
QoS Based User Driven Scheduler For Grid

By

Sanjay Patel

08MCE013

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

AHMEDABAD-382481

May 2010

QoS Based User Driven Scheduler For Grid

Major Project

Submitted in partial fulfillment of the requirements

For the degree of

Master of Technology in Computer Science and Engineering

By

Sanjay Patel

08MCE013

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

AHMEDABAD-382481

May 2010

iii

Declaration

This is to certify that

i) The thesis comprises my original work towards the degree of Master of Technol-

ogy in Computer Science & Engineering at Nirma University and has not been

submitted elsewhere for a degree.

ii) Due acknowledgement has been made in the text to all other material used.

Sanjay Patel

iv

Certificate

This is to certify that the Major Project entitled ”QoS Based User Driven Sched-

uler For Grid” submitted by Sanjay Patel(08MCE013), towards the partial

fulfillment of the requirements for the degree of Master of Technology in Computer

Science and Engineering of Nirma University of Science and Technology, Ahmedabad

is the record of work carried out by him under my supervision and guidance. In my

opinion, the submitted work has reached a level required for being accepted for ex-

amination. The results embodied in this Major Project, to the best of my knowledge,

haven’t been submitted to any other university or institution for award of any degree

or diploma.

Prof. Madhuri Bhavsar Dr. S.N. Pradhan

Guide,Senior Associate Professor, Professor,P.G.Coordinator,

Department of Computer Engineering, Department of Computer Engineering,

Institute of Technology, Institute of Technology,

Nirma University, Ahmedabad Nirma University, Ahmedabad

Dr. Ketan Kotecha Prof. D. J. Patel

Director, Professor and Head,

Institute of Technology, Department of Computer Engineering,

Nirma University, Ahmedabad Institute of Technology,

Nirma University, Ahmedabad

v

Abstract

As grids are in essence heterogeneous, dynamic, shared and distributed environ-

ments, managing these kinds of platforms efficiently is extremely complex. A promis-

ing scalable approach to deal with these intricacies is the design of self-managing of

autonomic applications. Autonomic applications adapt their execution accordingly

by considering knowledge about their own behavior and environmental conditions.

QoS based User Driven scheduling for grid that provides the self-optimizing ability

in autonomic applications. Computational grids to provide a user to solve large scale

problem by spreading a single large computation across multiple machines of physical

location.

QoS based User Driven scheduler for grid also provides reliability of the grid

systems and increase the performance of the grid to reducing the execution time

of job by applying scheduling policies defined by the user. The main aim of this

project is to distribute the computational load among the available grid nodes and to

developed a QoS based scheduling algorithm for grid and making grid more reliable.

Grid computing system is different from conventional distributed computing systems

by its focus on large-scale resource sharing, where processors and communication have

significant influence on Grid computing reliability. Reliability capabilities initiated by

end users from within applications they submit to the grid for execution.Reliability

of infrastructure and management services that perform essential functions necessary

for grid systems to operate, such as resource allocation and scheduling.

vi

Acknowledgements

First of all, I would like to thank my principal supervisor Prof.Madhuri Bhavsar

for her advice, encouragement and guidance throughout my Major Project. I am

grateful to her for motivating and inspiring me to go deeply into the field of Grid com-

puting and workflows and supporting me throughout the life cycle of Major Project.

This research environment would not be possible without the determination of my

supervisors who have helped create the best study conditions.

I like to give my special thanks to Dr. S. N. Pradhan, P.G. Coordinator,

Department of Computer Science and Engineering,Institute of Technology, Nirma

University, Ahmedabad for his continual kind words of encouragement and motiva-

tion throughout the project.

I am also thankful to Dr.Ketan Kotecha,Director,Institute of Technology for

his kind support in all respect during my study.

I am also very thankful to other staff members and to my friends for their

support. And at this moment, I would like to express my appreciation to my family

members for their unlimited encouragement and support.

- Sanjay Patel

08MCE013

Contents

Declaration iii

Certificate iv

Abstract v

Acknowledgements vi

List of Figures x

Abbreviation xi

1 Introduction 1
1.1 What is Grid? . 1
1.2 What is Grid Computing? . 2
1.3 About Computational Grid . 2
1.4 Computing Environment . 4

1.4.1 Standard Computing Environment 4
1.4.2 Grid Computing Environment 4

1.5 Why Grid? . 5
1.6 Problem Statement . 5
1.7 Objective . 5
1.8 Scope Of The Project . 5

2 Literature Survey and Important observations 6
2.1 Grid Scheduling . 6
2.2 Algorithm and Methods . 9

2.2.1 Cellular Memetic Algorithm 9
2.2.2 Graph Theory . 10
2.2.3 Scheduling Instance . 11
2.2.4 Easy Grid AMS (Application Management System) 12
2.2.5 Dedicated Nodes Algorithms 13

2.3 Conclusion . 14

vii

CONTENTS viii

3 Existing Methodologies 16
3.1 Layered Architecture of Grid . 16
3.2 Alchemi Desktop Grid Framework . 17

3.2.1 Application Models . 18
3.3 Existing Scheduling Mechanism . 20

4 Tools and Technique 21
4.1 Front End Tools . 21
4.2 Back End Tools . 21
4.3 Alchemi Toolkit Overview . 21

4.3.1 Distributed Components . 22

5 The Proposed Algorithm and Architecture 26
5.1 Process Sequence . 26
5.2 Design . 27
5.3 Algorithm Steps . 28
5.4 Algorithm Description . 29
5.5 Flow Chart . 30
5.6 Algorithm . 31

6 Implementation 32
6.1 Grid Manager GUI . 32

6.1.1 Display Grid Nodes . 32
6.1.2 Cpu Speed . 33
6.1.3 Cpu Usage . 33

6.2 Grid User GUI . 34
6.3 Users QoS Requirements . 36
6.4 Implement Reliability in grid . 36

6.4.1 Reliability Programming Models 37
6.4.2 Reliability Specification . 37
6.4.3 Performability Analysis . 38

6.5 Divide and Conquer . 39
6.6 Divide and Conquer Algorithm . 39
6.7 Merge Sort . 40
6.8 Bitonic Merge Sort . 41
6.9 Parallel Bitonic Merge sort . 41
6.10 Reliability Results . 42

6.10.1 Without Reliability Model . 42
6.10.2 With Reliability Model . 42

6.11 Failure To Repair Rate . 43
6.12 Physical Avg.Disk Bytes/write . 43
6.13 Analysis of Results . 44

CONTENTS ix

7 Conclusion 45
7.1 Conclusion . 45

References 46

Index 48

List of Figures

1.1 Standard Computing Environment 4
1.2 Grid Computing Environment . 4

3.1 Layered Architecture of Grid . 17
3.2 Existing Scheduling Mechanism . 20

4.1 An Alchemi Grid . 22
4.2 Distributed components and their relationships 23

5.1 Job Processing Sequence . 27
5.2 New Scheduling Mechamism . 28
5.3 Flow Chart . 30
5.4 Scheduling Algorithm . 31

6.1 Display Grid Nodes . 32
6.2 Cpu Speed . 33
6.3 Cpu Usage . 33
6.4 Grid User Login . 34
6.5 Grid User Main Window . 34
6.6 Grid User Submit Job . 35
6.7 Grid User View Result . 35
6.8 Three common programming models (a) Master Worker (b) Divide and

