extensional bending of

CHAPTER 2. LITERATURE REVIEW 10

cylinder.

S. Beissel, T. Belytschko [25] A stabilization procedure has been developed for

the application of nodal integration to elasto-statics. The benefits are:

a. There is no need to create a quadrature structure – it is generated automatically

with the spatial discretization.

b. The data structure is as simple as that of a particle method. All discretized

variables are defined over one set of nodes.

c. Evaluation of the integrals of the weak form is much quicker than for complete

Gaussian integration.

These advantages make nodal integration the simplest EFG method to implement,

especially for problems with complex grids or adaptive refinement. In fact, whereas

the original element-free Galerkin method was not truly element-free (a background

mesh of cells was retained for the spatial integration of the weak form), nodal inte-

gration requires only a cloud of nodes and a specification of the surfaces of the body

for a discretization.

J. Dolbow and T. Belytschko[11] Detailed description of the EFG and its

numerical implementation has been presented with the goal of familiarizing scientist

and engineers with the new computational technique. Flowchart for 1-D and 2-

D programming has been given. Problem of various problems such 1-D and 2-D

examples have been given.

Y. Krongauz and T. Belytschko[34] A technique for incorporating discon-

tinuous derivatives in Mesh free formulations has been described for one- and two-

dimensional problems. The technique is based on adding an approximation function

which has a discontinuous first derivative at the discontinuity. The strength of the

discontinuity is represented by additional unknowns. In multidimensional problems,

the strength of discontinuity is interpolated over the discontinuity line (or surface in

three dimensions). The discontinuous approximation has been constructed so that it

CHAPTER 2. LITERATURE REVIEW 11

has compact support, and consequently the resulting discrete equations are sparse and

banded. The results and problems discussed are 1-D in-homogenous rod, inclusion in

an infinite plate.

Figure 2.3: 1D Bi-material rod

P. Krysl and T. Belytschko[23] In this paper authors have examined the im-

plications of solving second-order elliptic problems in non-convex, two-dimensional

domains by the Element-Free Galerkin method. Their conclusions are,

a. For meshes properly graded to account for the singularity, the consistency term

due to the non-conformity of the EFG basis governs the rate of convergence

for k > 1. Thus, only the conforming variant of the EFG should be used with

higher-order basis.

b. For linear basis (k = 1), the rate of convergence is not affected by the discon-

tinuous shape functions. For a quasi-uniform mesh, the error is governed by the

singularity due to the non-convex boundaries, and for properly graded meshes

both the approximatively, and the consistency term estimate the same rate of

convergence, equal to one.

S. Rahman, B. N. Rao[26] A stochastic element-free Galerkin method (SEFGM)

has been developed for reliability analysis of linear-elastic structures with spatially

varying random material properties. The SEFGM is used to evaluate the probabilistic

response and reliability of linear static structures subject to spatially varying random

material properties. In this paper, the problems which are studied are bar element

CHAPTER 2. LITERATURE REVIEW 12

and square plate in tension.

J. Belinha, L.M.J.S. Dinis [4] In this paper the EFG method has been extended

to elastic and elasto plastic analysis of anisotropic symmetric laminates. A Reissner-

Mindlin plate theory, which is a first-order shear deformation theory (FSDT) is con-

sidered and briefly described in order to define the displacement field and the strain

field. A modified version of the Newton-Rahpson method is used for the solution of

the nonlinear system of equations and an anisotropic yield surface, Hill yield surface,

is considered. The elasto-plastic algorithm of solution is described. The authors have

compared the FEM and the EFGM there are some drawbacks for the EFGM. The

computational cost of the EFGM is higher, the imposition of the essential boundary

conditions is more complex and there is a high sensitivity of the method in what

concerns the choice of the influence domain and the choice of the weight function. It

has been supported by various problems.

V. P. Nguyen et al.[29] This paper presents a practical overview of meshless

methods (for solid mechanics) based on global weak forms through a simple and

well-structured MATLAB code, to illustrate our discourse. Several one and two-

dimensional examples in elasto-statics are given including weak and strong disconti-

nuities and testing different ways of enforcing essential boundary conditions. Some

of the figures described in this paper are as follows. Fig. 2.4 shows the discretization

of problem domain which shows various parameters of mesh free methods, fig. 2.5

shows arrangement of integration cell and gauss points, fig. 2.6shows a problem of

crack propagation and fig. 2.7 shows the deformed shape of problem defined in fig.

2.6.

G. R. Liu[18] This is the only book available on the subject of Mesh free method.

In this book the author has given a very good description of various Mesh free methods

and their fundamental equations and practical applications.

CHAPTER 2. LITERATURE REVIEW 13

Figure 2.4: Discretization using meshless methods: nodes, domains of influence (cir-
cular shape)

Figure 2.5: Integration in Galerkin-based MMs: background mesh (left) and back-
ground structure cells (right)

CHAPTER 2. LITERATURE REVIEW 14

Figure 2.6: Infinite cracked plate under remote tension: geometry and loads.

Figure 2.7: Computed deformed configuration (scaled).

2.2 History of mesh free methods

There are a number of Meshfree methods, such as the element free Galerkin (EFG)

method (Belytschko et al., 1994b) [28], the meshless local Petrov-Galerkin (MLPG)

method (Atluri and Zhu, 1998)[3], the point interpolation method (PIM) (Liu, G.

R. and Gu, 1999)[19], the point assembly method (PAM) (Liu, G. R., 1999)[17], the

finite point method (Onate et al., 1996)[7], the finite difference method with arbitrary

irregular grids (Liszka and Orkisz, 1980; Jensen, 1980)[16], smooth particle hydrody-

namics (SPH) (Lucy, 1977[21]; Gingold and Monaghan, 1977[10]), reproducing kernel

CHAPTER 2. LITERATURE REVIEW 15

particle method (Liu, W. K. et al., 1993)[9], which is an improved version of SPH,

and so forth. They all share the same feature that predefined meshes are not used,

at least for field variable interpolation.

2.2.1 The Smoothed Particle Hydrodynamics

The advent of the mesh free idea dates back from 1977, with Monaghan and Gingold

[10] and Lucy [21] developing a Lagrangian method based on the Kernel Estimates

method to model astrophysics problems. This method, named Smoothed Particle

Hydrodynamics (SPH), is a particle method based on the idea of replacing the fluid

by a set of moving particles and transforming the governing partial differential equa-

tions into the kernel estimates integrals [18]. Despite the success of the SPH in

modelling astrophysics phenomena, it was only after the 90’s that the SPH was ap-

plied to model others classes of problem. This consequently exposed some inherent

characteristics of the method, such as tensile stability, energy zero, lack of inter-

polation consistency and difficulty in enforcing essential boundary conditions [27].

The latter two are consequences of using the SPH to model bounded problems, since

originally the SPH was formulated to model open problems. Over the past years

many modifications and correction functions have been proposed in an attempt to

restore the consistency and consequently the accuracy of the method [20]. The SPH

method has been successfully applied to a wide range of problems such as free sur-

face, impact, magneto-hydrodynamics, explosion phenomena, heat conduction and

many other computational mechanics problems which were presented and discussed

in extensive reviews of SPH [15] [20].

2.2.2 The Diffuse Element Method (DEM)

The first mesh-free method based on the Galerkin technique was only introduced over

a decade after Monaghan and Gingold first published the SPH method. The Diffuse

Element Method (DEM) was introduced by Nayroles and Touzot in 1991. Many

CHAPTER 2. LITERATURE REVIEW 16

authors state that it was only after the Diffuse Element method that the idea of a

mesh-free technique began to attract the interest of the research community. The

idea behind the DEM was to replace the FEM interpolation within an element by the

Moving Least Square (MLS) local interpolation [22].

2.2.3 Element Free Galerkin (EFG) Method

In 1994 Belytschko and colleagues introduced the Element-Free Galerkin Method

(EFG) [9], an extended version of Nayroles’s method. The Element-Free Galerkin

introduced a series of improvements over the Diffuse Element Method formulation.

This method has been discussed in detail in chapter 5. The Element-Free Galerkin

method was found to be more accurate than the Diffuse Element method, although

the ”improvements” implemented in the method increased its computational costs

[28]. EFG is one of the most popular mesh-free methods and its application has been

extended to different classes of problems such as fracture and crack propagation, wave

propagation , acoustics and fluid flow.

2.2.4 Reproducing Kernel Particle Method

In 1995 Liu proposed the Reproducing kernel particle method (RKPM) [9] in an

attempt to construct a procedure to correct the lack of consistency in the SPH method.

The RKPM has been successfully used in multi scale techniques, vibration analysis,

fluid dynamics and many other applications. Later, a combination of MLS and RKPM

resulted in the Moving Least Square Reproducing Kernel Particle method [30] [31] .

2.2.5 Finite Point Method

The Finite Point method was proposed by Onate and colleagues in 1996 [8] [7]. It

was originally introduced to model fluid flow problems and later applied to model

many other mechanics problems such as elasticity and plate bending. The method

CHAPTER 2. LITERATURE REVIEW 17

is formulated using the Collocation Point technique and any of the following ap-

proximation techniques, Least Square approximation(LSQ), Weighted Least Square

approximation (WLS) or Moving Least Squares (MLS) can be used to construct the

trial functions.

2.2.6 Meshless Local Petrov-Galerkin

The Meshless Local Petrov-Galerkin introduced by Atluri and Zhu in 1998 [3] presents

a different approach in constructing a mesh-free method. It is based on the idea of the

Local weak form which eliminates the need of the background cell and, consequently,

performs the numerical integration in a meshfree sense. The MLPG uses the Petrov-

Galerkin method in an attempt to simplify the integrand of the weak form. The

method was originally formulated using the MLS technique and later Atluri extended

the MLPG formulation to other meshless approximation techniques. The freedom

of choice for the test function in the Petrov-Galerkin method gives rise to different

MLPG schemes [2]. The MLPG and its different schemes have been applied to a wide

range of problems such as Euler-Bernoulli Beam Problems, solid mechanics, vibration

analysis for solids, transient heat conduction, amongst many others.

2.2.7 Radial Basis Functions

Radial basis functions (RBF) were first applied to solve partial differential equations

in 1991 by Kansa, when a technique based on the direct Collocation method and the

Multiquadric RBF was used to model fluid dynamics [12] [13] . The direct Collocation

procedure used by Kansa is relatively simple to implement, however it results in an

asymmetric system of equations due to the mix of governing equations and boundary

conditions. Moreover, the use of Multiquadric RBF results in global approximation,

which leads to a system of equations that is characterised by a dense stiffness matrix.

The RBF Hermite-Collocation was proposed as an attempt to avoid the asymmetric

system of equations. Both globally and compactly supported radial basis functions

CHAPTER 2. LITERATURE REVIEW 18

have been used to solve PDEs and results have shown that the global RBF yielded

better accuracy. However the compactly supported stiffness matrix is sparse, while the

global RBF results in a dense matrix that may become very expensive to solve in the

case of a large number of collocation points. Recently, another approach based on the

global RBFs has been proposed. The method, named Local Multiquadric, suggests

the construction of the approximation using sub-domains, causing the Multiquadric

RBF to be truncated at the ”boundaries” of the sub-domains, resulting in a local

approximation and a sparse stiffness matrix [6]. Radial basis functions have also been

used in the Boundary Element method formulation, such as in the Dual Reciprocity

Method (DRM), Method of Fundamental solution (MFS) and the RBF Boundary

Knot method (BKM). These methods have been successfully applied to solve non-

linear problems in Computational Mechanics. A variational approach to solve the

Boundary Value Partial (BVP) using compactly supported radial basis functions has

been investigated by [32] and another approach suggested the use of radial basis

functions in the Meshless Local Petrov-Galerkin formulation [2]. In the last decade

the radial basis function approximation technique has undergone intensive research.

However, a large number of publications on the subject concern its mathematical proof

and foundations. An extensive review of the mathematical background of RBFs is

presented in [31]. Some applications of the RBFs in the solution of physical problems

worthy of mention are transport phenomena, heat conduction, analysis of Kirchoff

Plates and Euler-Bernoulli beam problems amongst others.

2.2.8 Point Interpolation Method

The Point Interpolation method (PIM) uses the Polynomial interpolation technique

to construct the approximation. It was introduced by Liu in 2001 as an alternative

to the Moving Least Square method [5]. The PIM, originally based on the Galerkin

method, suffers from the singularity of the interpolation matrix and also from the

fact that it does not guarantee the continuity of the approximation function. Several

CHAPTER 2. LITERATURE REVIEW 19

approaches have been investigated by Liu in an attempt to overcome these problems

[18]. Improvements have been obtained using the Local Petrov- Galerkin method and

Multiquadric radial basis functions. This procedure resulted in Local Radial Point

Interpolation methods (LRPIM). The LRPIM has been applied to solid mechanics,

fluid flow problems and others. These applications are referred to and examined in

detail in [18].

2.3 Different Mesh free methods

Various mesh free methods developed in recent years are tabulated in table 2.1 [18].

The table includes title of method, the author who presented it, which type of equation

solution method used and method used for function approximation.

2.4 Comparison between FEM and Mesh Free Meth-

ods

The differences between FEM and Mesh free method are shown in table 2.2

CHAPTER 2. LITERATURE REVIEW 20

Method Ref. System
Equation
to be
Solved

Method of
Function Ap-
proximation

Diffuse element
method

Nayroles et al.,
1992

Weak form MLS approxima-
tion, Galerkin
method

Element free
Galerkin
(EFG) method

Belytschko et
al.,[28]

Weak form MLS approxima-
tion, Galerkin
method

Meshless lo-
cal Petrov-
Galerkin
(MLPG)
method

Atluri and Zhu,
1998

Local
Weak form

MLS approxi-
mation, Petrov-
Galerkin.

Finite point
method

Onate et al.,
1996; Liszka and
Orkisz, 1980;
Jensen, 1980

Strong
form

Finite differential
representation
(Taylor series),
MLS

Smooth parti-
cle hydrody-
namics

Lucy, 1977; Gin-
gold and Mon-
aghan, 1977

Strong
form

Integral represen-
tation

Reproducing
kernel particle
method

Liu, W. K. et al.,
1993

Strong
form or
Weak form

Integral represen-
tation (RKPM)

hp-clouds Oden and Abani,
1994; Armando
and Oden, 1995

Weak form Partition of unity,
MLS

Partition of
unity FEM

Babuka and Me-
lenk,1995

Weak form Partition of unity,
MLS

Point interpo-
lation method

Liu, G. R. and
Gu, 1999, 2000b,
2001a,b,c,d

Weak form
and Local
Weak form

Point interpola-
tion

Boundary node
methods

Mukherjee and
Mukherjee,
1997a,b

Weak form
and Local
Weak form

MLS

Boundary
point interpo-
lation methods

Liu, G. R. and
Gu, 2000d; Gu
and Liu, G. R.,
2001a,e

Weak form
and Local
Weak form

Point interpola-
tion

Table 2.1: Different Mesh free methods and their features[18]

CHAPTER 2. LITERATURE REVIEW 21

Item FEM Mesh Free Method
Element mesh Yes No
Mesh creation and au-
tomation

Difficult due to
the need for ele-
ment connectiv-
ity

Relatively easy and no connectivity is
required

Mesh automation and
adaptive analysis

Difficult for 3D
cases

Can always be done

Shape function cre-
ation

Element based Node based

Shape function prop-
erty

Satisfy Kro-
necker delta
conditions; valid
for all
elements of the
same type

May or may not satisfy Kronecker delta
conditions depending on the method
used; different from point to point

Discretized system
stiffness matrix

Banded, sym-
metrical

Banded, may or may not be symmetri-
cal depending on the method used

Imposition of essential
boundary condition

Easy and stan-
dard

Special methods may be required; de-
pends on the method used

Computation speed Fast 1.1 to 50 times slower compared to the
FEM depending on the method used

Retrieval of results Special tech-
nique required

Standard routine

Accuracy Accurate com-
pared with
FDM

Can be more accurate compared with
FEM

Stage of development Very well devel-
oped

Infancy, with many challenging prob-
lems

Commercial software
package availability

Many Very few and close to none

Problem suitability For regular solid
mechanics prob-
lem

For complex problems such as crack
propagation, eddy-current problem,
electro-magnetic, wave-propagation,
etc.

Table 2.2: Comparison of FEM and Mesh free methods[18]

Chapter 3

MESH FREE APPROACH

3.1 Introduction

In building a modern and advanced engineering system, engineers must undertake a

very sophisticated process of modeling, simulation, visualization, analysis, designing,

proto typing, testing, fabrication, and construction. The process is illustrated in the

flowchart shown in Fig.3.1[18]. The process is very often iterative in nature; that

is, some of the procedures are repeated based on the results obtained at the current

stage to achieve optimal performance for the system under construction. In process

of the concern is mainly to modeling and simulation, as well as some issues related

to visualization, which are underlined in Fig. 3.1[18]. The focus will be on physical,

mathematical, and computational modeling and computational simulation. These

topics play an increasingly important role in building an advanced engineering system

in a rapid and cost-effective way. Many methods and computational techniques can be

employed to deal with these topics. The literature mainly focuses on the development

and use of the Mesh Free methods. This chapter addresses the procedures of modeling

and simulation using Mesh free methods and the differences between the Mesh Free

method and other existing methods, especially the widely used finite element method.

Fig. 3.2[18] presents the flow chart for the FEM and Mesh Free approach. Where

22

CHAPTER 3. MESH FREE APPROACH 23

Figure 3.1: Processes that lead to building an engineered system

CHAPTER 3. MESH FREE APPROACH 24

SPC means single point constraints and MPC means Multi Point Constraints used

for the boundary conditions.

3.2 Engineering mechanics problems

The various engineering mechanics problems include structural analysis, heat transfer,

fluid flow, mass transport, and electro-magnetic potential.

a. Typical structural problems include:

� Stress analysis, including frame and truss analysis, and stress concentra-

tion problems typically associated with holes, fillets, or other changes in

geometry of a body.

� Buckling

� Vibration analysis

b. Non-structural problems include:

� Heat transfer

� Fluid flow, including seepage through porous media

� Distribution of electric or magnetic potential

c. A relatively new field of application is in the field of bio-engineering. Some bio-

mechanical engineering problems (which may include stress analysis) typically

include analysis of human

� Spine

� Skull

� Hip Joints

� Jaw / gum tooth implants

� Heart

� Eye

CHAPTER 3. MESH FREE APPROACH 25

GEOMETRY GENERATION

ELEMENT MESH GENERATION

SHAPE FUNCTION CREATION BASED ON
ELEMENT PREDEFINED

SYSTEM EQUATION FOR
ELEMENTS

NODE MESH GENERATION

SHAPE FUNCTION CREATION BASED
ON NODES IN A LOCAL DOMAIN

SYSTEM EQUATION FOR
NODE

GLOBAL MATRIX ASSEMBLY

SUPPORT SPECIFICATION
(SPC, MPC)

SOLUTION FOR DISPLACEMENT

COMPUTATION OF STRAINS AND STRESSES
FROM DISPLACEMENTS

RESULTS ASSESMENT

FEM Meshfree

Figure 3.2: Flowchart for Mesh Free Method and FEM procedure

CHAPTER 3. MESH FREE APPROACH 26

3.3 Theoretical Background of Mesh Free Meth-

ods

The procedure in FEM and the Mesh free method for solving engineering problems

can in principle be outlined using the chart given in fig. 3.2. These two methods

diverge at the stage of mesh creation. The fundamental difference between these two

methods is the construction of the shape functions. In FEM, the shape functions are

constructed using elements, and the shape functions will be the same for the element.

In fact, if the natural coordinate systems are used, the shape functions in the natural

coordinates are the same for all the elements of the same type. These shape functions

are usually predetermined for different types of elements before the finite element

analysis starts. In Mesh free methods, however, the shape functions constructed are

usually only for a particular point of interest. The shape function changes as the

location of the point of interest changes. The construction of the element free shape

function is performed during the analysis, not before the analysis. Once the global

discretized system equation is established, the Mesh free method follows a procedure

similar to FEM, except for some minor differences in the details of implementation.

Therefore, many techniques developed over the past decades in FEM can be utilized

in Mesh free methods with or without modifications. The following sections present

the basic procedures in Mesh free methods, by discussing the differences between

FEM and the Mesh free method at major stages of analysis.

3.3.1 Modeling the Geometry

Real structures, components, or domains are in general very complex and have to be

reduced to a manageable geometry. In FEM, curved parts of the geometry and its

boundary can be modeled using curves and curved surfaces using high-order elements.

However, it should be noted that the geometry is eventually represented by a collection

of elements, and the curves and curved surfaces are approximated by piecewise curves

CHAPTER 3. MESH FREE APPROACH 27

and surfaces of the elements. If linear elements are used, which is often the case in

practical situations, these curves and surfaces are straight lines or at surfaces. Fig. 3.3

shows an example of a smooth boundary represented in the finite element model by

straight lines of the edges of triangular elements. The accuracy of representation of the

curved parts is controlled by the number of the elements and the order of the elements

used. A finer mesh of elements can generally lead to more accurate results. However,

because of the constraints on time and computational resources including hardware

and software, it is always required to limit the number of elements. Therefore, fine

details of the geometry need to be modeled only if very accurate results are required

for those regions. The results of simulation have to be interpreted with these geometric

approximations in mind. The analyst has to determine the distribution of the density

of the mesh required to achieve a desired accuracy at important areas and regions of

the problem domain.

Figure 3.3: Smoothed boundary is represented in FEM by straight lines of the edges
of triangular elements

In Mesh free methods, however, the boundary is represented (not discretized)

by nodes, as shown in fig.3.4. At any point between two nodes on the boundary,

one can interpolate using Mesh free shape functions. Because the Mesh free shape

functions are created using nodes in a moving local domain, the curved boundary

can be approximated very accurately even if linear polynomial bases are used. It

CHAPTER 3. MESH FREE APPROACH 28

Figure 3.4: Smoothed boundary is represented in the mesh free method by nodes

is common in Mesh free methods to use higher-order polynomials. Note that this

geometric interpolation can be performed using the same technique for field variable

interpolation in Mesh free methods. Depending on the software used, there are many

ways to create a properly simplified geometry in the computer. Points can be created

simply by keying in the coordinates of the point. Lines or curves can be created by

simply connecting points or nodes. Surfaces can be created by connecting or rotating

or translating the existing lines or curves. Solids can be created by connecting or ro-

tating or translating the existing surfaces. Points, lines or curves, surfaces, and solids

can be translated or rotated or reflected to form new ones. Graphic interfaces are

used for assisting the creation and manipulation of the objects. There are a number

of CAD (computer-aided design) software packages used in engineering design that

can produce files containing the geometry of the designed engineering system. These

files can often be read by modeling software packages. Making use of the CAD files

can save significant time in creating the geometry of the models. However, in many

cases, the objects read directly from a CAD file may need to be modified and simpli-

fied before performing meshing. These tools for creating the geometry of the problem

domain can be used for both the FEM and the Mesh free method. Knowledge, expe-

rience, and engineering judgment are very important in modeling the geometry of a

system. In many cases, finely detailed geometric features play only an aesthetic role,

CHAPTER 3. MESH FREE APPROACH 29

and will not affect the functionality or the performance of the engineering system very

much. These features can be simply deleted, ignored, or simplified. This, however,

may not be true for some cases, where a fine geometric change can give rise to a

significant difference in the simulation results. Adaptive analysis is ideal for solving

this problem objectively and independently of the judgment of the analyst. Mesh free

methods provide more flexible ways for adaptive analysis. Another very important

issue is the simplification required by mathematic modeling. For example, a plate

has three dimensions geometrically, but the plate in the plate theory of mechanics

is represented mathematically only in two dimensions. Therefore, the geometry of a

”mechanics” plate is a two dimensional (2D) flat surface represented usually by the

neutral surface. In FEM, plate elements are used in meshing the plate surfaces. A

similar situation occurs in shells. A beam has also three dimensions geometrically.

The beam in the beam theory of mechanics is represented mathematically only in one

dimension. Therefore, the geometry of a ”mechanics” beam is a one-dimensional (1D)

straight or curved line. In FEM, beam elements have to be used to model the lines.

A similar situation occurs in truss structures. In Mesh free methods, beams, plates,

and shells can all be represented using sets of arbitrarily distributed nodes. In the

formulation of the Mesh free methods, corresponding theories used in the FEM must

be used. The difference, again, lies mainly in the creation of the shape functions.

3.3.2 Node Generation

In FEM, meshing is performed to discretize the geometry created into small meshes

called elements or cells, and many types of elements have been developed for different

problems. The rationale behind domain discretization can be explained in a very

rough and straightforward manner. We can expect that the solution for an engineering

problem will be very complex, and will vary in a way that is usually unpredictable

using functions defined globally across the whole problem domain. However, if the

problem domain can be divided (meshed) into small elements using a set of nodes

CHAPTER 3. MESH FREE APPROACH 30

that are connected in a predefined manner using nodal lines, the solution within each

element can be approximated very easily using simple functions such as polynomials,

which are termed shape functions. The solutions for all the individual elements form

the solution for the whole problem domain. Mesh generation is a very important

part of the pre-process in FEM, and it can be a very time-consuming task for the

analyst. The domain has to be meshed properly into elements of specific shapes such

as triangles and quadrilaterals. No overlapping and gaps are allowed. Information,

such as the element connectivity, must also be created during the meshing for later

simulation. It is ideal to have an entirely automated mesh generator; unfortunately,

one is not available on the market. Semiautomatic preprocessors are available for

most commercially available application software packages. There also exist packages

designed mainly for meshing. Such packages can generate files of a mesh, which

can be read by other modeling and simulation packages. Triangulation is the most

flexible way to create meshes of triangular elements. The process can be almost fully

automated for 2D planes and even three-dimensional (3D) spaces. Therefore, it is used

in most commercial preprocessors. The additional advantage of using triangles is the

flexibility of modeling a complex geometry and its boundaries. The disadvantage is

that the accuracy of the simulation results based on triangular elements is often much

lower than that obtained using quadrilateral elements for the same density of nodes.

Quadrilateral elements, however, are more difficult to generate automatically.

3.3.3 Shape Function Creation

In FEM, shape functions are created based on elements, and therefore, the computa-

tion of shape functions has been straightforward. In the early years of the development

of FEM, much of the work involved the formulation of all different types of elements.

All the shape functions of finite elements satisfy the Kronecker delta function prop-

erty. In Mess free methods, however, the construction of shape functions has been

and still is the central issue. This is because shape functions have to be computed

CHAPTER 3. MESH FREE APPROACH 31

with the use of predefined knowledge about the relationship of the nodes. This has

posed the major challenge for Mess free methods. The currently most widely used

method for constructing Mess free shape functions is the method of moving least

squares (MLS) approximation. The application of MLS approximation has led to the

development of many Mess free methods and techniques. The major problem in MLS

approximation is that the shape functions constructed do not possess the Kronecker

delta function property.

3.4 Determination of the Dimension of a Support

Domain

Support domain determines nodes (marked by o) that are used for approximation

or interpolation of field variable at point x. A support domain can have different

shapes and can be different from point to point. Most often used shapes are circular

or rectangular as shown in figure 3.5.

