
Identifying Bottlenecks & Optimizing
Linux Performance in Embedded System

Approach

By

Vipul Samar

08MCE015

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

AHMEDABAD-382481

May 2010

Identifying Bottlenecks & Optimizing
Linux Performance in Embedded System

Approach

Major Project

Submitted in partial fulfillment of the requirements

For the degree of

Master of Technology in Computer Science and Engineering

By

Vipul Samar

08MCE015

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

AHMEDABAD-382481

May 2010

iii

Declaration

This is to certify that

i) The thesis comprises my original work towards the degree of Master of Technol-

ogy in Computer Science & Engineering at Nirma University and has not been

submitted elsewhere for a degree.

ii) Due acknowledgement has been made in the text to all other material used.

Vipul Samar

iv

Certificate

This is to certify that the Major Project entitled ”Identifying Bottlenecks &

Optimizing Linux Performance in Embedded System Approach” submitted

by Vipul Samar (08MCE015), towards the partial fulfillment of the requirements for

the degree of Master of Technology in Computer Science and Engineering of Nirma

University of Science and Technology, Ahmedabad is the record of work carried out

by him under my supervision and guidance. In my opinion, the submitted work has

reached a level required for being accepted for examination. The results embodied

in this major project, to the best of my knowledge, haven’t been submitted to any

other university or institution for award of any degree or diploma.

Shiraz Hashim Dr. S.N. Pradhan

Project Manager, P.G.Coordinator,

ST Microelectronics, Department of Computer Engineering,

Greater Noida , Institute of Technology,

Delhi Nirma University, Ahmedabad

Dr. D.J.Patel Dr K Kotecha

Professor and Head, Director,

Department Computer Engineering, Institute of Technology,

Institute of Technology, Nirma University, Ahmedabad

Nirma University, Ahmedabad

v

Abstract

Nowadays, embedded systems with Linux OS are commonly applied in automotive

industry. Some of applications require strict time response, and others need to be

lesser time to boot up and less power consumption such as mobile, PDA etc. But the

major problem with the embedded system is to improve embedded linux performance

without affecting the performance of the embedded system.

Dynamic power management (DPM) refers to the use of runtime strategies in

order to achieve a tradeoff between the performance and power consumption of a

system and its components.DPM has been a subject of intense research in the past

decades driven by the need for low power in modern Embedded system. I present a

formal method that have been explored in solving the system-level problem.

Bad Blocks are blocks that contain one or more invalid bits whose reliability is not

guaranteed. Bad Blocks may be present when the device is shipped, or may develop

during the lifetime of the device.A Bad Block does not affect the performance of valid

blocks because it is isolated from the bit line and common source line by a select

transistor. Bad Block Management, Block Replacement and the Error Correction

Code software are necessary to manage the error bits in NAND Flash devices.

This dissertation addresses two key factors in embedded system design, namely

minimization of power consumption and memory requirement. The first part of this

dissertation considers the problem of optimizing power consumption. The second part

deals with memory usage optimization mainly targeting the flash memory. Improving

the uses of the flash memory with minimum time to access data.

vi

Acknowledgements

My sincere thanks to the fine people around me who helped me in completing this

project work. Their wisdom, clarity of thought and support motivated me to bring

this project to its present state. First, I wish to thank Mr. Amit Goel (Senior

Section Manager) for giving me an opportunity to work on this project. His con-

tinued support, guidance and vision have helped me in this project, and it has truly

been a pleasure working with him.

My heartfelt thanks go to Mr. Shiraz Hashim, Mr. Ajay Khandelwal

and my team members for their invaluable guidance, which not only enabled me to

sort out the technical issues but also helped me in updating my knowledge, which

undoubtedly will also be useful in the future.

I wish to place on record my gratitude to ST Microelectronics Pvt. Ltd, Greater

Noida for providing me an opportunity to work with them on this project of such

importance. My stay in the organization has been a great learning experience and a

curtain raiser to an interesting and rewarding career. This exposure has enriched me

with technical knowledge and has also introduced me to the attributes of a successful

professional.

I wish to express my deep gratitude towards Dr. S.N. Pradhan(PG Coordina-

tor) and all professors at Nirma Institute of technology who taught the fundamental

essentials to undertake such a project. Without their valuable guidance it would have

been extremely difficult to grasp and visualize the project theoretically.

Finally, I would like to thank my parents for their constant love and support and

for providing me with the opportunity and the encouragement to pursue my goals.

- Vipul Samar

08MCE015

Contents

Declaration iii

Certificate iv

Abstract v

Acknowledgements vi

Contents vii

List of Tables x

List of Figures xi

Abbreviation xii

1 Introduction 1
1.1 Embedded linux . 1
1.2 Need of Embedded Linux . 1
1.3 Advantages of Embedded Linux . 2
1.4 Motivation . 4
1.5 Scope of work . 4
1.6 Thesis Organization . 5

2 Literature Survey 6
2.1 Embedded Systems . 6
2.2 Embedded systems design . 7
2.3 Challenges . 8
2.4 Plan Of Development . 11

3 Profiling Embedded Linux 12
3.1 Oprofile . 12
3.2 Linux Regression . 14

3.2.1 Features of Linux Regression 14
3.2.2 List file format . 16

vii

CONTENTS viii

3.2.3 Platform Launching . 18

4 Dynamic Power Management 21
4.1 Power Management for embedded linux 21
4.2 Types of Power Management . 23

4.2.1 Why OSPM!? . 23
4.3 Dynamic Power Management . 24

4.3.1 Application operating system interface 25
4.3.2 Operating System . 25
4.3.3 Operating system-hardware interface. 25
4.3.4 States of Processor . 26
4.3.5 C states: Almost all idle . 26
4.3.6 P states: In operation . 26

4.4 Suspend and Resume . 27
4.4.1 Standby . 27
4.4.2 Suspend to Ram . 28

4.5 NAND Flash Memory . 29

5 Implementation 31
5.1 CPUfreq Scaling . 31

5.1.1 Frequency power relation . 32
5.1.2 Governors . 33

5.2 Algorithm . 35
5.2.1 Steps for modifying frequency 35
5.2.2 Prerequisites . 37

5.3 Flashing Utility Design . 39
5.3.1 Setting up memory partitions 40
5.3.2 Erasing Partitions . 43
5.3.3 U-boot Through Script File 44
5.3.4 Selection of SOC . 45
5.3.5 Programming Partitions . 46