Conquer (c) SPMD . 37
6.9 Markov chain for the resource performance and reliability states . . . 38
6.10 Divide and Conquer . 39
6.11 Code . 40
6.12 Without Reliability Model . 42
6.13 With Reliability Model . 42
6.14 Failure To Repair Rate . 43
6.15 Physical Avg.Disk Bytes/write . 43

x

Abbreviation

QoS Quality of Service

GRAM Globus Resource Allocation Manager

MDS Metacomputing Directory Service

cMAs Cellular Memetic Algorithms

GSI Globus Security Infrastructure

OGSA Open Grid Service Architecture

AMS Application Management System

SDK Software Development Kit

FCFS First Come First Served

MRM Markov Reward Models

CAS Code Access Security

xi

Chapter 1

Introduction

1.1 What is Grid?

A grid is a system that

• Coordinates resources that are not subject to centralized control

Grid integrates and coordinates resources and users that exist within different

control domains.

• Uses standard open, general purpose protocols and interfaces

A grid is built from multipurpose protocols and interfaces that address such

issues like authentication, authorization and resource discovery.

• To deliver non-trivial qualities of services

A grid allows its constituent resources to be used in a coordinated fashion to

provide various qualities of service like response time, throughput etc.

1

CHAPTER 1. INTRODUCTION 2

1.2 What is Grid Computing?

Grid computing is an interesting research area that integrates geographically-distributed

computing resources into a single powerful system. Many applications can benefit

from such integration . Examples are collaborative applications, remote visualization

and the remote use of scientific instruments. Grid software supports such applica-

tions by addressing issues like resource allocation, fault tolerance, security, and het-

erogeneity. Parallel computing on geographically distributed resources, often called

distributed supercomputing, is one important class of grid computing applications.

Projects such as SETI@home, Intels Philanthropic Peer-to-Peer Program for curing

cancer and companies such as Entropia show that distributed supercomputing is both

useful and feasible.

Grid computing is a kind of parallel computing that enables the sharing, selection,

and aggregation of geographically distributed autonomous resources, at runtime, as

a function of availability, capability, performance, cost, and users quality-of-service

requirements . One of the services that a Grid can provide is a computational ser-

vice. Computational services execute jobs in a distributed manner . A Grid providing

computational service is often called Computational Grid . We propose to implement

the Grid using the visual studio Technology. Also we will implement the scheduling

algorithm for grid. And then we will see the throughput of our grid for that particular

application.

1.3 About Computational Grid

A computational Grid consists of a set of resources, such as computers, networks, on-

line instruments, data servers or sensors that are tied together 12 by a set of common

services which allow the users of the resources to view the collection as a seamless

computing/information environment. The standard Grid services include

CHAPTER 1. INTRODUCTION 3

• Security services which support user authentication, authorization and privacy

• Information services, which allow users to see what resources (machines, soft-

ware, other services) are available for use,

• Job submission services, which allow a user to submit a job to any compute

resource that the user is authorized to use,

• Co-scheduling services, which allow multiple resources to be scheduled concur-

rently,

• User support services, which provide users access to ”trouble ticket” systems

that span the resources of an entire grid.

Grid services utilize the available computational resources so that tasks are run on

whatever machine currently has available capacity. A grid also allows a single large

computation to be spread across several machines, each of which is executing some

portion of the computation. This can be done by:

• Breaking up the tasks into smaller tasks

• Assigning the smaller tasks to multiple hosts to work on simultaneously, coor-

dinating with each other.

CHAPTER 1. INTRODUCTION 4

1.4 Computing Environment

The difference between standard computing and the grid can be seen from the fol-

lowing figure:

1.4.1 Standard Computing Environment

Figure 1.1: Standard Computing Environment

1.4.2 Grid Computing Environment

Figure 1.2: Grid Computing Environment

CHAPTER 1. INTRODUCTION 5

1.5 Why Grid?

In most organizations, there are large amounts of underutilized computing resources.

Most desktop machines are busy less than 5 percent of the time. In some organiza-

tions, even the server machines can often be relatively idle.

1.6 Problem Statement

As grids are in essence heterogeneous, dynamic, shared and distributed environments,

managing these kinds of platforms effciently is extremely complex. A promising

scalable approach to deal with these intricacies is the design of self-managing or

autonomic applications. Autonomic applications adapt their execution accordingly by

considering knowledge about their own behaviour and environmental conditions.QoS

based User Driven scheduling for grid that provides the self-optimizing ability in

autonomic applications.

1.7 Objective

The main objective of this project is to provide the self-optimizing and QoS driven

scheduling ability in autonomic applications desired by the user and also developed

a QoS based scheduling algorithm for grid and making grid more reliable.

1.8 Scope Of The Project

The User Driven Scheduler is intended to work as an resource managing module,queuing

and scheduling of the Grid. The scheduler will offer managing batch jobs on Grid

by scheduling CPU time according to user utility rather than system performance

considerations.

Chapter 2

Literature Survey and Important

observations

2.1 Grid Scheduling

In this work exploit the capabilities of Cellular Memetic Algorithms (cMAs) for ob-

taining efficient batch schedulers for Grid Systems. A careful design of the cMA

methods and operators for the problem yielded to an efficient and robust implemen-

tation. Our experimental study, based on a known static benchmark for the problem,

shows that this heuristic approach is able to deliver very high quality planning of jobs

to Grid nodes and thus it can be used to design efficient dynamic schedulers for real

Grid systems. Such dynamic schedulers can be obtained by running the cMAbased

scheduler in batch mode for a very short time to schedule jobs arriving to the system

since the last activation of the cMA scheduler [2].

Grid Services Scheduling is a challenging problem under Open Grid Service Ar-

chitecture (OGSA). A graph theory formal description is introduced into the Service

Grid Model in this paper. The necessary and sufficient condition of complete match-

ing of user job and service resources has been given and proved. Optimal Solution to

matchmaking of grid jobs and grid services is developed based on the running time

6

CHAPTER 2. LITERATURE SURVEY AND IMPORTANT OBSERVATIONS 7

weight matrix, and the arithmetic has been verified by simulation analysis which

proved to be more efficient than the alike arithmetic. The arithmetic has been im-

plemented and running well. Along with the evolvement of computation technology

and the Internet technology, Grid technology already became the core of new gen-

eration of network computation environment. Local Grid, also called Clusters, is

placed at the center of the E-Commerce infrastructure with increasing requirements

for providing service differentiation and performance assurance. To that end, Grid

Services running on Clusters must have mechanism and policies for establishing and

supporting QoS(Quality of Services) [3].

