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Abstract

ST delivers its own embedded processor ST231 core and already has presence across

the globe which is widely used as an audio, video or graphics accelerator within

Home Entertainment Application(audio, video, set top boxes, digital TVs) as well

as lajer jet and ink jet printer. ST keeps on developing the new version of ST231

processor with the new added features as the customer requirements. The ST231 is

the latest processor of the ST2xx in the market of embedded VLIW computing. It is

a integer 32bits VLIW processor, 3 stages pipelined, which contains 4 integers units,

2 multiplications units and 1 load/store unit. It has a 64KB L1 cache. The latency

of the L1 cache is 3 cycles. The cache is blocking, i.e. in the case of load cache-

miss, the pipeline stalls until the commit of the pending load. This was degrading

the performance in terms of memory latency for some applications which uses this

ST231.The cache is separated Data/ Instruction. The Data cache is 4 way associative.

It operate with write back no allocate policy. A 128 bytes write buffer is associated

with the Dcache. In this project the aim is to optimization of ST231 by resolving

this blocking cache problem by implementing non-blocking cache in Dcache side and

Icache optimization by machine learning appraoach.Genetic programning is able to

reduce the L2 Icache misses by cache content selection. A non-blocking cache can

improves processor performance by adding the overlapping of cache misses to the

ability of overlapping execution with cache misses provided by limited blocking.
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Chapter 1

Introduction

1.1 Optimization of ST231 Processor

The 32-bit ST231 is a member of the ST200 family of cores.This family of embedded

processors uses a scalable technology that allows variation in instruction issue width,

the number and capabilities of functional units and register files, and the instruction

set.

The ST200 family includes the following features:

• parallel execution units, including multiple integer ALUs and multipliers

• architectural support for data prefetch

• predicated execution through select operations

• efficient branch architecture with multiple condition registers

• encoding of immediate operands up to 32 bits

• support for user and supervisor modes and memory protection

2



CHAPTER 1. INTRODUCTION 3

1.1.1 ST231 overview:

The ST231 includes the ST231 core and associated peripherals. fig.1.1 shows the

arrangement of these components in a block diagram.

Figure 1.1: Architecture of ST231 Processor

1.1.2 Objective

ST delivers its own embedded processor ST231 core and already has presence across

the globe which is widely used as an audio, video or graphics accelerator within Home

Entertainment Application(audio, video, set top boxes, digital TVs) as well as Lajer

jet and Ink jet printer.

The scope of this project is to optimization of ST231 processor verification cycle The

key features to be targeted are,

- implementing a Non-Blocking Cache in ST231 rather than blocking cache.

- Reducing the memory latency by using prefetch cache.

- Adjust the load latencies in order to improve the gain of non-blocking cache.



Chapter 2

Literature Survey

2.1 Influence of cache effects on ST231 processor

It has been measured the impacts of different cache architecture and also impact of the

compiler. and by following a practical approach with common benchmark(mediabench)

and a less common application (ffmpeg). This is a typical embedded multimedia ap-

plication used by STmicroelectronics to design their chip. It a video compression

basing h263 standard which are precisely simulated. The used simulator model an

embedded processor which is ST231 core. As the ST231 is the latest processor of the

ST2xx in the market of embedded VLIW computing. It is a integer 32bits VLIW

processor, 3 stages pipelined, which contains 4 integers units, 2 multiplications units

and 1 load/store unit. It has a 64KB L1 cache. The latency of the L1 cache is 3

cycles. The cache is blocking, i.e. in the case of load cache-miss, the pipeline stalls

until the commit of the pending load. The cache is separated Data Instruction. The

Data cache is 4 way associative. It operate with write back no allocate policy. 128

bytes write buffer is associated with the Dcache. So this blocking cache is degrad-

ing the performance in terms of speed and time complexity. So we are targeting to

reduce memory latency which causes the reduction in speed. As it demands for the

application is being used.

4



CHAPTER 2. LITERATURE SURVEY 5

After collecting the simulation results of the benchmark on the ST231 using two

cache scheme Blocking cache and Non-Blocking cache.

Blocking cache which in ST231 processor somewhat degrading the performance in

terms of increasing the memory latency. As with blocking cache when the data cache

miss occurrs the ST231 processor stalls completely.

As the gap between the processor cycle time and memory latency increases, the

cache miss penalty become more severe and that result in lower processor utilization.

Several enhancements to cache design have been proposed to reduce the miss

penalty:

• Multilevel cache hierarchies which lower the average memory access time in a

cost effective way.

• Hit ratio can be improved by complementing caches with small buffers or spe-

cialized caching structures.

• Fast context switching can hide the memory latency of a process.

Rather to exploit these schemes we decided to use another better approach namely

how to exploit the overlap of ST231 processor computation with data access within

one process by using Non-Blocking cache and prefetching cache these features does

not provided by above mentioned schemes.

Usually, a processor must stall on a cache miss until the miss is resolved. In

the case of write misses, this can be avoided by the use of a write buffer. The

basic idea in non-blocking and prefetching caches is to hide the latency of (read and

write) data misses by the overlap of data accesses and computations to the extent

allowed by the data dependencies and consistency requirements. A non- Blocking (or

lockup-free) cache allows execution to proceed concurrently with cache misses until an

instruction that actually needs a value to be returned is reached. Such caches exploit

the overlap of memory access time with post-miss computations. Hardware and/or
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software Prefetching can eliminate the miss penalty by generating memory requests

to bring the data into the cache before its actual use. These techniques exploit the

overlap of computations prior to a cache miss.

2.1.1 Non-Blocking Caches

In order to allow non-blocking operations and multiple misses, it is necessary to im-

plement Miss Information/Status Holding Registers (MSHRS) that are used to record

the information pertaining to the outstanding requests. Each MSHR entry includes

the data block address, the cache line for the block, the word in the block which

caused the miss, and the function unit or register to which the data is to be routed.

Subsequently, the view is that non-blocking loads are features specified in the ST231

processor, non-blocking writes are supported by buffering writes, whereas whether

the cache allows multiple pending accesses or not depends not only on the presence

of MSHRS, but also on the available cache bandwidth as defined by the interface be-

tween caches and memory modules. a non-blocking cache will be a cache supporting

non-blocking reads and non-blocking writes, and possibly servicing multiple requests.

Non-blocking loads require extra support in the execution unit of the ST231 processor

in addition to the MSHRS associated with a non-blocking cache. If static instruction

scheduling in pipelines is used in the ST231 processor, some form of register interlock

(like a full/empty bit for each register) is needed for preserving correct data depen-

dencies. Under dynamic instruction scheduling, introducing out-of-order execution,

some scoreboarding mechanism is required. Both scheduling strategies need inter-

rupt handling routines that can deal with interrupts generated by the non-blocking

operations.

2.2 Performance issues

As we analyzed by the survey, the non-blocking operations exploit the post-miss

overlap of computation and memory access while prefetching exploits the pre-miss
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overlap. We give now a brief qualitative view of the expected benefits for both

types of overlap. Non-blocking loads delay processor stalls until the necessary data

dependence is encountered. They will become necessary for ST231 processors capable

of issuing multiple instructions per cycle. However, the non-blocking ,in which the

number of instructions that can be overlapped with the memory access, is likely to

be small in the case of static scheduling. It can be increased when compilers produce

code optimized for this potential overlap. A larger non-blocking distance can be

obtained with dynamic scheduling and out-of-order execution. By comparison, non-

blocking writes can be more advantageous in reducing the write miss penalty because

the nonblocking distance is usually equal to the memory access time. Moreover, the

write buffer, a FIFO queue lbuffering pending writes, does not need a supporting

unit in the processor. On the other hand, the write miss penalty may not be a large

fraction of the total data access penalty, even without a write buffer.

2.2.1 Architectural Model

The ST231 is the processor of the ST2xx in the market of embedded VLIW computing.

It is a integer 32bits VLIW processor, 3 stages pipelined, which contains 4 integers

units, 2 multiplications units and 1 load/store unit. It has a 64KB L1 cache. The

latency of the L1 cache is 3 cycles. The cache is blocking, i.e. in the case of load cache-

miss, the pipeline stalls until the commit of the pending load. The cache is separated

Data/ Instruction. The Data cache is 4 way associative. It operate with write back

no allocate policy. A 128 bytes write buffer is associated with the Dcache. The next

formula describes the execution time of a VLIW code on an ST231 in function of

different stalls sources resulted from dynamic hardware mechanisms:

T = Calc + DC + IC + + Br

• T : is the total execution time in processor clock cycles,

• Calc : is the effective computation time in cycles,
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• DC : is the number of stall cycles due to Dcache misses,

• IC : is the number of stall cycles due to instruction cache misses,

• InterS is the number of stall cycles due to the interlock mechanism and finally

• Br : is the number of taken branch (for each branch, there is one penalty cycle).

STmicroelectronics provided us a precise pipeline accurate simulator of the ST231.

we wanted improve performance of application benchmarks using full precise, but

long, simulation. next section presents our performance analysis of ST231 using a

regular blocking cache

2.3 Blocking Cache Architecture Results

For a coarse grain profiling we use a simulator named ST200run with the simulator

option -a statistics. It prints precise and detailed execution statistics. simulation

results has been collected of the mediabench and ffmpeg execution. It can observe in

Fig. .2.1 that a mean of 3.5% of time is lost in stalls due to Dcache misses. We focus

on pegwit and jpeg benchmarks while Dcache miss represent 96.91% and 15.66% resp.

Fig. .2.2 shows that 33.34% of execution time is wasted in Dcache stalls.
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Figure 2.1: Blocking Cache result

Figure 2.2: Nonblocking cache result



Chapter 3

Techniques used to optimization of

ST231 Processor

There were two points arising for Dcache optimization

• How to reduce the memory latency.

• How to get rid from Blocked Stalls.

Two Answer these question the proposed schemes are:

• Using the Non-Blocking caches in St231 core rather than blocking caches.

