
Performance of Error Correcting Codes
for Next Generation Communication

Major Project Report

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology

in

Electronics and Communication Engineering

(Communication Engineering)

By

Sachin R. Makavana

(08MECC09)

Department of Electronics & Communication Engineering,

Institute of Technology,

Nirma University,

Ahmedabad-382 481

May 2010

Performance of Error Correcting Codes
for Next Generation Communication

Major Project Reprot

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology

in

Electronics and Communication Engineering

(Communication Engineering)

By

Sachin R. Makavana

(08MECC09)

Under the Guidance of

Prof. Dhaval Pujara

Department of Electronics & Communication Engineering,

Institute of Technology,

Nirma University,

Ahmedabad-382 481

May 2010

iii

Declaration

This is to certify that

i) The thesis comprises my original work towards the degree of Master of Technology

in Communication Engineering at Nirma University and has not been submitted

elsewhere for a degree.

ii) Due acknowledgement has been made in the text to all other material used.

Sachin R. Makavana

iv

Certificate

This is to certify that the Major Project entitled ”Performance of Error Cor-

recting Codes for Next Generation Communication” submitted by Sachin

R. Makavana (08MECC09), towards the partial fulfillment of the requirements

for the degree of Master of Technology in Electronics & Communication Engineer-

ing (Communication) of Nirma University, Institute of Technology, Ahmedabad is

the record of work carried out by him under my supervision and guidance. In my

opinion, the submitted work has reached a level required for being accepted for ex-

amination. The results embodied in this major project, to the best of our knowledge,

haven’t been submitted to any other university or institution for award of any degree

or diploma.

Date: Place: Ahmedabad

Internal Guide External Guide

(Prof. Dhaval Pujara) (Mr. Ankush Shrivastava)
Sr. Asso. Professor, EC Dept. RF Manager

Nokia Siemens Network, Ahmedabad

HOD Director

(Prof. A. S. Ranade) (Dr. K. Kotecha)
Professor, EC Director, IT, NU

v

Acknowledgements

I would like to express my gratitude and sincere thanks to Prof. A. S. Ranade,

Head of Electrical Engineering Department and Dr. D. K. Kothari Coordinator-

M.Tech. Communication Engineering program for allowing me to undertake this

thesis work and for his guidelines during the review process.

I would like to express my gratitude and sincere thanks to Nokia Siemens Network

for giving me an opportunity to work under to guidance of renowned people in the field

of communications and for providing all the resources for the project development.

I would like to express my endless thanks to my internal guide Prof. Dhaval

Pujara (Nirma University, Ahmedabad) and external guide Mr. Ankush Shrivastava

(RF manager, Nokia Siemens Networks (NSN)) for their constant guidance and moti-

vation. They devoted significant amount of valuable time for discussion and planning

of the project work.

I would like to thank all the engineers and staff members of NSN, I also would

like to thank all my classmate for their support and co-operation.

Last, but not the least, no words are enough to acknowledge constant support and

sacrifices of my family members because of whom I am able to complete the degree

program successfully.

- Sachin R. Makavana

08MECC09

vi

Abstract

The error correcting codes have gained popularity due to its several well known prop-

erties, like the distance property and the block length. The convolution code and the

turbo code are used as error correcting codes which are able to come very close to

the theoretical limit, the Shannon’s limit. The convolution code and the turbo codes

are used in the 3G (third Generation) mobile technologies and the standards defined

in the IEEE 802.16 (WiMax).

The thesis describes the evaluation and the performance of the convolution code

based on the code rate, BER, Eb/No, and different modulation techniques. Sec-

ondly the study, analysis and implementation of the turbo codes with encoding and

decoding methods have been carried out using AWGN channel with BPSK modu-

lation technique. The turbo code encoder is built using a parallel concatenation of

two recursive systematic convolution (RSC) codes with interleaver and the associated

decoder, using Soft Output Viterbi Algorithm (SOVA).

Contents

Declaration iii

Certificate iv

Acknowledgements v

Abstract vi

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Motivation . 1
1.2 Representation of Digital Communication System 2
1.3 Types of Channel Codes . 4
1.4 Problem Statement . 5
1.5 Outline of the Thesis . 6

2 Convolutional Codes 8
2.1 Introduction . 8
2.2 Encoder Structure . 8
2.3 Encoder Representations . 10

2.3.1 Generator Representation . 10
2.3.2 Trellis Diagram Representation 12
2.3.3 State Diagram Representation 14

2.4 The Viterbi Algorithm . 15
2.5 Distance Properties of Convolutional Code 17

3 Turbo Codes 18
3.1 Introduction . 18
3.2 Turbo Code Encoder . 19

3.2.1 Recursive Systematic Convolutional (RSC) Encoder 20
3.2.2 Concatenation of Codes . 21

vii

CONTENTS viii

3.2.3 Interleaver Design . 22

4 System Model for Turbo Code Decoder 26
4.1 Principle of the Soft-Output Viterbi Decoder 26
4.2 Reliability of the General SOVA Decoder 27
4.3 Introduction to SOVA for Turbo Codes 33

4.3.1 Log-Likelihood Algebra . 33
4.3.2 Soft Channel Outputs . 37

4.4 SOVA Decoder for a Turbo Code . 39
4.5 SOVA Iterative Turbo Code Decoder 47

5 Performance Analysis 50
5.1 Simulation Setup . 50
5.2 Simulation Results . 51
5.3 Simulation Analysis . 68

6 Conclusion and Future Scope 70
6.1 Conclusion . 70
6.2 Contribution . 72
6.3 Future Scope . 72

References 73

List of Figures

1.1 Simplified models of digital communication system (a) Coding and
modulation performed separately. (b) Coding and modulation com-
bined [1]. 3

2.1 Convolutional encoder with k = 1, m = 2, R = 1/2 and K = 3 [2]. . . 9
2.2 Trellis for the convolutional encoder of Figure 2.1 [2]. 13
2.3 (a) A portion of the central part of the trellis for the encoder of Figure

2.1 (b) State diagram of the convolutional encoder of Figure 2.1 [2]. . 15

3.1 Fundamental turbo code encoder . 19
3.2 The RSC encoder obtained from Figure 2.1 with R = 1/2 and K =3 [2]. 20
3.3 Serial concatenated code. 21
3.4 Parallel concatenated code. 22
3.5 The interleaver increases the code weight for RSC encoder 2 as com-

pared to RSC encoder 1. 23
3.6 An illustrative example of an interleavers capability. 24
3.7 Block interleaver [2]. 25
3.8 Random interleaver with L=8 [6]. 25

4.1 A concatenated SOVA decoder where y represents the received channel
values, u represents the hard decision output values, and L represents
the associated reliability values. 27

4.2 Example of survivor and competing paths for reliability estimation at
time t [11]. 28

4.3 Example that shows the weakness of reliability assignment using metric
values directly [11]. 30

4.4 Updating process for time t-2 (MEMlow = 2) [11]. 32
4.5 Updating process for time t-4 (MEMlow = 4) [11]. 32
4.6 System model for SOVA derivation. 33
4.7 SOVA component decoder. 39
4.8 Source reliability for SOVA metric computation. 42
4.9 Example of SOVA survivor and competing paths for reliability estima-

tion [12]. 44
4.10 SOVA iterative turbo code decoder [13]. 47

ix

LIST OF FIGURES x

5.1 Convolutional code (rate (R)-1/2) with Different Modulation in AWGN
channel . 52

5.2 Convolutional code with Different Coding Rate in BPSK and AWGN
channel . 53

5.3 Performance of turbo code with different code rate 55
5.4 Performance of turbo code with different iteration 56
5.5 Performance of turbo code with different frame size 57
5.6 Performance of turbo code with different constraint length 58
5.7 Comparison of turbo code BER performance for (FS = 64, iter = 1, R

= 1/2, K = 3) [14] . 59
5.8 Comparison of turbo code BER performance for (FS = 192, iter = 1,

R = 1/2, K = 5) [14] . 60
5.9 Comparison of turbo code BER performance for (FS = 192, iter = 5,

R = 1/2, K = 5) [14] . 61
5.10 Comparison of turbo code BER performance for (FS = 2048, iter = 1,

R = 1/2, K = 5) [14] . 62
5.11 Comparison of turbo Code BER Performance for (FS = 2048, iter =

5, R = 1/2, K = 5) [14] . 63
5.12 Comparison of turbo Code BER Performance for (FS = 1024, iter =

1, R = 1/2, K = 5) [15] . 64
5.13 Comparison of turbo Code BER Performance for (FS = 1024, iter =

8, R = 1/2, K = 5) [15] . 65
5.14 Comparison of turbo Code BER Performance for (FS = 1024, iter =

8, R = 1/2, K = 3) [16] . 66
5.15 Comparison of turbo Code BER Performance for (FS = 1024, iter =

8, R = 1/2, K = 5) [16] . 67

List of Tables

2.1 State table for convolutional encoder of Figure 2.1 13

3.1 Input and output sequences for encoder of Figure 3.8 24

4.1 Outcome of adding two binary random variables u1 and u2 33
4.2 Characteristics of the Log-likelihood Ratio L(u) 34

5.1 Result of convolutional code with BPSK modulation of Figure 5.1 . . 52
5.2 Result of convolutional code with QPSK modulation of Figure 5.1 . . 52
5.3 Result of convolutional code with 8-PSK modulation of Figure 5.1 . . 53
5.4 Result for Rate-1

2
soft decision convolutional code of Figure 5.2 53

5.5 Result for Rate-1
2

hard decision convolutional code of Figure 5.2 . . . 54
5.6 Result for Rate-1

3
soft decision convolutional code of Figure 5.2 54

5.7 Result for Rate-2
3

(with puncture) soft decision convolutional code of
Figure 5.2 . 54

5.8 Comparison of turbo code BER performance for different rate (FS =
256, iter =1) . 55

5.9 Comparison of turbo code BER performance for different iter (FS =
256, R = 1/3,K = 3) . 56

5.10 Comparison of turbo code BER performance for different FS (iter =
8, R = 1/3,K = 3) . 57

5.11 Comparison of turbo code BER performance for different constraint
length (FS = 256, iter =1) . 58

5.12 Comparison of turbo code BER performance for (FS = 64, iter = 1, R
= 1/2, K = 3) [14] . 59

5.13 Comparison of turbo code BER performance for (FS = 192, iter = 1,
R = 1/2, K = 5) [14] . 60

5.14 Comparison of turbo code BER performance for (FS = 192, iter = 5,
R = 1/2, K = 5) [14] . 61

5.15 Comparison of turbo code BER performance for (FS = 2048, iter = 1,
R = 1/2, K = 5) [14] . 62

5.16 Comparison of turbo Code BER Performance for (FS = 2048, iter =
5, R = 1/2, K = 5) [14] . 63

xi

LIST OF TABLES xii

5.17 Comparison of turbo Code BER Performance for (FS = 1024, iter =
1, R = 1/2, K = 5) [15] . 64

5.18 Comparison of turbo Code BER Performance for (FS = 1024, iter =
8, R = 1/2, K = 5) [15] . 65

5.19 Comparison of turbo Code BER Performance for (FS = 1024, iter =
8, R = 1/2, K = 3) [16] . 66

5.20 Comparison of turbo Code BER Performance for (FS = 1024, iter =
8, R = 1/2, K = 5) [16] . 67

Chapter 1

Introduction

1.1 Motivation

In recent years, there has been an increasing demand for efficient and reliable digital

data transmission and storage systems. This demand has been accelerated by the

emergence of large-scale, high-speed data networks for the exchange, processing, and

storage of digital information in-the military, governmental, and private spheres. A

merging of communications and computer technology is required in the design of these

systems. The task facing the designer of a digital communication system is that of

providing a cost-effective facility for transmitting information from one end of the sys-

tem at a rate and a level of reliability and quality that are acceptable to a user at the

other end. The two key system parameters available to the designer are transmitted

signal power and channel bandwidth. These two parameters, together with the power

spectral density of receiver noise, determine the signal energy per bit-to-noise power

spectral density ratio Eb/No. This ratio uniquely determines the bit error rate for a

particular modulation scheme [1] . Practical considerations usually place a limit on

the value that we can assign to Eb/No. Accordingly, in practice, one can often arrive

at a modulation scheme and find that it is not possible to provide acceptable data

quality (i.e., low enough error performance). For a fixed Eb/No, the only practical

1

CHAPTER 1. INTRODUCTION 2

option available for changing data quality from problematic to acceptable is to use

error-control coding.