The accuracy of interpolation depends on the nodes in the support domain of the

point of interest (which is often a quadrature point xQ or the center of integration

cells). Therefore, a suitable support domain should be chosen to ensure a proper area

of coverage for interpolation.

To define the support domain for a point xQ, the dimension of the support domain

ds is determined by

ds = αs ∗ dc (3.1)

where αs is the dimensionless size of the support domain and dc is a characteristic

length that relates to the nodal spacing near the point at xQ. If the nodes are

uniformly distributed, dc is simply the distance between two neighboring nodes. In

the case where the nodes are non-uniformly distributed, dc can be defined as an

”average” nodal spacing in the support domain of xQ.

The physical meaning of the dimensionless size of the support domain αsis very clear.

CHAPTER 3. MESH FREE APPROACH 32

Figure 3.5: Support domain

It is simply the factor of the average nodal spacing. For example, αs = 2.1 means

a support domain whose radius is 2.1 times the average nodal spacing. The actual

number of nodes, n, can be determined by counting all the nodes in the support

domain. The dimensionless size of the support domain αs should be predetermined

by the analyst, usually by carrying out numerical experiments for the same class of

problems for which solutions already exist. Generally, an αs = 2.0 to 3.0 leads to

good results. Note that, if background cells are provided, support domains can also

be defined based on the background cells.

3.5 Property of Mesh free Shape Functions

A compulsory condition that a shape function must satisfy is the partition of unity,

that is,
n∑

i=1

φi(x) = 1 (3.2)

CHAPTER 3. MESH FREE APPROACH 33

This is a necessary condition for the shape function to be able to produce any rigid

motion of the problem domain.

There are also conditions that a shape function preferably satisfies. The first prefer-

able condition is the linear field reproduction condition, that is,

n∑
i=1

φi(x)xi = x (3.3)

This condition is required for the shape function to pass the standard patch test,

which has been used very often in testing finite elements. This condition is not

compulsory because shape functions that fail to pass the patch test can still be used

as long as a converged solution is produced. Many finite elements cannot pass the

patch test but are widely used in FEM packages.

Another preferable condition is the Kronecker delta function property, that is,

φi(x = xi) = {
1 i = j, j = 1, 2, 3, . . . , n

0 i 6= j, i, j = 1, 2, 3, . . . , n
(3.4)

This condition is preferred because a shape function that possesses this property

permits use of a simple procedure to impose essential boundary conditions. In element

free methods, however, the shape functions created may or may not satisfy condition

3.4, depending on the method used for creating the shape functions.

3.6 Equations of elasticity

A two-dimensional (2D) linear solid mechanics problem is used to present the pro-

cedure of the EFG method in formulating discretized system equations. The stress

components σij must satisfy the differential equations of equilibrium in a domain Ω,

of a body under consideration

σij,j + Fi = 0 Equilibrium equation in problem domain Ω (3.5)

CHAPTER 3. MESH FREE APPROACH 34

where Fi are the components of body force acting on the object. The field equation

are to be solved given certain boundary conditions as

ui = ui Boundary condition essential boundary Γu (3.6)

which gives constraints to the field variable of displacement. The natural boundary

conditions are given by

ti = ti Boundary condition essential boundary Γt (3.7)

where the traction on a surface with normal nj are given as ti = σijnj, and ui and

ti are the prescribed values of displacements and tractions on boundaries Γu and

Γt, respectively. Γu ∪ Γt=Γ is the boundary of the object domain Ω. The stress

components σij in eqn.3.5 are symmetric (i.e., σij = σji). The kinematics equations,

relating the strain components εij to the displacements ui are

εij =
1

2
(ui,j + uj,i) (3.8)

Where a comma denotes differentiations; thus, ui,j = ∂ui/∂xj. The constitutive

relations for a linear elastic material are given as

σij = λεkkδij + 2µεij = Eijklεkl (3.9)

Where λ and µ are Lame’s constants and Eijkl is the constitutive tensor eqns.

3.5 to 3.9 summarize the equations of elasostatics for a linear, isotropic, homogenous

elastic object.

CHAPTER 3. MESH FREE APPROACH 35

3.7 Concept of weak form

Obtaining the exact solution for a strong form system equation is ideal but, unfor-

tunately, it is usually very difficult for practical engineering problems that are very

complex. The finite difference method (FDM), which uses finite differential represen-

tation (Taylor series) of a function in a local domain, can be used to solve system

equations of strong form to obtain an approximated solution. However, FDM re-

quires a regular mesh of grids, and can usually work only for problems with regular

geometry and simple boundary conditions. One of the Mesh free methods for solving

strong form system equations to obtain an approximate solution is to use arbitrarily

distributed grids based on Taylor series expansions, and least square or moving least

squares (MLS) approximations. The formulation is very simple but less stable, and

the accuracy of the results often depends on the selection of the nodes for constructing

the differential equations. There are also Mesh free methods for solving strong form

system equations using an integral representation of field variable functions, such as

the smooth particle hydrodynamics (SPH) methods. The major problem with the

SPH methods is the treatment of boundaries of the problem domain and the bound-

ary conditions.

Formulation based on weak forms can produce a stable set of algebraic system equa-

tions and gives, discretized system equations that produce much more accurate re-

sults. Therefore, weak form is often preferred by many to obtain an approximated

solution. Here weak form formulations are used to form discretized system equations

for Mesh free methods for problems of engineering mechanics.

3.8 Weak forms of the governing equations

The first law of thermodynamics states that for a body in equilibrium and subjected

to arbitrary virtual displacement δvi, the variation in work of the external forces δW

CHAPTER 3. MESH FREE APPROACH 36

is equal to the variation of internal energy δU . These quantities are written as

δW − δU = δWS + δWB − δU = 0 (3.10)

δWS =

∫
Γt

tδvidΓ (3.11)

δWB =

∫
Ω

FiδvidΩ (3.12)

δU =

∫
Ω

σijδεijdΩ (3.13)

Where δεij = 1
2

(δvi,j + δvj,i) is the strain due to the virtual displacement field δvi.

Since σij = σji, the product σij δεij may be expressed eqn.3.8 as σij δvij.

In the context of computational mechanics, the displacement field ui that leads to the

stress field σij is referred to as the trial function, and the virtual displacement field

δvi is referred to as a test function.

By solving eqns.(3.10 to 3.13) the following weak form is obtained

W1 :

∫
Ω

σijδvi,jdΩ−
∫

Ω

FiδvidΩ−
∫

Γt

tiδvidΓ = 0 (3.14)

It is noted that eqn. is the same relation as the virtual work relation in eqns. (3.10 to

3.13). Eqn.3.14 is adequate when the test function ui satisfies the essential boundary

conditions of eqn.(3.7 and 3.8) i.e., ui = ui on Γu. Alternate forms are resorted to

when these conditions are not met. A Lagrange multiplier form Belytschko et al.,[tbel]

may be written by augmenting eqn.3.14 to give the weak form

W2 :

∫
Ω

σijδvi,jdΩ−
∫

Ω

δFiδvidΩ−
∫

Γt

tiδvidΓ−
∫

Γu

(ui − ui) δλidΓ−
∫

Γu

λiδvidΓ = 0

(3.15)

Where λi and δλi are the Lagrange multiplier and its variation, respectively.

CHAPTER 3. MESH FREE APPROACH 37

The essential boundary conditions can also be accounted for by means of a penalty

formulation to give

W3 :

∫
Ω

σijδvi,jdΩ−
∫

Ω

δFiδvidΩ−
∫

Γt

tiδvidΓ−α
∫

Γu

(ui − ui)δvidΓ = 0 (3.16)

Where α� 1 is a penalty parameter to enforce ui = ui on Γu. The choice of the weak

form employed in a formulation depends on the strategy adopted therein to satisfy

the essential boundary conditions.

Chapter 4

MESH FREE SHAPE

FUNCTION CREATION

4.1 Introduction

Creation of Mesh free shape function is the central and most important issue in

Mesh free methods. The challenge is how to create shape functions using only nodes

scattered arbitrarily in a domain without any predefined mesh to provide connectivity

of the nodes.

Development of more effective methods for constructing shape functions is thus one

of the hottest areas of research in the area of Mesh free methods. A good method of

shape function construction should satisfy the following basic requirements:

a. The nodal distribution can be arbitrary within reason, at least more flexible

than that in the finite element method (FEM) (arbitrary nodal distribution).

b. The algorithm must be stable (stability).

c. The shape function constructed should satisfy a certain order of consistency

(consistency).

d. The domain for field variable approximation/interpolation (termed the support

38

CHAPTER 4. MESH FREE SHAPE FUNCTION CREATION 39

domain or influence domain or smoothing domain) should be small compared

with the entire problem domain (compact support).

e. The algorithm should be computationally efficient. It should be of the same

order of complexity as that of FEM (efficiency).

f. Ideally, the shape function should possess the Kronecker delta function property

(delta function property).

g. Ideally, the field approximation using the shape function should be compatible

throughout the problem domain (compatibility).

Satisfaction of the above requirements ensures both easy implementation of the Mesh

free method and accuracy of the numerical solutions. The first requirement is ob-

vious. The stability (the ii requirement) of an algorithm should always be checked,

because there could be uncertainties caused by the arbitrariness in the distribution

of nodes. The consistency condition (requirement iii) is essential for the conver-

gence of the numerical results, when the nodal spacing is reduced. Satisfaction of

the compact condition (requirement iv) leads to a banded system matrix that can be

handled with good computational efficiency. The domain for field variable approxima-

tion/interpolation should be kept as small as possible to ensure a narrow bandwidth

in the discretized system matrices. Requirement (v) prevents unacceptably expensive

shape function constructions, because a too costly procedure will eventually become

impractical, no matter how good it is. The (vi) requirement eases imposition of es-

sential boundary conditions, to place a limit on the extra effort needed for handling

the essential boundary conditions. This requirement is not rigid because one can use

special measures to impose essential boundary conditions, of course, at additional

expense. The last requirement removes the need for enforcing compatibility in using

the (global) Galerkin weak forms for establishing the discrete equation systems. The

compatibility requirement is unnecessary if the local weight residual weak form is

employed. It requires only the reproduction or consistency of the shape function to

CHAPTER 4. MESH FREE SHAPE FUNCTION CREATION 40

achieve convergence of the solution.

A number of ways to construct shape functions have been proposed. The classification

given by G. R. Liu [18] of these methods into three major categories:

a. Finite integral representation methods, which include:

(1) Smoothed particle hydrodynamics (SPH) method

(2) Reproducing kernel particle method (RKPM)

(3) General kernel reproduction method (GKR)

b. Finite series representation methods, which include:

(1) Moving least squares (MLS) methods:

i. MLS approximation

ii. Modified MLS approximation

(2) Point interpolation methods (PIM):

i. Polynomial PIM

ii. Radial PIMs

(3) Partition of unit (PU) methods:

i. Partition of unity finite element (PUFE)

ii. hp-clouds

(4) Finite element methods:

i. Element-based interpolations

c. Finite differential representation methods, which include:

(1) Finite difference method (regular grids)

(2) Finite point method (irregular grids)

CHAPTER 4. MESH FREE SHAPE FUNCTION CREATION 41

Finite integral representation methods are relatively young, but have found a special

place in Mesh free methods with the development of smoothed particle hydrodynamics

(SPH). The function is represented using its information in a local domain (smoothing

domain or influence domain) via an integral form, as illustrated in Fig. 4.1.

Consistency is achieved by properly choosing the weight function. Finite series rep-

resentation methods have a long history of development. They are well developed

in FEM, and are very active now in the area of Mesh free methods. Consistency is

ensured by the use of the basis functions. The inclusion of special terms in the basis

can also improve the accuracy of the results for certain classes of problems. Finite

difference representation methods have also been used for a long time. Convergence

of the representation is ensured via the theory of the Taylor series. Finite difference

representation methods are usually used for establishing system equations based on

strong formulation, where one may, but usually do not, construct shape functions.

The following sections detail the first two types of methods, which are widely used

for creating shape functions for Mesh free methods.

Consistency is the capability of the field function approximation method to reproduce

the fields of lowest orders of complete polynomials at any point in the problem domain.

If the method can reproduce polynomials of up to the kth order, the method

is said to have kth-order consistency. Compatibility refers to the continuity of the

approximation on the boundaries between sub-domains, based on which shape the

functions are constructed. Both consistency and compatibility affect the accuracy

and convergence of the numerical results. As will be seen later, the MLS shape

functions are both consistent and compatible.

4.2 Choice of Weight Function

The weight function ŵI(x) ≡ Ŵ (x − xI) play an important role in the performance

of the method. They should be constructed so that they are positive and that a

CHAPTER 4. MESH FREE SHAPE FUNCTION CREATION 42

Figure 4.1: Methods of function representation at x using the information in its vicin-
ity. (a) Finite integral representation. Ŵ : weight or smoothing function. (b) Finite
series representation. pi(x) are basis functions. (c) Finite differential representation,
where derivatives of function are used.

CHAPTER 4. MESH FREE SHAPE FUNCTION CREATION 43

unique solution a(x) is guaranteed; they should be relatively large for the xI close to

x, and relatively small for the more distant xI ; in other words, they should decrease in

magnitude as the distance from x to xI increases. Therefore, weight functions which

depend only on the distance between two points as follows:

Ŵ (x− xI) = ŴI(d) (4.1)

Where d = ‖x − xI‖ is the distance between the two points x and xI . more

specifically the weight functions of the following form is considered:

ŴI ≡ ŴI(d
2k) (4.2)

Where ŴI (d2k) with respect to x or y in two dimensions exist at the data point

xI . To begin, we consider the derivatives of weight function ŴI(d
2k) with respect to

x:

∂ŴI

∂x
= 2kd2k−1∂ŴI

∂d

∂d

∂x
= 2k(x− xI)d2k−2∂ŴI

∂d
in2D (4.3)

Note that the limit of (x − xI)/d as x approaches xI does not exist. Therefore, the

above derivatives exists only if k > 1/2. For the second derivative of the weight

function ŴI (d2k) with respect to x, Belytchko et. al.[28].

The different types of weight function used for the EFG analysis are as follows:

The cubic spline weight function (W1):

Ŵ (x− xI) ≡ Ŵ (d) =

2
3
− 4d

2
+ 4d

3
for d ≤ 1

2

4
3
− 4d+ 4d

2 − 4
3
d

3
for 1

2
≤ d ≤ 1

0 for d > 1

(4.4)

The quartic spline weight function (W2):

CHAPTER 4. MESH FREE SHAPE FUNCTION CREATION 44

Ŵ (x− xI) ≡ Ŵ (d) =
1− 6 d

2
+ 8d

3 − 3d
4
for d ≤ 1

2

0 for d > 1
(4.5)

The exponential weight function (W3):

Ŵ (x− xI) ≡ Ŵ (d) =
e−(d/α)

2

for d ≤ 1
2

0 for d > 1
(4.6)

In equation 4.4 to 4.6,

d =
|x− xI |
dw

=
d

dw
(4.7)

where dw is directly related to the size of the support domain. It defines the dimension

of the domain where Ŵ 6= 0. In general, dw can be different from point to point. By

following a general procedure for constructing weight (smoothing) functions (Liu, G.

R. et al.,2002a), a new quartic weight (smoothing) function is constructed (W4).

Ŵ (x− xI) ≡ Ŵ
(
d
)

=
2
3
− 9

32
d

2
+ 19

192
d

3 − 5
512
d

4
for d ≤ 1

0 for d > 1
(4.8)

Fig. 4.2 plots all four weight functions given by eqns. 4.4 to 4.6 and 4.7. From the

plot it is seen that the weight function W4 behave same as weight function W1. Fig.

4.2.

4.3 Moving Least Squares Approximation

Moving least squares (MLS), originated by mathematicians for data fitting and sur-

face construction, is often termed local regression and loss (Lancaster and Salkauskas,

1981; Cleveland, 1993). It can be categorized as a method of finite series represen-

tation of functions. An excellent description of the MLS method can be found in a

paper by Lancaster and Salkauskas (1981). The MLS method is now a widely used

alternative for constructing Mesh free shape functions for approximation. Nayroles et

CHAPTER 4. MESH FREE SHAPE FUNCTION CREATION 45

Figure 4.2: Weight functions. W1: cubic spline weight function; W2: quartic spline
weight function; W3: exponential weight function (cα = 0.3); W4: new quartic weight
function

al. (1992) were the first to use MLS approximation to construct shape functions for

their diffuse element method (DEM) for mechanics problems. DEM was modified by

Belytschko et al. (1994b), who named it the element free Galerkin (EFG) method,

where the MLS approximation is also employed.

The MLS approximation has two major features that make it popular:

a. The approximated field function is continuous and smooth in the entire problem

domain; and

b. It is capable of producing an approximation with the desired order of consis-

tency. The procedure of constructing shape functions for Mesh free methods

using MLS approximation is detailed in following section.

CHAPTER 4. MESH FREE SHAPE FUNCTION CREATION 46

Figure 4.3: The first derivative of weight functions. W1: cubic spline weight function;
W2: quartic spline weight function; W3: exponential weight function (a = 0.3); W4:
new quartic weight function

4.4 MLS Procedure

Let u(x) be the function of the field variable defined in the domain Ω. The approxi-

mation of u(x) at point x is denoted uh(x). MLS approximation first writes the field

function in the form:

uh (x) =
m∑
j

pj (x) aj (x) ≡ pT (x) a (x) (4.9)

Where m is the number of terms of monomials (polynomial basis), and a(x) is a vector

of coefficients given by,

aT (x) = {a0 (x) a1 (x) , . . . , am (x)} (4.10)

CHAPTER 4. MESH FREE SHAPE FUNCTION CREATION 47

Where functions of x, In eqn. 4.9, p(x) is a vector of basis functions that consists

most often of monomials of the lowest orders to ensure minimum completeness. En-

hancement functions can, however, be added to achieve better efficiency or to produce

stress fields of special characteristics, such as singularity at the crack tip and stress

discontinuity at interfaces of different types of materials. Here discussion is for the

use of the pure polynomial basis. In 1D space, a complete polynomial basis of order

m is given by

pT (x) = {p0 (x) , p1 (x) , pm (x)} =
{

1, x, x2, . . . , xm
}

(4.11)

and in 2D space,

pT (x) = pT (x, y) =
{

1, x, y, x2, y2, . . . , xm, ym
}

(4.12)

In this case, the Pascal triangle can be utilized to build pT (x), and the number of

nodes in the support domain can be chosen accordingly.

In 3D space,

pT (x) = pT (x, y, z) =
{

1, x, y, z, xy, yz, xz, x2, y2, z2, . . . , xm, ym, zm
}

(4.13)

In this case, the Pascal pyramid can be employed to build pT (x). The vector of coef-

ficients a(x) in eqn. 4.9 is determined using the function values at a set of nodes that

are included in the support domain of x. A support domain of a point x determines

the number of nodes that are used locally to approximate the function value at x.

Given a set of n nodal values for the field function u1, u2, ..., un, at n nodes x1, x2, ..., xn

that are in the support domain, eqn. 4.9 is then used to calculate the approximated

values of the field function at these nodes:

uh (x, xI) = ph (xI) a (x) , I = 1, 2, . . . , n (4.14)

CHAPTER 4. MESH FREE SHAPE FUNCTION CREATION 48

Figure 4.4: The approximation function uh(x) and the nodal parameters ui in the
MLS approximation

Note that a(x) here is an arbitrary function of x. A functional of weighted residual

is constructed using the approximated values of the field function and the nodal

parameters, u1 = u(xs), that are shown in fig. 4.4, i.e.,

J =
n∑
I

Ŵ (x− xI)
[
uh (x, xI)− u(xI)

]2
(4.15)

J =
n∑
I

Ŵ (x− xI)
[
pT (xI) a (x)− uI

]2
(4.16)

Where Ŵ (x − xI) is a weight function, and uI is the nodal parameter of the field

variable at node I.

The stationarity of J in equation with respect to a(x) leads to the following linear

relation between a(x) and uI.

A (x) a (x) = B (x)u (4.17)

a (x) = A−1 (x)B (x)u (4.18)

CHAPTER 4. MESH FREE SHAPE FUNCTION CREATION 49

Where A(x) and B(x) are matrices defined by

A(x) =
n∑
I

ŴI(x)pT (xI)p(xI), . . . ŴI(x) ≡ Ŵ (x− xI) (4.19)

B (x) = {w1(x)p (x1) , w2(x)p (x2) , wn(x)p (xn)} (4.20)

uT = {u1, u2, . . . , un} (4.21)

Hence,

uh (x) =
n∑
I

m∑
j

pj (x) (A−1 (x)B (x))Ij ≡
n∑
I

∅I (x)uI (4.22)

Where the shape function ∅I (x)is defined by:

∅I =
m∑
j

pj(A
−1 (x)B (x))jI (4.23)

The partial derivatives of ∅I (x) can be obtained as follows:

∅I,i =
m∑
j

{
pj,i(A

−1 (x)B (x))jI + pj(A
−1
,i B + A−1B,i)jI

}
(4.24)

where

A−1
,i = −A−1A,iA

−1 (4.25)

And the index following a comma is a spatial derivative. It should be noted that the

approximation in eqn. 4.22 is no longer a polynomial even if the basis function p(x)

are polynomials. However, if u(x) is a polynomial, it is reproduced exactly by uh(x);

see Nayroles et al.

CHAPTER 4. MESH FREE SHAPE FUNCTION CREATION 50

4.5 1D shape functions creation

A plot of a typical 1D MLS weight function and shape function is given in fig. 4.5.

The shape function is for the node at x = 0 and is obtained using five nodes evenly

distributed in the support domain of [-1, 1].

The quartic spline weight function (W2) is used. It can be seen that the MLS shape

function attains a maximum value that is considerably less than 1. For this plot, the

quartic weight function eqn. 4.5 is used with dw = 0.45.

4.6 2D shape functions creation

Mesh free shape functions are constructed in a domain of (x, y) [-2, 2] x [-2, 2] using

5 x 5 evenly distributed nodes in the domain. Fig. 4.6 shows the MLS shape function.

It is clear that the MLS shape functions do not satisfy the Kronecker delta function.

Fig. 4.7 shows the first derivative of MLS shape function w.r.t. x and y.

CHAPTER 4. MESH FREE SHAPE FUNCTION CREATION 51

Figure 4.5: MLS shape function in 1D space for the node at x = 0 obtained using
five nodes evenly distributed in the support domain of [-1, 1]. Quartic spline weight
function (W2) is used. (a) MLS shape function; (b) derivative of the shape function.
Note that the MLS shape function does not possess the Kronecker delta function
property.

CHAPTER 4. MESH FREE SHAPE FUNCTION CREATION 52

Figure 4.6: MLS shape function for 2D

Figure 4.7: First derivative of MLS shape function in x and y direction

Chapter 5

ELEMENT FREE GALERKIN

METHOD

5.1 Introduction

The element free Galerkin (EFG) method is an Mesh free method developed by Be-

lytschko et al. (1994b)[28] based on the diffuse elements method (DEM) originated

by Nayroles et al. (1992). The major features of the DEM and the EFG method are

as follows:

a. Moving least square (MLS) approximation is employed for the construction of

the shape function.

b. Galerkin weak form is employed to develop the discretized system equation.

c. Cells of the background mesh for integration are required to carry out the

integration to calculate system matrices.

This chapter presents a detailed procedure that leads to the EFG method. Detailed

formulation and equations are provided. Issues related to background integration,

are examined. A typical benchmark problem of a cantilever beam is considered to

illustrate the relationship between the density of the field nodes and the density of

53

CHAPTER 5. ELEMENT FREE GALERKIN METHOD 54

the global background mesh, as well as the number of integration sample points. The

findings and remarks on the background integration are applicable to any Mesh free

method that requires background integration.

Applications of the EFG method are presented for solving a number of structural

engineering problems including linear and nonlinear problems.

It may be noted that the EFG is conforming due to the use of MLS shape functions

that are consistent and compatible and the use of the constrained Galerkin approach

to impose the essential boundary condition.

5.2 EFG formulation

A two-dimensional (2D) linear solid mechanics problem is used to present the pro-

cedure of the EFG method in formulating discretized system equations. The stress

components σij must satisfy the differential equations of equilibrium in a domain, Ω,

of a body under consideration

σij,j + Fi = 0 Equilibrium equation in problem domain Ω (5.1)

where Fi are the components of body force acting on the object. The field equation

are to be solved given certain boundary conditions as

ui = ui Boundary condition essential boundary Γu (5.2)

which gives constraints to the field variable of displacement. The natural boundary

conditions are given by

ti = ti Boundary condition essential boundary Γt (5.3)

where the traction on a surface with normal nj are given as ti = σijnj, and ui and

ti are the prescribed values of displacements and tractions on boundaries Γu and Γt,

CHAPTER 5. ELEMENT FREE GALERKIN METHOD 55

respectively. Γu ∪ Γt=Γ is the boundary of the object domain Ω. The constrained

Galerkin weak form with Lagrange multipliers for the problem stated by eqns. 5.2

and 5.3 can be given by

∫
Ω

σijδvi,jdΩ−
∫

Ω

δFiδvidΩ−
∫

Γt

tiδvidΓ−
∫

Γu

(ui − ui)δλidΓ−
∫

Γu

λiδvidΓ = 0

(5.4)

The MLS approximation described in previous section is now used to express both

the trial and test functions at any point of interest x using the nodes in the support

domain of the point x. For displacement comment u,

uh (x) =
n∑
I

∅I (x)uI (5.5)

where n is the number of nodes used in the support domain of the point at x for

constructing the MLS shape function ∅I(x). The procedure of constructing ∅I(x) is

detailed in Section 4.4, and the formulation of ∅I(x) is given by eqn.4.23.

The Lagrange multiplier λ and its variation δ λ are expressed as

λ (x) =
∑n

I NI (x)λI , x ∈ Γu

δλ (x) =
∑n

I NI (x) δλI , x ∈ Γu
(5.6)

The displacement field, u= [ux,uy], consisting of the x and y displacement components

for a two-dimensional analysis, is expressed in terms of nodal displacement using eqn.

5.5 as,

CHAPTER 5. ELEMENT FREE GALERKIN METHOD 56

 ux

uy

 =

 ∅1 0 ∅2

0 ∅1 0

0 . . . ∅n
∅2 . . . 0

0

∅n





u1
x

u1
y

u2
x

u2
y

...

unx

uny



= [Φ] {u} (5.7)

The two dimensional strain fields is given by small displacement analysis,
εx

εy

γxy

 =


∂ux
∂x

∂uy
∂y

∂ux
∂y

+ ∂uy
∂x

 (5.8)

Where γxy = 2εxy is referred to as engineering shear strain, substituting in eqn.5.7

from eqn.5.6, the strain field is written as,


εx

εy

γxy

 =


∅1,x

0

∅1,y

0

∅1,y

∅1,x

∅2,x

0

∅2,y

0

∅2,y

∅2,x

. . .

. . .

. . .