• No common and generic Grid scheduling system

• Used as a foundation for designing common Grid scheduling infrastructures

In the past years, many Grids have been implemented and became commodity

systems in production environments. While several Grid scheduling systems have al-

ready been implemented, they still provide only ad hoc and domain-specific solutions

to the problem of scheduling resources in a Grid. However, no common and generic

Grid scheduling system has emerged yet. In this work we identify generic features of

three common Grid scheduling scenarios, and we introduce a single entity that we call

scheduling instance that can be used as a building block for the scheduling solutions

presented [4].

Providing Self optimizing ability for autonomic applications.A promising scalable

approach to deal with these intricacies is the design of self-managing or autonomic

applications. Autonomic applications adapt their execution accordingly by consider-

ing knowledge about their own behaviour and environmental conditions. This paper

focuses on the dynamic scheduling that provides the self-optimizing ability in au-

tonomic applications. Being distributed, collaborative and pro-active, the proposed

hierarchical scheduling infrastructure addresses important issues to enable an efficient

execution in a computational grid. Unlike other approaches, the cooperative, hybrid

CHAPTER 2. LITERATURE SURVEY AND IMPORTANT OBSERVATIONS 8

and application-specific strategy deals effectively with task dependencies. Several ex-

periments have been analyzed in real grid environments highlighting the efficiency and

scalability of the proposed infrastructure. This paper presents an intra-site dynamic

scheduling heuristic for tightly coupled parallel applications represented by DAGs [5].

Present a scheduling algorithm which showed performance improvements to the

original algorithm shipped with Alchemi grid software. Computational grids are

useful tools for bringing super computing power to users by using idle resources in the

network. In the following paper we give a short overview of architecture of the Alchemi

grid developed on .Net platform. We created a grid application, which utilizes Rabin

Karp string searching algorithm to test Alchemi grid performances in situation when

requests put diverse demands for computing resources to the different grid nodes.

Scheduling and dispatching jobs to the computing resources is a critical activity of

the grid software. We present a scheduling algorithm which showed performance

improvements to the original algorithm shipped with Alchemi grid software [1].

The main objective of these work is to schedule Enterprise Grid workloads so as

to minimise the costs, while ensuring desired Quality-of-Service with a certain degree

of confidence. Grids provide infrastructure for intensive computations and storage

of shared large scale database across a distributed environment. Although grid tech-

nologies enable the sharing and utilization of widespread resources, the performance

of parallel applications on the Grid is sensitive to the effectiveness of the scheduling

algorithms used. Scheduling is the decision process by which application compo-

nents are assigned to available resources to optimize various performance metrics. In

this paper we discuss how economy and quality of service plays important role in

scheduling resources. Various Grid scheduling algorithms are discussed from different

points of view, such as static vs. dynamic policies, objective functions, Quality of

service constraints, strategies dealing with dynamic behavior of resources and so on.

After discussing existing algorithms a new Failure rate-cost and time optimization

algorithm is been proposed which will guarantee quality of service [6].

CHAPTER 2. LITERATURE SURVEY AND IMPORTANT OBSERVATIONS 9

2.2 Algorithm and Methods

2.2.1 Cellular Memetic Algorithm

Description:

• In Memetic Algorithms (MAs) the population of individuals could be unstruc-

tured or structured.

• As in the case of other evolutionary algorithms, cMAs are high level algorithms

whose description is independent of the problem being solved. As it can be

seen, this template is quite different from the canonical cGA approximation , in

which individuals are updated in a given order by applying the recombination

operator to the two parents and the mutation operator to the obtained offspring.

In the case of the algorithm proposed in this work, mutation and recombination

operators are applied to individuals independently of each other, and in different

orders. This model was adopted after a previous experimentation, in which it

performed better than the cMA following the canonical model for the studied

problems. After each recombination (or mutation), a local search step is applied

to the newly obtained solution, which is then evaluated. If this new solution

is better than the current one, it replaces the latter in the population. This

process is repeated until a termination condition is met [10].

cMA methods and operators: The performance of any cMA heavily depends on

the design and implementation of the methods and operators.

• Solution representation

• Fitness

• Population initialization

CHAPTER 2. LITERATURE SURVEY AND IMPORTANT OBSERVATIONS 10

2.2.2 Graph Theory

Description:

• Services scheduling mainly acts according to some high-level application QoS

parameters to carry on, for instance, the complete time, the reliability or the

service cost and so on

• To develops a QoS-aware Grid Services Scheduling optimal algorithm based on

the complete time weight matrix.

The services scheduling process does not care about the core function itself of resources

and services, but care about the way of the core function execution, for instance the

start time of requested operation, the running time needed to complete, its cost

or expense and so on. Therefore, we establish a scheduling service and a sensor

service independent of the resources provider and the resources consumer, thus forms

a simplified four unit Grid Services scheduling model. This model including following

componets [3].

• Job Manager: The agent for the service consumer in the service grid . It plays

the role of entrance of the end users, provides the interfaces to job submitting,

job inquiring and job deletion operation.

• Service Manager: The agent for the service provider in the service grid . It

manages the resources, and is responsible for the dispatchment appropriate job

running on the resources .

• Scheduler: Its function is to seek the suitable match between the services

consumer and the services provider through some certain of algorithms, and to

inform the both sides matched to carry on the binding operation.

• Sensor: Its function is to monitor the running state of resources and jobs in

real time. Monitor making is the process to log the state data of the resources

and jobs. As a independent service,sensor can monitor the state , such as the

CHAPTER 2. LITERATURE SURVEY AND IMPORTANT OBSERVATIONS 11

starting of job, the running of job, the suspending of job, the activation of job,

the end of job .

2.2.3 Scheduling Instance

Description:

• A scheduling instance is defined as a software entity that exhibits a standardized

behavior with respect to the interactions with other software entities

• The scheduling instance is the basic building block of a scalable, modular ar-

chitecture for scheduling tasks, jobs,workflows, or applications in Grids.

In this context, a scheduling instance is defined as a software entity that exhibits a

standardized behavior with respect to the interactions with other software entities

(which may be part of a GSA implementation or external services). Such scheduling

entities cooperate to provide, if possible, a solution to scheduling problems submitted

by users, e.g. the selection, planning and reservation of resource allocations for a job .

The scheduling instance is the basic building block of a scalable, modular architecture

for scheduling tasks, jobs, workflows, or applications in Grids. Its main function is to

find a solution to a scheduling problem that it receives via a generic input interface.

To do so, the scheduling instance needs to interact with local resource management

systems that typically control the access to the resources. If a scheduling instance can

find a solution for a submitted scheduling problem, the generated schedule is returned

via a generic output interface. From the examples depicted above it is possible to

derive a high level model of operations for a generic set of cooperating scheduling

instances. To provide a solution to a scheduling problem, a scheduling instance can

exploit several options [4].