The channel coding theorem states that if a discrete memoryless channel has ca-

pacity C and a source generates information at a rate R, less than C, then there exist

a coding technique such that the output of the source may be transmitted over the

channel with an arbitrary low probability of symbol error.(i.e., by proper encoding

of the information, errors introduced by a noisy channel or storage medium can be

reduced to any desired level without sacrificing the rate of information transmission

or storage.) [1]. For the special case of a binary symmetric channel, the theorem tells

us that if the code rate Ro, is less than the channel capacity C, then it is possible to

find a code that achieves error-free transmission over the channel. Conversely, it is not

possible to find such a code if the code rate Ro is greater than the channel capacity C.

Another practical motivation for the use of coding is to reduce the required Eb/No

for a fixed bit error rate. This reduction in Eb/No may, in turn, be exploited to

reduce the required transmitted power or reduce the hardware costs by requiring a

smaller antenna size in the case of radio communications.

1.2 Representation of Digital Communication Sys-

tem

The transmission and storage of digital information have much in common as both

transfer data from an information source to a destination (or user). Error control for

data integrity may be exercised by means of forward error correction (FEC). Figure

1.1(a) shows the model of a digital communication system using such an approach.

The discrete source generates information in the form of binary symbols. The channel

encoder in the transmitter accepts message bits and adds redundancy according to

CHAPTER 1. INTRODUCTION 3

a prescribed rule, thereby producing encoded data at a higher bit rate. The channel

decoder in the receiver exploits the redundancy to decide which message bits were

actually transmitted. The combined goal of the channel encoder and decoder is to

minimize the effect of channel noise. That is, the number of errors between the channel

encoder input (derived from the source) and the channel decoder output (delivered to

the user) are minimized. For a fixed modulation scheme, the addition of redundancy in

Figure 1.1: Simplified models of digital communication system (a) Coding and mod-
ulation performed separately. (b) Coding and modulation combined [1].

the coded messages implies the need for increased transmission bandwidth. Moreover,

the use of error-control coding adds complexity to the system, especially for the

implementation of decoding operations in the receiver. Thus, the design trade-offs

in the use of error-control coding to achieve acceptable error performance includes

considerations of bandwidth and system complexity.

CHAPTER 1. INTRODUCTION 4

1.3 Types of Channel Codes

There are many error-correcting codes, with roots in diverse mathematical disciplines

that are used. Historically, these codes have been classified into block codes and

convolutional codes. The distinguishing feature for this particular classification is the

presence or absence of memory in the encoders for the two coding systems.

Block codes are based on finite field arithmetic and abstract algebra. It can be

used to either detect or correct errors. Block codes accept a block of k information

bits and produce a block of n coded bits. Commonly, these codes are referred to

as (n,k) block codes. To generate an (n,k) block codes, the channel encoder accepts

information in successesive k- bit blocks; for each block, it adds n-k redundant bits

that are algebraically related to the k message bits, there by producing an overall

encoded block of n bits, where n > k. The n-bit block is called a code word, and n is

called the block length of the code.

The channel encoder produces bits at the rate Ro = (n/k) Rs, where Rs is the bit

rate of the information source. The dimensionless ratio R =k/n is called the code

rate, where 0 < r < 1. The bit rate Ro, coming out of the encoder, is called the

channel data rate. Thus, the code rate is a dimensionless ratio, whereas the data rate

produced by the source and the channel data rates are both measured in bits per

second. Some of the commonly used block codes are Hamming Codes, Golay Codes,

BCH Codes, and Reed Solomon Codes [2].

Convolutional codes are one of the most widely used channel code in practical com-

munication systems. These codes are developed with a separate strong mathematical

structure and are primarily used for real time error correction. Convolutional codes

convert the entire data stream into one single code word. The encoded bits depend

not only on the current k input bits but also on past input bits in a convolutional

CHAPTER 1. INTRODUCTION 5

code, the encoding operation may be viewed as the discrete time convolution of the

input sequence with the impulse response of the encoder. The duration of the impulse

response equals the memory of the encoder. Accordingly, the encoder for a convo-

lutional code operates on the incoming message sequence, using a ”sliding window”

equal in duration to its own memory. This, in turn, means that in a convolutional

code, unlike a block code, the channel encoder accepts message bits as a continuous

sequence and thereby generates a continuous sequence of encoded bits at a higher rate.

The main decoding strategy for convolutional codes is based on the widely used

Viterbi algorithm [2]. Since convolutional codes are widely accepted codes, there

have been many advances to extend and improve the basic coding and decoding

schemes. This advances have resulted in two new coding schemes, namely, trellis

coded modulation (TCM) and turbo codes [1].

Turbo code is a near channel capacity error correcting code. This error correcting

code is able to transmit information across the channel with arbitrary low (approach-

ing to zero) bit error rate. This code is a parallel concatenation of two component

convolutional codes separated by a interleaver. The performance of a turbo code is

partly due to the interleaver used to give the turbo code a random appearance. How-

ever, one big advantage of a turbo code is that there is enough code structure (from

the convolutional codes) to decode it efficiently.

1.4 Problem Statement

The objective of the project is to study the various error correcting codes which

involves the study of the widely used codes like the convolution codes and turbo

codes. The simulations will be carried out in MATLAB and the outcomes will be

compared with the published results.

CHAPTER 1. INTRODUCTION 6

1.5 Outline of the Thesis

Chapter 2: Presents the fundamentals of convolutional code, the encoder structure

and its many representations. Also, it discusses the primary decoding algorithm for

convolutional code, namely the Viterbi algorithm.

Chapter 3: Introduces the basic turbo code encoder. The turbo code encoder is

a parallel concatenation of two recursive systematic convolutional (RSC) codes, sep-

arated by an interleaver. This chapter shows the construction of a RSC encoder from

a non-recursive nonsystematic (conventional) convolutional encoder. It discusses the

similarities and differences between the conventional and RSC encoders in terms of

their intrinsic properties. Furthermore, this chapter describes different types of inter-

leaver and discusses the function of the interleaver that is suitable for the turbo code

encoder.

Chapter 4: This chapter first describes the drawbacks of decoding multistage con-

catenated convolutional codes with the basic Viterbi algorithm. A reliability (soft

output) measure is introduced to combat these drawbacks. Also, integration of this

reliability value with the basic Viterbi algorithm is presented. The resulting Viterbi

algorithm is known as the soft output Viterbi algorithm (SOVA). The SOVA needs

to be further modified for turbo code decoding. To understand this modification, the

concepts of log-likelihood ratio and soft channel outputs are introduced. From these

concepts, the metric for the SOVA is derived. The SOVA component decoder for

turbo code is then introduced. A simple and efficient implementation of the SOVA

component decoder is presented. This chapter concludes with a description of the

SOVA iterative turbo code decoder.

Chapter 5: Discuses the performance of convolutional codes and turbo codes through

extensive computer simulation. Many simulation results are then presented to show

CHAPTER 1. INTRODUCTION 7

the important characteristics of both codes.

Chapter 6: Summarize the important findings for both codes, and concludes the

thesis.

Chapter 2

Convolutional Codes

2.1 Introduction

Convolutional codes have been widely used in applications such as space and satel-

lite communication, cellular mobile, digital video broadcasting etc. Their popularity

stems from simple structure and availability of easily implementable maximum like-

lihood soft decision decoding methods. Convolutional codes were first introduced by

Elias [3]. The ground work on the mathematical theory of convolutional codes was

studied and introduced by Forney [4]. In this chapter the basic structure of convolu-

tional codes needed in the design of turbo codes is presented. The areas of particular

importance are encoder structure and decoder structure. The encoder will be rep-

resented in many different but equivalent ways. Since Turbo codes are a new class

of convolutional codes, a full understanding of convolutional codes is an important

prerequisite to the understanding of turbo codes.

2.2 Encoder Structure

A convolutional code is generated by passing the information sequence to be trans-

mitted through a linear finite-state shift register. In general, the shift register consists

of K (k-bit) stages and linear algebraic function generators, as shown in Figure 2.1.

8

CHAPTER 2. CONVOLUTIONAL CODES 9

The input data to the encoder, which is assumed to be binary, is shifted into and

Figure 2.1: Convolutional encoder with k = 1, m = 2, R = 1/2 and K = 3 [2].

along the shift register k bits at a time. The number of output bits for each k-bit

input sequence is n bits. Consequently , the code rate is defined as Rc = k/n, con-

sistent with the definition of the code rate for a block code, where k is the number of

parallel input information bits and n is the number of parallel output encoded bits in

one time interval. The parameter K is called the constraint length of the convolution

code and defined as

K = m+ 1 (2.1)

where m is the maximum number of stages (memory size) in any shift register. The

shift registers store the state information of the convolutional encoder and the con-

straint length relates the number of bits upon which the output depends. For the

convolutional encoder shown in Figure 2.1, the code rate R = 1/2, the memory size

m = 2,and the constraint length K = 3, Where D represents delay.

CHAPTER 2. CONVOLUTIONAL CODES 10

2.3 Encoder Representations

There are four alternative methods that are often used to represent a convolutional

code. From those a tree diagram representation is not widely used to represent

encoder, so only three methods are discussed so far.

These are:-

1. Generator Representation

2. Trellis Diagram Representation

3. State Diagram Representation

2.3.1 Generator Representation

Generator representation shows the hardware connection of the shift register taps to

the modulo-2 adders. A generator vector represents the position of the taps for an

output. A ”1” represents a connection and a ”0” represents no connection. Each

path connecting the output to the input of a convolutional encoder may be charac-

terized in terms of its impulse response, defined as the response of that path to a

symbol 1 applied to its input, with each flip-flop in the encoder set initially to the

zero state. Equivalently, we may characterize each path in terms of a generator poly-

nomial, defined as the unit-delay transform of the impulse response. To be specific,

let the generator sequence (g
(i)
0 , g

(i)
1 , g

(i)
2g

(i)
M) denote the impulse response of the ith

path, where the coefficients (g
(i)
0 , g

(i)
1 , g

(i)
2g

(i)
M) equal 0 or 1. Correspondingly, the

generator polynomial of the ith path is defined by

g(i)(D) = g
(i)
0 + g

(i)
1 D + g

(i)
2 D2 ++ g

(i)
M DM (2.2)

Where D denotes the unit-delay variable, Traditionally, different variables are used

for the description of convolutional and cyclic codes, with D being commonly used

for convolutional codes and X for cyclic codes.

CHAPTER 2. CONVOLUTIONAL CODES 11

Here in the Figure 2.1 of the convolutional encoder has two paths numbered 1 and 2

for convenience of reference. The impulse response of path 1 (i.e., upper path) is (1,

1, 1). Hence, the corresponding generator polynomial is given by

g(1)(D) = 1 +D +D2 (2.3)

The impulse response of path 2 (i.e., lower path) is (1, 0, 1). Hence the corresponding

generator polynomial is given by

g(2)(D) = 1 +D2 (2.4)

For the message sequence (10011), the polynomial representation is

m(D) = 1 +D3 +D4 (2.5)

As with Fourier transforms, convolution in the time domain is transformed into mul-

tiplication in the D-domain. Hence, the output polynomial of path 1 is given by

C(1)(D) = g(1)(D)m(D) (2.6)

= (1 +D +D2)(1 +D3 +D4)

= 1 +D +D2 +D3 +D6

From this we immediately deduce that the output of path 1 is (1111001). Similarly,

the output polynomial of path 2 is given by

C(2)(D) = g(2)(D)m(D) (2.7)

= (1 +D2)(1 +D3 +D4)

= 1 +D2 +D3 +D4 +D5 +D6

CHAPTER 2. CONVOLUTIONAL CODES 12

The output sequence of path 2 is therefore (1011111). Finally, multiplexing the two

output sequences of paths 1 and 2, and the encoded sequence is

c = (11, 10, 11, 11, 01, 01, 11) (2.8)

Note that the message sequence of length L = 5 bits produces an encoded sequence

of length n(L+K − 1) = 14 bits. Note also that for the shift register to be restored

to its zero initial state, a terminating sequence of K 1 = 2 zeros, called the tail of

the message, is registered [1].