• and by using multiported caches.

3.1 Block diagram to implement queue for Non-

blocking cache

3.2 Dcache Organization

Instruction cache addressing is illustrated in Figure .3.2 The data cache is 32 Kb four

way set associate and built from 4 x 256 x 32 byte lines. The virtual address bits

10
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Figure 3.1: Block diagram of MSHR queue

[12:05] are used to index the data cache RAMs. Virtual address bits [31:13] are sent

to the DTLB for translation. The translated physical address bits [31:13] from the

DTLB are then compared against the data cache tag. Virtual address bits [04:00] are

used to select the correct bytes from the cache line.
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Figure 3.2: Data cache addressing

3.2.1 Algorithm for DcacheAccessCheck before implement-

ing MSHR Queue

Read in the data to ensure we don’t have cache misses

If Dcache line in byte is divided by integer value

then divide that offset by 2

elseif

Dcache line in byte is divided by integer value and also added with the divided offset

value

then substract offset value from Dcache line in byte which is divided by an integer

value

select the random value

write data into cache
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read data from the cache

again read data from the cache

if data having the expected value then okay

else data not matching the expected results

put the counter to check DMiss and DHit

if counter == 2

then DMiss expected not matching

(if counter == 1)

then DHit expected not matching

add address with offset

allocate RAM for physical space

allocate 64K region for cached accesses

make the uncached region cached

map pages in

exit from DcacheAccessCheck.

3.3 Handling Misses in ST231

In this section, a hardware data structure capable of providing nonblocking cache

access is presented. Its operation is thoroughly described, The overall design is shown

in Figure. The MSHR queue contains the MSHRs which contain the information

about which words have been written during the time the line has been requested

from memory. In this thesis, MSHR and MSHR queue entry are used interchangeably.

The MSHR queue must also contain the circuitry to request cache lines from memory

and to handle their return. It must also contain the associative logic to identify when

a memory request has hit in the MSHR queue.
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3.3.1 MSHR queue

As stated above, the MSHR queue contains a set of MSHRs organized as a FIFO

queue. Each MSHR contains buffer space to handle writes during the time the line

is being accessed from memory. Each time an access occurs, the MSHR queue is

associatively searched, looking for a valid MSHR entry whose line number matches

the line number of the memory request. This type of match is referred to as a ”hit”

in the MSHRs. Each time a write hit in the MSHRs occurs, the word is written into

proper data space in the matching MSHR, and the V bit corresponding to the written

word is set. When a future read request hits in the MSHR queue, the V bit for the

corresponding word in the matching MSHR is checked. A V bit for an individual

word in an MSHR will be referred to as Vi, as opposed to V which indicates the V

bit for the MSHR itself. If the Vi bit is a one, the value in the data space is returned

to the cpu. If the Vi bit is a zero, the read request is entered into the read queue

and is satisfied when the line returns from memory. The action of the read queue

will be discussed in the following subsection. The number of data word entries in an

MSHR is equal to the number of words in the cache line. Figure shows the MSHR

queue for a 4-word cache line. The MSHR queue needs to be N ported to handle the

memory requests from N cache ports. The total number of comparators needed is N

* M where M is the number of MSHRs.

Note that the inorder return of cache lines is assumed here. In this case, the MSHR

queue can be managed as a simple FIFO. Aside from the MSHR queue itself, there

exists other logic consisting mainly of pointers which controls the allocation and re-

moval of items from the MSHR queue. This associated logic will be discussed later.

The data structure for the MSHR queue is summarized below. The design assumes

a cache line size of four words.

• V bit. This bit indicates that this specific MSHR entry contains valid informa-

tion.
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Figure 3.3: Block diagram of the data structures necessary to handle non-blocking
cache access for a four-word cache line

• S bit. This bit indicates that this specific MSHR entry needs to request a line

from memory.

• Line number. This is the address of the line that is being requested from main

memory.

• Data 0 - Data 3. These entries are reserved as storage space to hold any writes

to the cache line which occur before the line has been returned from memory.

• V0 - V3. These are the valid bits that indicate that data has been written into

the corresponding word.
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3.3.2 MSHR Usage

There is particular concern with the number of MSHRs used because each MSHR

greatly influences system cost. Recall that in this model, each MSHR represents an

additional memory request that can be overlapped in the main memory. Therefore,

the phrase ”adding an extra MSHR” implies increased complexity in many parts of

the memory system in ST231, particularly the main memory. Note that for further

improvement an MPNBC may be designed with multiple MSHRs, each contending

for a main memory system that supports only a single outstanding request, but this

is not considered here.

Table I: MSHR results on various benchmark

Benchmark MSHR0 MSHR1 MSHR2 MSHR3 MSHR4
compress .561 .300 .114 0.017 .007
espresso .973 .024 .002 .000 .000
fpppp .941 .044 .012 .002 .000
matrix300 .486 .402 .025 .030 .056
sort .864 .125 .011 .000 .000
tbl .959 .028 .005 .002 .006

• MSHR usage is examined both as an average over the 5 million instructions exe-

cuted, and dynamically, looking at how the instantaneous MSHR usage changes

with time in ST231 processor. Table shows the frequency of usage for vary-

ing numbers of MSHRs. For instance, Table shows that compress has 2 valid

MSHRs 11.4% of the time.

All four MSHRs are rarely used except by matrix300. For programs with high

hit rates, 1 MSHR is used less than 5% of the time, and 2 or more MSHRs are

used less than 1% of the time. For programs with poor hit rates, MSHR usage

is higher. Compress, matrix300, and tomcatv use one MSHR 20% to 40% of the

time. Two or more MSHRs are used 10% to 15% percent of the time. Note that

these values are highly dependent on cache size and memory latency which are

fixed in this experiment at 32K and 10 cycles respectively. The results obtained
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for MSHR usage may vary greatly if different cache sizes and memory latencies

are assumed. Next, the dynamic usage of MSHRs is considered. Figures .3.3

and .?? show the dynamic usage of the MSHRs. Each point shown is the av-

erage number of active MSHRs per cycle within a 100,000 instruction window.

This gives a good indication of instantaneous MSHR usage.

The behavior of benchmarks with high hit rates is easily explained from these

figures. In espresso, fpppp, and yacc there is an initial amount of MSHR usage.

After the cache fills up with usable data, the number of active MSHRs per cycle

drops to near zero for the remainder of the execution time. It can be seen that

the programs with poor hit rates (e.g., compress, matrix300, sort, and tomcatv)

are constantly using MSHRs to request data throughout the program’s execu-

tion.

3.3.3 Implementation of MSHR queue for Non-Blocking Cache

in ST231 processor

structure pointer t fptr: pointer to node t, count: unsigned integerg structure

node t fvalue: data type, next: pointer tg structure queue t fHead: pointer t,

Tail: pointer tg

initialize(Q: pointer to MSHRqueue t)

node = new node() % Allocate a free node

node->next.ptr = NULL % Make it the only node in the MSHR queue

Q->MISS= Q->HIT = node % Both HIT and MISS point to it

enqueue(Q: pointer to MSHRqueue t, value: data type)

E1: node = new node() % Allocate a new addresses from the free list

E2: node->value = value % Copy enqueued value into node

E3: node->next.ptr = NULL % Set next pointer of node to NULL

E4: loop % Keep trying until Enqueue is done
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E5: MISS = Q->MISSl % Read MISS.ptr and MISS.count together

E6: next = MISS.ptr->next % Read next ptr and count fields together

E7: if MISS == Q->MISS % Are MISS and next consistent?

E8: if next.ptr == NULL % Was MISS pointing to the last node?

E9: if CAS(&MISS.ptr->next, next, <node, next.count+1>) % Try to link node at

the end of the MSHR queue

E10: break % Enqueue is done. Exit loop

E11: endif

E12: else % MISS was not pointing to the last node

E13: CAS(&Q->MISS, MISSl, <next.ptr, MISS.count+1>)% Try to swing CACHE

MISS to the next node

E14: endif

E15: endif

E16: endloop

E17: CAS(&Q->MISS, MISS, <node, MISS.count+1>) % Enqueue is done. Try to

swing CACHE MISSl to the inserted node

Dequeue the MSHR queue(Q: pointer to queue t, pvalue: pointer to data type):

boolean

D1: loop % Keep trying until Dequeue is done

D2: HIT = Q->HIT % Read HIT

D3: MISS = Q->MISS % Read MISS

D4: next = HIT->next % Read HIT.ptr-¿next

D5: if HIT == Q->HIT % Are HIT, MISS, and next consistent?

D6: if HIT.ptr == MISS.ptr % Is queue empty or MISS falling behind?

D7: if next.ptr == NULL % Is MSHR queue empty?

D8: return FALSE % Queue is empty, couldn’t dequeue

D9: endif

D10: CAS(&Q->MISS,MISSl, <next.ptr, MISS.count+1>) %MISS is falling behind.

Try to advance it
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D11: else % No need to deal with CACHE MISS Read value before CAS, otherwise

another dequeue might free the next node

D12: *pvalue = next.ptr->value

D13: if CAS(&Q->HIT, HIT, <next.ptr, HIT.count+1>) % Try to swing CACHE

HIT to the next node

D14: break % Dequeue is done. Exit loop

D15: endif

D16: endif

D17: endif

D18: endloop

D19: free(HIT.ptr) % It is safe now to free the old dummy node

D20: return TRUE % MSHR Queue was not empty, dequeue succeeded
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3.4 MSHRs Versus Cache Ports

Both the MSHRs and cache ports are highly influential in determining the cost of the

memory system in ST231. The purpose of this section is to see how tradeoffs between

MSHRs and cache ports affect the performance of ST231 for large and small cache

sizes. Simulations were performed for each benchmark with the number of ports equal

to 1, 2, 4, and 8. The number of MSHRs was varied from 1 to 4. A blocking cache

was also simulated. The blocking cache is similar to the case with 1 MSHR except

that the blocking cache is unable to handle any other memory requests, even hits,

during the time in which the MSHR is valid. For this and the next two sections, the

assumed memory latency is 25 processor cycles.