∅n,x
0

∅n,y

0

∅n,y
∅n,x





u1
x

u1
y

u2
x

u2
y

...

unx

uny


(5.9)

which is expressed in shorthand matrix notation as

{ε} = [B] {u} (5.10)

CHAPTER 5. ELEMENT FREE GALERKIN METHOD 57

{ε} =


εx

εy

γxy

 {u} =



u1
x

u1
y

u2
x

u2
y

...

unx

uny



(5.11)

[B] =
[

[B1] [B2] . . . [Bn]

]
(5.12)

[BI] =


∅I,x 0

0 ∅I,y
∅I,y ∅I,x

 (5.13)

The Lagrange multiplier field is expressed in the matrix notation using eqn.5.6 as

 λx

λy

 =

 ψ1 0 ψ2

0 ψ1 0

0 . . . ψm

ψ2 . . . 0

0

ψm





λ1
x

λ1
y

λ2
x

λ2
y

...

λmx

λmy



= [N] {λ} (5.14)

Where

[N] =
[

[N1] [N2] . . . [Nm]

]
(5.15)

[NJ] =

 ψJ 0

0 ψJ

 (5.16)

CHAPTER 5. ELEMENT FREE GALERKIN METHOD 58

{λ} =



λ1
x

λ1
y

λ2
x

λ2
y

...

λmx

λmy



(5.17)

In eqn.5.17, m is the number of boundary nodes on which the essential boundary

conditions are prescribed. Similarly, the variational quantities are expressed using

shape function-based descriptions as

{δε} = [B] {δv} (5.18)

 δλx

δλy

 = [N] {δλ} (5.19)

With

{δv} =



δv1
x

δv1
y

δv2
x

δv2
y

...

δvnx

δvny



{δλ} =



δλ1
x

δλ1
y

δλ2
x

δλ2
y

...

δλmx

δλmy



(5.20)

The stress-strain relationship can be written in the matrix form as

{σ} = [D] {ε} (5.21)

CHAPTER 5. ELEMENT FREE GALERKIN METHOD 59

Where for two dimensional plane stress analysis,

D =
E

1− µ2


1 µ 0

µ 1 0

0 0 1−µ
2

 (5.22)

where E and µ are the Young’s modulus and Poisson’s ratio respectively.

For two dimensions the weak form in eqn.5.5 is now expressed in matrix notation as

∫
Ω


εx

εy

γxy


T 

σx

σy

σxy

 dΩ−
∫

Ω

 δvx

δvy


T  Fx

Fy

 dΩ

−
∫

Γt

 δvx

δvy


T  tx

ty

 dΓ−
∫

Γu

 δλx

δλy


T ux

uy

 dΓ−
∫

Γu

 δvx

δvy


T λx

δλy

 dΓ

+
∫

Γu

 δλx

δλy


T  ux

uy

 dΓ = 0

(5.23)

A few key terms in eqn.5.23 are expanded explicitly to show the process followed to

obtain the system of EFG matrix equations. The first term in eqn.5.23 is written as

∫
Ω


εx

εy

γxy


T 

σx

σy

σxy

 dΩ =

∫
Ω

{δv}T [B]T [D] [B] {u} dΩ (5.24)

where substitutions have been made from relations in eqns.5.18, 5.10, and 5.21 in

obtaining the right hand side of eqn.5.24. The right-hand side of eqn.5.24 is written

as ∫
Ω

{δv}T [B]T [D] [B] {u} dΩ={δv}T [K] {u} (5.25)

CHAPTER 5. ELEMENT FREE GALERKIN METHOD 60

where stiffness matrix [K] is

KIJ =
∫

Ω
BT
I DBJdΩ

I = 1, 2, . . . , n J = 1, 2,,m
(5.26)

The sub-matrix [KIJ] in eqn.5.26 pre multiplies the displacement vector {uJ} in

eqn.5.25. The second term in eqn.5.23 is now expanded as

∫
Ω

 δvx

δvy


T  Fx

Fy

 dΩ =

∫
Ω

{δv}T []

 Fx

Fy

 dΩ (5.27)

Where the variational displacement field δv = [δvx, δvy], is expressed similar to the

expression for displacement field in eqn.5.7. The right-hand side of the eqn.5.27 may

be written as ∫
Ω

{δv}T []T

 Fx

Fy

 dΩ={δv}T {F} (5.28)

Where the force vector {F} is written as

{F} =

∫
Ω

[]T

 Fx

Fy

dΩ (5.29)

The integrand in eqn.5.29 is further expanded by substituting for [] from eqn.5.5 to

obtain

[]T

 Fx

Fy

 =



∅1 0

0 ∅1

∅2 0

0 ∅2

...
...

∅n 0

0 ∅n



 Fx

Fy

 =



∅1

 Fx

Fy


∅2

 Fx

Fy


...

∅n

 Fx

Fy





(5.30)

CHAPTER 5. ELEMENT FREE GALERKIN METHOD 61

The force vector {F} is seen from eqn.5.30 to be composed of sub vectors
{
fΩ
J

}
,

where {
fΩ
J

}
=

∫
Ω

∅J

 Fx

Fy

 dΩ J = 1, 2, ..., n (5.31)

The remaining terms in eqn.5.23 may be expanded similarly to obtain

{δv}T
[
[KIJ] {uJ} −

{
fΩ
J

}
−
{
fΓ
J

}
+ [GIJ] {λJ}

]
+ {δλ} T

[
[GIJ]T {uJ} − {qJ}

]
= 0

(5.32)

Since {δv} and {δλ} are arbitrary variations, obtain two matrix equations by equating

the terms that post multiply each of them separately to {0} as

[KIJ] {uJ} −
{
fΩ
J

}
−
{
fΓ
J

}
+ [GIJ] {λJ} = {0} (5.33)

[GIJ]T {uJ} − {qJ} = {0} (5.34)

Writing this equations in matrix form, [KIJ] [GIJ]

[GIJ]T [0]

 {uJ}{λJ}

 =

 {fJ}{qJ}
 (5.35)

with

fJ=

∫
Ω

ΦJ
T

 Fx

Fy

 dΩ−
∫

Γt

δΦJ
T

 tx

ty

 dΓ (5.36)

GIJ = −
∫

Γu

NT
I ΦjdΓ (5.37)

qJ = −
∫

Γu

NT
J

 ux

uy

dΓ (5.38)

Finally, the contributions of the form of eqn.5.35 for each nodal point is assembled

CHAPTER 5. ELEMENT FREE GALERKIN METHOD 62

Figure 5.1: Background mesh

to obtain a global system of equation as [K] [G][
GT
]

[0]

 {u}{λ}
 =

 {f}{q}
 (5.39)

In eqn.5.39, {u} and {λ} are the vectors of unknown nodal displacements and La-

grange multipliers, respectively. The system of eqn. 5.39 may be solved using stan-

dard linear system solvers to obtain these quantities.

5.3 Flowchart

The solution procedure of the EFG method is similar to that for FEM. The geometry

of the problem domain is first modeled, and a set of nodes is generated to represent

the problem domain, as shown in Fig. 5.3. The system matrices are assembled via

two loops. The outer loop is for all the cells of the background mesh, and the inner

loop is for all the Gauss quadrature points in a cell. The flowchart of the algorithm

for stress analysis using the EFG method is presented in Fig. 5.2.

CHAPTER 5. ELEMENT FREE GALERKIN METHOD 63

5.4 Background integration

In either FEM or EFG, numerical integration is a time-consuming process required

for the computation of the stiffness matrix that is established based on the variation

method. In FEM, the integration mesh is the same as the element mesh. To obtain

accurate results, the element mesh must be sufficiently fine and a sufficient number of

integration points have to be used. In EFG, however, the background mesh is required

only in performing the integration of computing the stiffness matrix. Therefore, a

background mesh of proper density needs to be designed to obtain an approximate

solution of desired accuracy. However, this can only be done after performing a

detailed investigation to reveal the relationship between the density of the field nodes

and the density of the background mesh. The first thing that needs to be addressed

is the minimum number of integration points when numerical integration is adopted.

Zienkiewicz (1989) has shown for FEM that, if the number of independent relations

provided by all integration points is less than the number of unknowns (displacements

at all points in the element), the stiffness matrix K must be singular. This concept

should also be applicable, in principle, to EFG. For a 2D problem, the number of

unknown variables Nu should be

Nu = 2 ∗ nt − nf (5.40)

where nt and nf are the node number in domain Ω and the number of constrained

degrees of freedoms, respectively.

In evaluating the integrand at each quadrature (integration) point, three independent

strain relations are used. Therefore, the number of independent equations used in all

the quadrature points, NQ, is

NQ = 3 ∗ nQ (5.41)

where nQ is the number of total quadrature points in domain Ω. Therefore, NQ

must be larger than Nu, to avoid the singularity in the solution, and the minimum

CHAPTER 5. ELEMENT FREE GALERKIN METHOD 64

Figure 5.2: Flowchart of EFG method

CHAPTER 5. ELEMENT FREE GALERKIN METHOD 65

number of quadrature points must be greater than Nu/3. In other words, the total

number of quadrature points nQ should be at least two thirds of the total number of

unconstrained field nodes in the problem domain, i.e.,

NQ > Nu ≈ 2nt or nQ >
2

3
nt for 2D problem (5.42)

Note also that this rule is a necessary requirement, but not necessarily a sufficient

requirement. The proper number of quadrature points is studied in the following

section using benchmark problems.

5.5 Boundary condition

As described in the previous chapters, the use of MLS approximation produces shape

functions that do not possess the Kronecker delta function property, i.e., ∅I(xJ) 6= δIJ .

So that

uh (xJ) =
n∑
I

∅I (xJ)uI 6= uJ (5.43)

If uJ , were the prescribed value at a node xJ on Γu, the MLS approximant does

not reproduce this values at xJ . This causes a serious problem in terms of direct

enforcement of essential boundary conditions. A number of techniques are available

to circumvent this difficulty. However, each has its limitations and no method to date

has received universal acceptance. Some of the techniques available to account for

the essential boundary conditions in an EFG formulations are outlined briefly below,

5.5.1 Lagrange multiplier approach

This approach employs Lagrange multipliers for the enforcement of essential boundary

conditions. The approach has been described in detail in section 5.1 and results in the

system of equations shown in eqn.5.39. This approach has several limitations such as

CHAPTER 5. ELEMENT FREE GALERKIN METHOD 66

a. It leads to larger system matrices since additional unknowns corresponding to

the Lagrange multipliers are introduced.

b. The bandedness of the system is sacrificed due to the appearance of matrices

[G] and [G]T .

c. The matrix, which has to be inverted, possesses zeros at its main diagonals.

Solvers with variable bandwidth that do not take advantage of positive defi-

niteness of the matrix need to be employed.

5.6 Penalty parameter approach

In this section, an alternative method “the penalty method” is introduced for the

imposition of essential boundary conditions. The use of the penalty method produces

equation systems of the same dimensions that conventional FEM produces for the

same number of nodes, and the modified stiffness matrix is still positive definite.

The problem with the penalty method lies in choosing a penalty parameter that can

be used universally for all problems. The penalty method has been used by many

researchers; this section follows the formulation reported by G. R. Liu and Yang

(1998)[18].

The essential boundary conditions are incorporated into a weak form W3 of the

governing equations using a penalty parameter α as shown in eqn.3.15. An analysis

of W3 is performed similar to that performed on weak form W2 in section 5.2 results

in a set of equations given as

[[K] + α [Ku]] {u} = {f}+ α {fu} (5.44)

Additional terms appearing with the penalty parameter are

[Ku
IJ] =

∫
Γu

∅I [S] ∅J dΓ (5.45)

CHAPTER 5. ELEMENT FREE GALERKIN METHOD 67

[fuJ] =

∫
Γu

∅J [S]

 ux

uy

 dΓ (5.46)

Where

[S] =

 Sx 0

0 Sy

 (5.47)

Si = {
1 if ui is prescribed on Γu

0 if ui is not prescribed on Γu
(5.48)

A large value of the penalty parameter in the range α = 103 to 1013 is employed.

The solution of the system of equations may be sensitive to the value of the penalty

parameter α. Note that the integration is performed along the essential boundary,

and hence matrix Kα will have entries only for the nodes near the essential boundaries

Γu, which are covered by the support domains of all the quadrature points on Γu.

Comparing eqn.5.45 with Equation eqn.5.39, the advantages of the penalty method

are obvious:

a. The dimension and positive definite property of the matrix are preserved, as

long as the penalty parameters chosen are positive.

b. The symmetry and the bandedness of the system matrix are preserved.

These advantages make the penalty method much more efficient and hence much

more attractive compared with the Lagrange multipliers method. Studies on imple-

mentation of the penalty method and computation of actual application problems

have indicated the following minor disadvantages of the penalty method compared

with the Lagrange multipliers method.

a. It is necessary to choose penalty parameters that are universally applicable for

all kinds of problems. One hopes to use as large as possible penalty parameters,

but too large penalty parameters often result in numerical problems.

b. The results obtained are in general less accurate, compared with the method of

Lagrange multipliers.

CHAPTER 5. ELEMENT FREE GALERKIN METHOD 68

c. An essential boundary condition can never be precisely imposed. It is imposed

only approximately.

Despite these minor disadvantages, the penalty method is much more favorable for

many researchers. It is also implemented for preparing computer program in C-

language (V3) for a two dimensional problem.

5.7 EFG formulation of one dimensional bar

Consider the following one-dimensional problem on the domain 0<x<1

Eu,xx + F = 0 in Ω = (0, 1) (5.49)

where u(x) is the displacement, E is Young’s modulus, and F is the body force per

unit volume. The following specific boundary conditions are chosen:

E, u,xn = t (x = Γt) (5.50)

u = u (x = Γu) (5.51)

To obtain the discrete equations it is first necessary to use a weak form of the equilib-

rium equation and boundary conditions. The following weak form is used: Let trial

functions u(x)∈ H1 and Lagrange multiplier λ ∈ H0 for all test functions δv(x) ∈H1

and δ λ ∈ H0 if

∫ 1

0

Eu,xδv,xdx−
∫ 1

0

δFxδvxdx−txδvx |Γt − (ux − ux) δλx |Γu −λxδvx |Γu (5.52)

Then the equilibrium condition in eqn.5.44 and boundary conditions in eqn.(5.45

and 5.46) are satisfied. Note that H1 and H0 denote the Hilbert’s spaces of degree

one and zero. In order to obtain the discrete equations from the weak form, the

approximate solution u and the test function δv are constructed according to 4.18.

CHAPTER 5. ELEMENT FREE GALERKIN METHOD 69

The final discrete equation can be obtained in similar way same a two dimensional

way, yielding the following system of linear algebraic equations; [K] [G][
GT
]

[0]

 {u}{λ}
 =

 {f}{q}
 (5.53)

where

KIJ =

∫ 1

0

ΦT
I,xEΦJ,xdx (5.54)

fI=

∫ 1

0

ΦIFxdx−ΦI
T tx (5.55)

GIK = −ΦK |ΓuI (5.56)

qK = −uK (5.57)

In eqn.5.50, {u} and {λ} are the vectors of unknown nodal displacements and La-

grange multipliers, respectively. The system of equations 5.50 may be solved using

standard linear system solvers to obtain these quantities.

5.7.1 One dimensional bar problem

The element-free Galerkin (EFG) method is a mesh free method because only a set of

nodes and a description of the model’s boundary are required to generate the discrete

equations. The connectivity between the nodes and the approximation functions are

completely constructed by the method. The EFG method employs moving least-

square (MLS) approximates to approximate the function u(x) with uh(x). These

approximates are constructed from three components:

a weight function of compact support associated with each node, a basis, usually con-

sisting of a polynomial, and a set of coefficients that depend on position. The weight

function is nonzero only over a small sub-domain around a node, which is called its

support. The support of the weight function defines a nodes domain of influence,

CHAPTER 5. ELEMENT FREE GALERKIN METHOD 70

Figure 5.3: Support domain in 1D EFG bar problem

which is the sub-domain over which a particular node contributes to the approxima-

tion. The overlap of the nodal domains of influence defines the nodal Connectivity.

Fig. 5.7.1 shows various parameters of support domain of a one dimensional bar. In

which a support domain with 1.5 radius is shown and two integration cell and four

gauss points are shown. For gauss point a node 1 and node 2 are under influence,

hence shape function will contributed by this two nodes only. Now, this understand-

ing will be used to analyze a 1D bar problem. To analyze a one dimensional bar a

C-program has been prepared (V1), which is subsequently divided in no. of steps.

Each step is further described as follows:

a. Input the length, no. of nodes, no. of gauss points, Input dmax, elasticity

(E) and area (a). In the first step of the program following input values are

inserted as input file in the program. Value of dmax is taken as 2.0 which helps

CHAPTER 5. ELEMENT FREE GALERKIN METHOD 71

in deciding the dimension of dmi (Radius of influence).

b. Decide the X-coordinates. Here nodes equally distributed, which is not at all

compulsory it can be taken irregularly distributed also.

c. Calculate radius of influence dmax ∗ avg.distbetweenx − cord. Here average

spacing between nodes is equal, therefore values of dmi will constant for each

gauss point, which is equal to dmax ∗ avg.Dist.Betweennodes.

d. Setup gauss point, weight and jacobian. In the program provided, the inte-

gration cells are chosen to coincide with the intervals between the nodes, and

one-point quadrature is used to integrate the Galerkin weak form. One point

quadrature is equivalent to the trapezoidal rule, and it is used in this program

for the sake of simplicity. Since the nodes are uniformly spaced, the Jacobian

is the same value for each cell. and it is equal to one half the distance between

the nodes. The locations of the integration points, their respective weights, and

the Jacobian are stored in the array xg. Note that the first value in xg is set to

0.0. This is the point where the essential boundary condition has been enforced,

and in the loop over the integration points it will be used to assemble the G

matrix.

e. Loop over gauss points.

(1) Find distance between gauss point and x-cord. dif = xg −X − cord.

(2) Find normalised distance r= absolute(dif)/dmi

(3) Find the weight function (w) and first derivative (dw) of weight function

according to cubic or quartic spline function.

(4) Select linear polynomial basis P [1x].

(5) Matrix B is P ∗ w.

(6) Matrix A is w ∗ (P ∗ P T).

CHAPTER 5. ELEMENT FREE GALERKIN METHOD 72

(7) Matrix dA is dw ∗ (P ∗ P T).

(8) Matrix Phi is P T ∗ Ainv ∗B.

(9) The first derivative of B is db = P ∗ dw.

(10) The first derivative of Ainv is da = −Ainv ∗ dA ∗ Ainv.

(11) The first derivative of P is dP [01].

(12) The first derivative of Phi is dPhi = dP ∗Ainv ∗B+P (da∗B+Ainv ∗B).

(13) The stiffness matrix K = weight ∗ area ∗ jac ∗ E ∗ (dPhiT ∗ dPhi).

(14) fbody = area*gauss point.

(15) Load vector f = (weight ∗ fbody ∗ jac) ∗ phiT .

(16) Assemble discrete equations.

(17) GG= No. of essential boundary condition.

After loop over all gauss point has finished assemble discrete equation.

f. [KGG;GGT0].

g. q = 0.

h. Find displacement d = K−1 ∗ [fT q].

i. Remove extra conditions, find displacements at nodes.

5.8 EFG procedure for 1D beam problem

In 1D beam problem first derivative of x is slope and second derivative of x is dis-

placement. Hence, to compute displacement second derivative of shape function has

to be find out. The procedure is same as in 1D bar problem. But the slight change is

that, here second derivative of shape function has to be found out for obtaining the

nodal stiffness matrix. To understand analysis in a better way, a case of a cantilever

CHAPTER 5. ELEMENT FREE GALERKIN METHOD 73

beam with udl is taken as a sample problem in section 6.3. To analyse a 1D beam

problem following steps are to be followed.

a. Input the length, no. of nodes and no. of gauss points.

b. Input dmax, Moment of inertia (I) and Elasticity(E).

c. Decide the X-cordinates.

d. Calculate radius of influence dmax ∗ avg. dist between x-cord.

e. Setup gauss point, weight and jacobian.

f. Loop over gauss points.

(1) Find distance between gauss point and x-cord. dif = xg −X − cord.

(2) Find the weight function (w), first derivative (dw) of weight function and

second derivative of weight function according to cubic or quartic spline

function.

(3) Select linear polynomial basis P [1xx2].

(4) Matrix B is P ∗ w.

(5) Matrix A is w ∗ (P ∗ P T).

(6) Matrix dA is dw ∗ (P ∗ P T).

(7) Matrix ddA is ddw ∗ (P ∗ P T).

(8) Matrix Phi is PT ∗ Ainv ∗B.

(9) The first derivative of B is db = P ∗ dw.

(10) The first derivative of Ainvisda = −Ainv ∗ dA ∗ Ainv.

(11) The first derivative of Phi is dPhi = dP ∗Ainv ∗B+P (da∗B+Ainv ∗B).

(12) The second derivative of Phi matrix ddPhi = (ddP ∗ (Ainv ∗ B)) + (P ∗

(dda∗B+da∗db+da∗db+Ainv ∗ddb)) + (dP ∗ (2∗Ainv ∗db+ 2∗da∗B))

After loop over all gauss point has finished .

CHAPTER 5. ELEMENT FREE GALERKIN METHOD 74

(13) Find Kmatrix = ddPhi ∗ E ∗ I ∗ ddPhi ∗ vg

(14) Load vector for various loading. f = phi ∗ udl ∗ vg

where, udl is applied uniformly distributed load

and vg is distance between gauss points.

g. To incorporate the boundary conditions, For a cantilever beam, two extra rows

and columns will be there in stiffness matrix. For a simply supported beam, two

extra rows and columns will be incorporated. For a propped cantilever beam,

three extra rows and columns will be incorporated. For a fixed beam, four extra

rows and columns will be incorporated.

h. Find displacement d = K−1 ∗ fT

Remove extra conditions, find displacements at nodes.

i. Solve the equation at gauss points

Displacement at gauss points = phi ∗ u

Rotation at gauss points = dphi ∗ u

5.9 Programming EFG method

For analysis of structural engineering problems programs have been prepared for

one dimensional bar (V1), one dimensional beam (V2) and two dimensional beam

(V3). These programs have been prepared in C language. Programs V1 and V2 are

programmed using Lagrange multiplier. While preparing program for V3 following

experiences were observed are given in section 5.5. so for this part MATLAB has

been used for solution of equations. Finally it was decided to use Penalty parameter

method for introduction of boundary condition and solution of equation.

Chapter 6

EFG APPLICATIONS

6.1 Introduction

Theory of EFG method has been described in previous chapters. Subsequently based

on through study of EFG method, detailed flow chart is presented in this chapter.

Computer programs in C-language are developed for 1D bar, 1D beam and 2D plane

stress applications. For 2D applications, two methods for introduction of boundary

conditions viz. Lagrange method and Penalty method are attempted.

In the following sections different problems are analyzed and results are discussed.

6.2 One dimensional bar problem

Software for analysis of one dimensional elasto-statics problem by EFG method is de-

veloped. For the analysis a C-program has been prepared which is given in Appendix-

A. For this an example of, one dimensional bar of unit length subjected to linear body

force of magnitude x is illustrated.

The displacement at the left end of bar is fixed and right end is traction free. The bar

has constant cross sectional area with unit value and, Young’s modulus of elasticity E

is unit value. Fig. 6.2 shows various parameters of 1D bar problem with discretization

considering 11 numbers of nodes. To analyse the bar following procedure is followed.

75

CHAPTER 6. EFG APPLICATIONS 76

Figure 6.1: Discretization for 1D analysis

Here the program V1 has been used. The computations are done for 4 nodes and 4

gauss points.

a. Input the length, no. of nodes, no. of gauss points, dmax, elasticity (E) and

area.

length = 1, no. of nodes = 4, no. of gauss point = 4.

dmax = 2.0, E = 1.0, area = 1.0.

b. Decide the X-coordinates.

X-cord

0 0.333 0.667 1

c. Calculate radius of influence dmax ∗ avg. dist between x-cord.

dmi = 2 ∗ 0.333 = 0.667.

d. Setup gauss point, weight and jacobian.

gauss points xg = [0 0.167 0.5 0.833]

e. Loop over gauss points.

(1) Find distance between gauss point and x-cord.

dif = xg − x− cord.

dif = [0 − 0.333 − 0.667 − 1]

(2) Find normalised distance r = absolute(dif)/dmi

r = [0 0.5 1 1.5]

CHAPTER 6. EFG APPLICATIONS 77

(3) Find the weight function (w) and first derivative (dw) of weight function

according to cubic or quartic spline function.

w = [0.67 0.17 0 0]

dw = [0 1.5 0 0]

(4) Select linear polynomial basis P = [1 x].

P T =

1 1 1 1

0 0.33 0.67 1

(5) MatrixB = P ∗ w.

B =

0.667 0.167 0 0

0 0.056 0 0

(6) MatrixA = w ∗ (P ∗ P T).

A=

0.833 0.056

0.056 0.019

(7) MatrixdA = dw ∗ (P ∗ P T).

dA =

1.5 0.5

0.5 0.167

(8) MatrixPhi = P T ∗ Ainv ∗B.

Phi = [1 0 0 0]

(9) The first derivative of B = db = P ∗ dw.

db =

 0 1.5 0 0

0 0.5 0 0


(10) The first derivative of Ainv is da = −Ainv ∗ dA ∗ Ainv.

da = [-3.13E-07 3.34E-06 4.69E-06 -4.86E+02]

(11) The first derivative of P is dP [0 1].

CHAPTER 6. EFG APPLICATIONS 78

(12) The first derivative of Phi is dPhi = dP ∗Ainv∗B+P ∗(da∗B+Ainv∗B).

dPhi = [-3.00E+00 3.00E+00 0.00E+00 0.00E+00]

(13) The stiffness matrix K = weight ∗ area ∗ jac ∗ E ∗ (dPhiT ∗ dPhi). K =

0.00E+00 0.00E+00 0.00E+00 0.00E+00

0.00E+00 0.00E+00 0.00E+00 0.00E+00

0.00E+00 0.00E+00 0.00E+00 0.00E+00

0.00E+00 0.00E+00 0.00E+00 0.00E+00

(14) fbody = area ∗ gausspoint.

(15) Load vector f = (weight ∗ fbody ∗ jac) ∗ phiT .

f =


0.00E+00

0.00E+00

0.00E+00

0.00E+00


(16) Assemble discrete equations.

K =

2.33E+00 -1.71E+00 -5.69E-01 -4.69E-02

-1.71E+00 2.88E+00 -6.01E-01 -5.69E-01

-5.69E-01 -6.01E-01 2.88E+00 -1.71E+00

-4.69E-02 -5.69E-01 -1.71E+00 2.33E+00

(17) GG = No. of essential boundary condition.