2.3.2 Trellis Diagram Representation

A trellis is a tree like structure with remerging of branches. It is more instructive

than a tree in that it brings out explicitly the fact that the associated convolutional

encoder is a finite-state machine. The convention used in figure 2.2 to distinguish

between input symbols 0 and 1 is as follows: a code branch produced by an input 0

is drawn as a solid line, whereas a code branch produced by an input 1 is drawn as

dashed line. Each input (message) sequence corresponds to a specific path through

the trellis. For example, we readily see from Figure 2.2 that the message sequence

(10011) produces the encoded output sequence (11, 10, 11, 11, 01).

The state of a convolutional encoder of rate 1/n where (K − 1) message bits are

stored in the encoder’s shift register is defined.. At time instant j, the portion of mes-

sage sequence containing the most recent K bits is written as (mj−K+1, ..mj−1,mj)

where, mj is the current bit. The (K − 1)-bit state of the encoder at time j is there-

fore written simply as (mj−1..mj−K+2,mj−K+1). In the case of simple convolutional

encoder of Figure 2.1 has (K − 1) = 2. Hence, the state of this encoder can assume

any one of four possible values, as described in Table 2.1. The trellis contains (L+K)

levels, where L is the length of the incoming message sequence, and K is the constraint

length of the code. The levels of the trellis are labeled as j = 0, 1, , L+K−1 in Figure

CHAPTER 2. CONVOLUTIONAL CODES 13

State Binary Description
a 00
b 01
c 10
d 11

Table 2.1: State table for convolutional encoder of Figure 2.1

2.2 for K = 3. Level j is also referred to as depth j; both terms are used interchange-

ably. The first (K-1) levels correspond to the encoder’s return to the state a. Clearly,

not all the states can be reached in these two portions of the trellis. However, in the

central portion of the trellis, for which the level j lies in the range K − 1 < j < L,

all the states of the encoder are reachable. Note also that the central portion of the

trellis exhibits a fixed periodic structure [2].

Figure 2.2: Trellis for the convolutional encoder of Figure 2.1 [2].

CHAPTER 2. CONVOLUTIONAL CODES 14

2.3.3 State Diagram Representation

Consider next a portion of the trellis corresponding to times j and j + 1. It’s assume

that j ≥ 2 for the example at hand, so that it is possible for current state of the

encoder to be a, b, c, or d. For convenience of presentation, the portion of the trel-

lis in figure 2.3(a) is reproduced. The left nodes represent the four possible current

states of the encoder, whereas the right nodes represent the next states. The left and

right nodes are combined which gives the state diagram of the encoder, shown in fig-

ure 2.3(b). The state diagram shows the state information of a convolutional encoder.

The state information of a convolutional encoder is stored in the shift registers. The

nodes of the figure represent the four possible states of the encoder, with each node

having two incoming branches and two outgoing branches. A transition from one

state to another in response to input 0 is represented by a solid branch, whereas a

transition in response to input 1 is represented by a dashed branch. The binary label

on each branch represents the encoder’s output as it moves from one state to another.

Suppose, for example, the current state of the encoder is (01), which is represented

by node c. The application of input 1 to the encoder of Figure 2.1 results in the state

(10) and the encoded output (00), accordingly, with the help of this state diagram,

one can readily determine the output of the encoder of Figure 2.1 for any incoming

message sequence. For simplicity start at state a, the all-zero initial state, and walk

through the state diagram in accordance with the message sequence. One has to

follow a solid branch if the input is a 0 and a dashed branch if it is a 1.

Here, for example, the message sequence (10011). For this input the path abcabd is

followed, and therefore output of the sequence (11,10,11,11,01), which agrees exactly

with our previous result. Thus, the input-output relation of a convolutional encoder

is also completely described by its state diagram[2].

CHAPTER 2. CONVOLUTIONAL CODES 15

Figure 2.3: (a) A portion of the central part of the trellis for the encoder of Figure
2.1 (b) State diagram of the convolutional encoder of Figure 2.1 [2].

2.4 The Viterbi Algorithm

The equivalence between maximum likelihood decoding and minimum distance de-

coding for a binary symmetric channel implies that may be decode a convolutional

code by choosing a path in the code tree whose coded sequence differs from the re-

ceived sequence in the fewest number of places. Since a code tree is equivalent to a

trellis, the choice to find the possible paths in the trellis representation of the code

are bounded. The reason for preferring the trellis over the tree is that the number of

nodes at any level of the trellis does not continue to grow as the number of incoming

message bits increases; rather, it remains constant at 2K−1, where K is the constraint

CHAPTER 2. CONVOLUTIONAL CODES 16

length of the code.

Here, for example, the trellis diagram of Figure 2.2 for a convolutional code with

rate R = 1/2 and constraint length K = 3. It’s observe that at level j = 3, there are

two paths entering any of the four nodes in the trellis. Moreover, these two paths will

be identical from that point onward. Clearly, a minimum distance decoder may make

a decision at that point as to which of those two paths to retain, without any loss of

performance. A similar decision may be made at level j = 4, and so on. This sequence

of decisions is exactly what the Viterbi algorithm does as it walks through the trellis.

The algorithm operates by computing a metric or discrepancy for every possible path

in the trellis. The metric for a particular path is defined as the Hamming distance be-

tween the coded sequence represented by that path and the received sequence. Thus,

for each node (state) in the trellis of Figure 2.2 the algorithm compares the two paths

entering the node. The path with the lower metric is retained, and the other path is

discarded. This computation is repeated for every level j of the trellis in the range

M ≤ j ≤ L , where M = K − 1 is the encoders memory and L is the length of

the incoming message sequence. The paths that are retained by the algorithm are

called survivor or active paths. For a convolutional code of constraint length K=

3, for example, no more than 2K−1 = 4 survivor paths and their metrics will ever

be stored. This list of 2K−1 paths is always guaranteed to contain the maximum-

likelihood choice.

A difficulty that may arise in the application of the Viterbi algorithm is the pos-

sibility that when the paths entering a state are compared, their metrics are found

to be identical. In such a situation, select one randomly (i.e., simply make a guess),

which may be correct or incorrect [1]. Another method for decoding of convolutional

codes is using syndrome decoding [5].

CHAPTER 2. CONVOLUTIONAL CODES 17

2.5 Distance Properties of Convolutional Code

The error probability performance of convolutional codes depends on their distance

properties. There are two types of distances. For hard decision decoding, the decoder

operates with binary symbols and the code performance is measured by Hamming

distances. A soft decision decoder receives quantized or analog signals from the de-

modulator and the decoding operation is based on Euclidian distance. The minimum

free distance, denoted by dfree, of a convolutional code is defined as the minimum

Hamming distance between any two code sequences in the code. Since convolutional

codes are linear, the Hamming distance between two code sequences is equal to the

weight of modulo-2 sum, which is another code sequence. Therefore, the minimum

free distance is the minimum weight of all non-zero code sequences. In other words,

the all-zero sequence can be used as the reference sequence in the determining the

minimum free distance.

The minimum free distance, dfree, is defined as

dfree = min[d (y1,y2)|y1 6= y2] (2.9)

= min[w(y)|y 6= 0] (2.10)

where d(y1,y2) is the Hamming distance between a pair of convolutional codewords

and w(y)is the Hamming distance between a convolutional codeword and the all-zero

codeword (the weight of the codeword). The minimum free distance corresponds

to the ability of the convolutional code to estimate the best decoded bit sequence.

As dfree increases, the performance of the convolutional code also increases. This

characteristic is similar to the minimum distance for block codes [6].

Chapter 3

Turbo Codes

3.1 Introduction

It is well known that a good trade-off between coding gain and complexity can be

achieved by serial concatenated codes proposed by Forney [4]. A serial concatenated

code is one that applies two levels of coding, an inner and an outer code linked by an

interleaver. This approach has been used in space communications, with convolutional

codes as the inner code and low redundancy Reed Solomon codes as the outer code.

The primary reason for using a concatenated code is to achieve a low error rate

with an overall decoding complexity lower than that required for a single code of

the corresponding performance. The low complexity is attained by decoding each

component code separately. As the inner decoder generates burst errors an interleaver

is typically incorporated between the two codes to decorrelate the received symbols

affected by burst errors. In decoding these concatenated codes, the inner decoder

may use a soft − input/soft − output decoding algorithm to produce soft decisions

for the outer decoder. Turbo codes exploit a similar idea of connecting two codes and

separating them by a long interleaver [7]. The difference between turbo and serial

concatenated codes is that in turbo codes two identical systematic component codes

are connected in parallel. The primary reason for using a long interleaver in turbo

18

CHAPTER 3. TURBO CODES 19

coding is to generate a concatenated code with a large block length which leads to a

large coding gain. The performance of turbo codes is also improve by using multifold

coding technique [8].

3.2 Turbo Code Encoder

A turbo encoder is formed by parallel concatenation of two recursive systematic convo-

lutional (RSC) encoders separated by a random Interleaver [7]. The encoder structure

is called parallel concatenation because the two encoders operate on the same set of

input bits, rather than one encoding the output of the other. Thus turbo codes are

also referred to as parallel concatenated convolutional codes (PCCC). A block dia-

gram of a rate 1/3 turbo encoder is shown in Figure 3.1. The generator matrix of a

component RSC code can be represented as:

G(D) = [1,
g2(D)

g1(D)
] (3.1)

Where g1(D) and g2(D) are a feedback and feed forward polynomials respectively

Figure 3.1: Fundamental turbo code encoder

with degree v. In the encoder, the same information sequence is encoded twice but in

a different order. The first encoder operates directly on the input sequence, denoted

CHAPTER 3. TURBO CODES 20

by C, of length N. The first component encoder has two outputs. The first output,

denoted by V0, is equal to the input sequence since the encoder is systematic. The

other output is the parity check sequence, denoted by V1. The interleaved information

sequence at the input of the second encoder is denoted by C̄. Only the parity check

sequence of the second encoder, denoted by V2, is transmitted. The information

sequence V0 and the parity check sequences of the two encoders, V1 and V2 are

multiplexed to generate the turbo code sequence. The overall code rate is 1/3.

3.2.1 Recursive Systematic Convolutional (RSC) Encoder

The recursive systematic convolutional (RSC) encoder is obtained from the non re-

cursive nonsystematic (conventional) convolutional encoder by feeding back one of

its encoded outputs to its input. The conventional encoder is represented by the

generator sequences g1=[111] and g2=[101] and can be equivalently represented in a

more compact form as G=[g1,g2]. The RSC encoder of this conventional encoder is

represented as G=[1,g2/g1] where the first output (represented by g1) is fed back to

the input. In the above representation, 1 denotes the systematic output, g2 denotes

the feed forward output, and g1 is the feedback to the input of the RSC encoder.

Figure 3.2 shows the resulting RSC encoder [2].

Figure 3.2: The RSC encoder obtained from Figure 2.1 with R = 1/2 and K =3 [2].

CHAPTER 3. TURBO CODES 21

3.2.2 Concatenation of Codes

The power of FEC codes increase with length k and approaches the Shannon bound

only at very large k. However the decoding complexity increases very rapidly with k.