Next figures show the performance of the benchmarks with a 32K cache in ST231. For

the benchmarks with moderate and poor hit rates, increasing the number of MSHRs

from 1 to 2 demonstrates a notable performance increase. Typically, the worse the

hit rate, the more performance is gained by adding an extra MSHR. Notice, however,

that the performance gain quickly drops off after a second MSHR is added. Ma-

trix300, compress, and tbl are the only programs which show performance increase

when going from 2 to 3 MSHRs, and even so, this gain is slight. The programs with

very high hit rates such as espresso, yacc, and fpppp show little performance gain at

all by going beyond a single MSHR.

Going from one memory port to two increases performance substantially for most

programs. However, matrix300 shows little performance gain when going beyond one

memory port. Perhaps this is due to the fact that the extra cycles caused by a lack

of cache ports are insignificant compared to the time taken to constantly load in new

data from memory. Time spent waiting for data to arrive from memory can be used

to service requests that were stalled due to unavailable ports. Only tomcatv shows a

performance increase when the number of memory ports is increased above two.
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The blocking cache performance is similar to the performance of the one MSHR

case in ST231, only slightly degraded because hits cannot be serviced during the

time in which any MSHR is valid. The benchmark tomcatv encounters significant

performance degradation with the blocking cache in St231. This may be due to large

amounts of cache hits and MSHR hits which are on critical paths. The MPNBC case

can service these while a miss is outstanding in ST231 data cache. A blocking cache

can not.

Shown in following Figures are the results of the previous experiment performed

with a 4K cache. For a small cache size, increasing the number MSHRs becomes

much more important than increasing the number of cache ports. All benchmarks,

even the ones with good hit rates, show a significant performance increase as the

number of MSHRs is increased from 1 to 2. Many benchmarks experience further

performance increase as the number of MSHRs is increased from 2 to 3. This can be

explained by the fact that as the miss rate of the cache increases, more misses are

now simultaneously occurring.

The more the misses can be overlapped, the better the overall system perfor-

mance(ST231). Cache ports are not as important for programs which are constrained

by a lack of MSHRs. The extra cycles spent waiting for results to return from memory

can be used to issue the memory instructions which were stalled due to unavailable

ports. Most of the 1 MSHR plots are relatively at with respect to the number of cache

ports for most benchmarks. As more MSHRs are added, the effect of additional cache

ports becomes slightly more pronounced.

The blocking cache case showed a slightly worse performance than the 1 MSHR case

for all benchmarks in ST231. Unlike the case for the 32K data cache, the blocking

case for tomcatv is only slightly worse than the case for 1 MSHR. This may be due

to the small cache size. With a small cache, the accesses made during a miss will be

misses and will not improve performance anyway.
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3.5 MSHRs Versus Cache Size

From the above section, it can be seen that as the cache size is made large, the in-

cremental value of the MSHRs becomes smaller because the hit rate has increased.

In this case, the cache ports are an important factor in determining system perfor-

mance for many of the benchmarks. For smaller caches, it is seen that the ability

to overlap misses becomes the dominating factor and the number of MSHRs plays a

more important role. However, some programs such as matrix300 make poor use of

the cache, and it is expected that cache size will not affect performance.

Next figures expand on this by providing results with varying cache size and MSHRs.
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The number of cache ports is fixed at four. The cache size is varied from 4K to 128K,

and the number of MSHRs is varied from 1 to 4.

Figure 3.4: Performance with varying MSHRs and cache size for compress, espresso,
fpppp, matrix300

3.6 MSHRs Versus Memory Latency

This section investigates the design of the second-level memory system in ST231.

The interest is in whether it is more beneficial to allow for more overlapping in the

second-level memory system (i.e., more MSHRs), or to provide for faster access. The

number of MSHRs and the memory latency are varied from 1 to 4 and from 5 cycles
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to 30 cycles, respectively. It has been seen that, for some programs, using a cache size

of 32K shows little about the second-level memory system since the cache hit rate is

high. Therefore, this experiment uses a reduced cache size for the benchmarks with

high hit rates. This experiment uses cache sizes of 1K and 4K for the benchmarks

espresso, fpppp, tbl, and yacc. Cache sizes of 4K and 32K are used for compress

matrix300, sort, and espresso.

Next figures show the simulation results for small cache sizes and Figures 4.16 and

4.17 show results for large cache sizes. It can be seen that there is definite tradeoff be-

tween extra MSHRs and decreasing memory latency in ST231. For instance, tomcatv

and fpppp benefit more going from one to two MSHRs than from reducing the mem-

ory latency by 15 to 20 cycles. Additional MSHRs provide benefits as well. Other

programs such as sort and yacc depend more on memory latency, though increasing

the number of MSHRs does provide a notable increase in performance

For a small cache, the benefits provided by extra MSHRs in ST231 seem rela-

tively stable with respect to memory latency. In other words, increasing the number

of MSHRs in ST231 provides performance increase even when the memory latency

is small. For large cache sizes, the importance of additional MSHRs in ST231 is

relatively small for small memory latencies and increases as the memory latency is

increased. Overlapping will always be a win when either the cache size is small or

the memory latency is large.
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Figure 3.5: Performance with varying MSHRs and memory latency for compress,
espresso, fpppp, matrix300



Chapter 4

Non-blocking Cache Simulation

Results

4.1 Analysis

All the observed small speed-ups are due only to Dcache stall reduction. When con-

sidering exactly the same binary codes executing them on the same ST231 processor

but with changing the blocking cache to a non blocking one seems to do not alter

other dynamic performance metrics: Icache stalls, branch penalties and interlock

stalls remain the same except Dcache stalls. This would improve the predictability

of the execution time. The experimental results of this section can be summarized as

follows:

1. A disappointing cache stall reduction when changing cache configuration from

blocking to non-blocking ones. The maximum obtained performance gain is 2.62% in

the application.

2. All the performance gains are calculated in the whole applications, not just in

functions which make numerous Dcache misses. The performance improvement is of

26
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course better when the amount of Dcache misses is important.

3. The codes were not changed or tuned for the new cache architecture, the same

binaries were executed over the two cache platforms.

Figure 4.1: Used Methodology

In the non-blocking caches. The interesting aspect of this architecture is the

ability to overlap the execution and the memory data loading. When a cache miss

occurs, the processor continues its execution of independent operations. This pro-

duces an overlap between bringing up the data from memory and the execution of

independent instructions. , it has been seen that a non blocking cache can signifi-

cantly improve the performances of an ST231 processor. So, many high performance

ST231 currently adopted this cache architecture. Embedded processors do not have

non-blocking caches yet because: its cost is not negligible (energy consumption and

price), and its benefit in cache of in-order processors is not demonstrated. In order

to make a full exploitation of non blocking, the memory architecture should also be
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improved. Indeed, memory must now become fully pipelined and ported (These ar-

chitectural enhancements are not an obligation in case of blocking cache).

This improvement allows memory to serve multiple pending cache misses in a pipelined

way. This makes a precise performance evaluation resulting from adding a non-

blocking cache inside an processor (ST231). In the first step, we collect the same

execution statistics of the blocking cache experiences i.e. the number of cycles of

effective calculation, the stall cycles due to Dcache misses, the stall cycles due to

instruction cache misses, the cycle lost in branch and the interlock stalls. We made

distinct simulations, changing each time the size of the pending load queue size from

0 to 32 entries. A pending load queue equal to zero means that the architecture im-

plements a blocking cache. A pending load queue with n entries means that at most

n cache misses can be issued concurrently by the nonblocking cache. For a pending

load size equal to zero, Figure .4.2 shows that the results are similar to the simulation

results obtained with the blocking cache simulator in Figure .4.2 The performance

improvement is 1.62% for the whole ffmpeg application .The result is similar in case

of mediabench applications.

Figure 4.2: Blocking Cache in ST231Processor and Non-Blocking Cache in
ST231Processor
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4.1.1 Comparison

1.Blocking Cache in ST231

With the Blocking Cache, the performance was very low with respect to speed and

complexity. because of dcache miss, when it occurs then If a request is made to the

cache and there is a miss, the cache must wait for the memory to supply the value

that was needed, and until then it is ”blocked

2.Non-Blocking Cache in ST231

With the Non-Blocking Cache the performance has improved with respect to speed

and complexity, because it was able to work on other requests while waiting for mem-

ory to supply any misses
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4.1.2 Results

These are the results of blocking & non blocking caches.

Table I: Result of blocking Cache

Blocking cache value
Clock Cycle 5’670’1670
Real time(ms) 14,175
Num issued bundles 1’348’470
Icache hits 1’381’949
Icache misses 720
Icache miss penalty cycles 109’673
Dcache hits 207’269:
Dcache misses 257’986
Dcache miss penalty cycle 4’202’045

Nonblocking cache value
Clock Cycle 3’876’123
Real time(ms) 14,175
Num issued bundles 1’348’470
Icache hits 1’381’949
Icache misses 720
Icache miss penalty cycles 109’673
Dcache hits 340’143:
Dcache misses 180’846
Dcache miss penalty cycle 3’014’023



Chapter 5

Icache optimization in ST231

As in previous part of project we have done optimization of ST231 processor for

D-side memory subsystem, that means on the side of data cache we implementd the

nonblocking caches to make ST2321 more efficient in the sense of clock cycle and time

complexity. Which is successfully done.

The next aims is to define a methodology for optimizing I-cache on the ST200. It

is most relevant to cores that have a direct mapped I-cache such as the ST231. It is

not so applicable to the ST240 core that has a four-way associative I-cache.