5.4 Bad Block Management . 49
5.4.1 Bad Block Singed Table . 50

5.5 Bad Block Manage Algorithm . 51

6 Testing and Results 54
6.1 Testing of Power Management . 54

6.1.1 Test setup: . 54
6.1.2 Using CPUfreq . 55

6.2 Performance of NAND Flash Memory with Bad Bloack Management
Algorithm . 59

CONTENTS ix

7 Conclusion and Future Scope 61
7.1 Conclusion . 61
7.2 Future Scope . 62

A ST SPEArR Architecture 63
A.1 SPEArR Technology . 63
A.2 SPEArR architecture . 64

Website References 67

References 68

Index 70

List of Tables

5.1 Data Structure Of Bad Block Replacement Table 50
5.2 Structure Of Bad Block Signed Table 50

6.1 Power Management testing on SPEAr-300 56
6.2 Power Management testing on SPEAr-320 57
6.3 Power Management testing on SPEAr-600 58
6.4 Performance of NAND memory . 60

x

List of Figures

2.1 Embedded System Architecture . 8

3.1 Oprofile Block Diagram . 14

4.1 a possible power state transition diagram for this PDA. 22
4.2 States of processor . 27
4.3 Comparision of NAND and NOR memory 30

5.1 cpufreq Infrastructure . 32
5.2 Setup memory partition . 40
5.3 Erase memory partition . 44
5.4 Program memory partition . 47
5.5 Replacement Algorithm . 52

6.1 Power Management Test Setup . 55
6.2 Power Management chart for SPEAr-300 56
6.3 Power Management Chart for SPEAr-320 57
6.4 Power Management chart for SPEAr-600 58
6.5 NAND Performance chart . 60

A.1 SPEAr Architecture . 65

xi

Abbreviation

SPEAr structured processor enhanced architecture

OS Operating system

ES Embedded system

DPM Dynamic Power Management

BBM Bad block management

SOC Systemon-chip

RTLinux Real Time Linux

RT Register Transfer

RTL Register Transfer Logic

ASICs Application Specific ICs

PM Power Management

LCD Liquid Crystal Display

xii

Chapter 1

Introduction

1.1 Embedded linux

Embedded systems are dedicated computers that have fixed functions. Although

they have been around for some time, they have explosive growth recently due to the

ability of making smaller and faster semiconductor chips. Embedded systems can be

divided into two categories. One has the OS, the other one is without the OS. When

the functions of ES are getting more and more sophisticated, especially when net-

working is involved, the OS is needed to make the ES design easier. Although there

are several embedded operating systems available, the embedded Linux has gained

wide popularity.

1.2 Need of Embedded Linux

The power, reliability, flexibility, and scalability of Linux, combined with its support

for a multitude of microprocessor architectures, hardware devices, graphics support,

and communications protocols have established Linux as an increasingly popular soft-

ware platform for a vast array of projects and products. Use of Linux spans the full

spectrum of computing applications, tiny Linux wrist watch, to hand-held devices

1

CHAPTER 1. INTRODUCTION 2

(including PDAs and cell phones) and consumer entertainment systems, to Internet

appliances, thin clients, firewalls, robotics, telephony infrastructure equipment, and

even to cluster-based supercomputers[1].

Because Linux is openly and freely available in source form, many variations and

configurations of Linux and its supporting software components have evolved to meet

the diverse needs of the markets and applications to which Linux is being adapted.

There are small-footprint versions and real-time enhanced versions. And despite the

origins of Linux as a PC architecture operating system, there are now ports to numer-

ous non-x86 CPUs, with and without memory management units, including PowerPC,

ARM, MIPS, 68K, and even microcontrollers and there’s more coming, all the time.

1.3 Advantages of Embedded Linux

a. Vendor independence

Multiple vendors offer embedded Linux product solutions with support, training

and professional service options, using a variety of business models with a variety

of methods of differentiation. Additionally, the fundamental source technology

is available, making self development and self-support of a solution a vi-able

(albeit expensive) alternative.

b. Source code is available

This gives the application developer a complete control over the functionality,

down to the OS level, and allows the adaptation of modules already developed

by others, instead of starting the development from scratch.

c. Modularity and configurability

At the kernel level, one can choose which modules to use depending on the

hardware to support, and recompile and adapted kernel according to a well

CHAPTER 1. INTRODUCTION 3

documented and proved procedure. This allows to run Linux in systems with

as little as 2 MB persistent storage and 4 MB RAM.

d. Early availability of hardware support

Linux is by far the preferred bring-up and initial support vehicle for hardware

manufacturers. This hardware support starts at the microprocessor level, where

Linux availability outstrips any other OS in the history of computing, and

continues to the I/O level and beyond. Additionally, the vendor independence

assures that if one Linux vendor is unable or unwilling to invest in the needed

hardware support, there are alternative solutions.

e. Early availability of new technologies in general

Linux is also the preferred vehicle for computing system hardware and software

innovation. Cutting-edge technology will almost always be available for Linux

ahead of other system software platforms, and certainly relative to proprietary

system software.

f. Lower cost

Linux starts by providing a royalty free deployment platform. Next, Linux

deployment reduces costs to hire and train engineers, enhances the ability to

customize, and offers a simpler and more convenient development environment.

The result is a vastly reduced total cost of ownership[2][1].

CHAPTER 1. INTRODUCTION 4

1.4 Motivation

Embedded systems are normally embedded in a bigger system to perform a specific

job. So they are expected to consume power as minimum as possible. Any electronics

device as such is designed to consume less power as they are expected to work with

battery power supply too. ES again has to run with those little power supply provided

for electronic devices.Embedded systems should be optimized always for consuming

less power. It will increase life of the system and will not hamper functioning of the

parent device[3][4].

Boot time and memory utilization are two major problems in design of embedded

system.Boot time is the time from initial power on to the time we can finally interact

with the System.If system consume much time then it decreases the performance of

the system.Memory utilization is in such a way that it can perform operation faster

without waiting for resources.