This suggests that it would be desirable to build a long, complex code out of much

shorter component codes, which can be decoded much more easily. Concatenation

provides a very straightforward means of achieving this. A concatenated code is

composed of two separate codes that are combined to form a larger code. There are

two types of concatenation, namely serial and parallel concatenations. Figure 3.3

shows the serial concatenation scheme for transmission [1]. The total code rate for

Figure 3.3: Serial concatenated code.

serial concatenation is

Rtotal =
k1k2

n1n2

(3.2)

which is equal to the product of the two code rates.

CHAPTER 3. TURBO CODES 22

Figure 3.4 shows the parallel concatenation scheme for transmission.

Figure 3.4: Parallel concatenated code.

The total code rate for parallel concatenation is

Rtotal =
k

n1 + n2

(3.3)

The serial concatenated scheme suffers from a number of drawbacks, the most signifi-

cant of which is error propagation. If a decoding error occurs in a code word, it usually

results in a number of data errors. When these are passed on to the next stage, it may

be overwhelming the ability of that code to correct the errors. The performance of

the outer decoder might be improved if these errors were distributed among a number

of separate code words. This can be achieved by using an interleaved.

3.2.3 Interleaver Design

An interleaver is an input-output mapping device that permutes the ordering of a se-

quence of symbols from a fixed alphabet in a completely deterministic manner; that

CHAPTER 3. TURBO CODES 23

is, it takes the symbols at the input and produces identical symbols at the output

but in a different temporal order. For turbo codes, an interleaver is used between

the two component encoders. The interleaver is used to provide randomness to the

input sequence, generate a long block code from small memory convolutional codes;

it decorrelates the inputs to the two decoders. If the input sequences to the two

component decoders are decorrelated there is a high probability that after correction

of some of the errors in one decoder some of the remaining errors should become

correctable in the second decoder. Also, it is used to increase the weights of the

codewords as shown in Figure 3.5 [9]. From Figure 3.5, the input sequence u pro-

Figure 3.5: The interleaver increases the code weight for RSC encoder 2 as compared
to RSC encoder 1.

duces a low-weight recursive convolutional code sequence C2 for RSC encoder 1. To

avoid having RSC encoder 2 produce another low-weight recursive output sequence,

the interleaver permutes the input sequence u to obtain a different sequence that

hopefully produces a high-weight recursive convolutional code sequence C3. Thus,

the turbo code’s code weight is moderate, combined from encoder 1’s low-weight code

and encoder 2’s high-weight code. Figure 3.6 shows an illustrative example. From

Figure 3.6, the input sequence ui produces output sequences C1i and C2i respectively.

The input sequences u1 and u2 are different permuted sequences of u0. Table 3.1

CHAPTER 3. TURBO CODES 24

Figure 3.6: An illustrative example of an interleavers capability.

Input Sequence
ui

Output Sequence
C1i

Output Sequence
C2i

Codeword
Weight i

i=0 1 1 0 0 1 1 0 0 1 0 0 0 3
i=1 1 0 1 0 1 0 1 0 1 1 0 0 4
i=2 1 0 0 1 1 0 0 1 1 1 1 0 5

Table 3.1: Input and output sequences for encoder of Figure 3.8

shows the resulting codewords and weights. As it can be seen from Table 3.1, the

codeword weight can be increased by utilizing an interleaver. The interleaver affects

the performance of turbo codes because it directly affects the distance properties of

the code. By avoiding low-weight codewords, the BER of a turbo code can improve

significantly. Thus, much research has been done on interleaver design. The following

subsections shows different types of interleaver commonly used in turbo code design.

Block Interleaver

The block interleaver is the most commonly used interleaver in communication sys-

tems. It writes in column wise from top to bottom and left to right and reads out

row wise from left to right and top to bottom. Figure 3.7 shows a block interleaver.

From Figure 3.7, the interleaver writes in [00...101...0...1...101...01] and reads out

[01...100...1...1...000...11] [2].

CHAPTER 3. TURBO CODES 25

Figure 3.7: Block interleaver [2].

Random Interleaver

The random interleaver uses a fixed random permutation and maps the input sequence

according to the permutation order. The length of the input sequence is assumed to be

L. Figure 3.8 shows a random interleaver with L=8. From Figure 3.8, the interleaver

writes in [01101001] and reads out [01011001] [6].

Figure 3.8: Random interleaver with L=8 [6].

Chapter 4

System Model for Turbo Code

Decoder

The turbo code decoder is based on modified Viterbi algorithm that incorporates

reliability values to improve decoding performance. The Viterbi algorithm (VA) is

modified to deliver not only the most likely path sequence in a finite-state Markov

chain, but either the a-posteriori probability for each bit or reliability value. With

this reliability indicator the modified VA produces soft decisions to be used in decod-

ing of outer codes.

In order to design and implement the decoding algorithm, first the concept of re-

liability for Viterbi decoding and the metric that will be used in the modified Viterbi

algorithm for turbo code decoding is described.

4.1 Principle of the Soft-Output Viterbi Decoder

The Viterbi algorithm produces the ML output sequence for convolutional codes. This

algorithm provides optimal sequence estimation for one stage convolutional codes. For

concatenated (multistage) convolutional codes, there are two main drawbacks to con-

ventional Viterbi decoders. First, the inner Viterbi decoder produces bursts of bit

26

CHAPTER 4. SYSTEM MODEL FOR TURBO CODE DECODER 27

errors which degrade the performance of the outer Viterbi decoders [10]. Second, the

inner Viterbi decoder produces hard decision outputs which prohibit the outer Viterbi

decoders from deriving the benefits of soft decisions [10]. Both of these drawbacks can

be reduced and the performance of the overall concatenated decoder can be signifi-

cantly improved if the Viterbi decoders are able to produce reliability (soft-output)

values [11].

The reliability values are passed on to subsequent Viterbi decoders as a priori in-

formation to improve decoding performance. This modified Viterbi decoder is re-

ferred to as the Soft-Output Viterbi Algorithm (SOVA) decoder. Figure 4.1 shows a

concatenated SOVA decoder.

Figure 4.1: A concatenated SOVA decoder where y represents the received channel
values, u represents the hard decision output values, and L represents the associated
reliability values.

4.2 Reliability of the General SOVA Decoder

The reliability of the SOVA decoder is calculated from the trellis diagram as shown

Figure 4.2. In Figure 4.2, a 4-state trellis diagram is shown. The solid line indicates

the survivor path (assumed here to be part of the final ML path) and the dashed

line indicates the competing (concurrent) path at time t for state 1. For the sake

of brevity and clarity, survivor and competing paths for other nodes are not shown.

The label S1,t represents state 1 and time t. Also, the labels 0,1 shown on each path

CHAPTER 4. SYSTEM MODEL FOR TURBO CODE DECODER 28

Figure 4.2: Example of survivor and competing paths for reliability estimation at
time t [11].

indicate the estimated binary decision for the paths. The survivor path for this node

is assigned an accumulated metric Vs(S1,t) and the competing path for this node is

assigned an accumulated metric Vc(S1,t).

To assigning a reliability value L(t) to node S1,t’s survivor path is the absolute dif-

ference between the two accumulated metrics, L(t) = | Vs(S1,t) - Vc(S1,t) | [11]. The

greater this difference, the more reliable is the survivor path. Because the two paths

give two opposite binary decisions about d(t), Vs(S1,t) - Vc(S1,t) can be directly as-

signed as a first estimation of the weight of the decision given by the survivor about

d(t), conditional to the choice of node m. Where d(t) is the output of the encoder

memory. For this reliability calculation, it is assumed that the survivor accumulated

metric is always ”better” than the competing accumulated metric. Furthermore, to

reduce complexity, the reliability values only need to be calculated for the ML sur-

CHAPTER 4. SYSTEM MODEL FOR TURBO CODE DECODER 29

vivor path (assume it is known for now) and are unnecessary for the other survivor

paths since it will be discarded later.

To illustrate the concept of reliability, two examples are given below. In these ex-

amples, the Viterbi algorithm selects the survivor path as the path with the smaller

accumulated metric. In the first example, assume that at node S1,t the accumulated

survivor metric Vs(S1,t) = 50 and that the accumulated competing metric Vc(S1,t) =

100. The reliability value associated with the selection of this survivor path is L(t)

= | 50 - 100 |=50. In the second example, assume that the accumulated survivor

metric does not change, Vs(S1,t)=50, and that the accumulated competing metric

Vc(S1,t)=75. The resulting reliability value is L(t) = | 50 - 75 | = 25. Although

in both of these examples the survivor path has the same accumulated metric, the

reliability value associated with the survivor path is different. The reliability value in

the first example provides more confidence (twice as much confidence) in the selection

of the survivor path than the value in the second example. Figure 4.3 illustrates a

problem with the use of the absolute difference between accumulated survivor and

competing metrics as a measure of the reliability of the decision. In Figure 4.3, the

survivor and competing paths at S1,t have diverged at time t-5. The survivor and

competing paths produce opposite estimated binary decisions at times t, t-2, and t-4

as shown in bold labels. For the purpose of illustration, let us suppose that the sur-

vivor and competing accumulated metrics at S1,t are equal, Vs(S1,t) = Vc(S1,t) = 100.

This means that both the survivor and competing paths have the same probability

of being the ML path.

Furthermore, let us assume that the survivor accumulated metric is ”better” than

the competing accumulated metric at time t-2 and t-4 as shown in Figure 4.3. To re-

duce the Figure complexity, these competing paths for times t-2 and t-4 are not shown.

From this argument, it can be seen that the reliability value assigned to the survivor

path at time t is L(t)=0, which means that there is no reliability associated with the

CHAPTER 4. SYSTEM MODEL FOR TURBO CODE DECODER 30

Figure 4.3: Example that shows the weakness of reliability assignment using metric
values directly [11].

selection of the survivor path. At times t-2 and t-4, the reliability values assigned

to the survivor path were greater than zero (L(t-2)=25 and L(t-4)=10) as a result

of the ”better” accumulated metrics from the survivor path. However, at time t, the

competing path could also have been the survivor path because both have the same

metric. Thus, there could have been opposite estimated binary decisions at times t,

t-2, and t-4 without reducing the associated reliability values along the survivor path.

To improve the reliability values of the survivor path, a trace back operation to

update the reliability values has been suggested [10]. This updating procedure is in-

tegrated into the Viterbi algorithm as follows [10]: For node Sk,t in the trellis diagram

(corresponding to state k at time t):

1. Store L(t) = | Vs(Sk,t) - Vc(Sk,t) |. If there is more than one competing path,

CHAPTER 4. SYSTEM MODEL FOR TURBO CODE DECODER 31

then multiple reliability values must be calculated and the smallest reliability

value is then set to L(t).

2. Initialize the reliability value of Sk,t to +∞ (most reliable).

3. Compare the survivor and competing paths at Sk,t and store the memorization

levels (MEMs) where the estimated binary decisions of the two paths differ.

4. Update the reliability values at these MEMs with the following procedure:

• Find the lowest MEM > 0, denoted as MEMlow, whose reliability value

has not been updated.

• Update MEMlows reliability value L(t-MEMlow) by assigning the lowest

reliability value between MEM = 0 and MEM = MEMlow.

Continuing from the example, the opposite bit estimations between the survivor and

competing bit paths for S1,t are located and stored as MEM = 0, 2, 4. With this

MEM information, the reliability updating process is accomplished as shown in Fig-

ure 4.4 and Figure 4.5. In Figure 4.4, the first reliability update is shown. The

lowest MEM > 0, whose reliability value has not been updated, is determined to be

MEMlow=2. The lowest reliability value between MEM=0 and MEM=MEMlow=2

is found to be L(t) = 0. Thus, the associated reliability value is updated from L(t-2)

= 25 to L(t-2) = L(t)=0. The next lowest MEM > 0, whose reliability value has not

been updated, is determined to be MEMlow=4. The lowest reliability value between

MEM=0 and MEM= MEMlow =4 is found to be L(t)=L(t-2)=0. Thus, the associ-

ated reliability value is updated from L(t-4)=10 to L(t-4)=L(t)=L(t-2)=0. Figure 4.5

shows the second reliability update. It has been suggested that the final reliability

values should be normalized or logarithmically compressed before passing to the next

concatenated decoder to offset possible defects of this updating operation [11].