5.1 Introduction of Icache

The I-cache architecture of the ST200 processors family is a 32-Kbyte direct mapped

cache with 64-byte lines. The direct mapped cache is the simplest and cheapest

type of cache architecture, but as a drawback, it results in higher cache miss rates,

compared to more sophisticated cache models, like associative multi-way caches. Fur-

thermore, the ST200 is an instruction-level parallel VLIW processor, thus it has a

large instruction bandwidth requirement (inducing an increase in the cache miss rate)

and also a large cache miss penalty. For these reasons, it is important to ensure that

code running on the ST200 makes effective use of the instruction memory system.

31
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5.1.1 Icache in ST231:

Figure 5.1: Icache in Architecture of ST231

To increase this effectiveness, STMicroelectronics has developed a binary optimiza-

tion tool called for ST200 which includes an I-cache optimization tool. The I-cache

optimization phase of binopt controls the layout of functions in the binary code to

be executed on the ST200. This is achieved by using cache line coloring algorithms

to reorder the functions in the final executable. The cache line coloring algorithms

minimize I-cache conflicts by optimizing spatial locality and thus optimize I-cache

usage.

5.2 Problem Defination

The problem with the cache line coloring algorithm was speed loss. Because for L1

cache it was succeed to reduce the instruction cache misses, But for L2 cache coloring

algorithm causes an average increase of 10.13percent instruction cache misses. This
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is likely due to the fact that coloring algorithm can only concern itself with one of

the two caches. As it tries to reduce L1 instruction cache misses, it may increase the

L2 cache misses.

So we are proposing to avoid this kind of issues by using Genetic Algorithm for

improve the performance in the sense of speed.

• The evaluation of previous work on i-cache optimization based on cache line

coloring in the context of ST231 architectures. We extend the design to han-

dle set-associativity, and show that while performance differences are generally

variable and within noise, significant positive improvements, up to nearly 6%

can be achieved. The coloring implementation is less successful.

• We will explore the use of genetic algorithms for i-cache optimization. With in-

creased complexity due to evolving hardware, OS, and software designs, learning-

based approaches have significant promise as a means of increasing performance.

We are able to show a consistent if small improvement 0.5%, and up to 10% for

specific benchmarks.

Here, a set of candidate solutions are evolved toward an optimal solution, as mea-

sured by program execution time. This design functions as a general optimization

heuristic driven by actual performance, and follows current interest in machine learn-

ing approaches to optimization.

So the cache coloring algorithm we consider has only a simple and coarse model of

cache design, while from learning algorithm we will have an ideal model in the sense

that it adapts to the actual performance of the underlying architecture.

We are using the Genetic algorithms, for instance, in loop tiling optimization,

which offering fast convergence and near optimal solutions. We examine register
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allocation and data prefetching in particular, and show promising, but variable results,

suggesting sensitivity to genetic algorithm parameters

The aim is to define a methodology for optimizing I-cache usage on the ST231,

which applies to real user application code. Firstly, the context of this application

note is defined. Before implementing the genetic algorithm for this tool we are using

the different I-cache optimization techniques that are stated and described. Finally,

the results on a chosen test-case application will presented.

5.3 Context:

The context of this application note is the I-cache optimization of libraries. This was

motivated by the fact that key applications running on the ST231, such as audio-video

application code, are composed of one main driver (or system), and several modules

(or packages), organized as separate individual libraries (a module is a set of source

files, compiled and then grouped together in a library).

For instance, in the DVD/ACC audio codec application suite, each library con-

tains the code for a specific audio process (coder, decoder or post-processing) and all

these processes are driven by a main system. Supposing there are N libraries (lib1.a,

lib2.a,...,libN.a), the classical build commands are the following:

build and creation of the libX.a library

for process X (X=1,2,..,N)

st200cc -c libX*.c

st200ar libX.a libX*.o

build of the main driver objects

st200cc -c main*.c

creation of the final executable
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st200cc -o main.exe main*.o lib*.a

The result is the executable main.exe, containing the main system objects and

the N libraries. Within this context, the code placement in the final executable is

not controlled at all, and thus, depending on the process to be run, the I-cache miss

cycles can be very high and lead to significant performance loss.

5.4 Icache miss issues diagnosis

The purpose of this section is to give us some hints on how to investigate the following

issues:

• How to detect that an application is subject to I-cache miss issues,

• How to detect which are the incriminating functions

To diagnose I-cache issues on application code, the first thing to measure is the

I-cache miss cycle count, compared to the total cycles. A high value of the ratio I-

cache miss cycles/total cycles is a good indicator of I-cache related issues in the code.

These values can be obtained either through the simulator statistics (if simulation is

possible), the performance monitoring hardware block (by instrumenting the code or

using the Board support Package facility).

However, these issues cannot always be completely solved by I-cache optimization

techniques; because an I-cache miss can either be a conflict miss or a cold miss

(occurring the first time a function is loaded in the cache). In the later case a

reordering of the functions in the binary code will not be able to remove the miss.

The number of these non-removable I-cache misses is proportional to the code size of

the library to be executed.
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In fact, the best figure to track is the number of I-cache conflicts occurring at

runtime. This value gives the upper bound of the attainable performance in terms

of reducing I-cache miss cycles. If the number of cycles due to conflict misses (one

I-cache miss roughly costs 150 is negligible compared to the total number of cycles,

there is no point in trying to optimize function placement. Conversely, if a lot of

I-cache conflicts are measured, this indicates inefficient code placement which should

be improved by applying I-cache optimization techniques.

The st200gprof profiling utility, included in the ST200 Micro Toolset, is a valuable

tool for detecting which functions may conflict. For this purpose, the profiling mode

of the simulator must be used during execution to generate the profiling I-cache

information file gmon.outICACHE. This file can then be processed by st200gprof to

produce a view of the I-cache miss cycles function tree, including the percentage

of miss cycles for each function, which may indicate which functions are subject to

conflicts (even if there is no information on conflicting function pairs.)

• PHASE 1 Generate the trace files from the cache simulators and use the

simulator analysis tool to report the occurrence of cache events. To analyze the

cache behavior of the code, proceed to phase 2.

• PHASE 2 Visualize the profile results in the cache analysis tool to identify

the areas of code that are incurring cache misses. To improve the efficiency of

cache, proceed to phase 3.

• PHASE 3 Apply optimization techniques and transformations to improve

cache efficiency. Use the Simulator Analysis tool to check the improvement.

If the code is still not as efficient as you would like, repeat steps in phase 2 and

3 until you are satisfied
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Figure 5.2: Development Flow to Increase Cache Efficiency

5.5 I-cache optimization technique:

• Relocatable linking

• Static I-cache optimization

• Dynamic I-cache optimization

• gprof file driven icache optimization method

5.5.1 Relocatable linking

Before modifying the ST200 binopt tool(I-cache optimization) with the new algo-

rithm, a first attempt at code placement can be achieved by performing a relocatable

link of the object files of each library, using the st200cc -r option, before creating the

library. Here is the modified build command sequence:
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build and creation of the libX.a library

for process X (X=1,2,..,N)

st200cc -c libX*.c

st200ar libX.a libX*.o

st200cc -r -nostdlib -o libX.ro libX*.o

st200ar libX.a libX.ro

build of the main driver objects

st200cc -c main*.c

creation of the final executable

st200cc -o main.exe main*.o lib*.a

The purpose of the intermediate link in relocatable mode (-r) is to improve spatial

locality by ensuring that all functions in the same module are placed close together.

The -nostdlib option, which disables the inclusion of the standard libraries at link

time, has to be added in order to prevent multiple definitions at the final link stage

Though it is very simple, this first optimization step is crucial to achieve optimal

I-cache performance and will always be associated with more complex optimization

methods.

5.5.2 Static Icache optimization:

As stated in the previous section, performing an intermediate link of each module

helps to improve the spatial locality of the binary code. Nevertheless, the placement of

the functions an each module library is not controlled at all by this method. The use of

the binary optimization tools is needed to optimize the function layout, by performing

a function reordering before creating each library. This I-cache optimization phase

is automatically performed at link-time when using optimization levels -O2, -Os or

-O3 (the command line option has to be given both at compile and link-time). I-
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cache optimization can also be explicitly turned on using both –icache-opt=on and

–icache-static=on options at link-time.

By default, a static I-cache optimization is performed, which means that the binary

optimizer reorders the functions according to static compiler-estimated frequencies.

These frequencies correspond in fact to the weight of each edge of the static call-graph,

which is computed by binopt and used by the reordering algorithm.

At the final global link phase, the I-cache optimizer must be turned off, to avoid

modifying the previously locally optimized function layout in each library. It is turned

off by default at optimization levels -O0 and -O1, but can be explicitly turned off using

the –icache-opt=off option

The build commands sequence is modified in the following way: Optimized compi-

lation of the libX*.c sources

for process X (X=1,2,..,N)

Intermediate link and I-cache optimization

phase (triggered by the -O2 flag)

st200cc -O2 -r -nostdlib -o libX.ro libX*.o

creation of the I-cache optimized libX.a library

for process X (X=1,2,..,N)

st200ar libX.a libX.ro

build of the main driver objects

st200cc -c main*.c

creation of the final executable

(with I-cache optimizations turned off)

st200cc -o main.exe main*.o lib*.a –icache-opt=off

A set of options is provided to help the static I-cache optimizer better estimate the

static call-graph of the application. These can be passed to the binary optimization
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phase through the st200cc driver using the -Wo,[option] syntax.

in the context of several modules packaged in separate libraries, the use of an I-

cache call-graph user configuration file (.icg file) may be helpful, as it allows edges to

be added to or removed from the static estimated I-cache call-graph. For example,

in the case of indirect calls, the simple relocation analysis performed by binopt is not

able to catch these calls. The corresponding edges can then be added manually into

the .icg file.

The .icg file consists in a list of items:

Proc1 proc2 freq

where proc1 and proc2 are function names and freq is a floating-point value which is

an estimation of the numbers of execution of proc2 each time proc1 is executed. The

value of freq is in the range [0.0,+inf).