From a component point of view abilities as described above are expressed as inter-

faces. In general, the interfaces of a scheduling instance can be divided in two main

CHAPTER 2. LITERATURE SURVEY AND IMPORTANT OBSERVATIONS 12

categories: functional interfaces and non-functional interfaces. The former are nec-

essary to enable the main behaviors of the scheduling instance, while the latter are

concerned with the management of the instance itself (creation, destruction, status

notification, etc.). We want to highlight that we consider only the functionalities that

must be directly exploited to support a general scheduling architecture; for example,

security services are from a functional point of view not strictly needed to schedule a

job, so they are considered external services or non-functional interfaces.

2.2.4 Easy Grid AMS (Application Management System)

Description: This section briefly describes the EasyGrid AMS that is used in this

work to manage the execution of a parallel MPI application on the computational

grid. The EasyGrid AMS implements dynamic process creation and is automatically

embedded into the MPI parallel application. It is not de- pendent on other grid

system middleware, requiring only the Globus Toolkit and the LAM/MPI library to

be installed.

The EasyGrid AMS employs a distributed hierarchy of management processes each

composed of four layers with specific functions: process management, application

moni- toring, dynamic scheduling and fault tolerance. Each MPI application has

its own three level hierarchical management system composed of: a single Global

Manager (GM), at the top level, which supervises the sites in the grid where the ap-

plication is running; at each of these sites, a Site Manager (SM) is responsible for the

allocation of the application pro- cesses to the resources available at that site; and

finally, the Host Manager (HM), one for each resource, takes on the responsibility

for creation and execution of the MPI appli- cation processes. The management

processes have minimal intrusion because they behave like event-driven daemons,

only consuming CPU cycles to process messages [5].

• The EasyGrid AMS implements dynamic process creation and is automatically

embedded into the MPI parallel application.

CHAPTER 2. LITERATURE SURVEY AND IMPORTANT OBSERVATIONS 13

• The EasyGrid AMS employs a distributed hierarchy of management processes

each composed of four layers with specific functions: process management, ap-

plication monitoring, dynamic scheduling and fault tolerance.

2.2.5 Dedicated Nodes Algorithms

• Rolling Hash Algorithm: It extracts all N word phrases from the text1 and

stores them into PhraseList collection.As described in [12], first a hash of sub-

string1 that must be matched is calculated. Then, a substrin2 is selected where

Length(Substring1) = Length(Substring2). Hash value of susbstring2 is com-

pared to the calculated hash value of susbtring1. Comparing hash values gives

a speed improvement to a direct string comparison because it is not necessary

to loop through substring1 and substring2 to compare a character by character.

The disadvantage is that the same hash value can represent two different strings.

This situation is called a collision and it has to be resolved. With an efficient

hash algorithm it is possible to achieve O(n) time, as described in Rolling hash

algorithm [1].

• Rabi Karp Algorithm: The algorithm uses a rolling hash to compare a string1

of the length N with all possible substrings of the length equal to M in the given

text. In order to compare Text1 and Text2 for all phrases with N words, the

following algorithm is applied to Text1 to find all N word phrases. Phrases

are grouped together by their character length to utilize rolling hash algorithm.

It extracts all N word phrases from the text1 and stores them into PhraseList

collection. This is an array of arrays of phrases with the same character length.

The next step is to check if each of the phrases in the PhraseList exists in

the Text2. If we have M phrase arrays with each having a varying number of

phrases with the same character length, each phrase array from the Text1 can

be checked efficiently for a presence in Text2 with the described Rabin-Karp

algorithm. Obviously, we can utilize the Alchemi grid to, instead of looping

CHAPTER 2. LITERATURE SURVEY AND IMPORTANT OBSERVATIONS 14

sequentially M times, create M GThreads and submit them to the manager. As

described in the introduction section, a mechanism for submitting tasks to the

manager uses an instance of GApplication class [1].

• Default Scheduling Algorithm: The algorithm assigns each task to an avail-

able processing node. The first available executor is fetched from the executor

storage. The first waiting thread with the highest priority is fetched from the

thread storage. Dedicated schedule is created by pairing the executor and the

thread. This information is used by a dispatcher to dispatch a job to the

assigned executor. This type of scheduling is known in the literature as oppor-

tunistic matching. The algorithm assigns each task to an available processing

node. The expected task execution time is not taken in the account. Execution

time decreases as performances of the computing node increases. Execution

time for a same task is a function of factors such as bandwidth between man-

ager and executors and capabilities of the individual executors. According to

good scheduling schemes should be able to exploit the differences in the band-

width between manager and every individual executor and differences between

performances of the executor nodes [1].

2.3 Conclusion

cMAs are a good choice for scheduling jobs in Computational Grids given that they

are able to deliver high quality plannings in a very short time. This paper gives a

four unit Grid Services scheduling model based on graph theory, develops a QoS-

aware Grid Services Scheduling optimal algorithm based on the complete time weight

matrix. The necessary and sufficient condition of complete matching of the grid jobs

and grid services is given also. This algorithm has been used in the multimedia data

transmission services in the electronic commerce to guarantee the QoS of reserved

resources and running well. In this paper discuss the general architecture for grid

scheduling. Several scheduling instance implementations can be composed to build

CHAPTER 2. LITERATURE SURVEY AND IMPORTANT OBSERVATIONS 15

existing scheduling scenarios as well as new ones. This work presents a novel dynamic

scheduling strategy that deals efficiently with the precedence relations that exist in

tightly-coupled parallel applications.

To improve performance of Alchemi grid using different algorithm. The paper

presents a simple heuristic scheduling algorithm that has a potential to improve

performances in the Alchemi P2P desktop grid.In this paper, proposed a new Grid

scheduling algorithm that minimizes the cost of execution of workflows, while ensuring

that their associated Quality-of-Service constraints are satisfied.

Chapter 3

Existing Methodologies

A grid is created by installing Executors on each machine that is to be part of the

grid and linking them to a central Manager component. The Windows installer setup

that comes with the Alchemi distribution and minimal configuration makes it very

easy to set up a grid.

3.1 Layered Architecture of Grid

Users can develop, execute and monitor grid applications using the .NET API and

tools which are part of the Alchemi SDK. Alchemi offers a powerful grid thread

programming model which makes it very easy to develop grid applications and a grid

job model for grid-enabling legacy or non-.NET applications [1].

16

CHAPTER 3. EXISTING METHODOLOGIES 17

Figure 3.1: Layered Architecture of Grid

3.2 Alchemi Desktop Grid Framework

Alchemi layered architecture for a desktop grid computing environment is shown in

Figure. Alchemi follows the master-worker parallel computing paradigm in which a

central component dispatches independent units of parallel execution to workers and

manages them. In Alchemi, this unit of parallel execution is termed grid thread and

contains the instructions to be executed on a grid node, while the central component

is termed Manager [1].