CHAPTER 4. SYSTEM MODEL FOR TURBO CODE DECODER 32

Figure 4.4: Updating process for time t-2 (MEMlow = 2) [11].

Figure 4.5: Updating process for time t-4 (MEMlow = 4) [11].

CHAPTER 4. SYSTEM MODEL FOR TURBO CODE DECODER 33

4.3 Introduction to SOVA for Turbo Codes

The SOVA for turbo codes is implemented with a modified Viterbi metric. A close

examination of log-likelihood algebra and soft channel outputs is required before

attempting to derive this modified Viterbi metric. Figure 4.6 shows the system model

that is used to describe the above concepts.

Figure 4.6: System model for SOVA derivation.

4.3.1 Log-Likelihood Algebra

The log-likelihood algebra used for SOVA decoding of turbo codes is based on a binary

random variable u in GF(2) with elements +1, -1, where +1 is the logic 0 element

(null element) and -1 is the logic 1 element under ⊕ (modulo 2) addition. Table

4.1 shows the outcome of adding two binary random variables under these governing

factors. The log-likelihood ratio L(u) for a binary random variable u is defined to be

u1 ⊕ u2 u2 = +1 u2 = -1
u1 = +1 +1 -1
u1 = -1 -1 +1

Table 4.1: Outcome of adding two binary random variables u1 and u2

L (u) = ln
p(u = +1)

p(u = −1)
(4.1)

L(u) is often denoted as the soft value or L-value of the binary random variable u. The

sign of L(u) is the hard decision of u and the magnitude of L(u) is the reliability of this

CHAPTER 4. SYSTEM MODEL FOR TURBO CODE DECODER 34

decision. Table 4.2 shows the characteristics of the log-likelihood ratio L(u). Clearly

P(u = +1) P(u = -1) L(u)
1 0 +∞

0.9 0.1 2.1972
0.5 0.5 0
0.1 0.9 -2.1972
0 1 −∞

Table 4.2: Characteristics of the Log-likelihood Ratio L(u)

from Table 4.2, as L(u) increase toward +∞, the probability of u=+1 also increases.

Furthermore, as L(u) decreases toward −∞, the probability of u=-1 increases. As it

can be seen, L(u) provides a form of reliability for u. This will be exploited for SOVA

decoding as will be described later. The probability of the random variable u may be

conditioned on another random variable z. This forms the conditioned log-likelihood

ratio L(u|z) and is defined to be

L (u|z) = ln
p(u = +1|z)

p(u = −1|z)
(4.2)

The probability of the sum of two binary random variables, say p (u1 ⊕ u2 = +1),

is found from

p(u1 ⊕ u2 = +1) = p(u1 = +1) p(u2 = +1) + p(u1 = −1) p(u2 = −1) (4.3)

With the following relation,

p (u = −1) = 1− p (u = +1) (4.4)

the probability, p (u1 ⊕ u2 = +1),becomes

p(u1 ⊕ u2 = +1) = p(u1 = +1)p(u2 = +1) + (1− p (u1 = +1))(1− p (u2 = +1))(4.5)

CHAPTER 4. SYSTEM MODEL FOR TURBO CODE DECODER 35

Using the following relation shown in [12].

p (u = +1) =
eL(u)

1 + eL(u)
(4.6)

it can be shown that

p(u1 ⊕ u2 = +1) =
1 + eL(u1)eL(u2)

(1 + eL(u1)) (1 + eL(u2))
(4.7)

The probability p (u1 ⊕ u2 = −1) can then be calculated as

p(u1 ⊕ u2 = −1) = 1− p (u1 ⊕ u2 = +1) (4.8)

=
eL(u1) + eL(u2)

(1 + eL(u1)) (1 + eL(u2))
(4.9)

From the definition of log-likelihood ratio (4.1), it follows directly that

L(u1 ⊕ u2) = ln
p(u1 ⊕ u2 = +1)

p(u1 ⊕ u2 = −1)
(4.10)

Using (4.7) and (4.9), L(u1 ⊕ u2) is found to be

L(u1 ⊕ u2) = ln
1 + eL(u1)eL(u2)

eL(u1) + eL(u2)
(4.11)

This result is approximated in [12] as

L(u1 ⊕ u2) ≈ sign (L (u1)) sign (L (u2)) min(|L (u1)| , |L(u2)|) (4.12)

The addition of two soft or L-values is denoted by [+] and is defined as

L (u1) [+] L (u2) = L (u1 ⊕ u2) (4.13)

CHAPTER 4. SYSTEM MODEL FOR TURBO CODE DECODER 36

with the following three properties

L (u) [+] ∞ = L (u) (4.14)

L (u) [+] (−∞) = L (u) (4.15)

L (u) [+] 0 = 0 (4.16)

By induction, it can be shown that

J∑
[+]

j = 1

L (uj) = L

J∑
⊕

j = 1

uj

(4.17)

= ln

p

∑J

⊕

j = 1

uj = +1

p

∑J

⊕

j = 1

uj = −1

(4.18)

(4.19)

= ln
j =

∏J
j=1 (eL(uj) + 1) +

∏J
j=1 (eL(uj) − 1)∏J

j=1 (eL(uj) + 1) − j =
∏J

j=1 (eL(uj) − 1)

By using the relation

tanh
(x

2

)
=

ex − 1

ex + 1
(4.20)

CHAPTER 4. SYSTEM MODEL FOR TURBO CODE DECODER 37

The induction can be simplified to

J∑
[+]

j = 1

L (uj) = ln
1 +

∏J
j=1 tanh(

L(uj)

2
)

1−
∏J

j=1 tanh(
L(uj)

2
)

(4.21)

= 2 tanh−1

(
J∏

j=1

tanh(
L(uj)

2
)

)
(4.22)

This value is very tedious to compute. Thus, it can be approximated as (following

eqn.4.12) before to

J∑
[+]

j = 1

L (uj) = L

J∑
⊕
j = 1

uj

(4.23)

J∑
[+]

j = 1

L (uj) ≈

(
J∏

j=1

sign(L(uj))

)
min

j=1,....,J
{|L(uj)|} (4.24)

It can been seen from (4.24) that the reliability of the sum of soft or L-values is mainly

determined by the smallest soft or L-value of the terms.

4.3.2 Soft Channel Outputs

From the system model in Figure 4.6, the information bit u is mapped to the encoded

bits x. The encoded bits x are transmitted over the channel and received as y. From

CHAPTER 4. SYSTEM MODEL FOR TURBO CODE DECODER 38

this system model, the log-likelihood ratio of x conditioned on y is calculated as

L (x|y) = ln
p(x = +1|y)

p(x = −1|y)
(4.25)

By using Bayes Theorem, this log-likelihood ratio is equivalent to

L (x|y) = ln

(
p (y | x = +1) p(x = +1)

p (y | x = −1) p(x = −1)

)
(4.26)

(4.27)

= ln
p (y | x = +1)

p (y | x = −1)
+ ln

p(x = +1)

p(x = −1)

The channel model is assumed to be flat fading with gaussian noise. By using the

Gaussian pdf f(z),

f (z) =
1√
2πσ

e
(z−m)2

2σ2 (4.28)

where m is the mean and σ2 is the variance, it can be shown that

ln
p (y | x = +1)

p (y | x = −1)
= ln

e−
Eb
No

(y−a)2

e−
Eb
No

(y+a)2

(4.29)

= ln
e
Eb
No

2ay

e−
Eb
No

2ay

(4.30)

= 4
Eb

No

ay (4.31)

where Eb/No is the signal to noise ratio per bit (directly related to the noise variance)

and a is the fading amplitude. For non fading Gaussian channel, a=1. The log-

likelihood ratio of x conditioned on y, L(x/y), is equivalent to

L (x | y) = Lc y + L(x) (4.32)

CHAPTER 4. SYSTEM MODEL FOR TURBO CODE DECODER 39

where Lc is defined to be the channel reliability Lc = 4 Eb
No

a

Thus, L(x/y) is just the weighted received value (Lcy) added with the log-likelihood

value of x (L(x)).

4.4 SOVA Decoder for a Turbo Code

The SOVA component decoder estimates the information sequence using one of the

two encoded streams produced by the turbo code encoder. Figure 4.7 shows the in-

puts and outputs of the SOVA component decoder. The SOVA component decoder

Figure 4.7: SOVA component decoder.

processes the (log-likelihood ratio) inputs L(u) and Lcy, where L(u) is the a-priori

sequence of the information sequence u and Lcy is the weighted received sequence.

The sequence y is received from the channel. However, the sequence L(u) is produced

and obtained from the preceding SOVA component decoder. If there is no preceding

SOVA component decoder then there are no a-priori values. Thus, the L(u) sequence

is initialized to the all-zero sequence. A similar concept is also shown at the beginning

of the chapter in Figure 4.1. The SOVA component decoder produces û and L(û)

as outputs where û is the estimated information sequence and L(û) is the associated

log-likelihood ratio (soft or L-value) sequence.

The SOVA component decoder operates similarly as the Viterbi decoder except the

ML sequence is found by using a modified metric. This modified metric, which incor-

porates the a-priori value, is derived below [13][12].

CHAPTER 4. SYSTEM MODEL FOR TURBO CODE DECODER 40

The fundamental Viterbi algorithm searches for the state sequence S(m) or the in-

formation sequence u(m) that maximizes the a-posteriori probability p(S(m)|y) . For

binary (k=1) trellises, m can be either 1 or 2 to denote the survivor and the compet-

ing paths respectively. By using Bayes Theorem, the a-posteriori probability can be

expressed as

p
(
S(m)

∣∣ y) = p
(
y
∣∣ S(m)

) p (S(m)
)

p (y)
(4.33)

Since the received sequence y is fixed for metric computation and does not depend

on m, it can be discarded. Thus, the maximization results to

max
m

p
(
y
∣∣ S(m)

)
p
(
S(m)

)
(4.34)

The probability of a state sequence terminating at time t is p(St) . This probability

can be calculated as

p (St) = p (St−1) p (St) (4.35)

= p (St−1) p (ut) (4.36)

where p(St) and p(ut) denote the probability of the state and the bit at time t re-

spectively. The maximization can then be expanded t

max
m

p
(
y
∣∣ S(m)

)
p
(
S(m)

)
= max

m

{
t∏

i=0

p
(
yi

∣∣∣ S(m)
i−1 , S

(m)
i p

(
S

(m)
t

))}
(4.37)

where, (Sm
i−1, S

m
i)denotes the state transition between time i-1 and time i and yi de-

notes the associated received channel values for the state transition.