Then, the .icg file is passed to the binary optimization phase at module link time:

The build commands sequence is modified in the following way:

Intermediate link and I-cache optimization

phase with .icg file use

st200cc -O2 -r -nostdlib -o libX.ro libX*.o -Wo,–icg,libX.icg

Note: The edges described in the .icg are added to the pre-existing call-graph esti-

mated by binopt and thus the .icg file must not contain all the call-graph edges. To

remove an edge, for instance between proc1 and proc2, a line with a frequency value

of 0.0 must be added:

remove the edge between proc1 and proc2

proc1 proc2 0.0

Now for a practical example. Suppose you want to optimize the I-cache miss cycles

for an application containing the following piece of C code:

define N 10
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extern void proc2(void);

void proc1(void (*proc)(void))

int i;

for (i=0; i¡N; i++)

(*proc)();

void proc3(int i)

if (i)

proc1(proc2);

By default, the binary optimizer only sees the edge between proc3 and proc1

(corresponding to the call to proc1 in proc3), putting a frequency of 0.5 (the default

frequency value for a single block if construct). But supposing that on average, then

if condition in proc3 is true for 90% of the cases, this information can be given to the

I-cache optimizer using an .icg file.

In the same way, the call of proc2 from proc1 is indirect, so it is not taken into

account by binopt. To fix this, we added an entry to the .icg file.

The .icg file for this example could be the following:

add the edge between proc1 and proc2 (frequency of N=10.0)

proc1 proc2 10.0

refine the frequency estimation of the proc3/proc1 edge,overriding the compiler

estimation of 0.5

proc3 proc1 0.9;



Chapter 6

Methodology for optimizing Icache

in ST231

The next is to define a methodology for optimizing I-cache on the ST200 based on

machine learning approach i.e Genetic algorithm. It is most relevant to cores that

have a direct mapped I-cache such as the ST231.and also using the ”dynamic I-cache

optimization and ” gprofile driven icache optimization method”.

6.1 Dynamic I-cache optimization method

Static I-cache optimization can be inaccurate because it relies on static estimations of

frequencies based on heuristics. To improve the accuracy of the function reordering,

the use of dynamic I-cache optimization methods is preferred. Basically, this uses run-

time data instead of estimations. It implies that the application must be first run to

collect this data by profiling, before rebuilding the executable to take advantage of the

profiling information collected. There are two kinds of dynamic I-cache optimization

methods: using data from a gproffile to drive the I-cache optimizer, and using the

profiling feedback optimization (PFO)

42
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6.1.1 gproffile driven icache optimization method

In this method, the module sources are compiled using the -pg option, which in-

struments the code to collect gprof-formatted profiling information at run-time. The

commands for this first build are:

build and creation of the libX.a library

for process X(X=1,2,..,N)

st200cc -c libX*.c st200ar libX.a libX*.o

build of the main driver objects

st200cc -c main*.c

creation of the final executable

st200cc -o main.exe main*.o lib*.a

The mainpg.exe executable, instrumented by the compiler produces profiling in-

formation. The next step is to run each process with a significant input data set.

Each run produces a file named gmon.out.000, which may be renamed to gmonX.out

(for process X=1,2,..,N) to attach it to the process that it describes. In the case of

several runs the same process (producing several gmonX.out.xxx files) the following

commands can be used to sumup all the collected information in a single gmonX.out

file. This may take a while to execute: sumup the profiling information in the default

gmon.sum file st200gprof sum mainpg.exe gmonX.out.

Rename the output file gmon.sum to gmonX.out.

After having run all processes and produced all gmonX.out files, the last step is to re-

build the application, taking advantage of the profiling information. This is achieved

by passing at module link-time the two options:

icache-profile=gmonX.out,

icache-profile-exe=mainpg.exe

So we are proposing to avoid this kind of issues by using Genetic Algorithm for

improve the performance in the sense of speed. The optimization level at module
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compile-time must be the same as the one used for the first compilation, to be con-

sistent with the profiling instrumentation (-O2 in this case).

optimized compilation of the libX*.c sources

for process X(X=1,2,..,N)

st200cc -c -O2 libX*.c

Intermediate link in relocatable mode with profile file-driven creation of the I-cache

optimized libX.a library

for process X(X=1,2,..,N)

st200ar libX.a libX.ro

build of the main driver objects

st200cc -c main*.c creation of the final executable (with I-cache optimizations turned

off)

st200cc -o main.exe main*.o lib*.a (icache-opt=off)

This method we used on the ST200 simulator . But if it is possible to run the

application code on the simulator, an alternative equivalent method can be applied,

instead of using the -pg option of the compiler, the profiling feature of the simulator

can be used to produce the gmonX.out file. The run command is as follows: run X

process (with X args arguments) in ST231 littleendian mode using the profiling mode

of the simulator.

st200xrun -c st200sp -t st231profsimle -e main.exe -a Xargs

Rename the output file gmon.out to gmonX.out.
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6.2 Methods of Icache optimization

The instruction cache is a small memory with fast access. All binary instructions of

a program are executed from it. In the ST231 processor from stmicroelectronics, the

instruction cache is direct mapped: let L be the size of the cache; the cache line i

can hold only instructions whose addresses are equal to i modulo L. When a program

starts executing a block that is not in the cache, one must load it from main memory;

this is called a cache miss. This happens either at the first use of a function (cold

miss), or after a con ict (con ict miss). There is a con ict when two functions share the

same cache line; each of them removes the other from the cache when their executions

are interleaved. The cost of a cache miss is of the order of 150 cycles for the ST220,

hence the interest of minimizing the number of con icts by avoiding line sharing when

two functions are executed in the same time slot. This problem has in fact following

objective functions:

• COL Minimizing the number of con icts for a given execution trace. This can

be reduced to the Max-K-Cut and Ship-Building problems.

• EXP Minimizing the size of the code. This is equivalent to a traveling salesman

problem (building an Hamiltonian circuit) on a very special graph called Cyclic-

Metric.

• NBH Leaving spaces or uncalled procedures between successively-called proce-

dures yields cache misses: if two successively-called procedures share the same

cache line, a cache miss is saved when the second procedure is called, since

it is already in the cache. Another similar phenomenon is instruction prefetch,

where instructions are loaded from the memory before the processor needs them,

according to a branch prediction policy. Therefore, increasing code locality is

good in order to avoid cache misses.

• GS-prof The Genetic Search algorithm is based on a con ict graph built us-

ing profiling. In practice, it leads to a much better con ict reduction than any
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other known static based approach. Genetic algorithms, for instance, have been

used effectively in loop tiling optimization, offering fast convergence and near

optimal solutions, genetic al- gorithm techniques Here, a set of candidate solu-

tions are evolved toward an optimal solution, as measured by program execution

time. This design functions as a general optimization heuristic driven by ac-

tual performance, and follows current interest in machine learning approaches

to optimization

6.3 Design

The heuristic instruction cache optimization algorithm we are implementing is meant

to serve as a point of comparison for our own optimization algorithm. In this section,

we present the optimization framework on which both implementations are based, the

motivation behind the two approaches, as well as the implementation details of our

code rearrangement system. We also doing our investigation of code-expansion due

to ”padding” as a potential source of overhead introduced by our implementation.

6.3.1 Optimization Framework

We have designed a framework to facilitate the implementation and the comparative

testing of multiple instruction cache optimization strategies. This framework is in-

corporates interfaces to tools such as the GNU compilers, the GNU profiler. Code

optimizations are implemented as plug-in components that can access existing com-

ponents of the framework.

Our framework is designed around the transformation of benchmark programs.

These programs are provided as input in source code form, and can then be compiled

either directly into executable binary form, or into assembly. Interfaces are provided

to gather information about the assembly source (i.e., location and type of symbols

in the said source), and to gather profiling data from executable binaries (i.e, running
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time, run-time call-graph, ”hot functions”, cache use profiling).

Code optimizations, which we refer to as ”transformations”, can use this informa-

tion in deciding how to transform the assembly source. Because we are specifically

interested in instruction cache optimizations, our framework includes a layout mod-

ifier component which can be used to modify assembly source so as to change the

memory alignment of functions. This component can align functions so that they will

map to specific cache lines, for example. Once transformed, assembly source can be

compiled into binary form and profiled. It can then be transformed again based on

new profiling data.

Figure 6.1: Information flow among the components of our framework

Figure 6.1 illustrates the basic idea behind the layout modifier component of our

frame- work. In this example, four functions A, B, C and D are linearly mapped

in memory, and take up 1, 1, 3 and 2 cache lines, respectively. Functions C and D

originally map to cache lines 0 and 3 of an imaginary 4-line direct-mapped cache.

To map functions C and D to cache lines 1 and 2, our layout modifier would insert

”padding” space equivalent to one cache line in between B and C, and space equivalent

to two lines between C and D. The resulting mapping has the same linear order as
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the original, but takes up slightly more memory. This approach has the advantage

that it does not affect the branch prediction behavior of the processor.

Figure 6.2: padding in cache line

Thus far, our framework incorporates support for programs implemented in C,

through the GNU gcc, respectively. It also incorporates a benchmarking system

that can automatically test multiple code optimizations on a sequence of benchmark

programs and record the running-time of each program before and after optimization

into a spread- sheet, along with profiling information such as the number of instruction

cache misses.

6.4 Search algorithm

We base our learning approach to optimization on genetic algorithms. The main

motivation is the principle of locality. That is, we believe that that memory mapping
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with similar parameters is likely to yield similar performance, and thus that better

performing mappings are likely to be ”close” in the space of possible solutions. It is

difficult to derive a simple yet accurate formula to predict the cache performance of

a given mapping, Genetic algorithms are ideal for situations where the principle of

locality holds and one has an effective way of evaluating the fitness or ”goodness” of

a solution.