The purpose of my dissertation is to optimize the power consumption,boot time

and memory utilization in Embedded system.So that Embedded system can work

properly without affecting the performance of high real time system.

1.5 Scope of work

As the title suggests the goal of this project, work carried out in this research is useful

in improving performance and reliability of the Embedded system.

In this project, development of the DPM algorithm and Bad block management

algorithm in embedded system. DPM is the mechanism that reduce power consump-

tion and Bad Block Management is an algorithm that use to manage bad blocks in

NAND flash memory in embedded system. With using these two algorithm we can

reduce power consumption and optimize memory utilization in Embedded system.

CHAPTER 1. INTRODUCTION 5

1.6 Thesis Organization

The Thesis on Identifying Bottlenecks & Optimizing Linux Performance in Embedded

System has been divided in chapters as follows:

Chapter 2,Literature Survey,presents the problem presents the literature review.It

provides overview of Embedded system and ST SPEAr Architecture. It also

explains challenges faced during the design of embedded system.

Chapter 3,Profiling Embedded linux,includes two methods Oprofile and Linux Re-

gression to find out bottlenecks and limitation of Embedded linux. This explain

the architecture and uses of both tools.

Chapter 4,Dynamic Power Management,includes power management mechanism

in embedded system.The chapter includes mechanism use for reducing power

consumption in embedded system.

Chapter 5,Implementation,it includes Algorithm and implementation of DPM and

BBM Algorithm.

Chapter 6,Simulation and Performance Evaluation,covers simulation of DPM and

Bad Block Management Algorithm. The chapter includes the output of the

simulation and generates the graph.

Chapter 7,Conclusion and Future work,concludes this project with a summary, and

provides possible directions for relevant future research.

Chapter 2

Literature Survey

Linux is making steady progress in the embedded arena. Because Linux is covered

under the GPL, anyone interested in customizing Linux to his PDA, palmtop, or

wearable device can download the kernel and applications freely from the Internet

and begin porting or developing. Many Linux flavors cater to the embedded/realtime

market. These include RTLinux, uclinux (Linux for MMUless devices), Montavista

Linux (Linux distributions for ARM, MIPS, PPC), ARM-Linux (Linux on ARM), and

others.Embedded Linux development broadly involves three tiers: the bootloader, the

Linux kernel, and the graphical user interface.

2.1 Embedded Systems

Embedded systems nowadays are present in most of the electronic devices and instru-

ments used in daily life; they can be found in consumer electronic devices (calculator,

digital cameras, cell phones, etc.), office equipment (printers, copy machines, fax ma-

chines, etc.), home appliances (microwave ovens, washing machines, alarms, etc.),

and automobiles (cruise control, transmission control, fuel injection, etc.).

Loosely speaking, an embedded system is any computing system other than a

desktop computer [VG02]. An embedded system typically consists of four main com-

6

CHAPTER 2. LITERATURE SURVEY 7

ponents: an embedded processor, synthesized circuit for dedicated hardware units,

memory, and I/O interface. All of these are typically implemented in one chip con-

stituting what is called a systemon-chip SOC.

Embedded systems exhibit certain characteristics that distinguish them from other

computing systems. These characteristics are:

a. Single function: An embedded system usually executes a certain task (or pro-

gram) repeatedly.

b. Real-time operation: Time constraint is very crucial in execution of tasks on

embedded systems. Even a small execution delay might cause a serious mal-

functioning or total failure.

c. Tight constraints:Because of the nature of embedded systems, their design met-

rics such as size, performance and power impose tight constraints.

At the system level, the design is described as a set of interacting subsystems (pro-

cesses) to be mapped to either hardware or software components. These subsystems

can be implemented using processors (software), ASICs, memories and dedicated

hardware. At the behavioral level, each subsystem is specified in its algorithmic (or

functional) form. At the RT level, the system is specified as a collection of com-

municating RTL units such as ALUs, registers, and multiplexers. The logic level

specification is the hardware implementation of the logic functions given as a netlist

of logic gates and flipflops. The physical level description is the physical implemen-

tation given as a netlist of transistors, capacitors, and resistors on a board.RT, logic,

and physical levels belong to the hardware side. Module level and block level specifi-

cations are the typical levels of abstraction on the software side.

2.2 Embedded systems design

Embedded systems consist of hardware, software,and an environment. This they have

in common with most computing systems. However, there is an essential difference

CHAPTER 2. LITERATURE SURVEY 8

Figure 2.1: Embedded System Architecture

between embedded and other computing systems: since embedded systems involve

computation that is subject to physical constraints, the powerful separation of com-

putation (software) from physicalist (platform and environment), which has been one

of the central ideas enabling the science of computing, does not work for embedded

systems. Instead, the design of embedded systems requires a holistic approach that

integrates essential paradigms from hardware design, software design, and control

theory in a consistent manner[1].

2.3 Challenges

a. Hard Real-Time Embedded systems are mostly real-time systems, meaning

that they have to respond to external events in a timely fashion. In many cases

CHAPTER 2. LITERATURE SURVEY 9

(eg. multi-media systems) this real-time requirement is soft, meaning that such

systems can tolerate missing a deadline occasionally.

Normal Linux is not suitable for hard real-time systems, and there are signs that

the situation has recently worsened. Special real-time versions, such as RTLinux

[FSM] and RTAI [RTA] address the problem by adding a real-time layer below

the kernel proper, in order to have full control over interrupt handling. This

leads to an architecture which is, in principle, capable of meeting real-time

requirements, although at a cost of running the real-time components in the

kernel

b. Highly Robust Embedded systems are often employed in life-critical or mission-

critical scenarios. While the reliability of Linux on desktop and servers is very

high, this typically applies to systems which are at least close to widely-deployed

configurations. Massive changes to system configuration, as it is typically nec-

essary for an embedded system, will inherently reduce stability and require a

significant maturation process.

A related issue is that of upgrading the system without downtime. While it

is possible, in theory, to upgrade Linux kernel modules without rebooting the

whole system, in practice this is very limited, as many modules are tied closely

to a specific kernel version, making it impossible to load a newer version of the

model into an old kernel. Other components of the kernel are impossible to

upgrade without a reboot

c. Power Consumption Many technological improvements show an exponential

increase: circuit density, storage capacity, processing power, network band-

width. An exception is the energy density in batteries, which is improved, but

much less dramatically. The power usage of processing per Watt has improved

significantly, but unfortunately the processing needs have increased also rapidly.