A grid application consists of a number of related grid threads. Grid applications

and grid threads are exposed to the application developer as .NET classes / objects

via the Alchemi .NET API. When an application written using this API is executed,

grid thread objects are submitted to the Alchemi Manager for execution by the grid.

Alternatively, file-based jobs (with related jobs comprising a task) can be created

using an XML representation to grid-enable legacy applications for which precompiled

executables exist. Jobs can be submitted via Alchemi Console Interface or Cross-

Platform Manager web service interface, which in turn convert them into the grid

CHAPTER 3. EXISTING METHODOLOGIES 18

threads before submitting then to the Manager for execution by the grid.

3.2.1 Application Models

Alchemi supports functional and well as data parallelism. Both are supported by

each of the two models for parallel application composition grid thread model and

grid job model.

a. Grid Thread Model: Minimizing the entry barrier to writing applications

for a grid environment is one of Alchemis key goals. This goal is served by

an object-oriented programming environment via the Alchemi .NET API which

can be used to write grid applications in any .NET-supported language.

The atomic unit of independent parallel execution is a grid thread with many

grid threads comprising a grid application (hereafter, applications and threads

can be taken to mean grid applications and grid threads respectively, unless

stated otherwise). The two central classes in the Alchemi .NET API are GTh-

read and GApplication, representing a grid thread and grid application respec-

tively. There are essentially two parts to an Alchemi grid application. Each is

centered on one of these classes:

• Remote code: code to be executed remotely i.e. on the grid (a grid

thread and its dependencies)

• Local code: code to be executed locally (code responsible for creating

and executing grid threads).

A concrete grid thread is implemented by writing a class that derives from

GThread, overriding the void Start() method, and marking the class with the

Serializable attribute. Code to be executed remotely is defined in the imple-

mentation of the overridden void Start() method.

The application itself (local code) creates instances of the custom grid thread,

executes them on the grid and consumes each threads results. It makes use of

CHAPTER 3. EXISTING METHODOLOGIES 19

an instance of the GApplication class which represents a grid application. The

modules (.EXE or .DLL files) containing the implementation of this GThread-

derived class and any other dependency types that not part of the .NET Frame-

work must be included in the Manifest of the GApplication instance. Instances

of the GThread-derived class are asynchronously executed on the grid by adding

them to the grid application. Upon completion of each thread, a thread finish

event is fired and a method subscribing to this event can consume the threads

results. Other events such as application finish and thread failed can also be

subscribed to. Thus, the programmatic abstraction of the grid in this manner

described allows the application developer to concentrate on the application

itself without worrying about ”plumbing” details.

b. Grid Job Model:Traditional grid implementations have offered a high-level,

abstraction of the ”virtual machine”, where the smallest unit of parallel execu-

tion is a process. In this model, a work unit is typically described by specifying

a command, input files and output files. In Alchemi, such a work unit is termed

job with many jobs constituting a task.

Although writing software for the grid job model involves dealing with files, an

approach that can be complicated and inflexible, Alchemis architecture supports

it for the following reasons:

• grid-enabling existing applications

• Inter operability with grid middleware that can leverage Alchemi via the

Cross Platform Manager web service

Before submitting the task to the Manager, references to the embedded files

are resolved and the files themselves are embedded into the task XML file as

Base64-encoded text data. When finished jobs are retrieved from the Manager,

the Base64-encoded contents of the embedded files are decoded and written to

disk.

CHAPTER 3. EXISTING METHODOLOGIES 20

3.3 Existing Scheduling Mechanism

Figure 3.2: Existing Scheduling Mechanism

In existing scheduling mechanism all threads and computation done by system at

kernel level. First of all application get divided in to different grid enabled process

part and each small part called thread. When application divide in to different thread

then system assign to each thread different thread id. Each thread id(thread) divide

for computation to available grid nodes. After computation each grid nodes return

back thread or computation results to the head node [1].

Chapter 4

Tools and Technique

4.1 Front End Tools

• Windows

• .Net Framework 3.0

• Microsoft Visual Studio C#.net

• Alchemi 1.0.6

• Perfwiz

4.2 Back End Tools

• Microsoft Sql Server 2005

4.3 Alchemi Toolkit Overview

There are four types of distributed components (nodes) involved in the construction

of Alchemi grids and execution of grid applications Manager, Executor, User & Cross-

Platform Manager [1].

21

CHAPTER 4. TOOLS AND TECHNIQUE 22

Figure 4.1: An Alchemi Grid

A grid is created by installing Executors on each machine that is to be part of the

grid and linking them to a central Manager component. The Windows installer setup

that comes with the Alchemi distribution and minimal configuration makes it very

easy to set up a grid. An Executor can be configured to be dedicated (meaning the

Manager initiates thread execution directly) or non-dedicated (meaning that thread

execution is initiated by the Executor.) Non-dedicated Executors can work through

firewalls and NAT servers since there is only one-way communication between the Ex-

ecutor and Manager. Dedicated Executors are more suited to an intranet environment

and non-dedicated Executors are more suited to the Internet environment.

4.3.1 Distributed Components

Four types of nodes (or hosts) take part in desktop grid construction and applica-

tion execution (see Figure). An Alchemi desktop grid is constructed by deploying a

Manager node and deploying one or more Executor nodes configured to connect to

the Manager. One or more Users can execute their applications on the cluster by

connecting to the Manager. An optional component, the Cross Platform Manager

CHAPTER 4. TOOLS AND TECHNIQUE 23

provides a web service interface to custom grid middleware. The operation of the

Manager, Executor, User and Cross Platform Manager nodes is described below.

a. Manager:The Manager provides services associated with managing execution

of grid applications and their constituent threads. Executors register themselves

with the Manager, which in turn monitors their status. Threads received from

the User are placed in a pool and scheduled to be executed on the various

available Executors. A priority for each thread can be explicitly specified when

it is created or submitted. Threads are scheduled on a Priority and First Come

First Served (FCFS) basis, in that order. The Executors return completed

threads to the Manager which are subsequently collected by the respective users.

A scheduling API is provided that allows custom schedulers to be written.

The Manager employs a role-based security model for authentication and au-

thorization of secure activities. A list of permissions representing activities that

need to be secured is maintained within the Manager. A list of groups (roles)

is also maintained, each containing a set of permissions. For any activity that

needs to be authorized, the user or program must supply credentials in a form

of a user name and password and the Manager only authorizes the activity if

the user belongs to a group that contains the particular permission.

Figure 4.2: Distributed components and their relationships

As discussed previously, failure management plays a key role in the effectiveness

CHAPTER 4. TOOLS AND TECHNIQUE 24

of a desktop grid. Executors are constantly monitored and threads running on

disconnected Executors are rescheduled. Additionally, all data is immediately

persisted to disk so that in the event of a crash, the Manager can be restarted

into the pre-crash state.

b. Executor:The Executor accepts threads from the Manager and executes them.