Our optimization strategy searches the space of possible instruction cache mappings

for a given program. To do this, it generates versions of the said program with altered

memory alignments. This is done in a typical genetic algorithms fashion. An initial

set (population) of modified programs is generated. Then, for each generation, new

individuals (new modified programs) are generated.

These new programs replace the existing programs whose fitness measurement is

lowest, so that the population size remains fixed at each generation. The generational

process is repeated as long as desired. In the end, the individual with the highest

fitness measurement is chosen as the output of our optimization algorithm.

These new programs replace the existing programs whose fitness measurement is

lowest, so that the population size remains fixed at each generation. The generational

process is repeated as long as desired. In the end, the individual with the highest

fitness measurement is chosen as the output of our optimization algorithm.

Genetic algorithms are designed to maximize the average fitness of the population

over time. Hence, to optimize instruction cache performance, the fitness value of a

given program should ideally be inversely proportional to the number of instruction

cache misses the program obtain.. We must also consider that in processors possess-

ing an L2 cache, maximizing the performance of the L1 instruction cache will not

necessarily increase the performance. Finally, the number of instruction cache misses

a program experiences can vary depending on run-time context, scheduling and I/O.
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For all these reasons, we chose the running- time as our fitness criterion, which our

algorithm tries to minimize over time.

The use of genetic algorithm in any search problem requires the definition of a

set of elements and operators: representation of the solutions (codification), a fitness

function to evaluate the different solutions, a selection scheme to sort candidate in-

dividuals for breeding, cross-over and mutation operators to transform the selected

individuals.

• Codification Each individual, representing a possible solution, is a bitmap of

size nl, with nl the total number of program lines for all tasks.A bit set to 1

means that the corresponding program line is locked into the cache.

• Fitness The fitness function is the weighted average of all tasks response times

(see equation 1, where Ri denotes the response time of task ti. This fitness

function aims at improving the average response-time of tasks, precluding that

the genetic algorithm assigns all available cache blocks to the higher priority

tasks.

Fitness = R0 + R1 + 2R2 + 4R3 + ::: + 2N-2 RN-1 / 2N-1

• Crossover and mutation One point crossover is applied: an index into the

parents chromosomes is randomly selected. All data beyond that point in the

chromosomes is swapped between the two parent organisms, defining the chil-

dren chromosomes. Three types of mutations have been introduced:

M1. random reduction of the number of locked program lines,

M2.random increase of the number of locked program lines,

M3. random modification of the identity of one locked program line, the total number

of locked program lines being left unchanged.Rule M1. (resp M2.) applies to invalid

individuals whose number of locked program lines is greater than (resp. lower than)

B, while rule M3 applies to valid individuals.
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6.4.1 Initial population and algorithm parameters

The initial population is made of valid individuals only. The bitmap of every indi-

vidual in the initial population has B consecutive bits set, the index of this series of

1 being randomly selected. The other parameters of the algorithm are given in table.

These parameters spring from a set of experiments where the behavior of the genetic

algorithm was studied.

Table I: Parameter of Genetic algorithm

Parameter Value
Population size 200
Number of Generation 5000
Num Probability of crossover .6
Probability of mutation (rules R1..R3) 0.01
Probability of selection of the individual with the highest rank 0.1

An interest of genetic algorithms is that the produced results (here, cache contents)

can be used at any time, that is, it is not necessary to wait the algorithm end to get

partial results.

6.5 Experimental setup

6.5.1 Hardware configuration

We consider a ST231 processor in which an instruction cache and a 16B (4 instruc-

tions) instruction prefetch buffer. The cache configurations used in the performance

comparison are given in table. In addition, since we are only concerned with timing

Table II: Cache Parameter

Cache Parameter Value
Block Size 16 bytes (4 instructions)
Cache structure direct-mapped
Num Cache size [1Kb .. 64 Kb]
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the cache behavior, we adopt a very simple timing model for instructions. An in-

struction is assumed to execute in Thit = 1 processor cycles in case of a hit in the

instruction cache or prefetch buffer, and in Tmiss = 10 processor cycles otherwise.

6.5.2 Workload

The algorithms we will compare using 26 different synthetic task sets. Synthetic tasks

are generated by an STautomatic tool. Input parameters to this tool are the size of

the task, number of loops and nesting level, size and iterations of loops, number of if-

then-else structures and their respective sizes. The user must provide the minimum

and maximum desired values for these parameters. The tool randomly selects the

actual value from this range. For the accomplished experiments, these parameters

will be take out from usual embedded workload, Number of tasks per task set [3..8]

Maximum task set code size 64KB Number of different tasks 50 Tasks code size

[1KB..32KB]

Table III: Workload parameter of Genetic algorithm

Workload Parameter Value
Number of tasks per task set 3..8]
Maximum task set code size 64KB
Num Number of different tasks 50
Num Tasks code size 1KB..32KB]

Within a task set, the task periods Ti, equal to their dead- lines Di is to be

adjusted such that the system is schedulable with both conventional and locking

cache. An experiment is defined by a pair (task set, cache size). 146 experiments

is to be conduct. Only experiments whose total code size is larger than the cache

size have been considered in the following analysis, on the one hand because this is

the most realistic situation and on the other hand because algorithms would behave

identically for task sets smaller than the cache size.
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To increase this effectiveness, STMicroelectronics has developed a binary optimiza-

tion tool called binopt for ST200 which includes an I-cache optimization tool. The

I-cache optimization phase of binopt controls the layout of functions in the binary

code to be executed on the ST200. This is achieved by using cache line coloring

algorithms to reorder the functions in the final executable. The cache line coloring

algorithms minimize I-cache conflicts by optimizing spatial locality and thus optimize

I-cache usage.

As the problem with the cache line coloring algorithm was speed loss. Because

for L1 cache it was succeed to reduce the instruction cache misses, But for L2 cache

coloring algorithm causes an average increase of 10.13percent instruction cache misses.

This is likely due to the fact that coloring algorithm can only concern itself with one

of the two caches. As it tries to reduce L1 instruction cache misses, it may increase

the L2 cache misses.

So we are proposing to avoid this kind of issues by using Genetic Algorithm for

improve the performance in the sense of speed.

• The evaluation of previous work on i-cache optimization based on cache line

coloring in the context of ST231 architectures. We extend the design to handle

set-associativity, and show that while performance differences are generally vari-

able and within noise, significant positive improvements, up to nearly 6 percent

can be achieved. The coloring implementation is less successful.

• We will explore the use of genetic algorithms for i-cache optimization. With in-

creased complexity due to evolving hardware, OS, and software designs, learning-

based approaches have significant promise as a means of increasing performance.

We are able to show a consistent if small improvement 0.5 %, and up to 10 per-

cent for specific benchmarks.
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Here, a set of candidate solutions are evolved toward an optimal solution, as mea-

sured by program execution time. This design functions as a general optimization

heuristic driven by actual performance, and follows current interest in machine learn-

ing approaches to optimization.

So the cache coloring algorithm we consider has only a simple and coarse model of

cache design, while from learning algorithm we will have an ideal model in the sense

that it adapts to the actual performance of the underlying architecture.

We are using the Genetic algorithms, for instance, in loop tiling optimization,

which offering fast convergence and near optimal solutions. We examine register

allocation and data prefetching in particular, and show promising, but variable results,

suggesting sensitivity to genetic algorithm parameters

The aim is to define a methodology for optimizing I-cache usage on the ST231,

which applies to real user application code. Firstly, the context of this application

note is defined. Before implementing the genetic algorithm for this tool we are using

the different I-cache optimization techniques that are stated and described. Finally,

the results on a chosen test-case application will presented.



Chapter 7

Implementation of GP for icache

optimization

Genetic programming breeds computer programs to solve problems by executing the

following three steps:

• Generate an initial population of random compositions of the functions and

terminals of the problem (i.e., computer programs).

• Iteratively perform the following substeps until the termination criterion has

been satisfied:

Execute each program in the population and assign it a fitness value using

the fitness measure.

Create a new population of programs by applying the following operations.

The operations are applied to computer program(s) chosen from the population

with a probability based on fitness.

REPRODUCTION : Reproduce an existing program by copying it into the new

population.

55
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CROSSOVER : Create two new programs from two existing programs by geneti-

cally recombining randomly chosen parts of two existing programs using the crossover

operation (described below) applied at a randomly chosen crossover point within each

program.

MUTATION : Create one new program from one existing program by mutating

a randomly chosen part of the program.

3 The program that is identified by the method of result designation is designated

as the result for the run (e.g., the best-so-far individual). This result may be a solution

(or an approximate solution) to the problem.

Before applying genetic programming to our problem, we must perform five major

preparatory steps. These five steps involve determining:

a. the set of terminals,

b. the set of primitive functions,

c. the fitness measure, mutate

d. the parameters for controlling the run, and

e. the method for designating a result and the criterion for terminating a run.

The first major step in preparing to use genetic programming is to identify the set

of terminals. The terminals can be viewed as the inputs to the as-yet-undiscovered

program. The set of terminals (along with the set of functions) are the ingredients

from which genetic programming attempts to construct a program to solve, or ap-

proximately solve, the problem.

Second step involves determining the function set which may be any arithmetic

operation, standard programming operators, standard mathematical function, logical

function, or domain-specific functions.
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Fitness measurement controls the flow of GP which evaluates how well each com-

puter program in the population performs in its problem.

The Primary parameters for GP are the population size and generation size while

secondary parameters are quantitative and qualitative variables used to control the

run of GP.

A precondition for solving a problem by GP is that the set of terminals as well as

the set of functions satisfy sufficiency requirement in the sense that they are together

capable of expressing a solution to the problem.

In the cache coloring algorithm, arriving at a high quality solution involved a

very large number of evaluations and consequently is computationally demanding.