CHAPTER 4. SYSTEM MODEL FOR TURBO CODE DECODER 41

After substituting and rearranging,

max
m

p
(
y
∣∣ S(m)

)
p
(
S(m)

)
= max

m

{
p
(
S

(m)
t−1

) t−1∏
i=0

p
(
yi|S(m)

i−1, S
(m)
i

)
p (um

t) p
(
yt|S(m)

t−1, S
(m)
t

)}
(4.38)

Not that

p
(
yt|S(m)

t−1, S
(m)
t

)
=

N∏
j=1

p
(
yt,j

∣∣∣ x(m)
t,j

)
(4.39)

Thus the maximization becomes

max
m

{
p
(
S

(m)
t−1

) t−1∏
i=0

p
(
yi|S(m)

i−1, S
(m)
i

)
p (um

t)
N∏

j=1

p
(
yt,j

∣∣∣ x(m)
t,j

)}
(4.40)

This maximization is not changed if logarithm is applied to the whole expression,

multiplied by 2, and two constants that are independent of m are added. This leads

to

max
m

{
M

(m)
t

}
= max

m

{
M

(m)
t−1 +

[
2 lnp

(
u

(m)
t

)
− Cu

]
+

N∑
j=1

[
2 ln p (yt,j|x(m)

t,j)− Cy

]}
(4.41)

where

M
(m)
t−1

2
= ln

(
p
(
S

(m)
t−1

) t−1∏
i=0

p
(
yi|S(m)

i−1, S
(m)
i

))
(4.42)

and for convenience, the two constants are

Cu = lnP (ut = +1) + lnP (ut = −1) (4.43)

Cy = ln (P (yt,j | xt,j = +1)) + ln (P (yt,j | xt,j = −1)) (4.44)

CHAPTER 4. SYSTEM MODEL FOR TURBO CODE DECODER 42

After substitution for these two constants, the SOVA metric is obtained as

M
(m)
t = M

(m)
t−1 +

N∑
j= 1

x
(m)
t,j ln

P (yt,j | xt,j = +1)

P (yt,j | xt,j = −1)
+ u

(m)
t ln

P (ut = +1)

P (ut = −1)
(4.45)

and is reduced to

M
(m)
t = M

(m)
t−1 +

N∑
j=1

x
(m)
t,j Lcyt,j + u

(m)
t L(ut) (4.46)

For systematic codes, this can be modified to become

M
(m)
t = M

(m)
t−1 + u

(m)
t Lcyt,1 +

N∑
j=2

x
(m)
t,j Lcyt,j + u

(m)
t L(ut) (4.47)

As seen from (4.46) and (4.47), the SOVA metric incorporates values from the past

metric, the channel reliability, and the source reliability (a-priori value). Figure 4.8

shows the source reliability as used in SOVA metric computation.

Figure 4.8: Source reliability for SOVA metric computation.

CHAPTER 4. SYSTEM MODEL FOR TURBO CODE DECODER 43

Figure 4.8 shows a trellis diagram with two states Sa and Sb and a transition pe-

riod between time t-1 and time t. The solid line indicates that the transition will

produce an information bit ut =+1 and the dashed line indicates that the transition

will produce an information bit ut =-1. The source reliability L(ut), which may be

either a positive or a negative value, is from the preceding SOVA component decoder.

The add on value is incorporated into the SOVA metric to provide a more reliable

decision on the estimated information bit. For example, if L(ut) is a large positive

number, then it would be relatively more difficult to change the estimated bit deci-

sion from +1 to -1 between decoding stages (based on assigning maxm

{
M

(m)
t

}
to

the survivor path). However, if L(ut) is a small positive number, then it would be

relatively easier to change the estimated bit decision from +1 to -1 between decoding

stages. Thus, L(ut) is like a buffer which tries to prevent the decoder from choosing

the opposite bit decision to the preceding decoder.

At time t, the reliability value (magnitude of the log-likelihood ratio) assigned to

a node in the trellis is determined from

40
t = |M (1)

t −M
(2)
t | (4.48)

where, 4MEM
t denotes the reliability value at memorization level MEM relative to

time t. This notation is similar to the notation L(t-MEM) as used earlier and is

shown in Figure 4.9 for discussion. The probability of path m at time t and the

SOVA metric are stated in [13] to be related as

p (path (m)) = p
(
S

(m)
t

)
(4.49)

(4.50)

= e
M

(m)
t
2

CHAPTER 4. SYSTEM MODEL FOR TURBO CODE DECODER 44

Figure 4.9: Example of SOVA survivor and competing paths for reliability estimation
[12].

At time t, let us suppose that the survivor metric of a node is denoted as M
(1)
t and the

competing metric is denoted as M
(2)
t . Thus, the probability of selecting the correct

survivor path is

p (correct) =
p (path (1))

p (path (1) + path (2))

(4.51)

=
e
M

(1)
t
2

e
M

(1)
t
2 + e

M
(2)
t
2

(4.52)

=
e4

0
t

1 + e4
0
t

(4.53)

CHAPTER 4. SYSTEM MODEL FOR TURBO CODE DECODER 45

The reliability of this path decision is calculated as

log
p (correct)

1− p (correct)
= log

e4
0
t

1+ e4
0
t

1− e4
0
t

1+ e4
0
t

(4.54)

= 40
t (4.55)

The reliability values along the survivor path for a particular node at time t are de-

noted as4MEM
t , where MEM = 0,,t. For this node at time t, if the bit on the survivor

path at MEM=k (or equivalently at time t-MEM) is the same as the associated bit

on the competing path, then there would be no bit error if the competing path was

chosen. Thus, the reliability value at this bit position remains unchanged. However,

if the bits differ on the survivor and competing path at MEM=k, then there is a bit

error. The reliability value at this bit error position must then be updated using the

same updating procedure as described at the beginning of the chapter. As shown in

Figure 4.9, reliability updates are required for MEM=2 and MEM=4.

The reliability updates are performed to improve the soft or L-values. It is shown in

[13] that the soft or L-value of a bit decision is

L (ut−MEM) = ut−MEM

MEM∑
[+]

k = 0

4k
t (4.56)

and can be approximated by (4.24) to become

L (ut−MEM) ≈ ut−MEM min
k=0,...,MEM

{
4k

t

}
(4.57)

The soft output Viterbi algorithm (along with its reliability updating procedure) can

now be implemented as follows:

CHAPTER 4. SYSTEM MODEL FOR TURBO CODE DECODER 46

1. (a) Initialize time t = 0.

(b) Initialize M
(m)
0 = 0 only for the zero state in the trellis diagram and all

other states to - ∞.

2. (a) Set time t = t + 1.

(b) Compute the metric M
(m)
t = M

(m)
t−1 +u

(m)
t Lcyt,1+

∑N
j=2 x

(m)
t,j Lcyt,j +u

(m)
t L(ut)

for each state in the trellis diagram where, m denotes allowable binary trellis

branch/transition to a state (m = 1,2).

M
(m)
t is the accumulated metric for time t on branch m.

u
(m)
t is the systematic bit (1st bit on N bits) for time t on branch m.

x
(m)
t,j is the j-th bit on N bits for time t on branch m (2 ≤ j ≤ N).

y
(m)
t,j is the received value from the channel corresponding to x

(m)
t,j .

Lc = 4 Eb
No

is the channel reliability value.

L(ut) is the a-priori reliability value for time t. This value is from the preceding

decoder. If there is no preceding decoder, then this value is set to zero.

3. Find maxmM
(m)
t for each state. For simplicity, let M

(1)
t denote the survivor

path metric and M
(2)
t denote the competing path metric.

4. Store M
(1)
t and its associated survivor bit and state paths.

5. Compute 40
t = 1

2
|M (1)

t −M
(2)
t |

6. Compare the survivor and computing paths at each state for time t and store

the MEMs where the estimated binary decisions of the two paths differ.

7. Update 4MEM
t ≈ mink=0,...,MEM

{
4k

t

}
for all MEMs from smallest to largest

MEM.

8. Go back to Step (2) until the end of the received sequence.

9. Output the estimated bit sequence and its associated Soft or L-value sequence.

CHAPTER 4. SYSTEM MODEL FOR TURBO CODE DECODER 47

L(û) = û ∗ 4, where,* operator defines element by element multiplication operation

and4 is the final updated reliability sequence. L(û) is then processed (to be discussed

later) and passed on as the a-priori sequence L(u) for the succeeding decoder.

4.5 SOVA Iterative Turbo Code Decoder

The iterative turbo code decoder is composed of two concatenated SOVA component

decoders [13] [12]. Figure 4.10 shows the turbo code decoder structure. The turbo

Figure 4.10: SOVA iterative turbo code decoder [13].

code decoder processes the received channel bits on a frame basis. As shown in Figure

4.10, the received channel bits are demultiplexed into the systematic stream y1 and

two parity check streams y2 and y3 from component encoders 1 and 2 respectively.

These bits are weighted by the channel reliability value and loaded on to the CS

registers. The registers shown in the figure are used as buffers to store sequences.

The switches are placed in the open position to prevent the bits from the next frame

CHAPTER 4. SYSTEM MODEL FOR TURBO CODE DECODER 48

from being processed until the present frame has been processed.

The SOVA component decoder produces the soft or L-value L(u′t) for the estimated

bit u′t (for time t). The soft or L- value L(u′t) can be decomposed into three distinct

terms as stated in [12].

L (u′t) = L (ut) + Lcyt,1 + Le (u′t) (4.58)

L(ut) is the a-priori value and is produced by the preceding SOVA component encoder.

Lcyt,1 is the weighted received systematic channel value.

Le(u
′
t) is the extrinsic value produced by the present SOVA component decoder.

The information that is passed between SOVA component decoders is the extrinsic

value

Le (u′t) = L (u′t)− L (ut)− Lcyt,1 (4.59)

The a-priori valueL(ut) is subtracted out from the soft or L -value L(u′t) to pre-

vent passing information back to the decoder from which it was produced. Also, the

weighted received systematic channel value Lcyt,1 is subtracted out to remove com-

mon information in the SOVA component decoders.

Figure 4.10 shows that the turbo code decoder is a closed loop serial concatenation of

SOVA component decoders. In this closed loop decoding scheme, each of the SOVA

component decoders estimates the information sequence using a different weighted

parity check stream. The turbo code decoder further implements iterative decod-

ing to provide more dependable reliability/a-priori estimations from the two different

weighted parity check streams, hoping to achieve better decoding performance.

The iterative turbo code decoding algorithm for the n-th iteration is as follows:

CHAPTER 4. SYSTEM MODEL FOR TURBO CODE DECODER 49

1. The SOVA1 decoder inputs sequences 4 Eb
No
y1 (systematic),4 Eb

No
y2 (parity check),

and Le2(u
′) and outputs sequence L1(u

′) .For the first iteration, sequence Le2(u
′) =

0 because there is no initial a-priori value (no extrinsic values from SOVA2).

2. The extrinsic information from SOVA1 is obtained by

Le1 (u′) = L1 (u′)− Le2 (u′)− Lcy1, where Lc = 4 Eb
No

3. The sequences 4 Eb
No
y1 and Le1(u

′) are interleaved and denoted as I
{

4 Eb
N0
y1

}
and I {Le1 (u′)}

4. The SOVA2 decoder inputs sequences I
{

4 Eb
N0
y1

}
(systematic), I

{
4 Eb

N0
y3

}
(parity check that was already interleaved by the turbo code encoder), and

I {Le1 (u′)} (a-priori information) and outputs sequences I {L2 (u′)} and I {u′}.

5. The extrinsic information from SOVA2 is obtained by

I {Le2 (u′)} = I {L2(u
′)} − I {Le1 (u′)} − I {Lcy1}

6. The sequences I {Le2 (u′)} and I {u′} are deinterleaved and denoted as Le2 (u′)

and u′. Le2 (u′) is fed back to SOVA1 as a-priori information for the next

iteration and u’ is the estimated bits output for the n-th iteration.

Chapter 5

Performance Analysis

This chapter illustrates the performance of the turbo codes and convolutional codes

through computer simulation. MATLAB is used to construct the computer code, and

the simulations were run in MATLAB environment.

5.1 Simulation Setup

The simulation setup is composed of three distinct parts, namely the encoder, the

channel, and the decoder. The simulated convolutional encoder is use modulo-2 adder

and shift register or constraint length (K) with code memory, of size m. In the sim-

ulation, the Additive White Gaussian Noise (AWGN) channel is used and Viterbi

decoder is used as convolutional decoder for hard decision as well as soft decision.