Overall the power consumption of for instance PCs is more or less constant[2].

CHAPTER 2. LITERATURE SURVEY 10

There are multiple reasons to strive for less power consumption:

(1) Less heat dissipation, easier transport of waste heat.

(2) Increase stand by time.

(3) Increase operational time.

(4) Decrease acoustic noise of cooling.

(5) decrease power supply cost.

CHAPTER 2. LITERATURE SURVEY 11

2.4 Plan Of Development

Ideas for optimizing the Linux kernel and kernel Boot Time in embedded System:

a. Increasing speed Configurations of Linux for desktop and server markets exhibit

boot times in the range of 20 seconds to a few minutes, which is unacceptable

for many embedded system. Increasing speed means reducing the kernel boot

time. To produce real-time output within given hard deadline the kernel boot

time play an important role. There are many techniques used to avoid delay in

kernel boot process such as: Skip memory allocation,Avoiding Probing During

Bootup etc.

b. Reducing size Disk footprint and RAM In order to boot Linux, require a boot

loader, which is a small program that runs before the main kernel. The boot

loader is expected to initialize various devices, and eventually call the Linux

kernel, passing information to the kernel. Boot loaders first task is to initialize

the RAM. Different methods that used to reduce RAM size are as follow: Re-

move kernel messages, Use simpler algorithms with fewer features, reduce the

size of some kernel resources, Use a better allocator for small systems etc.

c. Reducing power consumption Power management is complex to implement in

embedded Linux systems. In particular, device drivers must support it. Exe-

cuting the kernel and applications directly from flash (no copy to RAM) allows

to have smaller / fewer RAM chips, consuming less power.

Chapter 3

Profiling Embedded Linux

3.1 Oprofile

OProfile is very useful for identifying processor performance bottlenecks. OProfile

can be configured to take samples periodically to get time-based samples to indicate

which sections of code are executed on the computer system. On many architectures

OProfile provides access to the performance monitoring counters. The performance

monitoring counters allow samples to be collection based on other events such as cache

misses, memory references, instructions retired, and processor clock cycles. These per-

formance events allow developers to determine whether specific performance problems

exist in the code and revise the code appropriately based on the performance problem

observed[5].

OProfile is a low-overhead system-wider profiler for Linux. The Linux 2.6 ker-

nel supports OProfile for a number of different processor architectures. The major

OProfile components are shown in Figure. The kernel has a driver which controls the

performance monitoring hardware and collects the samples. The driver interfaces to

the user space with the oprofile pseudo file system. The daemon read data from the

oprofile pseudo file system and converts the data into a sample database.

12

CHAPTER 3. PROFILING EMBEDDED LINUX 13

The opcontrol script manages OProfile’s profiling sample system. The analysis

programs such as opreport and opannotate read data from the sample database.

OProfile can be divided into three sections: the kernel support (left part), the dae-

mon (center), and the sample database with analysis programs (right part). To collect

measurements the opcontrol script write the events to measure in the oprofile pseudo

file system, once the kernel driver has been initialized, opcontrol spawns the oprofi

led daemon which reads the sample data from the OProfile pseudo file system buffer.

The daemon processes the data and places the converted data into /var/lib/oprofile/samples.

Status information is placed into /var/lib/oprofile /oprofile.log by the daemon. The

opcontrol script can also force data to be flushed to the sample database; the script

determines when the daemon has finished the operation by referencing the file

/var/lib/oprofile/complete dump.

The sample database is stored in /var/lib/oprofile/samples. The opreport and

opannotate programs extract the profile information from the sample database and

display it in human-readable form.

Install and Configure OProfile

a. install OProfile

(1) ./configure -with-linux=/linux/path

(2) make install

b. Configure OProfile

(1) To monitor the kernel execute following command

Opcontrol -vmlinux=/vmlinux/path

(2) Start oprofile

Opcontrol start

CHAPTER 3. PROFILING EMBEDDED LINUX 14

Figure 3.1: Oprofile Block Diagram

(3) Stop Oprofile

Opcontrol stop

(4) Generate the annotate report of the kernel

Opannotate -source=/path/of/linux

(5) It generate the report

Opreport

3.2 Linux Regression

3.2.1 Features of Linux Regression

Following are the Features supported by the Linux Regression Platform[6].

CHAPTER 3. PROFILING EMBEDDED LINUX 15

a. Target Test Cases: These test cases are launched on the target and the result

of the test cases is reported to Host PC for result compilation. These test cases

are marked by ”B” in test case list files.

b. Host PC Test Cases: These test cases are launched on the host environment

and are marked by ”P” in test case list files.

c. Interactive Test Cases: These test cases require some human intervention for

execution. They are marked by ”I” in test case list fies. When these test cases

are executed a shell is opened for the user to type the necessary commands. Shell

is closed by typing ”pass” or ”fail”. This reports the status of the interactive

test case.

d. Reboot command: This feature enables the kernel image to be updated/changed

at run time. After the kernel image is updated in the ash, the kernel is rebooted.

This is particularly useful for IP’s requiring different kernel configurations for

different test cases. This command is also used in case of Kernel Panic and Soft

Lockups.

e. Result Compilation: Platform generates result file containing details of test

cases, test case result, known causes of error etc. Result files (TestCaseSum-

mary.csv and CommandSummary.csv) can be viewed in MS-Excel.

f. Platform supports exclusion of test directories. IP’s can be excluded from the

regression test site if needed.

g. Linux Regression platform is currently based on ethernet as the medium of

communication between the Host PC and the target board. TCF supports

more than one type of link for communication like serial, usb etc and therefore

these can be used in future without changing the platform design.

The test cases for each IP are defined in a text file called the list file. Each IP has

its own directory and each IP directory contains four list files for the target platforms

CHAPTER 3. PROFILING EMBEDDED LINUX 16

S300 AB, S300 BA, S600 AB, S600 BA respectively The name of the list file should

be <SOC NAME> <IP Name>.list

eg: S300 AB i2c.list

The Regression platform picks the list files for all IP’s that are to be run in the

regression suite for a particular target platform. The test cases are executed in the

order as mentioned in the list file. Interactive test cases are an exception to this rule,

and they are run in the end as they require human intervention. So if a testcase

contains any interactive command it will be executed at the end of regression.