Fortunately, the number of intrinsic parallel nature of Genetic algorithm makes them

suitable for a parallel implementation. By GA, it is possible to:

• Reduce the time to locate a solution(Faster algorithm)

• Reduce the number of function evaluations (cost of the search),

• Have a larger populations

• Improve the quality of the solution worked out.

Our algorithm has three phases: the initialization phase, evaluation phase and

tournament phase. Each of these phases contains one or more task as illustrated in

the following algorithm:

/*INITILIZATION PHASE*/

Startup MPI();

Current gen := 0;

fitnessIndiv := none;

InitializePopulation (CurGen);
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/* EVALUATION PHASE*/

While (CurGen ¡ MaxGen) do

/*Evaluation And Ranking */

EvaluationAndRankPopulation (CurGen);

/* Preserve Fittest Individual */

Winner := SelectBestIndividual (CurGen);

FittestIndiv := Select (FittestIndiv , Winner);

/* Migration */

Emigrant := SelectAndCloneIndividual (CurGen);

Asyncsend(emigrant);

/*Crossover */ SelectParents (CurGen);

Offspring :=MateParents (CurGen);

/*Immigration*/

AsyncReceive (immigrant);

/*Integration*/

IntegrateImmigrant (Offspring , immigrant );

/*Mutation */ CurGen := ApplyMutation (offspring);

CurGen := CurGen+1;

End while;

End program;
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7.1 Description of the Algorithm

a. Each separate processing element independently generates its own initial semi-

isolated random subpopulation. This process of initial random creation takes

place in parallel at each processing element. As soon as each separate processing

element finishes this one-time task, it begins the evaluation phase loop.

b. In the evaluation phase, the task of measuring fitness of each individual is first

performed locally at each processing element, then the individuals are locally

according to a given fitness function: this selection steps is performed locally

at each processing element.

c. One individual in each subpopulation is selected at random for emigration from

each processing element to other processing elements, to introduce new breeds

into each subpopulation.

d. Crossover is performed locally at each processing element. The processing ele-

ment operates asynchronously in the sense that each generation starts and ends

independently at each processing element. Because each of these tasks is per-

formed independently at each processing element, and because the processing

elements are not synchronized, this asynchronous approach efficiently uses all

the processing power of each processing element

e. Previous to the stage of mutation (or better yet, as a part of it) immigration

takes place. It is done asynchronously, so that the algorithm does not stop wait

for any slow processing element.

f. Once the termination condition in every processing element have been satisfied,

in order to choose the best individual, a tree-like tournament selection will

be used, requiring at most log2 P steps, where P is the number of processing

element.
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The GA provides, for every task in the task set, the subset of blocks to be locked.

It also brings an estimation of the WCET of each task with the chosen set of blocks

already loaded, and the WCRT of all tasks considering the estimated WCET.

Therefore, experiments were conducted to determine the reduction in execution

time and the quality of the solution. The GA job is to select cache contents for dif-

ferent cache size ranging from 64 to 4096 cache lines and task sets with between 3 to

8 tasks each. Tasks have the usual statements found in any program. The whole set

has 123 different experiments and it was executed on 1,2,4,6,8 and 10 nodes.

To measure the quality of the solution, Processor Utilization a commonly used

metric to evaluate real time systems performance was used. The lower the processor

utilization, the better, since this means that the task set demands less CPU time and

thus other tasks might be included in the task set while the system remains schedu-

lable (i.e. all task executing on time ).

7.2 WCET and response time computation

Tasks worst-case execution times estimates (WCETs) will compute using a tree-based

approach. The WCET estimate of a task is computed using recursive formulas that

operate on the task’s syntactic tree (a node in the tree represents a control structure,

loop, conditional, sequence of blocks, a leave represents a basic block. branch-free

sequence of instructions). As we voluntarily ignore hardware components other than

the instruction cache, the WCET estimate of a basic block BB can be computed in a

straightforward manner from the WCET of its program lines pl: WCET(BB) = Pnpl

pl=1WCET(pl), with WCET(pl) = Thit or Tmiss depending on whether program

line pl has been locked in the instruction cache or not.
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The response times of tasks are computed using CRTA (Cache-aware Response

Time Analysis), which extends the well-known exact response time analysis (RTA)

schedulability test to take cache-related preemption delays into account. Given a

task ti, CRTA works by considering the interferences produced by the execution of

the higher priority tasks on ti within an increasing time window wn I (n is the recur-

rence index). The response time Ri of task ti is the fixed point of the sequence given

in equation 2 below, where hp(ti) denotes the set of tasks that have a higher priority

than ti and denotes the cache-related preemption delay (the equations assume tasks

with distinct priorities).In our context, the value of gamma is the time needed to

reload the prefetch buffer plus the related context switch penalty .

W 0
i = Ci (7.1)

W n+1
i = Ci

∑
tjεhp(ti)

⌈
wni
Tj

⌉
∗ (Cj + γ)→ Ri(2) (7.2)

7.3 Comparison metrics

From the cache contents generated by the two algorithms, we present a statistical

analysis of the performance of the resulting task sets. We focus on worst-case perfor-

mance metrics, computed from the tasks WCETs and the tasks response times.

7.4 Processor (worst-case) utilization (U)

The processor utilization Σ Ni=1 C’i /Ti , where C’i is the worst-case execution time

of task ti including all cache effects) is an interesting metric because it allows to

know a lower bound of the overall spare ST231 processor capacity, which can be used

for instance for executing soft real-time tasks. The lower the utilization, the better

Genetic Search Algorithm.
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7.5 Algorithm comparison

7.5.1 Comparison of utilization

Uci (resp. Ugi) denote the (worst-case) utilization of an experiment i when using the

Cache Coloring algorithm (resp. genetic) cache contents selection algorithm. Since

the lower the utilization the better the performance, values of ∆ Ui = Uci - Ugi

below zero demonstrate the superiority of the Cache Coloring algorithm, whereas

values above zero demonstrate the superiority of the genetic algorithm. Values of ∆

Ui are in the interval ] - 1; +1[. Table gives statistics on values of ∆ Ui = Uci - Ugi.

The average value of ∆ Ui is very close to zero, whereas its median value is zero. The

standard deviation and quartiles show that the vast majority of values are very close

to zero.

Table I: Statistics summary for ∆ Ui = Uci-Ugi

Number of experiments 146
Average 0.0125386
Median 0
Standard deviation 0.0539221
Minimum -0.05984
Maximum 0.281344
Experiments with p is less then 0 69 (47.3 in percentage)
Experiments with p=0 11 (7.5 in percentage)
Experiments with p is greater then 66 (45.2 in percentage)
95 percent confident interval for average [0.0037184; 0.02135881]

Confidence interval for average, that contains the average value, allows consider-

ing the average as the true average. However, there are two peculiarities. Firstly, the

number of experiments with ?Ui below zero is slightly greater than the number of

∆ Ui values over zero. Secondly, the minimum and maximum, we found that ∆ Ui

values are greater when the genetic algorithm provides better performance.
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Figure 7.1: Frequency histogram (percentage of values of ∆ Ui = Uci - Ugi inside
the range pointed by the xaxis)

7.5.2 Execution time of algorithms

Blocks to be locked in cache are selected during design phase, and thus the speed

of cache contents selection does not affect the performance of the actual system.

However, the speed of the algorithm for cache contents selection may be important if

source code of the system tasks is modified frequently. The execution times of both

algorithms have been measured on ST231, 200Mhz processor running Linux. Both

algorithms have been implemented in C. Over the 146 experiments we carried out, the

Cache coloring algorithm always executes in less than two minutes. In comparison,

the genetic algorithm took between two and six hours to execute for most experiments,

and in some cases more than ten hours. Obviously, the Genetic Search algorithm is

extremely faster than the Cache coloring algorithm.
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7.6 Cache misses

Cache optimization work is typically evaluated in terms of cache performance, with

reduced cache misses suggesting a program will improve in speed or cache resource

requirements. In the presence of multiple cache levels, however, optimization with

respect to one cache level does not necessarily translate into better overall perfor-

mance.

In tables , we present for each of our benchmarks and for both optimization algo-

rithms the relative percentage improvements (positive values are good) obtained in

terms of running time on the ST231 system with compiler optimization level3. Along

with this, we also show the relative improvements obtained in terms of instruction

cache misses and in terms of L2 cache misses for instruction fetches, as well as the

approximate number of cache misses before optimization.

Table II: Cache and performance effects of Cache line coloring algorithm

Benchmark Time L1% L2% L1 Imisses L2 Imisses
ammp -0.03 -32.11 -68.33 0.4M 76K
gcc 0.14 -8.37 -12.00 15M 3M
mcf -0.10 -22.45 -22.80 1.4K 1.4K
mesa -0.47 93.02 15.54 1.3M 77K
radiant -1.90 93.79 -0.58 16M 2.7K
twolf -0.73 -60.12 29.92 33K 28K
wupwise 0.72 -12.47 -12.69 4.7K 4.4K
average -0.37 7.33 -10.13 4.7M 0.5M

We note that our genetic algorithm obtains a 0.5 %speed improvement on average,

vs. a 0.34% speed loss, on average, for the coloring algorithm. What is most inter-

esting is that both algorithms succeed at reducing the L1 instruction cache misses.

However, whereas the genetic algorithm also reduces the L2 instruction misses by

2.36% on average, the coloring algorithm causes an average increase of 10.13% for L2

instruction misses. This is likely due to the fact that the coloring algorithm can only

concern itself with one of the two caches. As it tries to reduce the L1 instruction
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Table III: Cache and performance effects of Genetic algorithm

Benchmark Time L1% L2% L1 Imisses L2 Imisses
ammp 0.42 -33.57 -33.97 0.4M 76K
gcc 0.45 29.95 28.92 15M 3M
mcf 0.31 -7.64 -7.80 1.4K 1.4K
mesa 0.51 -2.34 22.53 1.3M 77K
radiant -0.33 95.73 -0.58 16M 2.7K
twolf -0.41 40.73 32.60 33K 28K
wupwise 2.59 -24.12 -25.16 4.7K 4.4K
average 0.50 14.11 2.36 4.7M 0.5M

cache misses, it may increase the L2 cache misses. Our algorithm does not directly

optimize for the cache, but rather for performance, and so avoids this kind of issue.