Second, the simulation for the Turbo code encoder is composed of two identical RSC

component encoders. These two component encoders are separated by a random in-

terleaver. The random interleaver is a permutation of bit order in a bit stream as

shown in chapter 3. This permutation of bit order is stored so that the interleaved bit

stream can be deinterleaved at the decoder. The output of the turbo code encoder is

described by three streams, one systematic (uncoded) bit stream and two coded bit

streams (parity bits), which is shown in chapter 3 and SOVA decoder is used shown

50

CHAPTER 5. PERFORMANCE ANALYSIS 51

in chapter 4.

In its basic form, the turbo code encoder is rate 1
3

and convolutional encoder is rate

1
2
. However, in many journal papers, the published computer simulations of above

codes often use rate 1
2
, 1

3
, 2

3
and 3

4
. This is accomplished by puncturing the coded

bit streams of the above code.

5.2 Simulation Results

Simulation results for a convolutional code are based on bit error rate (BER) perfor-

mance over a range of Eb/No. The BER is simply the ratio of incorrect data bits

divided by the total number of data bits transmitted. The SNR is computed by di-

viding the energy per received data bit Eb by the single-sided noise spectral density

No of the channel. For simulation rate 1
2
, 2

3
and 1

3
convolutional codes and rate 1

3

turbo codes using two 1
2

RSC encoder and interleaver is used.

First, the simulation result are shown for convolutional code using different mod-

ulation technique (BPSK, QPSK and 8-PSK) with rate 1
2

and different rate (1
2
, 1

3
and

2
3
) using one modulation technique (BPSK) in AWGN channel. The simulation is

carried out on the basis of BER improvement over uncoded BER given by equation:

| BERuncoded −BERCoded

BERuncoded

| × 100 %

Second, the performance of rate 1
3

turbo code encoder is shown with RSC encoder

and SOVA decoder.

CHAPTER 5. PERFORMANCE ANALYSIS 52

Figure 5.1: Convolutional code (rate (R)-1/2) with Different Modulation in AWGN
channel

Eb/No (dB) Uncoded (BER) BPSK (BER) BER improvement
over Uncoded

1.5 4.46× 10−2 4.0× 10−2 13.8 %
2.5 2.9× 10−2 6.1× 10−3 79.46 %
3.5 1.7× 10−2 3.1× 10−4 98.16 %

Table 5.1: Result of convolutional code with BPSK modulation of Figure 5.1

Eb/No (dB) Uncoded (BER) QPSK (BER) BER improvement
over Uncoded

3 2.29× 10−2 2.16× 10−2 5.44 %
4 1.25× 10−2 4.0× 10−3 68.27 %
5 6.0× 10−3 3.33× 10−4 94.4 %

Table 5.2: Result of convolutional code with QPSK modulation of Figure 5.1

CHAPTER 5. PERFORMANCE ANALYSIS 53

Eb/No (dB) Uncoded (BER) 8-PSK (BER) BER improvement
over Uncoded

6 2.05× 10−2 1.08× 10−2 47.11 %
7 1.2× 10−2 1.6× 10−3 86.34 %
8 6.2× 10−3 1.16× 10−4 98.11 %

Table 5.3: Result of convolutional code with 8-PSK modulation of Figure 5.1

Figure 5.2: Convolutional code with Different Coding Rate in BPSK and AWGN
channel

Eb/No (dB) Uncoded (BER) Rate-1/2 (BER) BER improvement
(Soft Decision) over Uncoded

3 2.29× 10−2 6.88× 10−4 96.99 %
4 1.25× 10−2 5.8× 10−5 99.54 %
5 6.0× 10−3 1.8× 10−5 99.70 %

Table 5.4: Result for Rate-1
2

soft decision convolutional code of Figure 5.2

CHAPTER 5. PERFORMANCE ANALYSIS 54

Eb/No (dB) Uncoded (BER) Rate-1/2 (BER) BER improvement
(Hard Decision) over Uncoded

6 2.4× 10−3 2.19× 10−4 90.83 %
7 7.72× 10−4 3.1× 10−5 95.99 %
8 1.9× 10−4 2.0× 10−6 98.95 %

Table 5.5: Result for Rate-1
2

hard decision convolutional code of Figure 5.2

Eb/No (dB) Uncoded (BER) Rate-1/3 (BER) BER improvement
(Soft Decision) over Uncoded

1 5.63× 10−2 1.3× 10−3 97.78 %
2 3.75× 10−2 2.07× 10−4 99.45 %
3 2.29× 10−2 1.7× 10−5 99.93 %

Table 5.6: Result for Rate-1
3

soft decision convolutional code of Figure 5.2

Eb/No (dB) Uncoded (BER) Rate-2/3 (BER) BER improvement
(Hard Decision) over Uncoded

5 6.0× 10−3 4.24× 10−4 92.88 %
6 2.4× 10−3 5.2× 10−5 97.82 %
7 7.72× 10−4 3.0× 10−6 99.61 %

Table 5.7: Result for Rate-2
3

(with puncture) soft decision convolutional code of Figure
5.2

CHAPTER 5. PERFORMANCE ANALYSIS 55

Eb/No (dB) Uncoded R = 1/3,K = 3 R = 1/2,K = 3
0.5 6.9× 10−2 9.81× 10−2 8.16× 10−2

1 5.7× 10−2 7.92× 10−2 5.98× 10−2

1.5 4.6× 10−2 3.79× 10−2 3.95× 10−2

2 3.9× 10−2 2.65× 10−2 2.83× 10−2

2.5 2.8× 10−2 1.14× 10−2 1.3× 10−2

3 2.4× 10−2 3.42× 10−3 1.18× 10−2

3.5 1.7× 10−2 2.43× 10−3 5.36× 10−3

4 1.3× 10−2 6.23× 10−4 4.088× 10−3

Table 5.8: Comparison of turbo code BER performance for different rate (FS = 256,
iter =1)

Figure 5.3: Performance of turbo code with different code rate

CHAPTER 5. PERFORMANCE ANALYSIS 56

Eb/No (dB) Uncoded iter = 1 iter = 8
0.5 6.9× 10−2 9.81× 10−2 5.17× 10−2

1 5.7× 10−2 7.92× 10−2 2.4× 10−2

1.5 4.6× 10−2 3.79× 10−2 3.31× 10−3

2 3.9× 10−2 2.65× 10−2 7.82× 10−4

2.5 2.8× 10−2 1.14× 10−2 3.69× 10−4

3 2.4× 10−2 3.42× 10−3 8.92× 10−5

3.5 1.7× 10−2 2.43× 10−3 2.81× 10−5

4 1.3× 10−2 6.23× 10−4 1.22× 10−5

Table 5.9: Comparison of turbo code BER performance for different iter (FS = 256,
R = 1/3,K = 3)

Figure 5.4: Performance of turbo code with different iteration

CHAPTER 5. PERFORMANCE ANALYSIS 57

Eb/No (dB) Uncoded Frame Size = 256 Frame Size = 1024
0.5 6.9× 10−2 5.17× 10−2 3.68× 10−2

1 5.7× 10−2 2.4× 10−2 3.33× 10−3

1.5 4.6× 10−2 3.31× 10−3 2.87× 10−4

2 3.9× 10−2 7.82× 10−4 7.51× 10−5

2.5 2.8× 10−2 3.69× 10−4 3.69× 10−5

3 2.4× 10−2 8.92× 10−5 1.67× 10−5

3.5 1.7× 10−2 2.81× 10−5 5.58× 10−6

4 1.3× 10−2 1.22× 10−5 2.15× 10−6

Table 5.10: Comparison of turbo code BER performance for different FS (iter = 8,
R = 1/3,K = 3)

Figure 5.5: Performance of turbo code with different frame size

CHAPTER 5. PERFORMANCE ANALYSIS 58

Eb/No (dB) Uncoded R = 1/3,K = 3 R = 1/3,K = 4 R = 1/3,K = 5
0.5 6.9× 10−2 9.81× 10−2 1.40× 10−1 1.27× 10−1

1 5.7× 10−2 7.92× 10−2 6.99× 10−2 1.01× 10−1

1.5 4.6× 10−2 3.79× 10−2 4.65× 10−2 5.7× 10−2

2 3.9× 10−2 2.65× 10−2 2.53× 10−2 1.44× 10−2

2.5 2.8× 10−2 1.14× 10−2 6.64× 10−3 5.68× 10−3

3 2.4× 10−2 3.42× 10−3 2.47× 10−3 8.07× 10−4

3.5 1.7× 10−2 2.43× 10−3 4.76× 10−4 3.1× 10−4

4 1.3× 10−2 6.23× 10−4 1.22× 10−4 8.13× 10−5

Table 5.11: Comparison of turbo code BER performance for different constraint
length (FS = 256, iter =1)

Figure 5.6: Performance of turbo code with different constraint length

CHAPTER 5. PERFORMANCE ANALYSIS 59

Eb/No (dB) Uncoded Published Simulated
0 8.12× 10−2 1.1× 10−1 8.81× 10−2

1 5.7× 10−2 6× 10−2 6.88× 10−2

2 3.9× 10−2 1.7× 10−2 1.95× 10−2

3 2.4× 10−2 4× 10−3 7.27× 10−3

4 1.3× 10−2 9.12× 10−4 3.37× 10−3

5 5.67× 10−3 1.12× 10−4 7.91× 10−4

6 2.33× 10−3 1.1× 10−5 8.62× 10−5

Table 5.12: Comparison of turbo code BER performance for (FS = 64, iter = 1, R =
1/2, K = 3) [14]

Figure 5.7: Comparison of turbo code BER performance for (FS = 64, iter = 1, R =
1/2, K = 3) [14]

CHAPTER 5. PERFORMANCE ANALYSIS 60

Eb/No (dB) Uncoded Published Simulated
0 8.12× 10−2 2.2× 10−1 1.64× 10−1

1 5.7× 10−2 1.08× 10−1 1.07× 10−1

2 3.9× 10−2 8.15× 10−2 2.27× 10−2

3 2.4× 10−2 2.03× 10−2 3.87× 10−3

4 1.3× 10−2 3.2× 10−3 2.75× 10−4

5 5.67× 10−3 2.24× 10−4 3.13× 10−5

Table 5.13: Comparison of turbo code BER performance for (FS = 192, iter = 1, R
= 1/2, K = 5) [14]

Figure 5.8: Comparison of turbo code BER performance for (FS = 192, iter = 1, R
= 1/2, K = 5) [14]

CHAPTER 5. PERFORMANCE ANALYSIS 61

Eb/No (dB) Uncoded Published Simulated
0 8.12× 10−2 1.8× 10−1 1.60× 10−1

1 5.7× 10−2 9× 10−2 6.89× 10−2

2 3.9× 10−2 3.84× 10−2 1.63× 10−2

3 2.4× 10−2 7.08× 10−3 5.03× 10−4

4 1.3× 10−2 7.84× 10−3 4.24× 10−5

Table 5.14: Comparison of turbo code BER performance for (FS = 192, iter = 5, R
= 1/2, K = 5) [14]

Figure 5.9: Comparison of turbo code BER performance for (FS = 192, iter = 5, R
= 1/2, K = 5) [14]

CHAPTER 5. PERFORMANCE ANALYSIS 62

Eb/No (dB) Uncoded Published Simulated
0 8.12× 10−2 2.08× 10−1 1.8× 10−1

1 5.7× 10−2 1.15× 10−1 1.08× 10−1

2 3.9× 10−2 7.89× 10−2 2.28× 10−2

3 2.4× 10−2 2.25× 10−2 1.18× 10−3

4 1.3× 10−2 9.89× 10−4 1.02× 10−4

5 5.67× 10−3 5.89× 10−5 8.73× 10−6

Table 5.15: Comparison of turbo code BER performance for (FS = 2048, iter = 1, R
= 1/2, K = 5) [14]

Figure 5.10: Comparison of turbo code BER performance for (FS = 2048, iter = 1,
R = 1/2, K = 5) [14]