Here left end of the bar is fixed for displacement, hence only one essential

boundary condition is there. Shape function at the left end of bar is given

by,

GG = [−1 0 0 0]

After loop over all gauss point has finished assemble discrete equation.

f. Impose Lagrange multiplier condition

m =
K GG

GGT 0

CHAPTER 6. EFG APPLICATIONS 79

m =

2.329 -1.714 -0.569 -0.047 -1

-1.714 2.883 -0.601 -0.569 0

-0.569 -0.601 2.884 -1.714 0

-0.047 -0.569 -1.714 2.329 0

-1 0 0 0 0

g. q=0.

h. Find displacement d = m−1 ∗ [fT q].

d =



0

0.165

0.3

0.324

-0.5


i. Remove extra conditions, find displacements at nodes.

u =


0

0.165

0.3

0.324


The exact solution is given by the equation:

u (x) =
1

E

[
1

2
x− x3

6

]
Table 6.2 shows the x distance, exact displacement, computed displacement by pro-

gram V1 and error percentage for 6 nodes.

Table 6.2 shows the x distance, exact displacement, computed displacement by pro-

gram and error percentage for 11 nodes.

Table 6.2 shows the x distance, exact displacement, computed displacement and

error percentage for 21 nodes.

CHAPTER 6. EFG APPLICATIONS 80

X Exact
Disp.

Computed
Disp.

% error

0 0 0 0
0.2 0.0987 0.0995 0.840
0.4 0.1893 0.1924 1.618
0.6 0.2640 0.2666 0.977
0.8 0.3147 0.3224 2.455
1 0.3333 0.3325 0.238

Table 6.1: Displacement results for 6 nodes

X Exact
Disp.

Computed
Disp.

% error

0 0.0000 0.0000 0
0.1 0.0498 0.0502 0.808
0.2 0.0987 0.0988 0.163
0.3 0.1455 0.1459 0.277
0.4 0.1893 0.1898 0.263
0.5 0.2292 0.2298 0.276
0.6 0.2640 0.2647 0.283
0.7 0.2928 0.2937 0.311
0.8 0.3147 0.3155 0.274
0.9 0.3285 0.3302 0.526
1.0 0.3333 0.3325 0.259

Table 6.2: Displacement results for 11 nodes

Fig. 6.2 shows the displacement results for one dimensional bar by exact analytical

and EFG method. For EFG method analysis has been done for 6 nodes, 11 nodes

and 21 nodes.

From Table 6.2, 6.2 and 6.2 it can be observed that the in general, the results are

having good co-relation with the exact results.

CHAPTER 6. EFG APPLICATIONS 81

x Exact
Disp.

Computed
Disp.

% error

0 0 0 0
0.05 0.0250 0.0251 0.610
0.1 0.0498 0.0498 0.028
0.15 0.0744 0.0745 0.081
0.2 0.0987 0.0987 0.062
0.25 0.1224 0.1225 0.065
0.3 0.1455 0.1456 0.065
0.35 0.1679 0.1680 0.066
0.4 0.1893 0.1895 0.067
0.45 0.2098 0.2100 0.068
0.5 0.2292 0.2293 0.069
0.55 0.2473 0.2474 0.070
0.6 0.2640 0.2642 0.071
0.65 0.2792 0.2794 0.073
0.7 0.2928 0.2931 0.075
0.75 0.3047 0.3049 0.077
0.8 0.3147 0.3149 0.079
0.85 0.3226 0.3229 0.085
0.9 0.3285 0.3287 0.075
0.95 0.3321 0.3326 0.135
1 0.3333 0.3331 0.065

Table 6.4: Displacement results for 21 nodes

CHAPTER 6. EFG APPLICATIONS 82

Figure 6.2: Displacement results by exact and EFG method

6.3 Temperature domain problem

A bar as shown in Fig. 6.3 of 1m length with square cross section area of 0.2mx0.2m

is subjected to a flux of 1000 W/m2 at one end. The other end of bar is fixed at

0o C. All other surfaces are insulated. Results are shown in the Fig. 6.3 which is

the exact solution of the problem and have been checked by software package NISA.

EFG procedure remains same as the 1D bar problem with elasticity replaced by

conductivity and thermal flux load is applied as point load at the end. Here the

stiffness matrix and load vector are given.

Where, point load = 5 x 1000 x 0.22 = 200 W C

The computed nodal stiffness matrix for 5 noded bar is

K = (w ∗ E ∗ area ∗ jac) ∗ (dphi′ ∗ dphi)

CHAPTER 6. EFG APPLICATIONS 83

Figure 6.3: 1D heat conduction in a bar

X meters 0 0.2 0.4 0.6 0.8 1
EFG re-
sults

0 1.01 2 3 3.99 5

NISA
results

0 1 2 3 4 5

Table 6.5: Comparison of temperature distribution along the bar axis

1.55E+02 -1.14E+02 -3.79E+01 -3.13E+00 0.00E+00 0.00E+00

-1.14E+02 1.92E+02 -4.35E+01 -3.13E+01 -3.13E+00 0.00E+00

-3.79E+01 -4.35E+01 1.63E+02 -4.69E+01 -3.13E+01 -3.13E+00

-3.13E+00 -3.13E+01 -4.69E+01 1.63E+02 -4.35E+01 -3.79E+01

0.00E+00 -3.13E+00 -3.13E+01 -4.35E+01 1.92E+02 -1.14E+02

0.00E+00 0.00E+00 -3.13E+00 -3.79E+01 -1.14E+02 1.55E+02

And the load vector is force vector f =



0

0

0

0

200


The temperature distribution (generally termed as displacement) is given in Table 6.3.

It is observed that results match very well with those obtained from use of software

NISA. Fig. 6.3 shows the graph of results.

CHAPTER 6. EFG APPLICATIONS 84

Figure 6.4: Temp. variation along bar length

Figure 6.5: Details of cantilever beam

6.4 1D beam problem

One dimensional beam problem has two degree of freedom at each node. A sample

problem of one dimensional cantilever beam is taken for analysis. The beam is fixed

at left support and right support is traction free (free end). The beam is subjected

to uniformly distributed load of 20 kN/m over its entire span. The value of Young’s

modulus is 1000kN/m2 and moment of inertia is 1000m4.

To analyze one dimensional beam Problems a C-program has been developed entitled

V2, listing of which is given in Appendix-B. The steps involved in analysis are given

below, the value of dmax is taken as 3.0. The x coordinates are equally distributed

CHAPTER 6. EFG APPLICATIONS 85

and number of gauss point are double the number of nodes.

a. Input the length, no. of nodes and no. of gauss points.

length = 10, no. of nodes = 4, no. of gauss point = 8.

b. Input dmax, Moment of inertia (I) and Elasticity(E).

dmax = 3, E = 1000.0, I = 1000.0.

c. Decide the X-cordinates.

X-cord

0 3.33 6.67 10

d. Calculate radius of influence dmax*avg. dist between x-cord.

dmi = 3 ∗ 3.33 = 10.

e. Setup gauss point, weight and jacobian.

gauss points = [0.62 1.88 3.12 4.38 5.62 6.88 8.12 9.38]

f. Loop over gauss points.

(1) Find distance between gauss point and x-cord.

dif = xg − x− cord.

dif = [0.62 − 2.71 − 6.04 9.38]

(2) Find the weight function (w), first derivative (dw) of weight function and

second derivative of weight function according to cubic or quartic spline

function.

w =[0.9785 0.7027 0.1744 0.0009]

dw=[-0.0659 0.1728 0.1136 0.0044]

ddw=[-0.09141 -0.01641 0.03859 0.01359]

(3) Select linear polynomial basis P = [1xx2].

CHAPTER 6. EFG APPLICATIONS 86

1.00000 1.000 1.000 1.000

-0.62500 2.708 6.042 9.375

0.39063 7.335 36.502 87.891

(4) Matrix B = P ∗ w.

0.978 0.703 0.174 0.001

-0.612 1.903 1.054 0.009

0.382 5.154 6.367 0.082

(5) Matrix A = w ∗ (P ∗ P T).

1.857 2.354 11.985

2.354 11.985 52.955

11.985 52.955 277.557

(6) Matrix dA = dw ∗ (P ∗ P T).

0.225 1.237 5.774

1.237 5.774 32.121

5.774 32.121 194.586

(7) Matrix ddA = ddw ∗ (P ∗ P T).

0.056 0.373 2.447

0.373 2.447 19.408

2.447 19.408 155.533

(8) Matrix Phi = P T ∗ Ainv ∗B.

Phi = [0.738 0.335 − 0.071 − 0.002]

(9) The first derivative of B is db = P ∗ dw.

-0.066 0.1728 0.1136 0.0044

0.0412 0.468 0.6863 0.0412

-0.0257 1.2675 4.1464 0.3862

(10) The first derivative of Ainv is da = −Ainv ∗ dA ∗ Ainv.

-3.617e-02 -1.297e-01 3.291e-02

-1.297e-01 -1.603e-01 4.552e-02

3.291e-02 4.552e-02 -1.470e-02

CHAPTER 6. EFG APPLICATIONS 87

(11) The first derivative of Phi is dPhi = dP ∗Ainv ∗B+P (da∗B+Ainv ∗B).

dPhi = [3.834E − 01 4.563E − 01 6.259E − 02 1.03E − 02]

(12) The second derivative of Phi matrix

ddPhi = (ddP ∗ (Ainv ∗ B)) + (P ∗ (dda ∗ B + da ∗ db + da ∗ db + Ainv ∗

ddb)) + (dP ∗ (2 ∗ Ainv ∗ db+ 2 ∗ da ∗B))

ddPhi = [3.834E − 014.563E − 016.259E − 021.039E − 02]

After loop over all gauss point has finished.

(13) Find matrix K = ddPhi ∗ E ∗ I ∗ ddPhi ∗ vg.

4.32E+04 -8.90E+04 4.85E+04 -2.67E+03

-8.90E+04 2.27E+05 -1.86E+05 4.85E+04

4.85E+04 -1.86E+05 2.27E+05 -8.90E+04

-2.67E+03 4.85E+04 -8.90E+04 4.32E+04

(14) To incorporate the boundary conditions

For cantilever beam two extra rows and columns will be there in stiffness

matrix. Two extra conditions will be at fixed end. Therefore first condi-

tion will be shape function at fixed end and second condition will be first

derivative of shape function at fixed end.

Hence new nodal stiffness matrix will be

4.32E+04 -8.90E+04 4.85E+04 -2.67E+03 1.00E+00 -4.50E-01

-8.90E+04 2.27E+05 -1.86E+05 4.85E+04 -1.77E-08 6.00E-01

4.85E+04 -1.86E+05 2.27E+05 -8.90E+04 -1.72E-08 -1.50E-01

-2.67E+03 4.85E+04 -8.90E+04 4.32E+04 0.00E+00 0.00E+00

1.00E+00 -1.77E-08 -1.72E-08 0.00E+00 0.00E+00 0.00E+00

-4.50E-01 6.00E-01 -1.50E-01 0.00E+00 0.00E+00 0.00E+00

(15) Find Load vector for various loading.

f = phi ∗ udl ∗ vg

where, udl is applied uniformly distributed load

and vg is distance between gauss points.

CHAPTER 6. EFG APPLICATIONS 88

f = [-24.414 -75.586 -75.586 -24.414 0.000 0.000] here, last two zero

are for initial displacement and rotation.

g. Find displacement d = K−1 ∗ fT

d =



-0.004

-0.004

-0.013

-0.023

-200

-999.999


Remove extra conditions, find displacements at nodes.

u =


-0.004

-0.004

-0.013

-0.023



h. solve the equation at gauss points

Displacement at gauss points = phi * u

Rotation at gauss points = dphi * u

Displacement at gauss points =

0.625 -0.000122

1.875 -0.001243

3.125 -0.003271

4.375 -0.005980

5.625 -0.009268

6.875 -0.013015

8.125 -0.017118

9.375 -0.021352

CHAPTER 6. EFG APPLICATIONS 89

Rotation at gauss points =

0.625 -0.000418

1.875 -0.001313

3.125 -0.001907

4.375 -0.002414

5.625 -0.002830

6.875 -0.003152

8.125 -0.003389

9.375 -0.003323

Fig. 6.4 shows the displacements and rotations at various gauss points.

The results are compared with the exact values of displacement and rotation.

In order to test and validate the program V2, a beams with various boundary con-

ditions has been analyzed. Thus results are also plotted for simply supported beam,

propped cantilever and fixed beam.

Fig. 6.4 shows a simply supported beam of length 10 m and u.d.l. of 20 kN/m. For

simply supported beam exact displacement is 2.603E-03 at mid span and rotation is

8.33E-04 at ends. The percentage error in displacement is 2 % and that in rotation

is 0.04 %.

Fig. 6.4 shows a propped cantilever beam with length 10 m and u.d.l. of 20 kN/m.

The maximum displacement obtained from EFG method is 1E-03 and exact displace-

ment is 1.08E-03.

Fig. 6.4 shows a fixed beam with length 10 m and 20 kN/m. The maximum dis-

placement obtained by EFG method is 4.4E-04 and exact displacement is 5.21E-04.

CHAPTER 6. EFG APPLICATIONS 90

(a)

(b)

Figure 6.6: Cantilever beam with U.D.L. (a) Displacement (b)Rotation

CHAPTER 6. EFG APPLICATIONS 91

(a)

(b)

Figure 6.7: Simply supported beam with U.D.L. (a) Displacement (b) Rotation

CHAPTER 6. EFG APPLICATIONS 92

a

b

Figure 6.8: Propped cantilever with U.D.L. (a) Displacement (b) Rotation

CHAPTER 6. EFG APPLICATIONS 93

(a)

(b)

Figure 6.9: Fixed beam with U.D.L. (a) Displacement (b) Rotation

CHAPTER 6. EFG APPLICATIONS 94

6.5 EFG procedure for 2D beam problem

To solve a problem using the EFG method in 2D domain steps are as follows

a. Insert the Height, length, young’s modulus (E), Poisson’s ratio (mu) and load

values.

b. Construct plane stress matrix (D)

D = E/(1−mu2) ∗


1.0 mu 0

mu 1.0 0

0 0 (1-mu)/2


c. Setup nodal coordinates (no. of nodes in row and column). The co-ordinate

where the displacements are to be found out are decided it can be randomly

distributed or regularly distributed.

d. Determine domain of influence. Domain of influence is calculated as described

in section 3.4, it can be a circular or rectangular type of support domain.

e. Set up gauss points, weights, and Jacobian for each cell in each cell there will

be 16 gauss points.

Many forms of quadrature formulas exist; however, the most accurate for poly-

nomial expressions is Gauss-Legendre quadrature. Gauss-Legendre quadrature

tables are generally tabulated over the range of coordinates -1 < ξ < 1 (hence

the main reason for also choosing many shape function on this interval). Here

the 4th order Gauss-Legendre formula is used, hence in each there will be 4

gauss points in each row and column, which makes it to have 16 gauss points

in each cell.

Gaussian points

ξ = [-0.861 -0.34 0.34 0.8611]

w = [0.3479 0.6521 0.6521 0.3479]

Take ξ as (row (s) and column (t)) than,

N1= ¼(1-(s))*(1-(t))

CHAPTER 6. EFG APPLICATIONS 95

N2= ¼(1+(s))*(1-(t))

N3= ¼(1+(s))*(1+(t))

N4= ¼(1-(s))*(1+(t))

where s=gauss pt(loop 1 to 4) and t=gauss pt (loop 1 to 4)

and weight = weight of s * weight of t.

Coordinate of gauss point will decided from following formula where (x1, x2,

x3, x4) are x-coordinates of cell, and (y1, y2, y3, y4) are the y-coordinates of

cell.

gs x = N1 ∗ x1 +N2 ∗ x2 +N3 ∗ x3 +N4 ∗ x4

gs y = N1 ∗ y1 +N2 ∗ y2 +N3 ∗ y3 +N4 ∗ y4

To find the Jacobian of each Gauss point the equations are,

Npsi1 = ∗ −1 ∗ (1− s)

Npsi2 = ∗ 1 ∗ (1− s)

Npsi3 = ∗ 1 ∗ (1 + s)

Npsi4 = ∗ −1 ∗ (1 + s)

Neta1 = ∗ −1 ∗ (1− t)

Neta2 = ∗ −1 ∗ (1 + t)

Neta3 = ∗ 1 ∗ (1 + t)

Neta4 = ∗ 1 ∗ (1− t)

xpsi = Npsi1 ∗ x1 +Npsi2 ∗ x2 +Npsi3 ∗ x3 +Npsi4 ∗ x4

ypsi = Npsi1 ∗ y1 +Npsi2 ∗ y2 +Npsi3 ∗ y3 +Npsi4 ∗ y4

xeta = Neta1 ∗ x1 +Neta2 ∗ x2 +Neta3 ∗ x3 +Neta4 ∗ x4

yeta = Neta1 ∗ y1 +Neta2 ∗ y2 +Neta3 ∗ y3 +Neta4 ∗ y4

jcob = xpsi ∗ yeta− xeta ∗ ypsi

(1) Loop over gauss points to assemble discrete equations

(2) Determine nodes in neighbourhood of gauss point

(3) Find shape function, first derivative of shape function w.r.t x and first

derivative of shape function w.r.t. y.

CHAPTER 6. EFG APPLICATIONS 96

To find shape function and first derivative of the shape function the pro-

cedure is described in section 4.3.

(4) Find Bmat for each node as per

B =


diphix 0

0 dphiy

dphiy dphix


(5) Kmatrix at each node = weight ∗ jac ∗ (BmatT ∗Dmat ∗Bmat)

(6) Determine nodes on boundary, set up boundary conditions

To setup boundary condition between nodes 1D method of determining

Gauss points is used. Four gauss points are there between two boundary

nodes. Find GG matrix.

(7) Setup gauss point along traction boundary.

Same as boundary element nodes, traction boundary nodes also have four

Gauss points between two traction boundary nodes.

(8) Integrate GG matrix and q vector along displacement boundary.

If Lagrange multiplier method is used integration of boundary nodes and ini-

tial displacement boundary nodes are to be integrated according to integration

condition.

f. Enforce boundary conditions using Lagrange multipliers

The condition of Lagrange multiplier is described in section 5.1 and is as follows,

 K GG

GGT 0

 f

q

 =

 u

λ


It is observed that zero terms appear on the diagonal of stiffness matrix when

the EFG approach has been used for getting the solution. Following are the

other observations pertaining to this approach[1].

CHAPTER 6. EFG APPLICATIONS 97

(1) The size of the stiffness matrix increases with the incorporation of the

extra matrix G and GT .

(2) The stiffness matrix which has to be inverted, posses a zero value on its

main diagonal, which is very difficult to invert, because of the fact that

several limitations creep in Lagrangian multiplier approach as it uses La-

grangian multipliers for the enforcement of essential boundary conditions.

Due to these multipliers the bandedness of the system is sacrificed due

to appearance of G and GT as mentioned above. Therefore, to handle

these issues MATLAB has been used which has built-in solvers with vari-

able bandwidth which do not take advantage of positive definiteness of the

matrix as suggested by (Lu et al. 1994) [9].

g. Solve for output variables - displacements

Output variables u and λ are found out by solving the above equation, from

this u and λ are separated.

h. Solve for stresses at gauss points

Loop over gauss point

find the domain of influence for each gauss point find shape function at each

gauss point find the Bmat at each gauss point stress σ = D ∗ Bmat ∗ u Loop

end gauss point.

i. Plot the results.

CHAPTER 6. EFG APPLICATIONS 98

These steps are shown in flowchart from in the Fig. 6.5.

CHAPTER 6. EFG APPLICATIONS 99

CHAPTER 6. EFG APPLICATIONS 100

Figure 6.10: Flow of 2D beam by EFG method

CHAPTER 6. EFG APPLICATIONS 101

Figure 6.11: The Timoshenko beam details

6.6 Timoshenko beam by Lagrange method

For introduction of boundary conditions, two methods are examined for plane stress

problems. First is Lagrange multiplier method and second is Penalty method.

Numerical study is conducted for a cantilever beam, which is often used for bench-

marking numerical methods because the exact analytic solution for this problem is

known. The purpose here has been to investigate issues related to background inte-

gration in the EFG method. There are a number of factors affecting the accuracy

of the numerical results of the EFG method. These factors include the number of

field nodes n, the background mesh density, and the order of Gauss integration. To

provide a quantitative indication of how these factors affect the accuracy of results, a

cantilever beam subjected to a load at the free end, as shown in Fig. 6.6, is analyzed

in detail using an EFG code.

In this example, the parameters for this cantilever beam are taken as follows:

Loading: P = 1000 N

Young’s modulus: E = 3x107N/m2

Poisson’s ratio: v = 0.3

Height of the beam: D = 12 m

Length of the beam: L = 48 m

The force P is distributed in a form of parabola at the right end of the beam:

In each integration cell, 4 × 4 Gauss quadrature is used. A linear basis and cubic

CHAPTER 6. EFG APPLICATIONS 102

spline weight function are used in the MLS approximation. Rectangular support of

3.5 times the nodal spacing is employed.

a. Insert the Height, length, young’s modulas (E), poisson’s ratio (nu) and load

values.

Length = 48

Height = 12

E = 30E06

Poisson’s ratio = 0.3

b. from E and nu construct plane stress matrix (Dmat).


3.30E+07 9.89E+06 0.00E+00

9.89E+06 3.30E+07 0.00E+00

0.00E+00 0.00E+00 1.15E+07


c. setup nodal coordinates (no. of nodes in row and column).

No. of nodes in column = 11

No. of nodes in row = 5

No. of cells 40

No. of nodes 55

d. Determine domain of influence.

CHAPTER 6. EFG APPLICATIONS 103

(1) find avg. distance between x-coordinates = length/no. of nodes in x

spacing

avg. dist. = 48/10 = 4.8

(2) find avg. distance between y-coordinates = Height/ no. of nodes in y

spacing

avg. dist. = 12/4 = 3.0

(3) find dmi by multiplying avg. dist. with dmax.

dmax = 3.5.

dmiinx = 4.8 ∗ 3.5 = 16.8

dmiiny = 3.0 ∗ 3.5 = 10.5

e. Set up gauss points, weights, and Jacobian for each cell in each cell there will

be 16 gauss points.

for loop 1

the gauss points will be

for cell 1 it is,

N1=0.25*(1-(-0.861))*(1-(-0.861)) =0.866

N2=0.25*(1+(-0.861))*(1-(-0.861))=0.0646

N3=0.25*(1+(-0.861))*(1+(-0.861))= 0.0048

N4=0.25*(1-(-0.861))*(1+(-0.861))=0.0646

For the coordinates of the cell 1

x coordinates [0.0 0.0 4.8 4.8]

y coordinates [6.0 3.0 3.0 6.0]

therefore the first gauss point will be

x = 0.866 ∗ 0.0 + 0.0646 ∗ 0.0 + 0.0048 ∗ 4.8 + 0.0646 ∗ 4.8 = 0.333

y = 0.866 ∗ 6.0 + 0.0646 ∗ 3.0 + 0.0048 ∗ 3.0 + 0.0646 ∗ 6.0 = 5.7918

weight = 0.3479 ∗ 0.3479 = 0.121

Npsi1 = -0.4653

CHAPTER 6. EFG APPLICATIONS 104

Figure 6.12: Gauss points generation

Npsi2 = 0.4653

Npsi3 = 0.0347

Npsi4 = -0.0347

Neta1 = -0.4653

Neta2 = -0.0347

Neta3 = 0.0347

Neta4 = 0.4653

xpsi = −0.4653 ∗ 0.0 + 0.4653 ∗ 0 + 0.0347 ∗ 4.8 +−0.0347 ∗ 4.8 = 0.0

ypsi = −0.4653 ∗ 6.0 + 0.4653 ∗ 3.0 + 0.0347 ∗ 3.0 +−0.0347 ∗ 6.0 = −1.5

xeta = −0.4653 ∗ 0.0 +−0.0347 ∗ 0 + 0.0347 ∗ 4.8 + 0.4653 ∗ 4.8 = 2.4

yeta = −0.4653 ∗ 6.0 +−0.0347 ∗ 3.0 + 0.0347 ∗ 3.0 + 0.4653 ∗ 6.0 = 0.0

jcob = 3.6

similarly all the 640 coordinates their corresponding weight and jacobian has to

be found out.

f. Loop over gauss points to assemble discrete equations

(1) Determine nodes in neighborhood of gauss point

The size of domain of influence in the rectangular domain is (16.8, 10.5).

Nodes under the domain of influence are 1,2,3,4,6,7,8,9,11,12,13,14,16,17,18,19

CHAPTER 6. EFG APPLICATIONS 105

Figure 6.13: Fig. show the domain of influence of gauss point 1

(2) Find shape function, first derivative of shape function w.r.t x and first

derivative of shape function w.r.t. y.