3.2.2 List file format

Each list file contains test cases for the particular IP and each test case consists of

multiple test commands. The last command of each test case generates the result of

that particular test case.

Test Case syntax:

a. Test Case LOOP

(a) Each test case begins with the keyword ”LOOP”, followed by a integer

number, indicating the number of times, the test case is to be run.

(b) eg: LOOP 5

b. Test Case START

(a) LOOP keyword is followed by the keyword ”START” and the name of the

test case. The Name should not contain any white space character and

should be max 100 chars. Name should not be put in inverted commas

and each test case should have a unique name.

(b) eg: START ETHERNET 01

c. Test Case DESCRIPTION

CHAPTER 3. PROFILING EMBEDDED LINUX 17

(a) Each test case body contains the test case description which is captured

in the TestCaseSummary.csv test report generated. This gives a brief

summary of the test case. Description of the test case inside quotes should

not be more than 400 chars and should not contain any inverted commas.

(b) eg: DESCRIPTION ”Ethernet Test Case at 100/F Con guration”

d. Test Case BODY

(a) Each test case consists of multiple test commands. These commands can

be of four types. Board type command ”B”, Interactive Command ”I”,

HostPC command ”P” and TCF commands ”CMD”. The B and P type

commands are launched on the target board and Linux host PC respec-

tively. The ”CMD” denotes the TCF command issued by the client to the

agent.

(b) The name of the command should not be more than 100 chars long and

should not contain spaces and inverted commas. All the test commands

under one test case should have unique names.

(c) All the above commands can be run in a loop, denoted by the Loop No in

the syntax below.

(d) All command arguments must be space separated. No inverted commas are

allowed in the command line, except at the end to describe the command.

The command does not support wildcards like in shells.

(e) The Description at the end of the test command gives a brief summary

about the test command. It is captured in the CommandSummary.csv test

report generated.

(f) As TCF allows new services to be added, reboot type of command has

been added under the process service.

(g) eg: B/P/I <Name> <Loop No> <command name> <arg1> <arg2>

<argn> ”Description”.

CHAPTER 3. PROFILING EMBEDDED LINUX 18

(h) eg: P ETH 01 1 ./ethtool -s eth0 autoneg on ”This command runs once

on PC”.

(i) eg: B ETH 02 5 tftp -g -r testfile -l testfile 192.168.1.1 ”This command

runs five times on board”

e. Test Case END

(a) Each test case ends with the keyword END.

(b) eg: Below is an example of a list file containing 2 test cases.

LOOP 1

START TESTCASE ONE

DESCRIPTION ”Test Case 1 of test list file”

B test1 1 test board fail.run ”This command will run on board once”

P test2 1 test pc segmentationfault.run ”This command will run on Host PC

once”

B test3 1 test board fail.run ”This last test command generates the result of

this test casel”

END

3.2.3 Platform Launching

a. Copy the folder ’LinuxRegression’ to the filesystem exported via NFS on the

Linux Host PC.

b. Ensure that the DHCP and NFS server deamons are ON on the Linux Host

PC.

c. Edit the rc file of the filesystem to automatically create dev nodes and to launch

the agent on the target after kernel boot. Add the following lines at the end of

CHAPTER 3. PROFILING EMBEDDED LINUX 19

the rc file. (Copy the node.sh script from the ’LinuxRegression’ folder to the

’etc’ folder of the filesystem.)

(a) ./etc/node.sh

(b) cd LinuxRegression

(c) ./agent -L-

d. Boot the Linux kernel on the board. The agent will be automatically launched.

e. On the Linux Host PC, run the following commands

(a) cd LinuxRegression

(b) ./client -a192.168.1.10 -bS300 AB -L <log file name>

(c) -a<IP Address> is the IP of the target board

(d) -b<S300 AB> is the target platform type. It can be one of the following

S300 AB, S300 BA, S600 AB or S600 BA

(e) -L<log file name> log file is the TCF log file, if ”-” is the log file name,

log will be dumped on std output

f. Once the client is launched, the Regression platform begins to execute the test

cases. At the end of the Regression, the client exits itself. The test report files

TestSummary.csv and CommandSummary.csv are generated in the top direc-

tory and can be viewed in MS-Excel.

• TestCaseSummary.csv:This file generate the final test case summary.

Sr.No. , IP, Name, TestCase Status, Description

(a) IP Name is the name of the IP to which test case belongs.

(b) Test Case is the name of test case as put in list file in START field.

(c) Description is same string as put in DESCRIPTION field of test case

body.

CHAPTER 3. PROFILING EMBEDDED LINUX 20

(d) Status is the result of last command executed in the test case. Status

is PASS or FAIL.

• CommandSummary.csv :This file generate the individual command

summary of each test case. This file is for debugging purpose only Sr.No.,

IP, TestCase Command Name, Status Description, Return Value

(a) TestCase - this is the test case name.

(b) Command Name - this is the individual command under each test case

body.

(c) Status - this is the status of each command. Status can be of the type

Pass /fail.

Chapter 4

Dynamic Power Management

4.1 Power Management for embedded linux

PM software is a crucial component in battery-powered systems, such as PDAs and

laptops, because it helps conserve power when the system is inactive. As a simple

example, power may be conserved by switching off the display when a system is in-

active for some time. Conserving power in this manner extends battery life, so one

can work more hours before having to recharge the battery.

Hardware support is vital for power management to work, and software intelligently

exercises that support. The degree of power management support available in hard-

ware varies from device to device. Some devices, such as a display, simply provide

two power states, on and off. Other devices, like the SA1110 CPU, may support more

complex power-saving features, including frequency scaling.

Implementing power management in any system is a complex task, considering that

several non-interacting subsystems need to be brought together under a single set of

guidelines.

Power Management Implementation Before implementing power management,

it is important to understand what hardware support is available for saving power.

One of the important goals of power management software is to keep all devices in

21

CHAPTER 4. DYNAMIC POWER MANAGEMENT 22

their low power states as much as possible[7].