An Executor can be configured to be dedicated, meaning the resource is cen-

trally managed by the Manager, or non-dedicated, meaning that the resource

is managed on a volunteer basis via a screen saver or explicitly by the user. For

non-dedicated execution, there is one-way communication between the Execu-

tor and the Manager. In this case, the resource that the Executor resides on

is managed on a volunteer basis since it requests threads to execute from the

Manager. When two-way communication is possible and dedicated execution is

desired the Executor exposes an interface so that the Manager may communi-

cate with it directly. In this case, the Manager explicitly instructs the Executor

to execute threads, resulting in centralized management of the resource where

the Executor resides. Thus, Alchemis execution model provides the dual benefit

of:

• flexible resource management i.e. centralized management with dedicated

execution vs. decentralized management with non-dedicated execution

• flexible deployment under network constraints i.e. the component can be

deployment as nondedicated where two-way communication is not desired

or not possible (e.g. when it is behind a firewall or NAT/proxy server).

Thus, dedicated execution is more suitable where the Manager and Executor

are on the same Local Area Network while non-dedicated execution is more

appropriate when the Manager and Executor are to be connected over the In-

ternet.

CHAPTER 4. TOOLS AND TECHNIQUE 25

Threads are executed in a sandbox environment defined by the user. The CAS

(Code Access Security) feature of .NET are used to execute all threads with

the Alchemi GridThread permission set which can be specified to a fine-grained

level by the user as part of the .NET Local Security Policy. All grid threads

run in the background with the lowest priority. Thus any user programs are

unaffected since they have higher priority access to the CPU over grid threads.

c. User:Grid applications are executed on the User node. The API abstracts the

implementation of the grid from the user and is responsible for performing a

variety of services on the users behalf such as submitting an application and

its constituent threads for execution, notifying the user of finished threads and

providing results and notifying the user of failed threads along with error details.

d. Cross-Platform Manager:The Cross-Platform Manager is a web services in-

terface that exposes a portion of the functionality of the Manager in order

to enable Alchemi to manage the execution of grid jobs (as opposed to grid

applications utilizing the Alchemi grid thread model). Jobs submitted to the

Cross-Platform Manager are translated into a form that is accepted by the

Manager (i.e. grid threads), which are then scheduled and executed as normal

in the fashion described above. In addition to support for the grid-enabling

of legacy applications, the Cross-Platform Manager allows custom grid middle-

ware to inter operate with and leverage Alchemi on any platform that supports

web services.

Chapter 5

The Proposed Algorithm and

Architecture

5.1 Process Sequence

There are four main entities in architecture, which are users, manager, schedulers

and executor. A client is a user who submits a job to the system. A job refers to a

collection of computation that the client wants to execute. The job is submitted by

the client to the manager through a graphical user interface (GUI). Also agent is an

entity which helps to achieve this. The agent delegates the management of jobs to

schedulers. A scheduler divides a job into smaller tasks (in the case of an independent

job, a task refers to the subset of parameters that can be executed independently) and

sends the tasks to the resources for execution. Figure shows the proposed architecture

model.

26

CHAPTER 5. THE PROPOSED ALGORITHM AND ARCHITECTURE 27

Figure 5.1: Job Processing Sequence

5.2 Design

A typical Grid consists of a number of services and a number of physical resources,

including compute resources that are capable of hosting these services as well as stor-

age resources, network resources etc. Grid applications are typically defined in terms

of workflows, consisting of one or more tasks that may communicate and cooperate

to achieve their objective. The job of the scheduler is to select a set of resources on

which to schedule the tasks of an application, assign application tasks to compute

resources, coordinate the execution of the tasks on the compute resources and manage

the data distributions and communication between the tasks.

CHAPTER 5. THE PROPOSED ALGORITHM AND ARCHITECTURE 28

Figure 5.2: New Scheduling Mechamism

5.3 Algorithm Steps

a. List Out All the Resources

b. Sort all the resources with their success rate

c. Find resource with highest success rate

d. Assign job to that resource

e. If Success rate is same of two resources then compare both resources cosidering

their time

f. Assign job to that resource whose time is minimum

g. Repeat steps 3 to 5 till all jobs have been assign resources

CHAPTER 5. THE PROPOSED ALGORITHM AND ARCHITECTURE 29

5.4 Algorithm Description

Failure of a resource while doing scheduling is not being considered at the time of

allocating resources by the broker. Here, at the time of scheduling jobs, broker will

consider only minimum cost of a resource along with MIPS of that resource. While

doing scheduling, if resource fails to execute any job then such thing cannot be ignored

when next time a job needs to be executed on that resource.So for a resource a new

parameter is added as failure rate which will consider success rate of a resource. If a

resource is having 100% failure rate then that means that whenever a job is scheduled

on that resource then it will surely fail to execute that job on that resource. By default

the value for failure rate should be zero. A history is maintained by the broker, which

will keep track of this failure rate. If any failure happens then broker will update

history of that resource, which will be considered at the time of next scheduling of

jobs.

CHAPTER 5. THE PROPOSED ALGORITHM AND ARCHITECTURE 30

5.5 Flow Chart

Figure 5.3: Flow Chart

In following figure given steps to identify best resource. First of all we identify all

the resources in the grid. Then find success rate of each grid node.Compare success

rate of each grid node and which grid node success rate is high then we select this

resource for computation and also arrange grid node by success rate. but two grid

node success rate is same then we also find execution time of each grid node. after

find execution time of each grid node we compare execution time of grid node. we

find minimum execution time of node that grid node we assign for computation. we

rotate this steps.

CHAPTER 5. THE PROPOSED ALGORITHM AND ARCHITECTURE 31

5.6 Algorithm

Figure 5.4: Scheduling Algorithm

Chapter 6

Implementation

6.1 Grid Manager GUI

6.1.1 Display Grid Nodes

Figure 6.1: Display Grid Nodes

In this window i am trying to display different available grid nodes which is using

in the computation.

32

CHAPTER 6. IMPLEMENTATION 33

6.1.2 Cpu Speed

Figure 6.2: Cpu Speed

In this window i am trying to display cpu speed of the grid nodes.

6.1.3 Cpu Usage

Figure 6.3: Cpu Usage

In this screen shows the cpu usage of the grid nodes.

CHAPTER 6. IMPLEMENTATION 34

6.2 Grid User GUI

• Grid User Login

Figure 6.4: Grid User Login

This window is used for the Grid user,using this window Grid user can login in

the Grid system.

• Grid User Main Window

Figure 6.5: Grid User Main Window

This is the Grid user main window.Using this window Grid user can submit job

to the manager for the computation. Another functionality of this window Grid

User can View the Result of Submit job.

CHAPTER 6. IMPLEMENTATION 35

• Submit Job

Figure 6.6: Grid User Submit Job

This window display the user submit the job which required for computation

and also display the job path.

• View Result

Figure 6.7: Grid User View Result

This display the no of application and their execution time for computation.