First find weight at each gauss point

find difference between gauss point and coordinates

find rx = absolute diff in x/ dmi

Form 1 to 8

[0.020 0.020 0.020 0.020

0.266 0.266 0.266 0.266]

from 9 to 16

[0.552 0.552 0.552 0.552

0.838 0.838 0.838 0.838]

find ry = absolute diff in y / dmi

from 1 to 8

[0.020 0.266 0.552 0.837

0.020 0.266 0.552 0.837]

from 9 1o 16

[0.020 0.266 0.552 0.837

0.020 0.266 0.552 0.837]

find drdx = sign of diff in x / dmi

CHAPTER 6. EFG APPLICATIONS 106

from 1 to 8

[0.060 0.060 0.060 0.060

− 0.060 − 0.060 − 0.060 − 0.060]

from 9 to 16

[−0.060 − 0.060 − 0.060 − 0.060

− 0.060 − 0.060 − 0.060 − 0.060]

find drdy = sign of diff in y / dmi

from 1 to 8

[−0.095 0.095 0.095 0.095

− 0.095 0.095 0.095 0.095]

from 9 to 16

[−0.095 0.095 0.095 0.095

− 0.095 0.095 0.095 0.095]

form wx matrix

from 1 to 8

[0.6652 0.6652 0.6652 0.6652

0.4588 0.4588 0.4588 0.4588]

from 9 to 16

[0.1201 0.1201 0.1201 0.1201

0.0057 0.0057 0.0057 0.0057]

form dwx matrix

from 1 to 8

[−0.009 − 0.009 − 0.009 − 0.009

0.076 0.076 0.076 0.076]

from 9 to 16

[0.0480.0480.0480.048

0.0060.0060.0060.006]

similarly for wy and dwy

form wy matrix

CHAPTER 6. EFG APPLICATIONS 107

from 1 to 8

[0.6651 0.4591 0.1202 0.0057

0.6651 0.4591 0.1202 0.0057]

from 9 to 16

[0.6651 0.4591 0.1202 0.0057

0.6651 0.4591 0.1202 0.0057]

form dwy matrix

from 1to 8

[0.015 − 0.122 − 0.077 − 0.010

0.015 − 0.122 − 0.077 − 0.010]

from 9 to 16

[0.015 − 0.122 − 0.077 − 0.010

0.015 − 0.122 − 0.077 − 0.010]

form w matrix

from 1 to 8

[4.42E − 01 3.05E − 01 8.00E − 02 3.82E − 03

3.05E − 01 2.11E − 01 5.52E − 02 2.63E − 03]

from 9 to 16

[7.99E − 02 5.51E − 02 1.44E − 02 6.89E − 04

3.81E − 03 2.63E − 03 6.88E − 04 3.28E − 05]

from 1 to 8

[−6.04E − 03 − 4.17E − 03 − 1.09E − 03 − 5.21E − 05

5.06E − 02 3.50E − 02 9.15E − 03 4.37E − 04]

from 9 to 16

[3.18E − 02 2.20E − 02 5.75E − 03 2.75E − 04

4.18E − 03 2.89E − 03 7.56E − 04 3.61E − 05]

from 1 to 8

[9.75E − 03 − 8.10E − 02 − 5.09E − 02 − 6.71E − 03

6.73E − 03 − 5.59E − 02 − 3.51E − 02 − 4.63E − 03]

CHAPTER 6. EFG APPLICATIONS 108

from 9 to 16

[1.76E − 03 − 1.46E − 02 − 9.20E − 03 − 1.21E − 03

8.39E − 05 − 6.97E − 04 − 4.38E − 04 − 5.77E − 05]

p matrix = [1 x y] =

from 1 to 8


1 1 1 1 1 1 1 1

0 0 0 0 4.8 4.8 4.8 4.8

6 3 0 -3 6 3 0 -3


from 9 to 16

1 1 1 1 1 1 1 1

9.6 9.6 9.6 9.6 14.4 14.4 14.4 14.4

6 3 0 -3 6 3 0 -3



Find B from p*{w,w,w}

from 1 to 8
0.442 0.305 0.080 0.004 0.305 0.211 0.055 0.003

0.000 0.000 0.000 0.000 1.465 1.011 0.265 0.013

2.654 0.916 0.000 -0.011 1.831 0.632 0.000 -0.008



from 9 to 16


0.080 0.055 0.014 0.001 0.004 0.003 0.001 0.000

0.767 0.529 0.139 0.007 0.055 0.038 0.010 0.000

0.479 0.165 0.000 -0.002 0.023 0.008 0.000 0.000



CHAPTER 6. EFG APPLICATIONS 109

loop over the no of nodes pp = p ∗ pT
1 0 6

0 0 0

6 0 36



aa = pp ∗ w = 
0.442 0 2.654

0 0 0

2.654 0 15.926


daax = pp ∗ dwdx = 

-0.006 0 -0.036

0 0 0

-0.036 0 -0.217


daay = pp ∗ dwdy = 

0.010 0.000 0.058

0.000 0.000 0.000

0.058 0.000 0.351



loop ends here

aa matrix 
1.563 4.301 6.689

4.301 28.563 18.409

6.689 18.409 35.165


similarly daax and daay matrix are computed

for each gauss point the shape function is

CHAPTER 6. EFG APPLICATIONS 110

pg = [1, gauss point x co-ord., gauss point y co-ord.] therefore for gauss

point 1 it will be pg=[1 0.333 5.7918]

phi = pg ∗ inv(aa) ∗B = 0.635

Find first derivative of inv aa w.r.t. x and w.r.t. y from

daainvx = −inv(aa) ∗ daax ∗ inv(aa)

daainvy = −inv(aa) ∗ daay ∗ inv(aa)

To find first derivative of shape function w.r.t. x is

dbx = dwx ∗B

dphix = [010] ∗ inv(aa) ∗B + pg ∗ daainvx ∗B + pg ∗ inv(aa) ∗ dbx

To find first derivative of shape function w.r.t. y is

dby = dwy∗B dphiy = [001]∗inv(aa)∗B+pg∗daainvy∗B+pg∗inv(aa)∗dby

(3) Find Bmat for each node as per

B =


diphix 0

0 dphiy

dphiy dphix


(4) K matrix at = weight*jac*(BmatT*Dmat*Bmat)

g. Determine nodes on boundary, set up boundary conditions.

h. setup gauss point along traction boundary same as done above

i. Integrate GG matrix and q vector along displacement boundary

j. Enforce bc’s using lagrange multipliers

 K GG

GGT 0

 f

q

 =

 u

λ


m ∗ d = F

k. Solve for output variables i.e. displacements

d = m−1 ∗ F

CHAPTER 6. EFG APPLICATIONS 111

Separate u and λ.

l. Solve for stresses at gauss points.

m. Plot the results

The exact solution of this problem (Timoshenko and Goodier, 1977) is

displacement in the x direction,

ux (x, y) = − Py

6EI

[
(6L− 3x)x+ (2 + µ)

(
y2 − D2

4

)]
(6.1)

The displacement in the y direction,

uy (x, y) =
Py

6EI

[
3µy2 (L− x) + (4 + 5µ)

D2x

4
+ (3L− x)x2

]
(6.2)

The stresses in the beam

σx (x, y) = −P (L− x) y

I
, σxy (x, y) = − P

2I

(
D2

4
− y2

)
, σy (x, y) = 0 (6.3)

Where I = D3/12 is the moment of inertia (second moment of area).

In Table 6.6, the vertical displacement at point (L, 0) calculated by EFG is compared

with the exact solution. This table shows excellent agreement -between EFG and

the analytical solution. Fig. 6.6 shows distribution of normal stress in the beam.

Fig. 6.6 shows the normal stress (σxx) distribution at dist. L/2 for various dmax

values. Fig. 6.6 shows the shear stress (σxy) distribution at dist. L/2 for various

dmax values. From both the figures, it has been noticed that as the value of dmax

increases, accuracy also increases. For dmax equal to 3 to 3.5, exact results have been

achieved.

CHAPTER 6. EFG APPLICATIONS 112

Dmax Nodes uy exact uy EFG % error
1.5 8 x 3 -0.0089 -0.00840 5.60
2 8 x 3 -0.0089 -0.00877 1.45
2.5 8 x 3 -0.0089 -0.00885 0.52
3 8 x 3 -0.0089 -0.00887 0.28
3.5 8 x 3 -0.0089 -0.00892 -0.20

Table 6.6: Comparison of vertical displacement at end

Figure 6.14: Normal stress (σxx) distribution

CHAPTER 6. EFG APPLICATIONS 113

Figure 6.15: Distribution of normal stress (σxx) on the section of x = L/2 of the
cantilever beam.

Figure 6.16: Distribution of shear stress(σxy) on the section of x = L/2 of the can-
tilever beam

CHAPTER 6. EFG APPLICATIONS 114

dmax Nodes uy exact uy EFG % error
1.5 8 x 3 -0.0089 -0.00841 5.55
2 8 x 3 -0.0089 -0.00875 1.69
2.5 8 x 3 -0.0089 -0.00882 0.95
3 8 x 3 -0.0089 -0.00884 0.67
3.5 8 x 3 -0.0089 -0.00885 0.55

Table 6.7: Comparison of vertical displacement at end by penalty method

6.7 Timoshenko beam by Penalty method

The analysis procedure of Timoshenko beam by the penalty method is same as the

previous method (Lagrange method) except for the introduction of boundary condi-

tions. Thus, computation of nodal stiffness matrix and nodal load vector is same.

The changes to be incorporated have been described in section 5.5 for introduction of

boundary conditions by penalty method. The data of the problem is same as taken

in section 6.5. Moreover, in this method the value of penalty parameter (α) has to be

included. Accuracy of the results varies on two factors dmax and penalty parameter.

For this particular case, number of trials varying α was taken, and it was decided to

take α = 2.3 x 108.

Subsequently keeping α = 2.3 x 108, 24 nodes dmax was varied, results are tabulated

in Table 6.4.

α=2.3 ∗ 108 It is observed that the displacement at dmax=3.5 and α = 2.3 x 108,

matches very well with the exact results given by Eqn.6.2. Similarly for 55 nodes

dmax =3.5 and α = 3.3 x 108 %error is 0.18%. Fig. 6.7 shows the normal stress (σxx)

distribution at dist. L/2 for various dmax values. Fig. 6.7 shows the shear stress

(σxy) distribution at dist. L/2 for various dmax values.

From Figs. 6.7 and 6.7 it is observed that penalty method shows the same result

as obtained by Lagrange method of Figs. 6.6 and 6.6. Only difficulty with penalty

method is to choose the penalty parameter which varies with no. of nodes.

CHAPTER 6. EFG APPLICATIONS 115

Figure 6.17: Distribution of normal stress σxx at x = L/2 of the cantilever beam

Figure 6.18: Distribution of shear stress σxy at x = L/2 of the cantilever beam.

CHAPTER 6. EFG APPLICATIONS 116

Figure 6.19: The plate with hole : (a) Whole domain; (b) 1/4 model with irregular
nodes

6.8 Plate with hole

Consider an infinite plate with a centered hole under unidirectional tension along x

direction. The plate dimension is taken to be of L x L and the circle radius is of a.

The exact solution is given by,

σx (r, θ) = 1− a2

r2

(
3

2
cos 2θ + cos 4θ

)
+

3

2

a4

r4
cos 4θ (6.4)

σy (r, θ) = −a
2

r2

(
1

2
cos 2θ − cos 4θ

)
− 3

2

a4

r4
cos 4θ (6.5)

σxy (r, θ) = −a
2

r2

(
1

2
sin 2θ + sin 4θ

)
+

3

2

a4

r4
sin 4θ (6.6)

where r, θ are the usual polar coordinates centered at the center of the hole. The

boundary conditions include (i) essential boundary conditions on the bottom uy(x, y

= 0) and left edges (ux (x = 0, x = L, y) = 0); (ii) natural boundary conditions on

CHAPTER 6. EFG APPLICATIONS 117

Figure 6.20: Gauss points: (a) Background mesh; (b) Structure cells

the right and top edges on which traction t computed from the exact stress given

in Eqn. 6.4 are applied. In the computation, the material properties are taken as

Young modulus of 103, Poisson’s ratio equal to 0.3, whereas L = 10, a = 1. The

background mesh used in the numerical integration is given in Fig. 6.8 (a). Another

possibility is the structure cell as shown in 6.8 (b). However, the background mesh

is chosen because it is better and in addition it is also the finite element mesh from

which the particles are extracted. For each background mesh, a 4x4 Gauss quadrature

is employed in fig. 6.22. Concerning weight functions, the cubic spline function is

used. The domain of influence for nodes is a circle with radius varied from nodes

to nodes. They are chosen such that the support is small for nodes near the hole

and bigger for ones near the edges. 6.8 The essential boundary condition is imposed

with the boundary point collocation method where collocation points are coincident

with nodes along the bottom and left edges. The stress σxx computed at nodes are

plot and compared to the exact solution Fig. 6.8. With a coarse discretization of 99

nodes, results obtained by EFG show good correlation with those of exact results.

CHAPTER 6. EFG APPLICATIONS 118

Figure 6.21: Gauss points distribution: 4x4 Gauss quadrature for each sub cell

Figure 6.22: Stress plot: (a) EFG σxx stress (b) Exact σxx stress

CHAPTER 6. EFG APPLICATIONS 119

Figure 6.23: Deep beam

6.9 Deep beam problem

Consider a deep beam simply supported subjected to u.d.l. over its entire span in y

direction. The dimension of beam is 3m x 3m, thickness 0.2m, Young’s modulus 2 x

105 kN/m2 and Poisson’s ratio 0.3. This is treated as plane stress problem. Results

of this beam are plotted in the fig. 6.9 for σxx, σyy and σxy the results are compared

with results given by Krishnamoorthy [14], the same beam is analyzed by FEM by

Krishnamoorthy[14] by taking Iso-parametric element and a graph of shear stress has

been plotted. The comparison of results of Krishnamoorthy[14], has been done with

results obtained from C program V3, comparison is shown in fig. 6.9 which shows

that the analysis model is reliable.

CHAPTER 6. EFG APPLICATIONS 120

Figure 6.24: Shear stress distribution in deep beam at dist.

Chapter 7

CONCLUSIONS, SUMMARY

AND FUTURE SCOPE

7.1 Conclusions

From study of each of the above problems some of the conclusions have been derived

as follows:

� For one dimensional bar problem, there is no need for the connection of elements.

This is valid when the bar is idealized as a 2-nodded or 3-nodded FEM bar

element.

� The results for one dimensional bar problem, converge reasonably well with 0.81

�error for 11 nodes.

� For one dimensional beam problem, the analysis of cantilever beam with uni-

formly distributed load show that, the number of gauss points are twice the

number of coordinate points. The results show very good convergence, for 10

nodes, error percentage is 1.15%.

� The results of a cantilever beam with parabolic shear load at the end shows a

very good correlation with the exact analytical solution given by Timoshenko.

121

CHAPTER 7. CONCLUSIONS, SUMMARY AND FUTURE SCOPE 122

� The analysis results of deep beam are compared with those given by Krish-

namoorthy [14] and are satisfactory.

� The analysis results of the plate with hole in center, under tensile loading are

compared with exact analytical solutions and the results are matching to the

tune of 2 % variation.

� While applying the EFG approach by using Lagrange multiplier, some difficul-

ties encountered are as follows:

� The size of the stiffness matrix increases with the incorporation of the extra

matrix G and GT .

� The stiffness matrix which has to be inverted, posses a zero value on its main

diagonal, which is very difficult to invert, because of the fact that several limita-

tions creep in Lagrangian multiplier approach as it uses Lagrangian multipliers

for the enforcement of essential boundary conditions. Due to these multipliers

the bandedness of the system is sacrificed due to appearance of G and GT as

mentioned above. Therefore, to handle these issues MATLAB has been used

which has built-in solvers viz, with variable bandwidth which do not take ad-

vantage of positive definiteness of the matrix as suggested by (Lu et al. 1994)

[28].

� These difficulties of Lagrange multiplier have been resolved by using penalty

method.

� Penalty method has been also used for structural analysis of 2D plane stress

problems. Some observations from running the program are enumerated as

follows:

a. The accuracy of displacement depends upon value of penalty parameter.

b. If penalty parameter is taken too high the numerical difficulties are faced.

CHAPTER 7. CONCLUSIONS, SUMMARY AND FUTURE SCOPE 123

c. For a particular problem, penalty parameter depends upon material prop-

erty (Young’s modulus) and members on the diagonal of nodal stiffness

matrix [18].

7.2 Summary

Chapter 1, presents the introduction and overview of the mesh free approach. It states

various difficulties faced in various analysis tools available in market and suitability

of mesh free approach for it. It gives objective of study and scope of work of major

project.

Chapter 2, presents the literature review of various mesh free methods. Detailed re-

view of EFG method is carried out, so as to apply the method for practical analysis.

It highlights various problems attempted and their suitability studied by various au-

thors.

Chapter 3, presents the introduction part of the mesh free approach. It gives un-

derstanding about various engineering mechanics problems present in practice. The

chapter presents solution procedure followed for analysis of problem by FEM and

Mesh free method. It also gives understanding of various terminologies used for mesh

free methods. The chapter gives list of various mesh free methods in table form with

what type of system of equation it has used and which approximation method has

been used for shape function creation.

Various methods used for creation of shape function in mesh free methods are pre-

sented in chapter 4. It gives procedure for creation of shape function for one dimen-

sional and two dimensional problems by Moving Least Square method.

Chapter 5, Element Free Galerkin (EFG) method, presents the theory and procedure

of the EFG method. Chapter also presents the analysis steps to be followed for one

dimensional bar problem, one dimensional beam problem and two dimensional beam

problems.

Chapter 6, presents the applications of EFG method to various structural engineer-

CHAPTER 7. CONCLUSIONS, SUMMARY AND FUTURE SCOPE 124

ing problems. Analysis of one dimensional bar has been given with sample problems.

Analysis of one dimensional beam problem has been given with sample problems. A

cantilever beam with parabolic end load is analyzed and studied by parametric stud-

ies. Analysis of plate in tension with circular hole in center has been done. Analysis

of deep beam problem is done and results have been compared with those given by

Krishnamoorthy[14].

Chapter 7 contains the conclusions, summary and future scope of work.

7.3 Future scope

From the experiences of the present study, the future scope of the thesis can be

envisaged as follows:

� Detailed study of suitability of various equation solvers and introduction of

boundary conditions

� Other applications such as, plate bending and shells using EFG method

� Crack propagation in two dimensional problems by EFG method

� Comparison of various mesh free methods by considering suitable complex struc-

tural engineering problems.

Appendix A

1D EFG Bar Program (V1)

/*****1D BAR EFG PROGRAM*****/

#include<stdio.h>

#include<conio.h>

#include<math.h>

float detrm(float[50][50],float);

void cofact(float[50][50],float);

void trans(float[50][50],float[50][50],float);

double inv[50][50];

FILE *f1, *f2;

void main()

{

int nnd, nc, i, j, k, l, gpt, weight, lnd;

float x[50], le, dmax, E, dm[50], gg[50], jac, K[50][50], f[50], GG[50], xg;

float dif[50], r[50],drdx[50],we[50],dw[50],B[3][50],p[50][3], A[3][3], dA[3][3];

float pp[3][3], Ainv[3][3], fac, pd[3], phi[50], Aib[3][50], db[3][50], dphi[50];

float LM[50][50], LMi[50][50], da[3][3], daa[3][3], zone[3], FM[50], fbody, q;

float area;

double d[50], dit;

f1=fopen(”1dpro.in”,”r”); /*opening input file*/

125

APPENDIX A. 1D EFG BAR PROGRAM (V1) 126

f2=fopen(”1dproout.out”,”w”); /*opening output file*/

/*********SET UP NODAL COORDINATES ALONG BAR, DETERMINE NUM-

BER OF CELLS*******/

fscanf(f1,”%f %d %d”,&le,&nnd,&gpt);

fprintf(f2,”Length of bar:\t%f\n”,le);

fprintf(f2,”No. of nodes:\t%d\n”,nnd);

nc= nnd-1;

fprintf(f2,”No. of cells:\t%d\n”,nc);

/*******SET PARAMETERS FOR WEIGHT FUNCTION, MATERIAL PROPERITES********/

fscanf(f1,”%f %f %f ”, &dmax, &E, &area);

fprintf(f2,”dmax=\t%5.2f\nelasticity=\t%5.2f\narea=\t%5.2f\n”, dmax, E, area);

for(i=0;i<nnd;i++) /*node data input*/

{

if(i==0)

x[i]=0.0;

else

x[i]=(x[i-1]+(le/nc));

fprintf(f2,”x[%d]\t”,i);

}

fprintf(f2,”\n”);

for(i=0;i<nnd;i++)

{

fprintf(f2,”%5.3f\t”,x[i]);

}

fprintf(f2,”\n”);

/***********DETERMINE DMI FOR EACH NODE************/

fprintf(f2,”dm= dmax * (diff in x)\n”);

for(i=0;i<nnd;i++)

{

APPENDIX A. 1D EFG BAR PROGRAM (V1) 127

dm[i]=dmax*(x[2]-x[1]);

fprintf(f2,”dm[%d]\t”,i);

}

fprintf(f2,”\n”);

for(i=0;i<nnd;i++)

{

fprintf(f2,”%6.3f\t”,dm[i]);

}

fprintf(f2,”\n”);

/**********SET UP GAUSS POINTS, WEIGHTS, AND JACOBIAN FOR EACH

CELL********/

for(i=0;i<gpt;i++)

{

gg[i]=0.0;

}

jac=(x[2]-x[1])/2;

weight=2;

fprintf(f2,”weight=\t%d \t Jac=\t%5.2f\n”,weight,jac);

fprintf(f2,”gauss points where the integration is done\n”);

for(i=0;i<gpt;i++)

{

if(i==0)

gg[i]=0.0;

else

gg[i]=(x[i]+x[i-1])/2.0;

fprintf(f2,”gg[%d]\t”,i);

}

fprintf(f2,”\n”);

for(i=0;i<gpt;i++)

APPENDIX A. 1D EFG BAR PROGRAM (V1) 128

{

fprintf(f2,”%6.3f\t”,gg[i]);

}

fprintf(f2,”\n”);

for(i=0;i<nnd;i++)

{

f[i]=0.0;

GG[i]=0.0;

dw[i]=0.0;

we[i]=0.0;

for(k=0;k<2;k++)

{

B[k][i]=0.0;

}

for(j=0;j<nnd;j++)

{

K[i][j]=0.0;

}

}

/*************LOOP OVER GAUSS POINTS*********/

for(i=0;i<gpt;i++)

{

fprintf(f2,”The Gauss point %d\ndiff = gg - x\n”,i);

xg=gg[i];

/*******DETERMINE DISTANCE BETWEEN NODES AND GAUSS POINT*******/

for(j=0;j<nnd;j++)

{

dif[j]=xg-x[j];

fprintf(f2,”dif[%d]\t”,j);

APPENDIX A. 1D EFG BAR PROGRAM (V1) 129

}

fprintf(f2,”\n”);

for(j=0;j<nnd;j++)

{

fprintf(f2,”%6.3f\t”,dif[j]);

}

fprintf(f2,”\n”);

/***************SET UP WEIGHTS W AND DW FOR EACH NODE************/

fprintf(f2,”r= fabs(dif) / dm\n”);

for(j=0;j<nnd;j++)

{

fprintf(f2,”r[%d]\t”,j);

}

fprintf(f2,”\n”);

for(j=0;j<nnd;j++)

{

if(dm[j]==0.0)

r[j]=0.0;

else

r[j]=(fabs(dif[j]))/dm[j];

fprintf(f2,”%5.2f\t”,r[j]);

if(dif[j]==0.0 ||dm[j]==0.0)

drdx[j]=0.0;

else

drdx[j]=fabs(dif[j])/(dm[j]*dif[j]);

if(r[j]<=0.5)

{

we[j]=(2.0/3.0)+(-4.0*r[j]*r[j])+(4.0*pow(r[j],3));

dw[j]=(-8.0*r[j]+12.0*r[j]*r[j])*drdx[j];

APPENDIX A. 1D EFG BAR PROGRAM (V1) 130

}

else

{

if(0.5<r[j] && r[j]<=1.0)

{

we[j]=(4.0/3.0)-4.0*r[j]+4.0*r[j]*r[j]-(4.0/3.0)*pow(r[j],3);

dw[j]=(-4.0+8.0*r[j]-4.0*r[j]*r[j])*drdx[j];

}

else

{

we[j]=0.0;

dw[j]=0.0;

}

}

}

fprintf(f2,”\nThe weight function w:\n”);

for(j=0;j<nnd;j++)

{

fprintf(f2,”w[%d]\t”,j);

}

fprintf(f2,”\n”);

for(j=0;j<nnd;j++)

{

fprintf(f2,”%5.2f\t”,we[j]);

}

fprintf(f2,”\n”);

fprintf(f2,”drdx\n”);

for(j=0;j<nnd;j++)

{

APPENDIX A. 1D EFG BAR PROGRAM (V1) 131

fprintf(f2,”%5.2f\t”,drdx[j]);

}

fprintf(f2,”\nThe first derivative of weight function: dw\n”);

for(j=0;j<nnd;j++)

{

fprintf(f2,”%5.2f\t”,dw[j]);

p[j][0]=1.0;

p[j][1]=x[j];

}

fprintf(f2,”\nP matrix \n”);

for(j=0;j<nnd;j++)

{

fprintf(f2,”1\t”);

}

fprintf(f2,”\n”);

for(j=0;j<nnd;j++)

{

fprintf(f2,”x%d\t”,j);

}

fprintf(f2,”\n”);

for(k=0;k<2;k++)

{

for(j=0;j<nnd;j++)

{

fprintf(f2,”%5.2f\t”,p[j][k]);

}

fprintf(f2,”\n”);

}

/*********SET UP SHAPE FUNCTIONS AND DERIVATIVES**********/

APPENDIX A. 1D EFG BAR PROGRAM (V1) 132

fprintf(f2,”\n”);

for(j=0;j<nnd;j++)

{

for(k=0;k<2;k++)

{

if(k==0)

B[k][j]=(1.0*we[j]);

else

B[k][j]=(x[j]*we[j]);

}

}

fprintf(f2,”The matrix B is:\n”);

for(j=0;j<nnd;j++)

{

fprintf(f2,”1*w%d\t”,j);

}

fprintf(f2,”\n”);

for(j=0;j<nnd;j++)

{

fprintf(f2,”x%d*w%d\t”,j,j);

}

fprintf(f2,”\n”);

for(j=0;j<2;j++)

{

for(k=0;k<nnd;k++)

{

fprintf(f2,”%6.3f\t”,B[j][k]);

}

fprintf(f2,”\n”);

APPENDIX A. 1D EFG BAR PROGRAM (V1) 133

}

for(j=0;j<2;j++)

{

for(k=0;k<2;k++)

{

A[j][k]=0.0;

dA[j][k]=0.0;

}

}

for(j=0;j<nnd;j++)

{

for(k=0;k<2;k++)

{

for(l=0;l<2;l++)

{

pp[k][l]=p[j][k]*p[j][l];

A[k][l]=A[k][l]+we[j]*pp[k][l];

dA[k][l]=dA[k][l]+dw[j]*pp[k][l];

}

}

}

fprintf(f2,”The matrix A = A + w*p’*p\n”);

for(j=0;j<2;j++)

{

for(k=0;k<2;k++)

{

fprintf(f2,”%6.3f\t”,A[j][k]);

}

fprintf(f2,”\n”);

APPENDIX A. 1D EFG BAR PROGRAM (V1) 134

}

fprintf(f2,”The matrix dA = dA + dw*p’*p\n”);

for(j=0;j<2;j++)

{

for(k=0;k<2;k++)

{

fprintf(f2,”%6.3f\t”,dA[j][k]);

}

fprintf(f2,”\n”);

}

fac=(A[0][0]*A[1][1])-(A[0][1]*A[1][0]);

Ainv[0][0]=(A[1][1])/fabs(fac);

Ainv[1][1]=(A[0][0])/fabs(fac);

Ainv[0][1]=(-A[1][0])/fabs(fac);

Ainv[1][0]=(-A[0][1])/fabs(fac);

fprintf(f2,”The inverse of matrix A is:\n”);

for(j=0;j<2;j++)

{

for(k=0;k<2;k++)

{

fprintf(f2,”%6.3f\t”,Ainv[j][k]);

}

fprintf(f2,”\n”);

}

for(j=0;j<nnd;j++)

{

for(k=0;k<2;k++)

{

Aib[j][k]=0.0;

APPENDIX A. 1D EFG BAR PROGRAM (V1) 135

}

}

for(j=0;j<2;j++)

{

for(k=0;k<nnd;k++)

{

for(l=0;l<2;l++)

{

Aib[j][k]=Aib[j][k]+(Ainv[j][l]*B[l][k]);

}

}

}

/*fprintf(f2,”The Matrix Aib is:\n”);

for(j=0;j<2;j++)

{

for(k=0;k<nnd;k++)

{

fprintf(f2,”%6.3f\t”,Aib[j][k]);

}

fprintf(f2,”\n”);

} */

for(k=0;k<nnd;k++)

{

phi[k]=(0.0);;

}

fprintf(f2,”The Matrix Phi = [1 gg]*(Ainv * B)\n”);

pd[0]=1.0;

pd[1]=(xg);

//fprintf(f2,”%f\t %f\t %f\n”,pd[0],pd[1],xg);

APPENDIX A. 1D EFG BAR PROGRAM (V1) 136

for(j=0;j<2;j++)