Here is a brief description of the power states.

Figure 4.1: a possible power state transition diagram for this PDA.

• Run state: system falls into this default state when it reboots. Power con-

sumption is maximum in this state, as all devices are turned on or active.

• Standby state: system falls into this state due to inactivity. LCD and display

back light are turned off, and CPU clock speed is reduced to save some power.

• Sleep state: system falls into this state due to continued inactivity. Power is

conserved aggressively by putting the CPU in sleep mode, which in turn powers

off most devices. DRAM, however, is put in its self-refresh mode to preserve the

machine state (system and application text/data loaded in memory) while the

system is sleeping. The system awakens from sleep state when a preprogrammed

CHAPTER 4. DYNAMIC POWER MANAGEMENT 23

event occurs. When it wakes up, it transitions to the run state and machine

state is restored.

• Shutdown state: system falls into this state when the shutdown command is

issued. The system reboots when it exits from this state. This means it is not

necessary to preserve the machine state in DRAM, and hence DRAM can be

powered off. The shutdown state then represents the lowest power consumption

state of all.

The real-time clock is kept on in all power states to retain system time.

4.2 Types of Power Management

Power Management can be of two types:[8]

a. Incorporated in the device itself. Device driver intervention needed.

b. Incorporated in Operating System. This is called Operating System-directed

Power Management(OSPM)

Device directed power management is slowly and gradually becoming obsolete in the

system.

4.2.1 Why OSPM!?

OSPM! provides some fundamental edge over driver directed power management.

Here are few advantages over driver directed power management:

Advantages

a. Moving power management functionality in the OS itself will help all the plat-

forms and devices to utilize it. Power management capabilities are available

to all the systems on which the OS is installed. This can be exploited to the

maximum by system and firmware designers.

CHAPTER 4. DYNAMIC POWER MANAGEMENT 24

b. This will reduce the industry wide practice of investing in power management

algorithms in the device driver/device itself. As such common algorithms will

be incorporated in the OS, organizations can think of innovations rather than

simple parity.

c. Limitation of implementing of complex power management algorithms in the

BIOS has been overcame.

d. Development of OSPM! can be done independent to development of OS. This

abstraction is a key eye-catcher which has interested many major players

4.3 Dynamic Power Management

Techniques oriented to enable and disable components, as well as adapting their

performance to the workload, are called DPM techniques[9].

These ones can make use of several features supported by modern hardware de-

signs, including multiple power states in I/O devices and variable-voltage processors,

and can be implemented at different abstraction levels.

Recently, the targeting of DPM strategies towards the operating system (OS) level

has gained importance due to its flexibility and ease of use. In fact, because of the OS

has an overall view of the system resources and workload trend, it is possible to take

customized power management decisions and, as a consequence, achieving significant

energy savings.

DPM techniques reported in literature can be classified in three main levels:

a. Application operating system interface

b. Operating system

c. Operating system-hardware interface.

CHAPTER 4. DYNAMIC POWER MANAGEMENT 25

4.3.1 Application operating system interface

At the application-operating system level, it is possible to apply power optimiza-

tion by integrating the application layer into dynamic power management of devices.

These techniques exploit I/O devices to save energy. For example, in a new OS

interface is introduced for cooperative I/O that can be exploited by energy-aware

applications, while in this is achieved by introducing new system calls which allow

interactive applications to inform the OS about future device requests: this enable a

proper schedule of the processes and, consequently, a power reduction[10].

4.3.2 Operating System

At OS level it is possible to search for tasks requiring services from hardware compo-

nents, as sources of power consumptions. OS has detailed knowledge about running

tasks, so that this information can be used for power management. A DPM scheme

at OS level that adapts power state of hardware components depending on workload,

can deal with problems that in other levels cannot be handled and can identify time

intervals where I/O devices are not being used and switch these devices to low power

state.

4.3.3 Operating system-hardware interface.

A significant effort is spent toward techniques that act at the operating system-

hardware level, namely, that try to apply, at the same time, OS techniques based

on particular hardware architectures. In this wide class we can distinguish between

the specialized hardware that can be typically a microprocessor or a memory. In

literature there are several techniques, namely scheduling algorithms, for variable

voltage selection microprocessors or page replacement algorithms for Rambus off-chip

memory. sectionMethods for power management Three methods that are proposed

for power saving in embedded linux.

a. Suspend and resume.

CHAPTER 4. DYNAMIC POWER MANAGEMENT 26

b. CPUfreq scaling.

c. CPUidle.

Before exploring these methods it is good to know about the states of the processor.

4.3.4 States of Processor

4.3.5 C states: Almost all idle

C states are idle states in which the processor will unclock and shut down components

to save power. Steps taken by c stats:

a. Stopping the processor clock.

b. Stopping interrupts.

c. Lowering the voltage and frequency.

These states can provide power savings when the system is idle. Remember, the

deeper the C state, the more power savings.

4.3.6 P states: In operation

P states are operational states that relate to CPU frequency and voltage. The higher

the P state, the lower the frequency and voltage at which the processor runs. The

CPUfreq governors use P states to change frequencies and lower power consumption.

CHAPTER 4. DYNAMIC POWER MANAGEMENT 27

Figure 4.2: States of processor

4.4 Suspend and Resume

It has two methods implemented - Standby and Suspend to Ram.

4.4.1 Standby

This state offers minimal, though real, power savings, while providing a very low-

latency transition back to a working system. No operating state is lost (the CPU

retains power), so the system easily starts up again where it left off. Here, devices are

CHAPTER 4. DYNAMIC POWER MANAGEMENT 28

put in a low-power state, which also offers low power savings, but low resume latency.

Not all devices support low-power state, and those that don’t are left on[8].

4.4.2 Suspend to Ram

This state offers significant power savings as everything in the system is put into a

low-power state, except for memory, which is placed in self-refresh mode to retain

its contents. System and device state is saved and kept in memory. All devices are

suspended. In many cases, all peripheral buses lose power when entering STR, so

devices must be able to handle the transition back to the ON state.