CHAPTER 5. PERFORMANCE ANALYSIS 63

Eb/No (dB) Uncoded Published Simulated
0 8.12× 10−2 1.03× 10−1 1.76× 10−1

1 5.7× 10−2 9.89× 10−2 1.02× 10−1

2 3.9× 10−2 6.08× 10−2 4.18× 10−4

3 2.4× 10−2 8.76× 10−4 7.1× 10−6

4 1.3× 10−2 5.67× 10−6 2.2× 10−6

Table 5.16: Comparison of turbo Code BER Performance for (FS = 2048, iter = 5,
R = 1/2, K = 5) [14]

Figure 5.11: Comparison of turbo Code BER Performance for (FS = 2048, iter = 5,
R = 1/2, K = 5) [14]

CHAPTER 5. PERFORMANCE ANALYSIS 64

Eb/No (dB) Uncoded Published Simulated
1 5.7× 10−2 9.87× 10−2 8.83× 10−2

1.5 4.6× 10−2 4.68× 10−2 5.34× 10−2

2 3.9× 10−2 1.77× 10−2 3.44× 10−2

2.5 2.8× 10−2 8.68× 10−3 1.35× 10−2

Table 5.17: Comparison of turbo Code BER Performance for (FS = 1024, iter = 1,
R = 1/2, K = 5) [15]

Figure 5.12: Comparison of turbo Code BER Performance for (FS = 1024, iter = 1,
R = 1/2, K = 5) [15]

CHAPTER 5. PERFORMANCE ANALYSIS 65

Eb/No (dB) Uncoded Published Simulated
1 5.7× 10−2 7.02× 10−2 1.017× 10−1

1.5 4.6× 10−2 9.43× 10−3 1.13× 10−2

2 3.9× 10−2 1.23× 10−4 4.408× 10−4

2.5 2.8× 10−2 9.93× 10−6 3.02× 10−5

Table 5.18: Comparison of turbo Code BER Performance for (FS = 1024, iter = 8,
R = 1/2, K = 5) [15]

Figure 5.13: Comparison of turbo Code BER Performance for (FS = 1024, iter = 8,
R = 1/2, K = 5) [15]

CHAPTER 5. PERFORMANCE ANALYSIS 66

Eb/No (dB) Uncoded Published Simulated
1.5 4.6× 10−2 8.09× 10−3 1.6× 10−2

2 3.9× 10−2 7.83× 10−4 3.34× 10−3

2.5 2.8× 10−2 9.15× 10−5 8.80× 10−4

Table 5.19: Comparison of turbo Code BER Performance for (FS = 1024, iter = 8,
R = 1/2, K = 3) [16]

Figure 5.14: Comparison of turbo Code BER Performance for (FS = 1024, iter = 8,
R = 1/2, K = 3) [16]

CHAPTER 5. PERFORMANCE ANALYSIS 67

Eb/No (dB) Uncoded Published Simulated
1.5 4.6× 10−2 1.01× 10−2 1.13× 10−2

2 3.9× 10−2 2.43× 10−4 4.408× 10−4

2.5 2.8× 10−2 1.89× 10−5 3.02× 10−5

Table 5.20: Comparison of turbo Code BER Performance for (FS = 1024, iter = 8,
R = 1/2, K = 5) [16]

Figure 5.15: Comparison of turbo Code BER Performance for (FS = 1024, iter = 8,
R = 1/2, K = 5) [16]

CHAPTER 5. PERFORMANCE ANALYSIS 68

5.3 Simulation Analysis

The simulated performance results of convolutional codes are shown in Figure 4.1 and

4.2.

From Figure 4.1, it shows that when BPSK modulation is used it results in BER

improvement over uncoded is 98.16% at 3.5 dB, when QPSK modulation is used it

results in BER improvement over uncoded is 94.4% at 5 dB and 8-PSK modulation

is used then BER improvement over uncoded is 98.11% at 8 dB.

From Figure 4.2, it shows that when rate 1/2 is used it results in BER improve-

ment over uncoded is 99.70% at 5 dB for soft decision on other hand it gives 98.95%

at 8 dB for hard decision and rate 1/3 and punctured rate 2/3 is used it results in

BER improvement over uncoded is 99.93% at 3 dB and 99.61% at 7 dB for soft de-

cision.

The simulated performance results of turbo code are shown in Figure 5.3, Figure

5.4, Figure 5.5 and Figure 5.6.

The simulated performance results of turbo codes with fixed frame sizes but dif-

ferent rates are shown in Figure 5.3. From these figures, it can be seen that for a

fixed constraint length, a decrease in code rate increases the turbo code performance.

The simulated performance results of turbo codes with fixed frame sizes, fixed con-

straint length and fixed rate are shown in Figure 5.4. From figure an increase in

number of iteration improves the turbo code performance.

The overall iterative (8 iterations) decoding gain for a turbo code with the same

constraint length and rates but different frame sizes are shown in Figure 5.5. As

CHAPTER 5. PERFORMANCE ANALYSIS 69

shown in these figures, the overall iterative decoding gain increases as the frame size

increases.

The performance of the rate 1/3 turbo code in soft decision Viterbi decoding for

different constraint lengths is shown in Figure 5.6. In this figure, it can be seen that

as the constraint length increases, the performance of the code also increases, result-

ing in lower BER. This is the typical characteristic of any convolutional code.

Finally Figure 5.7 to Figure 5.15 present a compression of the results obtained in

this study with performance results for various specific cases [14] [15] [16]. This and

the above mentioned characteristics of the simulated turbo code performance results

indicate that results obtained are consistent with published results.

Chapter 6

Conclusion and Future Scope

6.1 Conclusion

The thesis describes the concept of error correction codes, the convolutional codes

and turbo codes. The basic configuration of convolutional codes depends upon the

shift registers used in the encoder, the Viterbi decoder and the turbo codes encoder

which used two 1/2 rate RSC encoder with interleaver whereas the turbo codes de-

coder used the Soft Output Viterbi Algorithm (SOVA).

From simulation of convolutional codes,

1. It shows that use of soft decision gives improvement in coding gain and secondly

with the decrease in code rate results in the increase of coding gain.

2. Another simulation shows that when channel noise is more, then BPSK modu-

lation gives significant improvement but low bit rate, while on other hand when

channel noise is less then QPSK and 8-PSK modulation is used to improve bit

rate.

The thesis described the concept of turbo coding, whose basic configuration depends

on the parallel concatenation of two component codes (RSC). The three distinct terms

70

CHAPTER 6. CONCLUSION AND FUTURE SCOPE 71

of ”Soft” or L-value are reviewed, and these values were used for the information ex-

change between the two SOVA component decoders.

The BER performance for turbo codes is investigated for many different cases. These

different cases are summarized under the following three main categories:

1. Turbo code BER performance of 8 decoding iterations for fixed code rates and

constraint lengths but different frame sizes.

2. Turbo code BER performance of 1 decoding iterations for fixed frame sizes but

different code rates and constraint lengths.

3. Turbo code BER performance improvement between 1 decoding iteration and 8

decoding iterations for fixed code rates, fixed constraint lengths and fixed frame

sizes.

The simulation results showed many interesting properties about turbo codes that are

in the same direction with published research work. Some of these important results

are listed below:

1. For a fixed turbo code encoder, its performance improves as the frame size

increases.

2. For a fixed frame size, the turbo code performance increases under two different

conditions. First, for a fixed constraint length, a decrease in code rate improves

the performance. Second, for a fixed code rate, an increase in constraint length

improves the performance.

3. Considerable decoding gain is observed if more than one decoding iterations is

used.

CHAPTER 6. CONCLUSION AND FUTURE SCOPE 72

6.2 Contribution

I have studied, analyzed and implemented the convolutional codes and turbo codes.

The simulations of the convolutional codes and turbo codes have been carried out in

the MATLAB.

6.3 Future Scope

There are many possibilities for future work in turbo codes. As described in the

thesis, some detailed work needs to be done on the aspect of information transfer

between the SOVA component decoders. For further improvements in turbo code,

research should be focused on the joint issues of improving decoder performance and

reducing decoder complexity. Also, in addition to Gaussian channel model developing

other channel model is important. Furthermore, for better performance of turbo code,

SISO module can be implemented by using MAP algorithm instead of SOVA.

References

[1] S. Haykin. Communication Systems. John Wiley and Sons, Inc., 4th edition.

[2] B. Sklar. Digital Communication Fundamentals and Applications. Prentice Hall,
2nd edition.

[3] P. Elias. Error-free coding. IRE Trans. Inform.Theory, vol. IT-4, pp. 29-37,
1954.

[4] Jr. G. D. Forney. Convolutional codes i: Algebraic structure. IEEE Trans.
Inform Theory, vol. IT-16, no.6, pp. 720-738, 1970.

[5] J. Geldmacher K. Hueske and J. Gotze. Adaptive decoding of convolutional
codes. Adv. Radio Sci., 5, pp. 209-214, 2007.

[6] J. C. Moreira and P. G. Farrell. Essential of Error-Control Coding. John Wiley
and Sons, Inc., 2nd edition.

[7] A. Glavieux C. Berrou and P. Thitimajshima. Near shannon limit error-
correcting coding and decoding: Turbo codes(1). in ICC’93, pp. 1064-1070,
1993.

[8] J. Xu C. Tanriover, B. Honary and S. Lin. Improving turbo code error perfor-
mance by multifold coding. IEEE Comm., Letters, vol. 6, no. 5, pp. 193-195,
2002.

[9] M. Salehi H. R. Sadjadpour, J. A. Sloane and G. Nebe. Interleaver design for
turbo codes. IEEE J.Select. Areas Commun., vol.19, no.5, pp. 831-837, 2001.

[10] J. Hagenauer and P. Hoeher. A viterbi algorithm with soft-decision outputs and
its applications. in Proc., IEEE Globecom Conj, pp. 1680-1686, 1989.

[11] Claude Berrou. A low complexity soft-output viterbi decoder architecture. IEEE
Trans. Commun., pp. 737-745, 1996.

[12] J. Hagenauer. Iterative decoding of binary block and convolutional codes. IEEE
Trans. Commun., vol. 42, pp. 429-445, 1996.

73

REFERENCES 74

[13] J. Hagenauer. Source-controlled channel decoding. IEEE Trans. Commun., vol.
43, pp. 2449-2457, 1995.

[14] K. M. S. Soyjaudah and M. T. Russool. Comparative study of turbo codes
in awgn channel using map and sova decoding. Department of Electrical and
Electronic Engineering, University of Mauritius.

[15] S. Lin J. Chen, M. P. Fossorier and C. Xu. Bi-directional sova decoding for
turbo-codes. IEEE Commun. Lett., vol. 4, no. 12, pp. 405-408, 2000.

[16] E Villebrun L Papke, P Robertson. Improved decoding with the sova in a parallel
concatenated (turbo-code) scheme. Proc. IEEE ICC 96,Vol. 1, pp. 102-106, 1996.

	Declaration
	Certificate
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	Motivation
	Representation of Digital Communication System
	Types of Channel Codes
	Problem Statement
	Outline of the Thesis

	Convolutional Codes
	Introduction
	Encoder Structure
	Encoder Representations
	Generator Representation
	Trellis Diagram Representation
	State Diagram Representation

	The Viterbi Algorithm
	Distance Properties of Convolutional Code

	Turbo Codes
	Introduction
	Turbo Code Encoder
	Recursive Systematic Convolutional (RSC) Encoder
	Concatenation of Codes
	Interleaver Design

	System Model for Turbo Code Decoder
	Principle of the Soft-Output Viterbi Decoder
	Reliability of the General SOVA Decoder
	Introduction to SOVA for Turbo Codes
	Log-Likelihood Algebra
	Soft Channel Outputs

	SOVA Decoder for a Turbo Code
	SOVA Iterative Turbo Code Decoder

	Performance Analysis
	Simulation Setup
	Simulation Results
	Simulation Analysis

	Conclusion and Future Scope
	Conclusion
	Contribution
	Future Scope

	References