{

for(k=0;k<nnd;k++)

{

for(l=0;l<2;l++)

{

phi[k]=phi[k]+pd[j]*(Ainv[j][l]*B[l][k]);

}

}

}

for(k=0;k<nnd;k++)

{

fprintf(f2,”phi[%d]\t”,k);

}

fprintf(f2,”\n”);

for(k=0;k<nnd;k++)

{

fprintf(f2,”%6.3f\t”,phi[k]);

}

/*for(k=0;k<nnd;k++)

{

phi[k]=0.0;

}

for(k=0;k<nnd;k++)

{

for(l=0;l<2;l++)

{

phi[k]=phi[k]+(pd[l]*Aib[l][k]);

}

APPENDIX A. 1D EFG BAR PROGRAM (V1) 137

}

fprintf(f2,”The Matrix phi is:\n”);

for(k=0;k<nnd;k++)

{

fprintf(f2,”%6.3f\t”,phi[k]);

}*/

fprintf(f2,”\n”);

fprintf(f2,”\nThe Matrix db is:\n”);

for(j=0;j<nnd;j++)

{

fprintf(f2,”1*dw%d\t”,j);

}

fprintf(f2,”\n”);

for(j=0;j<nnd;j++)

{

fprintf(f2,”x%d*dw%d\t”,j,j);

}

fprintf(f2,”\n”);

for(k=0;k<nnd;k++)

{

db[0][k]=1.0*dw[k];

db[1][k]=x[k]*dw[k];

}

for(j=0;j<2;j++)

{

for(k=0;k<nnd;k++)

{

fprintf(f2,”%6.4f\t ”,db[j][k]);

}

APPENDIX A. 1D EFG BAR PROGRAM (V1) 138

fprintf(f2,”\n”);

}

for(j=0;j<2;j++)

{

for(k=0;k<2;k++)

{

daa[j][k]=0.0;

da[j][k]=0.0;

}

}

for(j=0;j<2;j++)

{

for(k=0;k<2;k++)

{

for(l=0;l<2;l++)

{

daa[j][k]=daa[j][k]+dA[j][l]*Ainv[l][k];

}

}

}

fprintf(f2,”\nThe Matrix da = -Ainv * dA * Ainv\n”);

for(j=0;j<2;j++)

{

for(k=0;k<2;k++)

{

for(l=0;l<2;l++)

{

da[j][k]=da[j][k]-(Ainv[j][l])*daa[l][k];

}

APPENDIX A. 1D EFG BAR PROGRAM (V1) 139

}

}

for(j=0;j<2;j++)

{

for(k=0;k<2;k++)

{

fprintf(f2,”%6.3e\t”,da[j][k]);

}

}

for(k=0;k<nnd;k++)

{

dphi[k]=0.0;

}

fprintf(f2,”\nThe Matrix dphi is: dphi = [0 1]*Ainv*B+[1 gg]*(da*B+Ainv*db)\n”);

zone[0]=0.0;

zone[1]=1.0;

for(j=0;j<2;j++)

{

for(k=0;k<nnd;k++)

{

for(l=0;l<2;l++)

{

dphi[k] = dphi[k]+(zone[j]*(Ainv[j][l]*B[l][k]))+(pd[j] * (da[j][l]*B[l][k]+Ainv[j][l]*db[l][k]));

}

}

}

for(j=0;j<nnd;j++)

{

fprintf(f2,”%6.3e\t”,dphi[j]);

APPENDIX A. 1D EFG BAR PROGRAM (V1) 140

}

fprintf(f2,”\nThe matrix GG = -phi\n”);

/**************ASSEMBLE DISCRETE EQUATIONS***************/

if(i==0)

{

for(j=0;j<nnd;j++)

{

GG[j]=(-phi[j]);

}

}

else

{

for(j=0;j<nnd;j++)

{

for(k=0;k<nnd;k++)

{

K[j][k]=K[j][k]+(weight*E*area*jac)*(dphi[j]*dphi[k]);

}

}

fbody=0.0;

for(j=0;j<nnd;j++)

{

f[j]=f[j]+(weight*fbody*jac)*phi[j];

}

}

f[5]=200;

for(k=0;k<nnd;k++)

{

fprintf(f2,”%6.3e\t”,GG[k]);

APPENDIX A. 1D EFG BAR PROGRAM (V1) 141

}

fprintf(f2,”\nK=(w*E*area*jac)*(dphi’*dphi)\n”);

for(j=0;j<nnd;j++)

{

for(k=0;k<nnd;k++)

{

fprintf(f2,”%6.3e\t”,K[j][k]);

}

fprintf(f2,”\n”);

}

fprintf(f2,”\nforce vector\n”);

for(k=0;k<nnd;k++)

{

fprintf(f2,”f[%d]=\t%6.3e\n”,k,f[k]);

}

fprintf(f2,”\n”);

}

lnd=nnd+1;

/*******ENFORCE BOUNDARY CONDITIONS USING LAGRANGE MULTIPLI-

ERS*******/

fprintf(f2,”ENFORCE BOUNDARY CONDITIONS USING LAGRANGE MULTI-

PLIERS\n”);

fprintf(f2,”K\t G\t \t u\t \t f\n G’\t 0\t \t lam\t \t q\n”);

for(j=0;j<lnd;j++)

{

for(k=0;k<lnd;k++)

{

LM[j][k]=0.0;

}

APPENDIX A. 1D EFG BAR PROGRAM (V1) 142

d[j]=0.0;

}

for(j=0;j<lnd;j++)

{

for(k=0;k<lnd;k++)

{

if(j<nnd && k<nnd)

LM[j][k]=K[j][k];

else

if(j==lnd-1 && k<lnd-1)

LM[j][k]=GG[k];

else

if(k==lnd-1 && j<lnd-1)

LM[j][k]=GG[j];

else

LM[j][k]=0.0;

}

}

for(j=0;j<lnd;j++)

{

for(k=0;k<lnd;k++)

{

fprintf(f2,”%6.3f\t”,LM[j][k]);

}

fprintf(f2,”\n”);

}

q=0.0;

for(j=0;j<lnd;j++)

{

APPENDIX A. 1D EFG BAR PROGRAM (V1) 143

if(j<nnd)

FM[j]=f[j];

else

FM[j]=q;

}

for(k=0;k<lnd;k++)

{

fprintf(f2,”FM[%d]=\t%6.3f \n”,k,FM[k]);

}

//ff=lnd;

/************SOLVE FOR NODAL PARAMETERS***********/

/*********SOLUTION OF EQUATION LMinv*FM ***********/

dit=detrm(LM,lnd);

fprintf(f2,”THE DETERMINANT IS=%f”,dit);

if(dit==0)

fprintf(f2,”\nMATRIX IS NOT INVERSIBLE\n”);

else

cofact(LM,lnd);

fprintf(f2,”\nTHE INVERSE OF THE MATRIX:\n”);

for(i=0;i<lnd;i++)

{

for(j=0;j<lnd;j++)

{

LMi[i][j]=inv[i][j];

fprintf(f2,”%5.3f\t”,LMi[i][j]);

}

fprintf(f2,”\n”);

}

for(i=0;i<lnd;i++)

APPENDIX A. 1D EFG BAR PROGRAM (V1) 144

{

for(j=0;j<lnd;j++)

{

d[i]=d[i]+LMi[i][j]*FM[j];

}

}

for(k=0;k<lnd;k++)

{

fprintf(f2,”d[%d]=\t%6.2f \n”,k,d[k]);

}

/*******FUNCTION TO FIND THE DETERMINANT OF THE MATRIX**********/

float detrm(float a[50][50],float k)

{

float s=1,det=0,b[50][50];

int i,j,m,n,c;

if(k==1)

return(a[0][0]);

else

{

det=0;

for(c=0;c<k;c++)

{

m=0;

n=0;

for(i=0;i<k;i++)

{

for(j=0;j<k;j++)

{

b[i][j]=0;

APPENDIX A. 1D EFG BAR PROGRAM (V1) 145

if(i!=0&&j!=c)

{

b[m][n]=a[i][j];

if(n<(k-2))

n++;

else

{

n=0;

m++;

}

}

}

}

det=det+s*(a[0][c]*detrm(b,k-1));

s=-1*s;

}

}

return(det);

}

/********FUNCTION TO FIND COFACTOR************/

void cofact(float num[50][50],float f)

{

float b[50][50],fac[50][50];

int p,q,m,n,i,j;

for(q=0;q<f;q++)

{

for(p=0;p<f;p++)

{

m=0;

APPENDIX A. 1D EFG BAR PROGRAM (V1) 146

n=0;

for(i=0;i<f;i++)

{

for(j=0;j<f;j++)

{

b[i][j]=0;

if(i!=q&&j!=p)

{

b[m][n]=num[i][j];

if(n<(f-2))

n++;

else

{

n=0;

m++;

}

}

}

}

fac[q][p]=pow(-1,q+p)*detrm(b,f-1);

}

}

trans(num,fac,f);

}

/******FUNCTION TO FIND TRANSPOSE AND INVERSE OF A MATRIX********/

void trans(float num[50][50],float fac[50][50],float r)

{

int i,j;

float b[50][50],d;

APPENDIX A. 1D EFG BAR PROGRAM (V1) 147

for(i=0;i<r;i++)

{

for(j=0;j<r;j++)

{

b[i][j]=fac[j][i];

}

}

d=detrm(num,r);

inv[i][j]=0;

for(i=0;i<r;i++)

{

for(j=0;j<r;j++)

{

inv[i][j]=b[i][j]/d;

}

}

return(0);

}

Appendix B

1D Beam EFG Program (V2)

/******1D BEAM EFG PROGRAM******/

#include<stdio.h>

#include<conio.h>

#include<math.h>

#include<stdlib.h>

void matrixinverse(float [9] ,int);

void stiffbeam(float , float , float [100][100], float [100], float [100], float [100], int,

int);

void inversemat(float [100][100], int matsize);

float inv[100][100];

float K[100][100], Min[9], Mout[9];

FILE *f1, *f2;

void main()

{

int nnd, nc, i, j, k, l, gpt, weight, lnd, matsize;

float x[100], le, dmax, E, dm[100], gg[100], jac, f[100], GG[100], xg;

float dif[100], r[100],drdx[100],we[100],dw[100],B[3][100],p[100][3], A[3][3], dA[3][3];

float pp[3][3], Ainv[3][3], pd[3], phi[100][100], Aib[3][100], db[3][100], dphi[100][100];

float da[3][3], daa[3][3], zone[3], q;

148

APPENDIX B. 1D BEAM EFG PROGRAM (V2) 149

float I, u0, thta0, M0, Q0, vx[100], vg[100], sign, dwx[100], ddA[3][3],ddb[3][100];

float temp[3][3], temp1[3][3], temp2[3][3], dda[3][3];

float ddphi[100][100], ztwo[3], phi0[100], dphi0[100], ddphi0[100], phin[100], dphin[100];

float ddphin[100], Kinv[100][100], tem;

float d[100];

f1=fopen(”efgbeamin.in”,”r”); /*opening input file*/

f2=fopen(”efgbeamout.out”,”w”); /*opening output file*/

/*********SET UP NODAL COORDINATES ALONG BAR,

DETERMINE NUMBER OF CELLS*******/

fscanf(f1,”%f %d”,&le,&nnd);

fprintf(f2,”Length of bar:\t%5.3f\n”,le);

fprintf(f2,”No. of nodes:\t%d\n”,nnd);

nc= nnd-1;

fprintf(f2,”No. of cells:\t%d\n”,nc);

/****SET PARAMETERS FOR WEIGHT FUNCTION, MATERIAL PROPER-

TIES********/

fscanf(f1,”%f %f %f %f”, &dmax, &E, &I, &q);

fprintf(f2,”dmax=\t%5.2f\t\telasticity=\t%5.2f\t\tMoment of Inertia=\t%5.2f\t\tLoad=\t%5.2f\n”,

dmax, E, I, q);

fscanf(f1,”%f %f %f %f”, &u0, &thta0, &M0, &Q0);

fprintf(f2,”U0=\t%15.3f\n”,u0);

fprintf(f2,”Theta0=\t%15.3f\n”,thta0);

fprintf(f2,”M0=\t%15.3f\n”,M0);

fprintf(f2,”Q0=\t%15.3f\n”,Q0);

fscanf(f1,”%d”,&nnd);

for(i=0;i<nnd;i++) /*node data input*/

{

x[i]=(i*(le/nc));

vx[i]= le/nc;

APPENDIX B. 1D BEAM EFG PROGRAM (V2) 150

fprintf(f2,”x[%d]=\t%5.2f\t”,i,x[i]);

}

fprintf(f2,”\n”);

/***********DETERMINE DMI FOR EACH NODE************/

for(i=0;i<nnd;i++)

{

dm[i]=dmax*(x[2]-x[1]);

fprintf(f2,”dm[%d]=\t%5.2f\t”,i,dm[i]);

}

fprintf(f2,”\n”);

/**********SET UP GAUSS POINTS, WEIGHTS, AND JACOBIAN FOR EACH

CELL********/

gpt=2*nnd;

for(i=0;i<gpt;i++)

{

gg[i]=0.0;

}

jac=(x[2]-x[1])/2;

weight=2;

fprintf(f2,”weight= \t%d , Jac=\t%5.2f\t”,weight,jac);

fprintf(f2,”\n”);

for(i=0;i<gpt;i++)

{

gg[i]=(i+0.5)*le/gpt;

vg[i]= le/gpt;

fprintf(f2,”gg[%d]:%5.2f\t”,i,gg[i]);

}

fprintf(f2,”\n”);

fprintf(f2,”\n”);

APPENDIX B. 1D BEAM EFG PROGRAM (V2) 151

for(i=0;i<nnd;i++)

{

GG[i]=0.0;

dw[i]=0.0;

we[i]=0.0;

for(k=0;k<3;k++)

{

B[k][i]=0.0;

}

for(j=0;j<nnd;j++)

{

K[i][j]=0.0;

}

}

for(i=0;i<gpt+2;i++)

for(j=0;j<nnd;j++)

phi[i][k]=0.0;

/*************LOOP OVER GAUSS POINTS*********/

for(i=0;i<gpt+2;i++)

{

fprintf(f2,”\nThe Gauss pdoint %d\n”,i);

if(i==gpt)

xg=0.0;

else

if(i==gpt+1)

xg=le;

else

xg=gg[i];

/*******DETERMINE DISTANCE BETWEEN NODES AND GAUSS POINT*******/

APPENDIX B. 1D BEAM EFG PROGRAM (V2) 152

for(j=0;j<nnd;j++)

{

dif[j]=xg-x[j];

fprintf(f2,”dif[%d]:%5.2f\t”,j,dif[j]);

}

fprintf(f2,”\n”);

/***************SET UP WEIGHTS W AND DW FOR EACH NODE************/

fprintf(f2,”The weight function:\n”);

for(j=0;j<nnd;j++)

{

if(dm[j]==0.0)

r[j]=0.0;

else

r[j]=(fabs(dif[j]))/dm[j];

//fprintf(f2,”%5.2f\t”,r[j]);

if(dif[j]<0)

sign=-1;

else

sign=1;

if(dif[j]==0.0 ||dm[j]==0.0)

drdx[j]=0.0;

else

drdx[j]=fabs(dif[j])/(dm[j]*dif[j]);

if(r[j]<=1.0)

{

we[j]=1.0 - 6.0 * r[j]*r[j] + 8.0 * pow(r[j],3) - 3.0 * pow(r[j],4) ;

dw[j]=(1.0/dm[j])*(-12.0 * r[j] + 24.0 * pow(r[j],2) - 12.0 * pow(r[j],3)) * sign;

dwx[j] = pow((1/dm[j]),2) *(-12.0 + 48.0 * r[j] - 36.0 * pow(r[j],2));

}

APPENDIX B. 1D BEAM EFG PROGRAM (V2) 153

else

{

we[j]=0.0;

dw[j]=0.0;

dwx[j]=0.0;

}

fprintf(f2,”%7.4f\t”,we[j]);

}

fprintf(f2,”\n”);

fprintf(f2,”The first derivative of weight function:\n”);

for(j=0;j<nnd;j++)

{

fprintf(f2,”%7.4f\t”,dw[j]);

p[j][0]=1.0;

p[j][1]=(-(xg-x[j]));

p[j][2]=pow((xg-x[j]),2);

}

/*********SET UP SHAPE FUNCTIONS AND DERIVATIVES**********/

fprintf(f2,”\n”);

for(j=0;j<nnd;j++)

{

B[0][j]=(1.0*we[j]);

B[1][j]=(-(xg-x[j])*we[j]);

B[2][j]=(pow((xg-x[j]),2))*we[j];

}

fprintf(f2,”\n”);

fprintf(f2,”The matrix B is:\n”);

for(j=0;j<3;j++)

{

APPENDIX B. 1D BEAM EFG PROGRAM (V2) 154

for(k=0;k<nnd;k++)

{

fprintf(f2,”%6.3f\t”,B[j][k]);

}

fprintf(f2,”\n”);

}

fprintf(f2,”\nThe Matrix db is:\n”);

for(k=0;k<nnd;k++)

{

db[0][k]=1.0*dw[k];

db[1][k]=(-(xg-x[k]))*dw[k];

db[2][k]=pow(xg-x[k],2)*dw[k];

}

for(j=0;j<3;j++)

{

for(k=0;k<nnd;k++)

{

fprintf(f2,”%6.4f\t ”,db[j][k]);

}

fprintf(f2,”\n”);

}

fprintf(f2,”\nThe Matrix ddB is:\n”);

for(k=0;k<nnd;k++)

{

ddb[0][k]=1.0*dwx[k];

ddb[1][k]=(-(xg-x[k]))*dwx[k];

ddb[2][k]=pow(xg-x[k],2)*dwx[k];

}

for(j=0;j<3;j++)

APPENDIX B. 1D BEAM EFG PROGRAM (V2) 155

{

for(k=0;k<nnd;k++)

{

fprintf(f2,”%6.4f\t ”,ddb[j][k]);

}

fprintf(f2,”\n”);

}

for(j=0;j<3;j++)

{

for(k=0;k<3;k++)

{

A[j][k]=0.0;

dA[j][k]=0.0;

ddA[j][k]=0.0;

}

}

for(j=0;j<nnd;j++)

{

for(k=0;k<3;k++)

{

for(l=0;l<3;l++)

{

pp[k][l]=p[j][k]*p[j][l];

A[k][l]=A[k][l]+we[j]*pp[k][l];

dA[k][l]=dA[k][l]+dw[j]*pp[k][l];

ddA[k][l]=ddA[k][l]+dwx[j]*pp[k][l];

}

}

}

APPENDIX B. 1D BEAM EFG PROGRAM (V2) 156

l=0;

fprintf(f2,”The matrix A is:\n”);

for(j=0;j<3;j++)

{

for(k=0;k<3;k++)

{

Min[l]=A[j][k];

Mout[l]=0.0;

fprintf(f2,”A[%d][%d]=%6.3f\t”,j,k,A[j][k]);

l++;

}

fprintf(f2,”\n”);

}

fprintf(f2,”The matrix dA is:\n”);

for(j=0;j<3;j++)

{

for(k=0;k<3;k++)

{

fprintf(f2,”dA[%d][%d]=%6.3f\t”,j,k,dA[j][k]);

}

fprintf(f2,”\n”);

}

for(j=0;j<3;j++)

{

for(k=0;k<3;k++)

{

fprintf(f2,”ddA[%d][%d]=%6.3f\t”,j,k,ddA[j][k]);

}

fprintf(f2,”\n”);

APPENDIX B. 1D BEAM EFG PROGRAM (V2) 157

}

k=3;

matrixinverse(Min,k);

fprintf(f2,”The inverse of matrix A is:\n”);

l=0;

for(j=0;j<3;j++)

{

for(k=0;k<3;k++)

{

Ainv[j][k]=Mout[l];

fprintf(f2,”Ainv[%d][%d]=%6.3f\t”,j,k,Ainv[j][k]);

l++;

}

fprintf(f2,”\n”);

}

for(j=0;j<3;j++)

{

for(k=0;k<nnd;k++)

{

Aib[j][k]=0.0;

}

}

for(j=0;j<3;j++)

{

for(k=0;k<nnd;k++)

{

for(l=0;l<3;l++)

{

Aib[j][k]=Aib[j][k]+(Ainv[j][l]*B[l][k]);

APPENDIX B. 1D BEAM EFG PROGRAM (V2) 158

}

}

}

fprintf(f2,”The Matrix Aib is:\n”);

for(j=0;j<3;j++)

{

for(k=0;k<nnd;k++)

{

fprintf(f2,”%6.3f\t”,Aib[j][k]);

}

fprintf(f2,”\n”);

}

pd[0]=1.0;

pd[1]=0.0;

pd[2]=0.0;

fprintf(f2,”%f\t %f\t %f\n”,pd[0],pd[1],pd[2]);

for(k=0;k<nnd;k++)

{

for(j=0;j<3;j++)

{

for(l=0;l<3;l++)

{

phi[i][k] += (pd[j]*(Ainv[j][l]*B[l][k]));

}

}

}

for(k=0;k<nnd;k++)

{

fprintf(f2,”phi[%d][%d]=%6.3f\n”,i,k,phi[i][k]);

APPENDIX B. 1D BEAM EFG PROGRAM (V2) 159

}

for(j=0;j<3;j++)

{

for(k=0;k<3;k++)

{

daa[j][k]=0.0;

for(l=0;l<3;l++)

{

daa[j][k]=daa[j][k]+dA[j][l]*Ainv[l][k];

}

}

}

for(j=0;j<3;j++)

{

for(k=0;k<3;k++)

{

da[j][k]=0.0;

for(l=0;l<3;l++)

{

da[j][k]=da[j][k]-(Ainv[j][l])*daa[l][k];

}

}

}

fprintf(f2,”\nThe first derivative of Ainv is\n”);

for(j=0;j<3;j++)

{

for(k=0;k<3;k++)

{

fprintf(f2,”da[%d][%d]=%6.3e\t”,j,k,da[j][k]);

APPENDIX B. 1D BEAM EFG PROGRAM (V2) 160

}

fprintf(f2,”\n”);

}

fprintf(f2,”\n”);

zone[0]=0.0;

zone[1]=1.0;

zone[2]=0.0;

for(k=0;k<nnd;k++)

{

dphi[i][k]=0.0;

for(j=0;j<3;j++)

{

for(l=0;l<3;l++)

{

dphi[i][k] = dphi[i][k] + (zone[j] ∗ (Ainv[j][l] ∗B[l][k])) + (pd[j] ∗ (da[j][l] ∗B[l][k] +

Ainv[j][l] ∗ db[l][k]));

}

}

}

for(j=0;j<nnd;j++)

{

fprintf(f2,”dphi[%d][%d]=%6.3e\n”,i,j,dphi[i][j]);

}

fprintf(f2,”\n”);

for(j=0;j<3;j++)

{

for(k=0;k<3;k++)

{

temp[j][k]=0.0;

APPENDIX B. 1D BEAM EFG PROGRAM (V2) 161

temp1[j][k]=0.0;

temp2[j][k]=0.0;

dda[j][k]=0.0;

}

}

for(j=0;j<3;j++)

{

for(k=0;k<3;k++)

{

for(l=0;l<3;l++)

{

temp[j][k]=temp[j][k]+(Ainv[j][l])*daa[l][k];

}

}

}

for(j=0;j<3;j++)

{

for(k=0;k<3;k++)

{

fprintf(f2,”temp[%d][%d]=%6.3f\t”,j,k,temp[j][k]);

}

fprintf(f2,”\n”);

}

for(j=0;j<3;j++)

{

for(k=0;k<3;k++)

{

for(l=0;l<3;l++)

{

APPENDIX B. 1D BEAM EFG PROGRAM (V2) 162

temp1[j][k]=temp1[j][k]+(dA[j][l])*temp[l][k];

}

}

}

for(j=0;j<3;j++)

{

for(k=0;k<3;k++)

{

fprintf(f2,”temp1[%d][%d]=%6.3f\t”,j,k,temp1[j][k]);

}

fprintf(f2,”\n”);

}

for(j=0;j<3;j++)

{

for(k=0;k<3;k++)

{

for(l=0;l<3;l++)

{

temp2[j][k]=temp2[j][k]+(ddA[j][l])*Ainv[l][k];

}

}

}

for(j=0;j<3;j++)

{

for(k=0;k<3;k++)

{

fprintf(f2,”temp2[%d][%d]=%6.3f\t”,j,k,temp2[j][k]);

}

fprintf(f2,”\n”);

APPENDIX B. 1D BEAM EFG PROGRAM (V2) 163

}

for(j=0;j<3;j++)

{

for(k=0;k<3;k++)

{

for(l=0;l<3;l++)

{

dda[j][k]=dda[j][k]+(2*(Ainv[j][l]*temp1[l][k])-(Ainv[j][l]*temp2[l][k]));

}

}

}

fprintf(f2,”\nThe Second derivative of Ainv is\n”);

for(j=0;j<3;j++)

{

for(k=0;k<3;k++)

{

fprintf(f2,”dda[%d][%d]=%6.3e\t”,j,k,dda[j][k]);

}

fprintf(f2,”\n”);

}

for(j=0;j<nnd;j++)

{

ddphi[j][i]=0.0;

}

ztwo[0]=0.0;

ztwo[1]=0.0;

ztwo[2]=2.0;

for(j=0;j<3;j++)

{

APPENDIX B. 1D BEAM EFG PROGRAM (V2) 164

for(k=0;k<nnd;k++)

{

for(l=0;l<3;l++)

{

ddphi[k][i] = ddphi[k][i]+(ztwo[j]∗(Ainv[j][l]∗B[l][k]))+(pd[j]∗(dda[j][l]∗B[l][k]+

da[j][l] ∗ db[l][k] + da[j][l] ∗ db[l][k] +Ainv[j][l] ∗ ddb[l][k])) + (zone[j] ∗ (2 ∗Ainv[j][l] ∗

db[l][k] + 2 ∗ da[j][l] ∗B[l][k]));

}

}

}

fprintf(f2,”\nThe second derivative of phi\n”);

for(k=0;k<nnd;k++)

{

fprintf(f2,”ddphi[%d][%d]=%6.3e\n”,k,i,ddphi[k][i]);

}

if(i==gpt)

{

for(k=0;k<nnd;k++)

{

phi0[k]=phi[i][k];

dphi0[k]=dphi[i][k];

ddphi0[k]=ddphi[k][i];

}

}

if(i==gpt+1)

{

for(k=0;k<nnd;k++)

{

phin[k]=phi[i][k];

APPENDIX B. 1D BEAM EFG PROGRAM (V2) 165

dphin[k]=dphi[i][k];

ddphin[k]=ddphi[k][i];

}

}

}

/**************ASSEMBLE DISCRETE EQUATIONS***************/

lnd=nnd+2;

stiffbeam(E, I, ddphi, phi0, dphi0, vg, nnd, gpt);

fprintf(f2,”\nThe stifness matrix is \n”);

for(j=0;j<lnd;j++)

{

for(k=0;k<lnd;k++)

{

fprintf(f2,”%6.3e\t”,K[j][k]);

}

fprintf(f2,”\n”);

}

matsize=lnd;

//inversemat(K,lnd);

for(i=0;i<matsize;i++) //automatically initialize the unitmatrix, e.g.

for(j=0;j<matsize;j++) // - -

if(i==j) // |1 0 0 |

Kinv[i][j]=1; // |0 1 0 |

else // |0 0 1 |

Kinv[i][j]=0; // - -

/*—————LoGiC starts here——————*/ //procedure to make the matrix A

to unit matrix

for(k=0;k<matsize;k++) //by some row operations,and the same rowoperations

of

APPENDIX B. 1D BEAM EFG PROGRAM (V2) 166

{ //Unit mat. I gives the inverse of matrix A

tem=K[k][k]; //’temp’ stores the A[k][k] value so that A[k][k] will not change

for(j=0;j<matsize;j++) //during the operation A[i][j]/=A[k][k] when i=j=k

{

K[k][j]/=tem; //it performs the following row operations to make A to unit matrix

Kinv[k][j]/=tem; //R0=R0/A[0][0],similarly for I alsoR0=R0/A[0][0]

} //R1=R1-R0*A[1][0] similarly for I

for(i=0;i<matsize;i++) //R2=R2-R0*A[2][0] ,,

{

tem=K[i][k]; //R1=R1/A[1][1]

for(j=0;j<matsize;j++) //R0=R0-R1*A[0][1]

{ //R2=R2-R1*A[2][1]

if(i==k)

break; //R2=R2/A[2][2]

K[i][j]-=K[k][j]*tem; //R0=R0-R2*A[0][2]

Kinv[i][j]-=Kinv[k][j]*tem; //R1=R1-R2*A[1][2]

}

}

}

/*—————LoGiC ends here——————–*/

fprintf(f2,”The inverse of the matrix is:\n”); //Print the matrix I that now con-

tains the inverse of mat. A

for(i=0;i<matsize;i++)

{

for(j=0;j<matsize;j++)

{

fprintf(f2,”%10.4e\t”,Kinv[i][j]);

}

fprintf(f2,”\n”);

APPENDIX B. 1D BEAM EFG PROGRAM (V2) 167

}

for(j=0;j<nnd;j++)

{

f[j]=0.0;

for(k=0;k<gpt;k++)

{

f[j] = f[j] + phi[k][j]*q*vg[k];

}

//f[j] = f[j] + phin[j]*Q0 - dphin[j]*M0;

}

f[nnd] = u0;

f[nnd+1] = thta0;

for(k=0;k<lnd;k++)

{

fprintf(f2,”f[%d]=%6.3f\n”,k,f[k]);

}

fprintf(f2,”\n”);

for(i=0;i<lnd;i++)

{

d[i]=0.0;

for(j=0;j<lnd;j++)

{

d[i]=d[i]+Kinv[i][j]*f[j];

}

}

for(k=0;k<lnd;k++)

{

fprintf(f2,”d[%d]=\t%6.3f \n”,k,d[k]);

}

APPENDIX B. 1D BEAM EFG PROGRAM (V2) 168

}

/******************FUNCTION TO FIND THE DETERMINANT OF THE MA-

TRIX************************/

void matrixinverse(float Min[9], int actualsize)

{

/* This function calculates the inverse of a square matrix

*

* matrix inverse(double *Min, double *Mout, int actualsize)

*

* Min : Pointer to Input square Double Matrix

* Mout : Pointer to Output (empty) memory space with size of Min

* actualsize : The number of rows/columns

*

* Notes:

* - the matrix must be invertible

* - there’s no pivoting of rows or columns, hence,

* accuracy might not be adequate for your needs.