CHAPTER 4. DYNAMIC POWER MANAGEMENT 29

4.5 NAND Flash Memory

Flash memory has become a powerful and cost-effective solid-state storage technol-

ogy widely used in mobile electronics devices and other consumer applications. Two

major forms of Flash memory, NAND Flash and NOR Flash, have emerged as the

dominant varieties of non-volatile semiconductor memories utilized in portable elec-

tronics devices[11][12].

NAND Flash, which was designed with a very small cell size to enable a low

cost-per-bit of stored data, has been used primarily as a high-density data storage

medium for consumer devices such as digital still cameras and USB solid-state disk

drives. NOR Flash has typically been used for code storage and direct execution in

portable electronics devices, such as cellular phones and PDAs.

NAND Flash was developed as an alternative optimized for high-density data

storage, giving up random access capability in a tradeoff to achieve a smaller cell

size, which translates to a smaller chip size and lower cost-per-bit. This was achieved

by creating an array of eight memory transistors connected in a series. Utilizing the

NAND Flash architecture’s high storage density and smaller cell size, NAND Flash

systems enable faster write and erase by programming blocks of data. NAND Flash is

ideal for low-cost, high-density, high-speed program/erase applications, often referred

to as data-storage applications.

The NAND FLASH is composed by several storage unit blocks, and every storage

unit block which is the least erasing unit includes several storage pages. The storage

page is the least unit to write data Compared with normal memory the reading

speed of FLASH is faster, but the data must be erased with storage unit block before

writing accord page order. There are some initial invalid blocks (bad block) in NAND

FLASH that the manufacturing company do not ensue its reliability. The bad blocks

are allowed existing in end product because using NAND technology. The bad blocks

do not affect the performance of the other blocks, but they should be masked by

CHAPTER 4. DYNAMIC POWER MANAGEMENT 30

Figure 4.3: Comparision of NAND and NOR memory

address mapping table in system.

When chips produced, all parts except the area that save information of bad blocks

are erased (the value is 0xFF). The bad blocks must be distinguished according the

initial bad block information when designing system, and build bad blocks table.

It needs to compare the block address which going to be operated with bad block

address table, jumps if it is bad block. New bad blocks maybe produced when chips

running, so these conditions should be considered in order to keep system reliability.

If defaults were found in reading state register after writing data or block erasing

operation, that means there are bad pages in block i.e. this is a bad block and its

information should be saved into the bad block table.

Chapter 5

Implementation

5.1 CPUfreq Scaling

CPUfreq, which changes the processor frequency and/or voltage and manages the

processor performance levels and power consumption based on processor load. We

can dynamically scale processor frequencies through the CPUfreq subsystem. When

processors operate at a lower clock speed, they consume proportionately less power

and generate less heat. This dynamic scaling of the clock speed gives some control in

throttling the system to consume less power when not operating at full capacity[8].

The CPUfreq structure makes use of governors and daemons for setting a static

or dynamic power policy for the system. The dynamic governors can switch between

CPU frequencies based on CPU utilization to allow for power savings while not sac-

rificing performance. These governors also allow for some user tuning so you can

customize and easily change the frequency scaling.

31

CHAPTER 5. IMPLEMENTATION 32

Figure 5.1: cpufreq Infrastructure

5.1.1 Frequency power relation

Current CMOS electronics consumes power in three big areas:

P = P1+P2+P3

leakage - current going either through substrate (under schematics) or not fully closed

transistors (through schematics) and depends on voltage, thus this part of the power

will be proportional to the square of the voltage:

P1 = IL *UC =U2C/RL

recharging parasitic capacitance of wires and inputs-depends on both frequency and

voltage, linear on frequency and square on voltage.

P2 =U2C/RP =U2C*CP*F

shoot-through current - happens during the switch of the CMOS circuit then one

transistor is already open while opposite to it is just started to close, and thus, is

linear proportional to frequency and square proportional to voltage.

P3 =U2C*F/RS

Summarizing the above, consumed power is proportional to square of core voltage

and either constant or linear to frequency, depending on which power consumer on a

CHAPTER 5. IMPLEMENTATION 33

chip dominates. Maximum frequency of the CMOS circuit depends on core voltage

as well, and thus, to save power we need to decrease the core voltage, but beforehand

set frequency to value, allowed at this reduced voltage[12][13].

5.1.2 Governors

There are five in-kernel governors available for use with the CPUfreq subsystem.

These governors set the processor frequency based on certain criteria. Some dynam-

ically change the frequency as inputs are changed either by the system or the user[13].

a. Performance governor: Highest frequency The performance governor statically

sets the processor to the highest frequency available. We can adjust the range

of frequencies available to this governor. As the name implies, this governor’s

goal is to get the maximum performance out of a system by setting the proces-

sor clock speed to the maximum level and leaving it there. This governor does

not attempt to provide any power savings by default, although we can tune the

governor to change the frequency it selects.

b. Powersave governor: Lowest frequency On the flip side, the powersave governor

statically sets the processor to the lowest available frequency. Again we can

adjust the range of frequencies available to this governor. The purpose of this

governor is to run at the lowest speed possible at all times. Obviously this can

affect performance in that the system will never rise above this frequency no

matter how busy the processors are.

In fact, this governor often does not save any power since the greatest power

savings usually come from the savings at idle through entering C states. Using

the powersave governor will prolong a running process since it will be running

CHAPTER 5. IMPLEMENTATION 34

at the slowest frequency; therefore, it will take longer for the system to go idle

and get the C state savings.

c. Userspace governor: Manual frequencies Next there is the userspace governor,

which allows us to select and set a frequency manually. This governor also

works with processor frequency daemons running in userspace to control fre-

quency. This governor is useful for setting a unique power policy that is not

preset or available from the other governors.

Note that the userspace governor itself does not dynamically change

the frequency; rather, it allows us or a userspace program to dynam-

ically select the processor frequency.

d. Ondemand governor: Frequency change based on processor use

The ondemand governor was the first in-kernel governor to dynamically change

processor frequency based on processor utilization. The ondemand governor

checks the processor utilization and if it exceeds the threshold, the governor

will set the frequency to the highest available. If the governor finds the uti-

lization to be less than the threshold, it steps down the frequency to the next

available. If the system continues to be underutilized, the governor will continue

stepping down the frequency until the lowest available is set.