CHAPTER 6. IMPLEMENTATION 36

6.3 Users QoS Requirements

• Time:

Minimize execution time to increase the performance.

• Reliability:

No. of failures for execution of workflows.

• Fidebility:

Measurement related to the quality of the output of execution

6.4 Implement Reliability in grid

• Scientific applications have diverse performance and reliability requirements

that are often difficult to satisfy, given the variability of underlying resources.

Availability can vary due to failure of one or more critical services, load on one

or more resource components, recovery from a failure, etc. Moreover, as Grid

and web services continue to evolve, rapidly changing software stacks with con-

comitant configuration and service reliability challenges exacerbate application

execution times and failures.

• In addition higher levels of the software stack need the ability to clearly express

performance and reliability expectations. Although there are tools and well

understood mechanisms to monitor performance and ensure reliability, few tools

allow users to express reliability policies from the applications perspective, map

these to resource capabilities and cost models and enforce appropriate workflow

scheduling, fault tolerance and recovery strategies [13].

CHAPTER 6. IMPLEMENTATION 37

6.4.1 Reliability Programming Models

a. Master Worker :In the master-worker paradigm the master decomposes the

problem into small tasks and distributes these tasks for execution.

b. Divide and Conquer :The divide and conquer strategy partitions the prob-

lem into two or more smaller problems that can be solved independently and

combined [14].

Figure 6.8: Three common programming models (a) Master Worker (b) Divide and
Conquer (c) SPMD

c. SPMD :In the SPMD model, each task executes common code on different

data. Failure of one task adversely affects the entire application, requiring

global coordination.

6.4.2 Reliability Specification

In this section, we discuss the extensions required to the virtual grid description

language to support reliability specifications. We define a high-level qualitative re-

liability metric space that can be used to request resources. The qualitative levels

are mapped to well-defined quantitative reliability levels in the virtual grid to enable

runtime monitoring and adaptation.

CHAPTER 6. IMPLEMENTATION 38

Define a 5-point qualitative reliability scale that maps to quantitative lev-

els of availability as follows: [11]

• High Reliability (90-100%)

• Good Reliability (80-89%)

• Medium Reliability (70-79%)

• Low Reliability (60-69%)

• Poor Reliability (59-0%)

6.4.3 Performability Analysis

• Grid systems are often able to survive the failure of one or more components and

continue to provide service, but with reduced performance. Such behavior and

status of systems with multiple interacting components is typically captured

using stochastic process modeling [12].

Figure 6.9: Markov chain for the resource performance and reliability states

• The probability of staying in a certain state with respect to transition rates

between states is used to quantify system performance and reliability. Markov

Reward Models (MRM) are typically used to model gracefully degradable sys-

tems and capture joint performance and system reliability. A Markov reward

model consists of a Markov chain that describes a systems possible states and

an associated reward function.

CHAPTER 6. IMPLEMENTATION 39

6.5 Divide and Conquer

• The divide and conquer strategy partitions the problem into two or more smaller

problems that can be solved independently and combined. Each subtask may be

further split into separate tasks. Unlike the master-worker model, the subtasks

are interdependent.

Figure 6.10: Divide and Conquer

• Hence the performance and reliability requirements (e.g. for the communication

links) might vary significantly from the master-worker model.

6.6 Divide and Conquer Algorithm

• Description :Recursively partition a problem into subprogram of roughly equal

size. If subprogram can be solved independently, there is a possibility of signif-

icant speed up by parallel computing.

• Functional Structure of Divide and Conquer Algorithm:The divide and

conquer strategy partitions the problem into two or more smaller problems that

can be solved independently and combined.

CHAPTER 6. IMPLEMENTATION 40

6.7 Merge Sort

• Merge Sort :Given two ascending sorted sublists, L[0:N-1] and L[N:2N-1]

• Recursive Merge Sort :Given a list, divide it in half, sort the two halves

(recursively),and then merge the two list together.

Figure 6.11: Code

CHAPTER 6. IMPLEMENTATION 41

6.8 Bitonic Merge Sort

• Consider an unsorted list with N = 2dim items. Any list with only two items is

a bitonic list. Therefore, this unsorted list consists of N/2 bitonic lists of length

2.

• By applying the bitonic merge to pairs of adjacent lists, the result is N/4 bitonic

lists of length 4. After logN repetitions of the bitonic merge, the list is com-

pletely sorted.

6.9 Parallel Bitonic Merge sort

• Merge: Given two ascending sorted sublists, L[0:N-1] and L[N:2N-1], obtain

a combined ascending sorted list, L[0:2N]. Consider an unsorted list with N =

2dim items. Any list with only two items is a bitonic list.

• Recursive Merge Sort: Given a list, divide it in half, sort the two halves

(recursively),and then merge the two list together.

• The Divide and Conquer model is an extended case of the master-worker paradigm

where each subtasks might spawn additional tasks. Typically, the higher the

task is in the tree, the longer the running time and the more critical is its

performability.

• Bitonic list:A list with no more than one local maxima and no more than one

local minima. One important type of bitonic list has the first half sorted in

ascending order and the second half in descending order.

• Bitonic split:

a. Each element in the first half of the list is assigned a partner, which is the

same relative position from the second half of the list.

CHAPTER 6. IMPLEMENTATION 42

6.10 Reliability Results

6.10.1 Without Reliability Model

Figure 6.12: Without Reliability Model

6.10.2 With Reliability Model

Figure 6.13: With Reliability Model

CHAPTER 6. IMPLEMENTATION 43

6.11 Failure To Repair Rate

Figure 6.14: Failure To Repair Rate

6.12 Physical Avg.Disk Bytes/write

Figure 6.15: Physical Avg.Disk Bytes/write

CHAPTER 6. IMPLEMENTATION 44

6.13 Analysis of Results

Showing the results of reliability we can say that using reliability model and program-

ming method we can decrease the execution time of job and increase the performance

of grid. Also find the failure to repair rate of each node and decide which node is

better for our computation. We use values (from fig.6.14) for the failure-to-repair-

rate and performance degradation factors to study the variation in expected steady

state reward rates. If we considered only performance, we would pick Grid node 2 as

it completes the application most quickly. If we were to select a resource based on

reliability, we would pick Grid node 8, the one with the lowest failure-to-repair ratio.

Also we can say from fig.6.12 and 6.13 we run without reliability model program

the execution time is high as compare to with reliability program and we run with

reliability model program the execution time is low as compare to previous one. so

we can say that reliability model is very important for decrease the execution time of

job.

Chapter 7

Conclusion

7.1 Conclusion

The objective of this project is to deploy the computational grid by applying user

driven scheduling policies with an improvement in QoS parameters. Major parameter

considered in this project is Time and Reliability.In Major Project,From the results

we can say that using Qos based scheduler we can decrease the execution time and

increase the performance of grid. QoS based user driven scheduler also provide large

scale job by distribute across multiple grid nodes,and also reduce the execution time

of a job and increase the performance of the grid. we can find failure to repair rate of

each grid node.using reliability model and programming method we can decrease the

execution time of job and increase the performance of grid. Also making grid more

reliable.