*

* Code is rewritten from c++ template code Mike Dinolfo

*/

/* Loop variables */

int i, j, k;

/* Sum variables */

double sum,x;

/* Copy the input matrix to output matrix */

for(i=0; i<actualsize*actualsize; i++)

{

Mout[i]=Min[i];

}

APPENDIX B. 1D BEAM EFG PROGRAM (V2) 169

/* Add small value to diagonal if diagonal is zero */

for(i=0; i<actualsize; i++)

{

j=i*actualsize+i;

if((Mout[j]<1e-10)&&(Mout[j]>-1e-10))

{ Mout[j]=1e-10; }

}

/* Matrix size must be larger than one */

if (actualsize <= 1)

return;

for (i=1; i < actualsize; i++)

{

Mout[i] /= Mout[0]; /* normalize row 0 */

}

for (i=1; i < actualsize; i++)

{

for (j=i; j < actualsize; j++)

{ /* do a column of L */

sum = 0.0;

for (k = 0; k < i; k++) {

sum += Mout[j*actualsize+k] * Mout[k*actualsize+i];

}

Mout[j*actualsize+i] -= sum;

}

if (i == actualsize-1) continue;

for (j=i+1; j < actualsize; j++)

{ /* do a row of U */

sum = 0.0;

for (k = 0; k < i; k++)

APPENDIX B. 1D BEAM EFG PROGRAM (V2) 170

{

sum += Mout[i*actualsize+k]*Mout[k*actualsize+j];

}

Mout[i*actualsize+j] = (Mout[i*actualsize+j]-sum) / Mout[i*actualsize+i];

}

}

for (i = 0; i < actualsize; i++) /* invert L */

{

for (j = i; j < actualsize; j++)

{

x = 1.0;

if (i != j)

{

x = 0.0;

for (k = i; k < j; k++)

{

x -= Mout[j*actualsize+k]*Mout[k*actualsize+i];

}

}

Mout[j*actualsize+i] = x / Mout[j*actualsize+j];

}

}

for (i = 0; i < actualsize; i++) /* invert U */

{

for (j = i; j < actualsize; j++)

{

if (i == j)

continue;

sum = 0.0;

APPENDIX B. 1D BEAM EFG PROGRAM (V2) 171

for (k = i; k < j; k++)

{

sum += Mout[k*actualsize+j]*((i==k) ? 1.0 : Mout[i*actualsize+k]);

}

Mout[i*actualsize+j] = -sum;

}

}

for (i = 0; i < actualsize; i++) /* final inversion */

{

for (j = 0; j < actualsize; j++)

{

sum = 0.0;

for (k = ((i>j)?i:j); k < actualsize; k++)

{

sum += ((j==k)?1.0:Mout[j*actualsize+k])*Mout[k*actualsize+i];

}

Mout[j*actualsize+i] = sum;

}

}

}

void stiffbeam(float E, float I, float ddphi[100][100], float phi0[100], float dphi0[100],

float vg[100], int nnd, int gpt)

{

int i, j, k;

float K1[100][100], K2[100][100];

for(i=0;i<nnd+2;i++)

{

for(j=0;j<nnd+2;j++)

{

APPENDIX B. 1D BEAM EFG PROGRAM (V2) 172

K1[i][j]=0.0;

K2[i][j]=0.0;

K[i][j]=0.0;

}

}

for(i=0;i<nnd;i++)

{

for(j=0;j<nnd;j++)

{

for(k=0;k<gpt;k++)

{

K1[i][j] = K1[i][j]+ E*I*ddphi[i][k]*ddphi[j][k]*vg[k];

}

}

}

// Lagrange multipliers: at clamped

for (i=0;i<nnd;i++)

{

K2[i][nnd]= phi0[i];

K2[i][nnd+1]= dphi0[i];

K2[nnd][i]= phi0[i];

K2[nnd+1][i]= dphi0[i];

}

for(i=0;i<nnd+2;i++)

{

for(j=0;j<nnd+2;j++)

{

K[i][j] = K[i][j] + K1[i][j] + K2[i][j];

}

APPENDIX B. 1D BEAM EFG PROGRAM (V2) 173

}

}

void inversemat(float K[100][100], int matsize)

{

float I[50][50],temp;

int i,j,k;

/*A=(float **)malloc(matsize*sizeof(float *)); //allocate memory dynamically for

matrix A(matsize X matsize)

for(i=0;i<matsize;i++)

A[i]=(float *)malloc(matsize*sizeof(float)); */

/*I=(float **)malloc(matsize*sizeof(float *)); //memory allocation for indentity

matrix I(matsize X matsize)

for(i=0;i<matsize;i++)

I[i]=(float *)malloc(matsize*sizeof(float)); */

//printf(”Enter the matrix:”); // ask the user for matrix A

/* for(i=0;i<matsize;i++)

for(j=0;j<matsize;j++)

A[i][j]=Mat[i][j]; */

for(i=0;i<matsize;i++) //automatically initialize the unitmatrix, e.g.

for(j=0;j<matsize;j++) // - -

if(i==j) // |1 0 0 |

I[i][j]=1; // |0 1 0 |

else // |0 0 1 |

I[i][j]=0; // - -

/*—————LoGiC starts here——————*/ //procedure to make the matrix A

to unit matrix

for(k=0;k<matsize;k++) //by some row operations,and the same rowoperations

of

{ //Unit mat. I gives the inverse of matrix A

APPENDIX B. 1D BEAM EFG PROGRAM (V2) 174

temp=K[k][k]; //’temp’ stores the A[k][k] value so that A[k][k] will not change

for(j=0;j<matsize;j++) //during the operation A[i][j]/=A[k][k] when i=j=k

{

K[k][j]/=temp; //it performs the following row operations to make A to unit

matrix

I[k][j]/=temp; //R0=R0/A[0][0],similarly for I alsoR0=R0/A[0][0]

} //R1=R1-R0*A[1][0] similarly for I

for(i=0;i<matsize;i++) //R2=R2-R0*A[2][0] ,,

{

temp=K[i][k]; //R1=R1/A[1][1]

for(j=0;j<matsize;j++) //R0=R0-R1*A[0][1]

{ //R2=R2-R1*A[2][1]

if(i==k)

break; //R2=R2/A[2][2]

K[i][j]-=K[k][j]*temp; //R0=R0-R2*A[0][2]

I[i][j]-=I[k][j]*temp; //R1=R1-R2*A[1][2]

}

}

}

/*—————LoGiC ends here——————–*/

printf(”The inverse of the matrix is:”); //Print the matrix I that now contains the

inverse of mat. A

for(i=0;i<matsize;i++)

{

for(j=0;j<matsize;j++)

{

inv[i][j]=I[i][j];

fprintf(f2,”%f ”,I[i][j]);

}

APPENDIX B. 1D BEAM EFG PROGRAM (V2) 175

fprintf(f2,” \n ”);

}

}

Appendix C

2D Plane Stress EFG Program

(V3)

/*************2D PLANE STRESS EFG PROGRAM***********/

#include<stdio.h>

#include<conio.h>

#include<math.h>

void mesh2(float,float,int,int);

void pgauss(int);

void egauss(float[2][200],int[200][200],float[2][4],int);

void domain(float [2], float [2][200], float [2][200], int);

void shape(float [2], float,float [2][200], int[200],float [2][200]);

void lowerupper(float [3][3], int);

void chole(float [3][3], int);

int numcell, numq, conn[200][200], b, c[200];

float x[2][200], dm[2][200], v[4][4], Min[200], Mout[200], sff[3][3], Lu[3][3], Uu[3][3],

perm[3][3];

float dphix[200], dphiy[200], phi[200], Imo, GG[200][200];

double gs[4][1000];

176

APPENDIX C. 2D PLANE STRESS EFG PROGRAM (V3) 177

FILE *f1, *f2;

void main()

{

int i, j, k, l, ndivl, ndivw, en[200], conn2, numnod, ndivlq, ndivwq, quado,

connc[200][200], numq2;

int conn1[200][200], kkk, ind, ind1, ind2, m1, m2, n, c1, c2, c3, c4, c5, c6, matsize,

tem ;

float L, D, E, nu, P, Dmat[3][3], x1[2][200], dmax, xspac, Bmat[3][200];

float yspac, xc[2][200], gauss[2][4], K[200][200], gpos[2], DB[200][200];

float gg[2][200], weight, jac, nnu[2][10], nt[2][10], lthu, ltht;

float ubar[200], f[200], ycen, jcob, mark[200], gst[4][200], gsu[4][200], qk[200];

float force[200], tx, ty, y1, y2, len, fac11, fac2, xp1, yp1, uxex1, uyex1, N1;

float N2, G1[2][2], G2[2][2], LM[200][200], LMinv[200][200];

f1=fopen(”2din.in”,”r”); /*opening input file*/

f2=fopen(”2dout.out”,”w”); /*opening output file*/

/*********SET UP NODAL COORDINATES ALONG BAR, DETERMINE NUM-

BER OF CELLS*******/

fscanf(f1,”%f %f %f %f %f ”,&L, &D, &E, &nu, &P);

fprintf(f2,”Length:\t%6.2f\n”,L);

fprintf(f2,”Height:\t%6.2f\n”,D);

fprintf(f2,”Elasticity:\t%6.2e\n”,E);

fprintf(f2,”Poission ratio:\t%6.2f\n”,nu);

fprintf(f2,”Load:\t%6.2f\n”,P);

fscanf(f1,”%d %d”, &ndivl, &ndivw);

fprintf(f2,”No. division in length:\t%d\n”,ndivl);

fprintf(f2,”No. division in height:\t%d\n”,ndivw);

Dmat[0][0]=Dmat[1][1]=E/(1-(nu*nu));

Dmat[0][1]=Dmat[1][0]=E/(1-(nu*nu))*nu;

Dmat[0][2]=Dmat[1][2]=Dmat[2][0]=Dmat[2][1]=0.0;

APPENDIX C. 2D PLANE STRESS EFG PROGRAM (V3) 178

Dmat[2][2]=E/(1-(nu*nu))*(1-nu)/2;

fprintf(f2,”The D matrix is\n”);

for(i=0;i<3;i++)

{

for(j=0;j<3;j++)

{

fprintf(f2,”%7.2e\t”,Dmat[i][j]);

}

fprintf(f2,”\n”);

}

mesh2(L,D,ndivl,ndivw);

conn2=numcell;

numnod=numq;

for(i=0;i<2;i++)

{

for(j=0;j<numnod;j++)

{

x1[i][j]=x[i][j];

fprintf(f2,”%7.2f\t”,x[i][j]);

}

fprintf(f2,”\n”);

}

fprintf(f2,”\n”);

for(i=0;i<4;i++)

{

for(j=0;j<conn2;j++)

{

conn1[i][j]=conn[i][j];

fprintf(f2,”%7d\t”,conn1[i][j]);

APPENDIX C. 2D PLANE STRESS EFG PROGRAM (V3) 179

}

fprintf(f2,”\n”);

}

fprintf(f2,”%d\t%d\n”,conn2, numnod);

//DETERMINE DOMAINS OF INFLUENCE - UNIFORM NODAL SPACING

dmax=3.5;

xspac = L/ndivl;

yspac = D/ndivw;

for(j=0;j<numnod;j++)

{

dm[0][j]=dmax*xspac;

dm[1][j]=dmax*yspac;

}

for(i=0;i<2;i++)

{

for(j=0;j<numnod;j++)

{

fprintf(f2,”%5.2f\t”,dm[i][j]);

}

fprintf(f2,”\n”);

}

//SET UP QUADRATURE CELLS

ndivlq = 10;

ndivwq = 4;

mesh2(L,D,ndivlq,ndivwq);

for(i=0;i<2;i++)

{

for(j=0;j<numq;j++)

{

APPENDIX C. 2D PLANE STRESS EFG PROGRAM (V3) 180

xc[i][j]=x[i][j];

fprintf(f2,”%7.2f\t”,xc[i][j]);

}

fprintf(f2,”\n”);

}

fprintf(f2,”\n”);

for(i=0;i<4;i++)

{

for(j=0;j<numcell;j++)

{

connc[i][j]=conn[i][j];

fprintf(f2,”%7d\t”,connc[i][j]);

}

fprintf(f2,”\n”);

}

fprintf(f2,”%d\t%d\n”,numcell, numq);

fprintf(f2,”\n”);

// SET UP GAUSS POINTS, WEIGHTS, AND JACOBIAN FOR EACH CELL

quado = 4;

pgauss(quado);

for(i=0;i<2;i++)

{

for(j=0;j<4;j++)

{

gauss[i][j]=v[i][j];

fprintf(f2,”%5.4f\t”,gauss[i][j]);

}

fprintf(f2,”\n”);

}

APPENDIX C. 2D PLANE STRESS EFG PROGRAM (V3) 181

numq2 = numcell*quadoˆ2;

for(i=0;i<4;i++)

{

for(j=0;j<numq2;j++)

{

gs[i][j] = 0.0;

}

}

egauss(xc, conn, gauss, numcell);

for(i=0;i<4;i++)

{

kkk=39;

for(j=0;j<numq2;j++)

{

//fprintf(f2,”%5.4f\t”,gs[i][j]);

if(j==kkk)

{

// fprintf(f2,”\n”);

kkk= kkk+40;

}

}

fprintf(f2,”\n”);

}

for(i=0;i<numnod*2;i++)

{

for(j=0;j<numnod*2;j++)

{

K[i][j]=0.0;

}

APPENDIX C. 2D PLANE STRESS EFG PROGRAM (V3) 182

}

for(i=0;i<numq2;i++)

{

gpos[0] = gs[0][i];

gpos[1] = gs[1][i];

weight = gs[2][i];

jac = gs[3][i];

domain(gpos,x,dm,numnod);

fprintf(f2,”\nfor gauss point %d\n”,i);

for(j=0;j<b;j++)

{

fprintf(f2,”%d\t”,c[j]);

}

for(j=0;j<2*b;j++)

{

en[j]=0.0;

}

shape(gpos,dmax,x,c,dm);

for(j=0;j<2*b;j++)

{

for(k=0;k<3;k++)

{

Bmat[k][j]=0.0;

}

}

for(j=0;j<b;j++)

{

for(k=0;k<3;k++)

{

APPENDIX C. 2D PLANE STRESS EFG PROGRAM (V3) 183

if(k==0)

{

Bmat[k][(2*j)-1+1]=dphix[j];

Bmat[k][2*j+1]=0.0;

}

else

{

if(k==1)

{

Bmat[k][(2*j)-1+1]=0.0;

Bmat[k][2*j+1]=dphiy[j];

}

else

{

Bmat[k][(2*j)-1+1]=dphiy[j];

Bmat[k][2*j+1]=dphix[j];

}

}

}

}

for(j=0;j<3;j++)

{

for(k=0;k<2*b;k++)

{

fprintf(f2,”%7.3f\t”,Bmat[j][k]);

}

fprintf(f2,”\n”);

}

for(j=0;j<b;j++)

APPENDIX C. 2D PLANE STRESS EFG PROGRAM (V3) 184

{

en[(2*j)-1+1] = 2*c[j]-1+1;

en[(2*j)+1] = 2*c[j]+1;

}

/*for(k=0;k<2*b;k++)

{

fprintf(f2,”%7.3f\t”,en[k]);

} */

fprintf(f2,”\n”);

for(k=0;k<2*b;k++)

{

for(j=0;j<3;j++)

{

DB[j][k]=0.0;

for(l=0;l<3;l++)

{

DB[j][k] += (Dmat[j][l]*Bmat[l][k]);

}

}

}

/*for(j=0;j<3;j++)

{

for(k=0;k<2*b;k++)

{

fprintf(f2,”%7.3e\t”,DB[j][k]);

}

fprintf(f2,”\n”);

} */

for(j=0;j<2*b;j++)

APPENDIX C. 2D PLANE STRESS EFG PROGRAM (V3) 185

{

for(k=0;k<2*b;k++)

{

for(l=0;l<3;l++)

{

K[en[j]][en[k]] += (Bmat[l][j]*DB[l][k])*(weight*jac);

}

}

}

/*fprintf(f2,”\n”);

for(j=0;j<2*b;j++)

{

for(k=0;k<2*b;k++)

{

fprintf(f2,”%7.3e\t”,K[en[j]][en[k]]);

}

fprintf(f2,”\n”);

} */

}

fprintf(f2,”\nThe K matrix is \n”);

/*for(j=0;j<2*numnod;j++)

{

for(k=0;k<2*numnod;k++)

{

fprintf(f2,”%7.3e\t”,K[j][k]);

}

fprintf(f2,”\n”);

}*/

//DETERMINE NODES ON BOUNDARY, SET UP BC’S

APPENDIX C. 2D PLANE STRESS EFG PROGRAM (V3) 186

ind1 = 0.0; ind2 = 0.0;

for(j=0;j<numnod;j++)

{

if(x[0][j]==0.0)

{

nnu[0][ind1] = x[0][j];

nnu[1][ind1] = x[1][j];

ind1=ind1+1;

}

if(x[0][j]==L)

{

nt[0][ind2] = x[0][j];

nt[1][ind2] = x[1][j];

ind2=ind2+1;

}

}

for(k=0;k<ind1;k++)

{

fprintf(f2,”%f\t%f\t”,nnu[0][k],nnu[1][k]);

}

for(k=0;k<ind1;k++)

{

fprintf(f2,”%f\t%f\t”,nt[0][k],nt[1][k]);

}

lthu = ind1;

ltht = ind2;

for(j=0;j<lthu*2;j++)

{

ubar[j]=0.0;

APPENDIX C. 2D PLANE STRESS EFG PROGRAM (V3) 187

}

for(j=0;j<numnod*2;j++)

{

f[j]=0.0;

}

//SET UP GAUSS POINTS ALONG TRACTION BOUNDARY

ind=0;

for(i=0;i<(ltht-1);i++)

{

ycen=(nt[1][i+1]+nt[1][i])/2;

jcob = fabs(((nt[1][i+1])-nt[1][i])/2);

for(j=0;j<quado;j++)

{

mark[j] = ycen-gauss[0][j]*jcob;

gst[0][ind]=nt[0][i];

gst[1][ind]=mark[j];

gst[2][ind]=gauss[1][j];

gst[3][ind]=jcob;

ind = ind+1;

}

}

fprintf(f2,”\n”);

for(j=0;j<4;j++)

{

for(k=0;k<ind;k++)

{

fprintf(f2,”%7.3f\t”,gst[j][k]);

}

fprintf(f2,”\n”);

APPENDIX C. 2D PLANE STRESS EFG PROGRAM (V3) 188

}

//SET UP GAUSS POINTS ALONG DISPLACEMENT BOUNDARY

for(j=0;j<4;j++)

{

for(k=0;k<ind;k++)

{

if(j==0)

gsu[j][k]=0.0;

else

gsu[j][k]=gst[j][k];

}

}

for(i=0;i<2*lthu;i++)

qk[i] = 0.0;

Imo = (1.0/12.0)*pow(D,3);

for(i=0;i<ind;i++)

{

gpos[0] = gst[0][i];

gpos[1] = gst[1][i];

weight=gst[2][i];

jac = gst[3][i];

domain(gpos,x,dm,numnod);

fprintf(f2,”\nfor gauss point %d\n”,i);

for(j=0;j<b;j++)

{

fprintf(f2,”%d\t”,c[j]);

}

for(j=0;j<2*b;j++)

{

APPENDIX C. 2D PLANE STRESS EFG PROGRAM (V3) 189

en[j]=0.0;

force[j]=0.0;

}

shape(gpos,dmax,x,c,dm);

tx = 0.0;

ty = -(P/(2.0*Imo))*((D*D)/4.0-(pow(gpos[1],2)));

for(j=0;j<b;j++)

{

en[2*j-1+1] = 2*c[j]-1+1;

en[2*j+1] = 2*c[j]+1;

force[2*j-1+1]=tx*phi[j];

force[2*j+1] = ty*phi[j];

}

for(j=0;j<2*b;j++)

{

f[en[j]] = f[en[j]] + jac*weight*force[j];

}

}

for(i=0;i<numnod;i++)

{

fprintf(f2,”%7.3f\t%7.3f\n”,f[2*i-1+1],f[2*i+1]);

}

for(i=0;i<numnod*2;i++)

{

for(j=0;j<lthu*2;j++)

{

GG[i][j] = 0.0;

}

}

APPENDIX C. 2D PLANE STRESS EFG PROGRAM (V3) 190

ind1=0; ind2=0;

for(i=0;i<(lthu-1);i++)

{

m1 = ind1; m2 = m1+1;

y1 = nnu[1][m1]; y2 = nnu[1][m2];

len = y1-y2;

ind1=ind1+1;

for(j=0;j<quado;j++)

{

gpos[0] = gsu[0][ind2];

gpos[1] = gsu[1][ind2];

weight = gsu[2][j];

jac = gsu[3][j];

ind2=ind2+1;

fac11 = (-P*nnu[1][m1])/(6*E*Imo);

fac2 = P/(6.0*E*Imo);

xp1 = gpos[0];

yp1 = gpos[1];

uxex1 = (6.0*L-3.0*xp1)*xp1 + (2+nu)*(pow(yp1,2) - pow((D/2),2));

uxex1 = uxex1*fac11;

uyex1 = 3.0*nu*yp1*yp1*(L-xp1)+0.25*(4.0+5.0*nu)*xp1*D*D+(3.0*L-xp1)*xp1*xp1;

uyex1 = uyex1*fac2;

N1 = (gpos[1]-y2)/len; N2 = 1-N1;

qk[2*m1-1+1] = qk[2*m1-1+1]-weight*jac*N1*uxex1;

qk[2*m1+1] = qk[2*m1+1] - weight*jac*N1*uyex1;

qk[2*m2-1+1] = qk[2*m2-1+1] -weight*jac*N2*uxex1;

qk[2*m2+1] = qk[2*m2+1] - weight*jac*N2*uyex1;

domain(gpos,x,dm,numnod);

shape(gpos,dmax,x,c,dm);

APPENDIX C. 2D PLANE STRESS EFG PROGRAM (V3) 191

for(n=0;n<b;n++)

{

G1[0][0] = G1[1][1]= -weight*jac*phi[n]*N1;

G1[0][1] = G1[1][0] = 0.0;

G2[0][0] = G2[1][1]= -weight*jac*phi[n]*N2;

G2[0][1] = G2[1][0] = 0.0;

c1=2*c[n]-1+1;

c2=2*c[n]+1;

c3=2*m1-1+1;

c4=2*m1+1;

c5=2*m2-1+1;

c6=2*m2+1;

GG[c1][c3]=GG[c1][c3]+ G1[0][0];

GG[c2][c4]=GG[c2][c4]+G1[1][1];

GG[c1][c4]=GG[c1][c4]+G1[0][1];

GG[c2][c3]=GG[c2][c3]+G1[1][0];

GG[c1][c5]=GG[c1][c5]+ G2[0][0];

GG[c2][c6]=GG[c2][c6]+G2[1][1];

GG[c1][c6]=GG[c1][c6]+G2[0][1];

GG[c2][c5]=GG[c2][c5]+G2[1][0];

}

}

}

for(i=0;i<numnod*2;i++)

{

for(j=0;j<lthu*2;j++)

{

fprintf(f2,”%7.4f\t”,GG[i][j]);

}

APPENDIX C. 2D PLANE STRESS EFG PROGRAM (V3) 192

fprintf(f2,”\n”);

}

for(i=numnod*2;i<(numnod*2+lthu*2);i++)