Only concern itself with one of the two caches. so avoid this kind of issue.

Interestingly, we note that, according to our data, an improvement in cache per-

formance does not necessarily correlate with a performance improvement and vice

versa. The genetic algorithm, for example, obtains a 2.59% speedup for benchmark,

while its L1I and L2 cache performance decrease significantly. On the other hand, the

coloring algorithm reduces the L1I cache misses on the other benchmark by 93.02%,

but its performance decreases by 1.90%. We also note that the degree of cache per-

formance improvement obtained by both algorithms seems to be proportional to the

number of cache misses before optimization. For example, both algorithms obtain a

cache performance decrease on the wupwise benchmark, but this benchmark also has

the least cache misses before optimization, while both algorithms improve the L1I

cache misses of the radiant benchmark by more than 93 percent from a very high

original count of 15 millions.
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7.7 Convergence

One important concern when it comes to genetic algorithms and other machine learn-

ing algorithms is that of convergence. Our algorithm has many user-adjustable pa-

rameters that can affect the rate of convergence, and whether or not convergence

occurs at all. The parameters we have chosen for our tests were based on educated

guesses, preliminary experimentation, and experimentation time constraints.

Figure 7.2: Average relative fitness over time

In figure 7.2, we examine the relative mean and best fitness (running-time) val-

ues averaged over our different benchmark and platform combinations. The mean

fitness of the population appears to decrease in an asymptotic, logarithmic manner

that is typical of machine learning algorithms. That is, the decrease becomes less and

less significant as time passes by because the algorithm is converging to a theoretical

maximum performance. To illustrate the convergence trend, we have performed a log-

arithmic fit of the mean fitness over time, which we also illustrate. The R2 coefficient

of this fit is 0.96, supporting the idea that convergence is indeed occurring, and that

the trend is logarithmic in nature. We can also observe that the best fitness obtained

decreases in a similar fashion, and is noticeably lower than the average fitness of the

population.
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We have implemented our Genetic algorithm for Binopt tool in I-cache optimizer

phase. This takes an executable and execution profile information as inputs, and then

performs various optimizations level and produces an optimized executable.

The particular optimizations of interest in to us in binopt are inlining and code

reordering. When performing inlining, binopt uses the following heuristics:

• ” inline if this procedure is very small (i.e., if the call and return instructions

will take up more space than the procedure’s body),

• ” inline if the call site being processed is the only call site for this procedure, or

• ” inline if the call site is activated very frequently and the resulting cache

footprint does not exceed the instruction cache size.

The decrease in execution time achieved with inlining alone with binopt is reported

to be as much as 4.3%.

binopt also performs interprocedural basic block layout which can be guided by

profile information. If profile information is available, binopt tries to avoid cache

conflicts by grouping the basic blocks into hot, cold and zero sets and applying the

bottom-up positioning approach that using this basic block layout algorithm can

decrease execution by 17%.

Our procedure reordering algorithm starts after binopt completes basic block lay-

out, and before the scheduler is invoked. Since binopt performs interprocedural basic

block reordering, a procedure’s basic blocks can be spread out all over the image

space.

However, one of the procedure mapping algorithm that we have implemented re-

quires that procedures are kept as a whole. So, before our Genetic algorithm starts,

we first examine the layout created by binopt and merge all basic blocks associated
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with a single procedure together. After this phase, we have a sequence of procedures,

with the basic blocks rearranged within a procedure, and with the hottest basic blocks

at the beginning of each procedure in the image.

The procedure splitting algorithm that we implemented, if activated, starts pro-

cessing the layout at this point. The algorithm analyses each procedure by using the

profile information and brings the activated and unactivated basic blocks together in

the layout.

7.8 Instrument the code

The first step for performing the PFO is to generate an instrumented executable.

This is achieved by adding the -fb command line option at compile-time. This option

must also be passed at final link-time, in order to tell the linker to add the libinstrC.a

library that contains the routines collecting the feedback information (in particular

the frequency counts on control flow).

The modified build commands are:

- compilation with profiling feedback instrumentation

- of the libX.c sources for process X (X=1,2,..,N)

st200cc -O2 -fb create fb data -c libX.c

- Intermediate link in relocatable mode

st200cc -O2 -r -nostdlib -o libXpfo.ro libX.o

- creation of the pfo instrumented libX pfo.a library

- for process X (X=1,2,..,N)

st200ar libXpfo.a libXpfo.ro

-build of the main driver objects

st200cc -c main*.c

- creation of the final executable including the instrumented libraries

st200cc -fb create fb data -o mainpfo.exe main*.o
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7.9 Collect feedback data

The second step is to gather the feedback data by executing each process, either on

the simulator or on the board. During each execution, a frequency data file named

(name).instr0. is created (in this example (name) is fb data). Unlike the gprof file-

driven method, there is no need to create a single summary feedback file in the case

of multiple feedback information files for the same process. To associate each data

file to its process, it is convenient to create one directory fb.X.dir for each process

X (X=1,2,..,N), and to move the data files into the associated directory. Finally, as

the instrumented and to move the data files into the associated directory. Finally, as

the instrumented executable runs significantly slower than usual, it is recommended

to use the fast mode of the simulator (if the program can execute on the simulator)

to speed-up the execution. Here is an example of how to run and collect feedback

information for process X with two different sets of arguments (X.args1 and X.args2):

Create the feedback data directory fb.X.dir for process X.

- run X process (for both X.args1 and X.args2 arguments) in ST231

- little-endian mode using the fast mode of the simulator

st200xrun -c st200sp -t st231fastsimle -e main.pfo.exe -a X.args1

st200xrun -c st200sp -t st231fastsimle -e main.pfo.exe -a X.args2

Put the collected feedback data files in the data directory for process X by copying

all

fb.data.instr0. files to the directory fb.X.dir

After this step, we have a set of feedback data for each process, placed in the. corre-

sponding data directory.
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7.10 Re-Compile

The third and last step is to re-compile all modules adding the -fb dir/name option,

that tells the compiler to annotate the code, using the information gathered in all

feedback files name.inst0.* in ¡dir¿. These annotations occur at a very high level in

the compilation back-end process and the compiler uses them in later optimization

phases such as if-conversion and instruction scheduling. This also affects the I-cache

optimization phase, as the feedback frequencies are also seen by the I-cache optimizer

and used to make decisions on code reordering.

Here are the build commands for this last step:

- optimized compilation with feedback annotations of the libX.c sources

- for process X (X=1,2,..,N)

st200cc -02 -fb fb.X.dir/fb.data -c libX.c - Intermediate link in relocatable mode

- (indirectly using the feedback annotations)

st200cc -O2 -r -nostdlib -o libX.ro libX.o - creation of the I-cache optimized libX.a

library

- for process X (X=1,2,..,N)

st200ar libX.a libX.ro

st200cc -c main*.c

- creation of the final executable (with I-cache optimizations turned off)

st200cc -o main.exe main*.o lib.a

Furthermore, a dramatic improvement in I-cache miss cycles is observed for some

processes. For instance 211% for the ac3 decoder, 148% for the aac decoder, and

118% for the Mpeg1-Layer3 encoder.
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Nevertheless, some regressions are also encountered, but they remain reasonable:

at most 13% in I-cache miss cycles (5% in total cycles) for the Mpeg1-Layer3 decoder.

These regressions can be explained by the fact that, in the reference experiment with-

out any specific I-cache optimization, the code placement is arbitrary, boosting some

processes at the expense of the others. specific I-cache optimization, the code place-

ment is arbitrary, boosting some processes at the expence of the others.



Chapter 8

Tools and Technique used

• ST231 development tools (from ST internal), including simulator and C com-

piler.

• Linux environment, shell script, perl, analysis for C, HDMS - multi-site unix

based database management system (ST internal), CHT - unix-based configu-

ration management system.

• Verilog, system verilog, PSL and simulators : Incisive Unified Simulator (Ca-

dence),

• Verification automation tools: XXX (YYYY), eManager (Cadence),
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Chapter 9

Conclusion and Future work

Conclusion

we have optimized both the Dcache side and Icache side in ST231 Dcache optimization

done by replacing blocking cache with Nonblocking caches and Icache optimization

done by Machine learning approach. By using Non-Blocking Cache Memory Latency

get reduced. and it has save lots of time because of it unblocking nature.For some

benchmarks, instruction cache optimization has a significant effect, even in the con-

text of other, aggressive optimizations. This performance is not necessarily easy to

extract with a simple heuristic and cache model, but as our genetic algorithm op-

timization shows, useful improvements are possible. Part of the difficulty is due to

greater complexity in processor design; multiple cache levels, and other hardware

optimization features make simple cache models less heuristically valid. Our basic

coloring implementation, for instance, does reduce L1 cache misses, but not in such a

way as to generally improve overall performance. A learning approach has the advan-

tage of being able to optimize with respect to execution speed. This allows it to avoid

inadvertent performance degradations due to an imprecise or incomplete performance

model

Future Work

There are many interesting routes for futurework. Our framework lends itself to
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exploration of other algorithms and i-cache optimization designs, and we aim to fur-

ther investigate other optimization routes. Our implementations, for instance, are

constrained by the use of easy to gather profiling and Performance data-with more

detailed, basic-block level profiling, better results may be possible, both in the learn-

ing domain and for deterministic approaches.

All these techniques were applied to the DVD/ACC audio codecs benchmark and

produce a significant performance gain of more than 8% in total cycles for the main

set of processes (5% for the overall set of processes). Almost 80% of this speed-up

is achieved using static I-cache optimization. The remaining 20% is achieved using

performance-feedback.
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