45

References

[1] Zeljko Stanfel, Goran Martinovic, Zeljko Hocenski,Scheduling Algorithms for Ded-

icated Nodes in Alchemi Grid,2008 IEEE International Conference on Systems,

Man and Cybernetics (SMC 2008)

[2] Fatos Xhafa,Efficient Batch Job Scheduling in Grids using Cellular Memetic Al-

gorithms,2007 IEEE

[3] Weidong Hao1, Yang Yang1, Chuang Lin2, Zhengli,QoS-aware Scheduling Algo-

rithm Based on Complete Matching of User Jobs and Grid Services, Proceedings

of the 2006 IEEE Asia-Pacific Conference on Services Computing (APSCC’06)0-

7695-2751-5/06 2006

[4] N.Tonellotto,nicola.tonellotto@isti.cnr.it,R.Yahyapour

ramin.yahyapour@unido.de, Ph. Wieder ph.wieder@fz-juelich.de,A Proposal

for a Generic Grid Scheduling Architecture

[5] Aline P. Nascimento, Cristina Boeres, Vinod E.F. Rebello Instituto de

Computao, Universidade Federal Fluminense (UFF), Niteri, RJ, Brazil de-

paula,boeres,vinod@ic.uff.br,Dynamic Self-Scheduling for Parallel Applications

with Task Dependencies,MGC08 December 1-5, 2008 Leuven, Belgium. Copyright

2008 ACM 978-1-60558-365-5/08/12

[6] Ali Afzal, John Darlington, A. Stephen McGough London e-Science Centre,QoS-

Constrained Stochastic Workflow Scheduling in Enterprise and Scientific Grids,1-

4244-0344-8/06/2006 IEEE

46

REFERENCES 47

[7] B.T.Benjamin Khoo et al., A multi-dimensional scheduling scheme in a grid com-

puting environment, Journal of Parallel and Distributed Computing, vol. 67, no.

6, pp. 659-673, June 2007.

[8] S. Ghosh. Distributed Systems: An Algorithmic Approach, Computer and Infor-

mation Sciences, Chapman & Hall/CRC, 2006.

[9] A. Abraham, R. Buyya and B. Nath. Natures Heuristics for Scheduling Jobs

on Computational Grids, The 8th IEEE International Conference on Advanced

Computing and Communications (ADCOM 2000) India, 2000.

[10] E. Alba, B. Dorronsoro, and H. Alfonso. Cellular Memetic Algorithms, Journal

of Computer Science and Technology, 5(4), 257-263, 2006.

[11] Darshana Shah,Swapnali Mahadik. QoS Oriented Failure Rate-Cost and Time

Algorithm for Compute Grid,Department of Computer Engineering and IT

[12] Lavanya Ramakrishnan, Daniel A. Reed. Performability Modeling for Scheduling

and Fault Tolerance Strategies for Scientific Workflows, HPDC08, June 2327,

2008, Boston, Massachusetts, USA.

[13] Christopher Dabrowski,Reliability in Grid Computing Systems,National Insti-

tute of Standards and Technology,1-4244-0344-8/06/2006 ACM.

[14] Y.S. Dai, M. Xie K.L. Poh,Reliability Analysis of Grid Computing Sys-

tems,Proceedings of the 2002 Pacific Rim International Symposium on Depend-

able Computing (PRDC02) 0-7695-1852-4/02 2002 IEEE..

Index

Abstract, v

Acknowledgements, vi

Alchemi, 16

Algorithm, 29

Bitonic list, 41

Bitonic Merge Sort, 40

Bitonic split, 41

Cellular Memetic Algorithm, 9

Certificate, iv

CMAs, 6

Co-scheduling services, 3

Code Access Security, 25

computational Grid, 2

Computational services, 2

Cross-Platform Manager, 25

Default Scheduling Algorithm, 14

Divide and Conquer, 37

Executor, 24

Fidebility, 36

Flow Chart, 30

GApplication, 19

Graph Theory, 9

Grid, 1

Grid AMS, 12

Grid computing, 2

Grid Computing Environment, 4

Grid Job Model, 19

Grid Manager GUI, 32

Grid Thread Model, 18

Grid User GUI, 34

GThread, 18

Implementation, 32

Information services, 3

Job Manager, 10

Job submission services, 3

Local Code, 18

Manager, 23

Markov Model, 38

Master Worker, 37

Merge Sort, 40

Middleware, 19

non-trivial, 1

OGSA, 6

48

INDEX 49

Parallel Bitonic Merge sort, 41

Peer to Peer, 2

Process Sequence, 26

QoS Requirements, 36

Quality of Services, 7

Rabi Karp Algorithm, 13

Recursive Merge Sort, 40

Reliability, 36

Reliability Results, 42

Remote Code, 18

Rolling Hash Algorithm, 13

Scheduler, 10

Scheduling Instance, 11

Security services, 3

Sensor, 10

Service Manager, 10

SPMD, 37

Standard Computing Environment, 4

Thread, 18

User support services, 3

Workflows, 11

	Declaration
	Certificate
	Abstract
	Acknowledgements
	List of Figures
	Abbreviation
	Introduction
	What is Grid?
	What is Grid Computing?
	About Computational Grid
	Computing Environment
	Standard Computing Environment
	Grid Computing Environment

	Why Grid?
	Problem Statement
	Objective
	Scope Of The Project

	Literature Survey and Important observations
	Grid Scheduling
	Algorithm and Methods
	Cellular Memetic Algorithm
	Graph Theory
	Scheduling Instance
	Easy Grid AMS (Application Management System)
	Dedicated Nodes Algorithms

	Conclusion

	Existing Methodologies
	Layered Architecture of Grid
	Alchemi Desktop Grid Framework
	Application Models

	Existing Scheduling Mechanism

	Tools and Technique
	Front End Tools
	Back End Tools
	Alchemi Toolkit Overview
	Distributed Components

	The Proposed Algorithm and Architecture
	Process Sequence
	Design
	Algorithm Steps
	Algorithm Description
	Flow Chart
	Algorithm

	Implementation
	Grid Manager GUI
	Display Grid Nodes
	Cpu Speed
	Cpu Usage

	Grid User GUI
	User™s QoS Requirements
	Implement Reliability in grid
	Reliability Programming Models
	Reliability Specification
	Performability Analysis

	Divide and Conquer
	Divide and Conquer Algorithm
	Merge Sort
	Bitonic Merge Sort
	Parallel Bitonic Merge sort
	Reliability Results
	Without Reliability Model
	With Reliability Model

	Failure To Repair Rate
	Physical Avg.Disk Bytes/write
	Analysis of Results

	Conclusion
	Conclusion

	References
	Index