{

f[i]=0.0;

}

for(i=numnod*2;i<(numnod*2+lthu*2);i++)

{

f[i]= -qk[i];

}

for(i=0;i<(numnod+lthu);i++)

{

fprintf(f2,”%7.3e\t%7.3e\n”,f[2*i-1+1],f[2*i+1]);

}

for(j=0;j<(numnod+lthu);j++)

{

for(k=0;k<(numnod+lthu);k++)

{

if(j<numnod && k<numnod)

LM[j][k]=K[j][k];

else

if(j>=numnod && k<lthu)

LM[j][k]=GG[j-numnod][k];

else

if(k>=numnod && j<lthu)

LM[j][k]=GG[k-numnod][j];

else

LM[j][k]=0.0;

}

APPENDIX C. 2D PLANE STRESS EFG PROGRAM (V3) 193

}

matsize=(numnod+lthu);

//inversemat(K,lnd);

for(i=0;i<matsize;i++)

for(j=0;j<matsize;j++)

if(i==j)

LMinv[i][j]=1;

else

LMinv[i][j]=0;

fprintf(f2,”The Lagrange multiplier matrix is:\n”);

for(i=0;i<(numnod+lthu);i++)

{

for(j=0;j<(numnod+lthu);j++)

{

fprintf(f2,”%10.4e\t”,LM[i][j]);

}

fprintf(f2,”\n”);

}

}

void mesh2(float length, float height, int ndivl, int ndivw)

{

int i, j, elemn;

float nodet[200][4];

numcell= ndivw*ndivl;

numq = (ndivl+1)*(ndivw+1);

for(i=0;i<(ndivl+1);i++)

{

for(j=0;j<(ndivw+1);j++)

{

APPENDIX C. 2D PLANE STRESS EFG PROGRAM (V3) 194

x[0][((ndivw+1)*(i)+j)]= (length/ndivl)*(i);

x[1][((ndivw+1)*(i)+j)]= (-(height/ndivw)*(j)+height/2);

}

}

for(j=0;j<ndivl;j++)

{

for(i=0;i<ndivw;i++)

{

elemn = (j)*ndivw + i+1;

nodet[elemn-1][0] = elemn + (j);

nodet[elemn-1][1] = nodet[elemn-1][0] + 1;

nodet[elemn-1][2] = nodet[elemn-1][1]+ndivw+1;

nodet[elemn-1][3] = nodet[elemn-1][2]-1;

}

}

for(j=0;j<elemn;j++)

{

for(i=0;i<4;i++)

{

conn[i][j]=nodet[j][i];

}

}

}

void pgauss(int k)

{

// This function returns a matrix with 4 gauss points and their weights

if (k==4)

{

v[0][0] =-.861136311594052575224;

APPENDIX C. 2D PLANE STRESS EFG PROGRAM (V3) 195

v[0][1] =-.339981043584856264803;

v[0][2] =(-v[0][1]);

v[0][3] = (-v[0][0]);

v[1][0] =.347854845137453857373;

v[1][1] =.652145154862546142627;

v[1][2] = v[1][1];

v[1][3] = v[1][0];

}

}

void egauss(float xc[2][200], int conn[200][200], float gauss[2][4], int numcell)

{

int index, e, i, j, k, l, one[50], je;

float psiJ[4], etaJ[4], xe[200], ye[200], eta, psi, N[50], NJpsi[50], NJeta[50];

float xpsi, ypsi, xeta, yeta, jcob, xq, yq;

// routine to set up gauss points, jacobian, and weights

index=0;

for(i=0;i<4;i++)

{

one[i]=1;

}

psiJ[0] = -1;

psiJ[1] = 1;

psiJ[2] = 1;

psiJ[3] = -1;

etaJ[0] = -1;

etaJ[1] = -1;

etaJ[2] = 1;

etaJ[3] = 1;

l = 4;

APPENDIX C. 2D PLANE STRESS EFG PROGRAM (V3) 196

for(e=0;e<numcell;e++)

{

// DETERMINE NODES IN EACH CELL

for(j=0;j<4;j++)

{

je=conn[j][e];

xe[j]=xc[0][je-1];

ye[j]=xc[1][je-1];

}

for (i=0;i<l;i++)

{

for(j=0;j<l;j++)

{

index = index+1;

eta=gauss[0][i];

psi=gauss[0][j];

for(k=0;k<4;k++)

{

N[k] = .25*(one[k]+psi*psiJ[k])*(one[k]+eta*etaJ[k]);

NJpsi[k]=.25*psiJ[k]*(one[k]+eta*etaJ[k]);

NJeta[k]=.25*etaJ[k]*(one[k]+psi*psiJ[k]);

}

xpsi = ypsi = xeta = yeta= xq = yq =0.0;

for(k=0;k<4;k++)

{

xpsi= xpsi + NJpsi[k]*xe[k];

ypsi= ypsi + NJpsi[k]*ye[k];

xeta= xeta + NJeta[k]*xe[k];

yeta= yeta + NJeta[k]*ye[k];

APPENDIX C. 2D PLANE STRESS EFG PROGRAM (V3) 197

xq = xq + N[k]*xe[k];

yq = yq + N[k]*ye[k];

}

jcob=xpsi*yeta-xeta*ypsi;

gs[0][index-1] = xq;

gs[1][index-1] = yq;

gs[2][index-1] = gauss[1][i]*gauss[1][j];

gs[3][index-1] = jcob;

}

}

}

}

void domain(float gpos[2], float x1[2][200], float ds[2][200], int nnodes)

{

int i,j;

float dif[2][200], a[2][200];

for(j=0;j<nnodes;j++)

{

dif[0][j]= gpos[0]-x1[0][j];

dif[1][j]= gpos[1]-x1[1][j];

}

for(i=0;i<2;i++)

{

for(j=0;j<nnodes;j++)

{

a[i][j]=ds[i][j]-fabs(dif[i][j]);

}

}

b=0;

APPENDIX C. 2D PLANE STRESS EFG PROGRAM (V3) 198

for(j=0;j<nnodes;j++)

{

if(a[0][j]>0 && a[1][j]>0)

{

c[b]=j;

b++;

}

}

}

void shape(float gpos[2], float dmax,float x1[2][200], int c1[200],float ds[2][200])

{

int i,j,k,l;

float nv[2][200], p[3][200], pp[3][3],aa[3][3],daax[3][3],daay[3][3];

float B[3][200], dif[2][200], t[2][200], signx, signy, rx, ry, drdx, drdy;

float w[200], dwdx[200], dwdy[200], wx, wy, dwx, dwy, a1[3][3];

float pd[3], pd1[3], pd2[3], C[3], gam[3][3], D1, D2, D3, temp[3];

float dbx[3][200], dby[3][200];

for(i=0;i<b;i++)

{

nv[0][i]=x1[0][c1[i]];

nv[1][i]=x1[1][c1[i]];

}

for(i=0;i<b;i++)

{

p[0][i]=1.0;

p[1][i]=nv[0][i];

p[2][i]=nv[1][i];

}

for(j=0;j<b;j++)

APPENDIX C. 2D PLANE STRESS EFG PROGRAM (V3) 199

{

dif[0][j]= gpos[0]-nv[0][j];

dif[1][j]= gpos[1]-nv[1][j];

}

for(j=0;j<b;j++)

{

t[0][j]= ds[0][j]/dmax;

t[1][j]= ds[1][j]/dmax;

}

wx=0.0;

wy=0.0;

l=0.0;

// CUBIC SPLINE WEIGHT FUNCTION

for(j=0;j<=b;j++)

{

if(dif[0][j]<l)

signx = (-1.0);

else

signx=1.0;

if(dif[1][j]<l)

signy= (-1.0);

else

signy=1.0;

drdx = signx/ds[0][c1[j]];

drdy = signy/ds[1][c1[j]];

rx = fabs(dif[0][j])/ds[0][c1[j]];

fprintf(f2,”rx=%6.3f\t”,rx);

ry = fabs(dif[1][j])/ds[1][c1[j]];

if (rx>0.5)

APPENDIX C. 2D PLANE STRESS EFG PROGRAM (V3) 200

{

wx = (4.0/3.0)- (4.0*rx) + (4.0*rx*rx) -((4.0/3.0)*pow(rx,3));

dwx = (-4.0 + (8.0*rx)-(4.0*rx*rx))*drdx;

}

else

{

wx = (2.0/3.0) - 4.0*rx*rx + (4.0*pow(rx,3));

dwx = (-8.0*rx + 12.0*rx*rx)*drdx;

}

if (ry>0.5)

{

wy = (4.0/3.0)-4.0*ry+4.0*ry*ry -((4.0/3.0)*pow(ry,3));

dwy = (-4.0 + 8.0*ry-4.0*ry*ry)*drdy;

}

else

{

wy = (2.0/3.0) - 4.0*ry*ry + (4.0*pow(ry,3));

dwy = (-8.0*ry + 12.0*ry*ry)*drdy;

}

w[j] = wx*wy;

dwdx[j] = wy*dwx;

dwdy[j] = wx*dwy;

}

for(j=0;j<b;j++)

{

B[0][j]=p[0][j]*w[j];

B[1][j]=p[1][j]*w[j];

B[2][j]=p[2][j]*w[j];

}

APPENDIX C. 2D PLANE STRESS EFG PROGRAM (V3) 201

for(i=0;i<3;i++)

{

for(j=0;j<3;j++)

{

pp[i][j]=0.0;

aa[i][j]=0.0;

daax[i][j]=0.0;

daay[i][j]=0.0;

}

}

for(j=0;j<b;j++)

{

for(k=0;k<3;k++)

{

for(l=0;l<3;l++)

{

pp[k][l]=p[k][j]*p[l][j];

aa[k][l]=aa[k][l]+w[j]*pp[k][l];

daax[k][l]=daax[k][l]+dwdx[j]*pp[k][l];

daay[k][l]=daay[k][l]+dwdy[j]*pp[k][l];

}

}

}

fprintf(f2,”\nThe matrix aa = aa + w*p’*p\n”);

for(j=0;j<3;j++)

{

for(k=0;k<3;k++)

{

fprintf(f2,”%6.3f\t”,aa[j][k]);

APPENDIX C. 2D PLANE STRESS EFG PROGRAM (V3) 202

}

fprintf(f2,”\n”);

}

pd[0]=1.0; pd[1]=gpos[0]; pd[2]=gpos[1];

pd1[0]=0.0; pd1[1]=1.0; pd1[2]=0.0;

pd2[0]=0.0; pd2[1]=0.0; pd2[2]=1.0;

//———————————————————————

lowerupper(aa,3);

//————————————————————–

for(k=0;k<3;k++)

{

temp[k]=0.0;

for(l=0;l<3;l++)

{

temp[k] += (pd2[l]-daay[k][l]*gam[l][0]);

}

}

//————————————

for(j=0;j<3;j++)

{

if(j==0)

{

for(k=0;k<3;k++)

{

C[k]=0.0;

for(l=0;l<3;l++)

{

C[k] += perm[k][l]*pd[l];

}

APPENDIX C. 2D PLANE STRESS EFG PROGRAM (V3) 203

}

}

else

if(j==1)

{

for(k=0;k<3;k++)

{

C[2-k]=0.0;

for(l=0;l<3;l++)

{

C[2-k] += (perm[k][l]*pd1[l]-daax[k][l]*gam[l][0]);

}

}

}

else

{

for(k=0;k<3;k++)

{

temp[k]=0.0;

for(l=0;l<3;l++)

{

temp[k] += daay[k][l]*gam[l][0];

}

}

for(k=0;k<3;k++)

{

C[k]=0.0;

for(l=0;l<3;l++)

{

APPENDIX C. 2D PLANE STRESS EFG PROGRAM (V3) 204

C[k] += perm[k][l]*(pd2[l]-temp[l]);

}

}

}

D1=C[0];

D2=C[1]-(Lu[1][0]*D1);

D3=C[2]-Lu[2][0]*D1-Lu[2][1]*D2;

gam[2][j] = D3/Uu[2][2];

gam[1][j] = (D2 - Uu[1][2]*gam[2][j])/(Uu[1][1]);

gam[0][j] = (D1 - Uu[0][1]*gam[1][j]-Uu[0][2]*gam[2][j])/Uu[0][0];

}

for(j=0;j<b;j++)

{

phi[j]=0.0;

for(k=0;k<3;k++)

{

phi[j] += (gam[k][0]*B[k][j]);

}

}

fprintf(f2,”\nThe matrix phi\n”);

for(j=0;j<b;j++)

{

fprintf(f2,”%7.4e\t”,phi[j]);

}

fprintf(f2,”\n”);

//dbx = p.*[dwdx;dwdx;dwdx];

for(j=0;j<b;j++)

{

dbx[0][j]=p[0][j]*dwdx[j];

APPENDIX C. 2D PLANE STRESS EFG PROGRAM (V3) 205

dbx[1][j]=p[1][j]*dwdx[j];

dbx[2][j]=p[2][j]*dwdx[j];

}

//dby = p.*[dwdy;dwdy;dwdy];

for(j=0;j<b;j++)

{

dby[0][j]=p[0][j]*dwdy[j];

dby[1][j]=p[1][j]*dwdy[j];

dby[2][j]=p[2][j]*dwdy[j];

}

//dphix = gam(1:3,2)*B + gam(1:3,1)*dbx;

for(j=0;j<b;j++)

{

dphix[j]=0.0;

for(k=0;k<3;k++)

{

dphix[j] += (gam[k][1]*B[k][j])+(gam[k][0]*dbx[k][j]);

}

}

//dphiy = gam(1:3,3)*B + gam(1:3,1)*dby;

for(j=0;j<b;j++)

{

dphiy[j]=0.0;

for(k=0;k<3;k++)

{

dphiy[j] += (gam[k][2]*B[k][j])+(gam[k][0]*dby[k][j]);

}

}

fprintf(f2,”\nThe matrix dphix\n”);

APPENDIX C. 2D PLANE STRESS EFG PROGRAM (V3) 206

for(j=0;j<b;j++)

{

fprintf(f2,”%7.4e\t”,dphix[j]);

}

fprintf(f2,”\nThe matrix dphiy\n”);

for(j=0;j<b;j++)

{

fprintf(f2,”%7.4e\t”,dphiy[j]);

}

fprintf(f2,”\n”);

}

//—————————————————————

void lowerupper(float sff[3][3], int ip)

{

int i,j,k;

float a1[3][3];

for(i=0;i<ip;i++)

for(j=0;j<ip;j++)

perm[i][j] = 0.0;

for(i=0;i<ip;i++)

perm[ip-i-1][i] = 1.0;

/*fprintf(f2,”P-Matrix = \n”);

for(i=0;i<ip;i++)

{

for(j=0;j<ip;j++)

fprintf(f2,”%f ”,perm[i][j]);

fprintf(f2,”\n”);

} */

for(i=0;i<ip;i++)

APPENDIX C. 2D PLANE STRESS EFG PROGRAM (V3) 207

{

for(j=0;j<ip;j++)

{

a1[i][j]=0.0;

for(k=0;k<ip;k++)

a1[i][j] += perm[i][k]*sff[k][j];

}

}

/*fprintf(f2,”A-Matrix = \n”);

for(i=0;i<ip;i++)

{

for(j=0;j<ip;j++)

fprintf(f2,”%f ”,a1[i][j]);

fprintf(f2,”\n”);

} */

chole(a1,ip);

}

void chole(float a1[3][3], int n)

{

int i,j,k,m;

float sum;

for(i=0;i<n;i++)

{

for(j=0;j<n;j++)

{

Uu[i][j]=0.0;

Lu[i][j]=0.0;

}

}

APPENDIX C. 2D PLANE STRESS EFG PROGRAM (V3) 208

Uu[0][0]=a1[0][0];

Lu[0][0]=1.0;

for(j=1;j<n;j++)

{

Lu[j][0]=a1[j][0]/Uu[0][0];

Uu[0][j]=a1[0][j];

for(i=0;i<j;i++)

{

sum=0.0;

for(m=0;m<i;m++)

sum+=Lu[j][m]*Uu[m][i];

Lu[j][i]=(a1[j][i]-sum)/Uu[i][i];

sum=0.;

for(m=0;m<i;m++)

sum+=Lu[i][m]*Uu[m][j];

Uu[i][j]=a1[i][j]-sum;

}

Lu[j][j]=1.0;

sum=0.0;

for(m=0;m<j;m++)

sum+=Lu[j][m]*Uu[m][j];

Uu[j][j]=a1[j][j]-sum;

}

}

double Determinant(double **a,int n)

{

int i,j,j1,j2;

double det = 0;

double **m = NULL;

APPENDIX C. 2D PLANE STRESS EFG PROGRAM (V3) 209

if (n < 1) { /* Error */

} else if (n == 1) { /* Shouldn’t get used */

det = a[0][0];

} else if (n == 2) {

det = a[0][0] * a[1][1] - a[1][0] * a[0][1];

} else {

det = 0;

for (j1=0;j1<n;j1++) {

m = malloc((n-1)*sizeof(double *));

for (i=0;i<n-1;i++)

m[i] = malloc((n-1)*sizeof(double));

for (i=1;i<n;i++) {

j2 = 0;

for (j=0;j<n;j++) {

if (j == j1)

continue;

m[i-1][j2] = a[i][j];

j2++;

}

}

det += pow(-1.0,j1+2.0) * a[0][j1] * Determinant(m,n-1);

for (i=0;i<n-1;i++)

free(m[i]);

free(m);

}

}

return(det);

}

/*

APPENDIX C. 2D PLANE STRESS EFG PROGRAM (V3) 210

Find the cofactor matrix of a square matrix

*/

void CoFactor(double **a,int n,double **b)

{

int i,j,ii,jj,i1,j1;

double det;

double **c;

c = malloc((n-1)*sizeof(double *));

for (i=0;i<n-1;i++)

c[i] = malloc((n-1)*sizeof(double));

for (j=0;j<n;j++) {

for (i=0;i<n;i++) {

/* Form the adjoint a ij */

i1 = 0;

for (ii=0;ii<n;ii++) {

if (ii == i)

continue;

j1 = 0;

for (jj=0;jj<n;jj++) {

if (jj == j)

continue;

c[i1][j1] = a[ii][jj];

j1++;

}

i1++;

}

/* Calculate the determinate */

det = Determinant(c,n-1);

/* Fill in the elements of the cofactor */

APPENDIX C. 2D PLANE STRESS EFG PROGRAM (V3) 211

b[i][j] = pow(-1.0,i+j+2.0) * det;

}

}

for (i=0;i<n-1;i++)

free(c[i]);

free(c);

}

/*

Transpose of a square matrix, do it in place

*/

void Transpose(double **a,int n)

{

int i,j;

double tmp;

for (i=1;i<n;i++) {

for (j=0;j<i;j++) {

tmp = a[i][j];

a[i][j] = a[j][i];

a[j][i] = tmp;

}

}

}

Appendix D

Web-pages

Some of the web pages which have been used for study related to this thesis work are:

a. www.sicedirect.com

b. www.concrete.org

c. www.imechanica.org

d. www.pdf-search-engine.com

e. www.knovel.com

f. www.hq-uploads.com

212

References

[1] K. P. Chong A. P. Boresi and S. Saigal. Approximate solution methods in engi-
neering mechanics. John Wiley and sons, Inc, second edition, 2003.

[2] S. Atluri and S. Shengping. The meshless local petrov-galerkin (mlpg) method:
A simple & less-costly alternative to the finite element an boundary element
methods. Computational Mechanics, 24:348– 372, 2002.

[3] S. N. Atluri and T. Zhu. New meshless local petrov-galerkin (mlpg) approach in
computational mechanics. Comput. Mech., 22(2):117 – 127, 1998.

[4] J. Belinha and L.M.J.S. Dinis. Nonlinear analysis of plates and laminates using
the element free galerkin method. Composite Structures, 78:337350, 2007.

[5] M. D. Buhmann. Radial Basis Functions. Cambridge: Cambridge University
Press, 2003.

[6] X. Liu C. K. Lee and S. C. Fan. Local multiquadric approximation for solving
boundary value problems. Mechanics, 30:396–409, 2003.

[7] O. C. Zienkiewicz E. Onate, S. Idelsohn and R. L. Taylor. A finite point method
in computational mechanics. application to convective transport and fluid flow.
Int. J. Numer. Methods Eng, 39:3839–3866, 1996.

[8] E. Onate e.t. al. A stabilized finite point method for analysis of fluid mechanics
problems. Computer Methods in Applied Mechanics and Engineering, 139:315–
346, 1996.

[9] W. K. Liu e.t. al. Reproducing kernel particle methods for structural dynamics.
Int. J. Numer. Methods Eng., 38:1655 – 1679, 1995.

[10] R. A. Gingold and J. J. Monaghan. Smoothed particle hydrodynamics: theory
and application to non-spherical stars. Mon. Not. R. astr. Soc., 181:375–389,
1977.

[11] T. Belytchko J. Dolbow. An introduction to programming the meshless element
free galerkin method. Archives of Computational methods in engineering, 5,
3:207–241, 1998.

213

REFERENCES 214

[12] E. J. Kansa. Multiquadrics - a scattered data approximation scheme with ap-
plications to computational fluid-dynamics - i. Computers & Mathematics with
Applications, 19(8/9):127–145, 1990.

[13] E. J. Kansa. Multiquadrics - a scattered data approximation scheme with ap-
plications to computational fluid-dynamics - ii,. Computers & Mathematics with
Applications, 19(8/9):147–161, 1990.

[14] C. S. Krishnamoorthy. Finite Element Analysis Theory and Programming. TATS
Mcgraw hill, second edition, 1994.

[15] S. Li and W. K. Liu. Meshless and particle methods and their applications.
Applied Mechanics Review, 55:1–34, 2002.

[16] T. Liszka and J. Orkisz. The finite difference method at arbitrary irregular grids
and its application in applied mechanics. Cornput. Struct, 11:83–95, 1980.

[17] G. R. Liu. A point assembly method for stress analysis for solid, in impact
response of materials & structures. Shim, V. P. W. et al., Eds.,, pages 475–480,
1999.

[18] G. R. Liu. Mesh Free Methods: Moving beyond the Finite Element Method. CRC
press, 2003.

[19] G. R. Liu and Y. T. Gu. A point interpolation method for two dimensional
solids. Int. J. Numer. Methods Eng., 50:937–951, 2001.

[20] M. B. Liu and G. R. Liu. Smoothed Particle Hydrodynamics:A Meshfree Particle
Method. World Scientific Publishing, 2003.

[21] B. L. Lucy. A numerical approach to testing the fission hypothesis. Astron. J,
82(12):1013–1924, December 1977.

[22] J.-M. Savignat P. Breitkopf, A. Rassineux and P. Villon. Integration constraint
in diffuse element method. Computer Methods in Applied Mechanics and Engi-
neering, 193:1203–1220, 2004.

[23] T. Belytchko P. Krysl. Analysis of thin plates by the element free galerkin
method. Computational Mechanics, 17:26–35, 1996.

[24] T. Belytchko P. Krysl. Analysis of thin shells by the element free galerkin method.
Int. J. Solids Structures, 33(20-22):3057–3080, 1996.

[25] T. Belytchko S. Beissel. Nodal integration of the element-free galerkin method.
Computer methods in applied mechanics and engineering, 139:49–74, 1996.

REFERENCES 215

[26] B. N. Rao S. Rahman. An element free galerkin method for probabilistic mechan-
ics and reliability. International journal for solids and structures, 38:9313–9330,
2001.

[27] D. Organ T. Belystchko, Y. Krongauz and M. Fleming. Meshless method: An
overview and recent developments. Computer Methods in Applied Mechanics and
Engineering, 139:3–47, 1996.

[28] Y. Y. Lu T. Belytschko and L. Gu. Element free galerkin methods. International
journal for numerical methods in engineering, 37:229–256, 1994.

[29] S. Bordas V. Nguyen, T. Rabczuk and M. Duflot. Meshless methods: A review
and computer implementation aspects. Mathematics and Computers in Simula-
tion, 79:763813, 2008.

[30] S. Li W. K. Liu and T. Belytschko. Moving least-square reproducing kernel
methods (ii) - fourier analysis. Computer Methods in Applied Mechanics and
Engineering, 139:159194, 1996.

[31] S. Li W. K. Liu and T. Belytschko. Moving least-square reproducing kernel meth-
ods (i) - methodology and convergence. Computer Methods in Applied Mechanics
and Engineering, 143:113–154, 1997.

[32] H. Wendland. Meshless galerkin methods using radial basis functions. Mathe-
matics of Computation, 68(228):1521–1531, 1999.

[33] T. Belytchko Y. Krongauz. Enforcement of essential boundary conditions in
meshless approximations using finite elements. Comput. Methods Appl. Mech.
Engrg., 131:133–145, 1996.

[34] T. Belytchko Y. Krongauz. Efg approximation with discontinous derivatives.
International journal for numerical methods in engineering, 41:1215–1233, 1998.

	Declaration
	Certificate
	Abstract
	Acknowledgements
	Abbreviation Notation and Nomenclature
	Contents
	List of Tables
	List of Figures
	INTRODUCTION
	Introduction
	Why mesh free methods?
	Objective of work
	Scope of work
	Organization of thesis

	LITERATURE REVIEW
	General
	History of mesh free methods
	The Smoothed Particle Hydrodynamics
	The Diffuse Element Method (DEM)
	Element Free Galerkin (EFG) Method
	Reproducing Kernel Particle Method
	Finite Point Method
	Meshless Local Petrov-Galerkin
	Radial Basis Functions
	Point Interpolation Method

	Different Mesh free methods
	Comparison between FEM and Mesh Free Methods

	MESH FREE APPROACH
	Introduction
	Engineering mechanics problems
	Theoretical Background of Mesh Free Methods
	Modeling the Geometry
	Node Generation
	Shape Function Creation

	Determination of the Dimension of a Support Domain
	Property of Mesh free Shape Functions
	Equations of elasticity
	Concept of weak form
	Weak forms of the governing equations

	MESH FREE SHAPE FUNCTION CREATION
	Introduction
	Choice of Weight Function
	Moving Least Squares Approximation
	MLS Procedure
	1D shape functions creation
	2D shape functions creation

	ELEMENT FREE GALERKIN METHOD
	Introduction
	EFG formulation
	Flowchart
	 Background integration
	Boundary condition
	Lagrange multiplier approach

	Penalty parameter approach
	EFG formulation of one dimensional bar
	One dimensional bar problem

	EFG procedure for 1D beam problem
	Programming EFG method

	EFG APPLICATIONS
	 Introduction
	One dimensional bar problem
	Temperature domain problem
	1D beam problem
	EFG procedure for 2D beam problem
	Timoshenko beam by Lagrange method
	Timoshenko beam by Penalty method
	Plate with hole
	Deep beam problem

	CONCLUSIONS, SUMMARY AND FUTURE SCOPE
	Conclusions
	Summary
	Future scope

	1D EFG Bar Program (V1)
	1D Beam EFG Program (V2)
	2D Plane Stress EFG Program (V3)
	Web-pages
	References