We can control the range of frequencies available, the rate at which the governor

checks utilization on the system, and the utilization threshold.

e. Conservative governor: A more gradual ondemand Based on the ondemand

governor, the conservative governor is similar in that it dynamically adjusts

frequencies based on processor utilization; however, the conservative governor

CHAPTER 5. IMPLEMENTATION 35

behaves a little differently and allows for a more gradual increase in power. The

conservative governor checks the processor utilization and if it is above or below

the utilization thresholds, the governor steps up or down the frequency to the

next available instead of just jumping to the highest frequency as ondemand

does[10][9].

We can control the range of frequencies available, the rate at which the governor

checks utilization on the system, the utilization thresholds, and the frequency

step rate.

5.2 Algorithm

Based on workload modify frequency Based on the workload of the CPU fre-

quency can be modified. First calculate the amount of time CPU is idle. And based

on the idle time calculate the load of the CPU[13].

If(load > up_threshold)

If(policy-> cur=policy->max)

Return;

else

assign policy->max as a new freq; //increase the value to the max.

Else if If(load < up_threshold)

Freq=(policy->max-load)/up_threshold //assign it as a new freq.

5.2.1 Steps for modifying frequency

a. Step1 Define the threshold values for load:

MIN UP THREASHOLD

MAX UP THREASHOLD

CHAPTER 5. IMPLEMENTATION 36

DEF UP THREASHOLD

b. Step2 Define values for sampling rates

MIN SAMPLIN RATE

MAX SAMPLING RATE

TRANSITION LATENCY LIMIT

c. Step3 Calculate CPU idle time

For calculating CPU idle time get the total CPU time by the function get cpu jiffies().

CPU idletime is the (total cputime - cpu busytime).

For calculating the cpu busytime add all the time spend in user space, System

space, interrupt, soft interrupt and cpu stealing cycle.

So final

idletime = total cputime - cpu busytime.

d. Step4 Set the different frequency for jiffies with power save option.

e. Step5 Calculate load

f. Step6Compare load and adjust frequency according to the workload.

if (load > dbs_tuners_ins.up_threshold) {

/* if we are already at full speed then break out early */

if (policy->cur == policy->max)

return;

if (policy->cur == policy->max)

CHAPTER 5. IMPLEMENTATION 37

return;

} else {

int freq = powersave_bias_target(policy, policy->max,

CPUFREQ_RELATION_H);

}

return;

}

if (load < (dbs_tuners_ins.up_threshold - 10)) {

unsigned int freq_next=(policy->cur*load)/(dbs_tuners_ins.up_threshold-10);

__cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_L);

if (!dbs_tuners_ins.powersave_bias) {

__cpufreq_driver_target(policy, freq_next,

CPUFREQ_RELATION_L);

} else {

int freq = powersave_bias_target(policy, freq_next,

CPUFREQ_RELATION_L);

}

}

5.2.2 Prerequisites

First check that CPUfreq is enabled or not. One quick way to check if CPUfreq

is already enabled is to look in the /sys filesystem. If you see the cpufreq directory

listed under /sys/devices/system/cpu/cpu*/cpufreq/, then your system currently has

CPUfreq enabled.

CHAPTER 5. IMPLEMENTATION 38

If you do not see this directory listed, follow these instructions to ensure that you

have the required pieces.

First, make sure that processor can support frequency scaling. Next, look at kernel

config file. The following options are located in the CPU Frequency scaling section

of the config file:

CONFIG CPU FREQ

This option must be set to y to make use of the kernel’s CPU frequency scaling.

CONFIG CPU FREQ GOV PERFORMANCE

CONFIG CPU FREQ GOV POWERSAVE,

CONFIG CPU FREQ GOV USERSPACE

CONFIG CPU FREQ GOV ONDEMAND,

CONFIG CPU FREQ GOV CONSERVATIVE

These options are for each of the available CPUfreq governors. To use a governor, set

the config option to y or m. If you set the option to y, that governor’s module will

be built into the kernel. If you set the option to m, you will have to load the module

yourself for each boot by issuing one or all of the following commands:

Modprobe cpufreq performance

modprobe cpufreq powersave

modprobe cpufreq userspace

modprobe cpufreq ondemand

modprobe cpufreq conservative

Alternatively, if you chose m, you can have the module loaded at boot time by

adding the governor modules to /etc/rc.local. Also note that you can set either the

userspace or the performance governor to the default by setting either

CONFIG CPU FREQ DEFAULT GOV USERSPACE or

CONFIG CPU FREQ DEFAULT GOV PERFORMANCE to y.

CHAPTER 5. IMPLEMENTATION 39

5.3 Flashing Utility Design

This section explains the directory structure of Utility in more details. The main

folder Flashing Utils contents are as below[14][15].

a. Binaries: This folder contains all the binary images required to flash the board.

It also contains the DDR2 driver and firmware image which are downloaded to

the board automatically when we click on the connect button on Flashing Utility

window.

b. Configurations: This folder is the default location for keeping the stored con-

figurations for later use. These configurations define the programming window

options eg. which image has to be programmed to which partition etc.

c. Scripts: This is the default location for U-Boot command scripts which can be

run on the board. It contains a default test scripts. The required scripts may

be generated on similar pattern.

d. Setup: This folder contains the files required to perform the initial setup on

Windows Host

e. Tools: This directory contains 2 executables which are used while normal

running of Flashing Utils. USB send.exe is used to send the DDR2 driver and

firmware when connect button is clicked and ukermit.exe is used to send image

files over a COM port via Kermit protocol.

(a) src: This directory contains the source code for the 2 executables contained

in the Tools directory

f. SPEAr-Utils.tcl: This is the actual utility written in TCL language which opens

the GUI to interact with the user.

CHAPTER 5. IMPLEMENTATION 40

5.3.1 Setting up memory partitions

Click on the Setup menu and Setup Memories Partitions

Figure 5.2: Setup memory partition

The partitions can now be added or removed. 0x10000 and 0x4000 is the default

erase size (Sector size for Serial NOR Flash and Block Size for NAND Flash device).

This erase size can be selected once all the partitions in the specific memory are re-

moved. Also, select the location for environment variable[14][15].

Note: Since the firmware is different for saving environment variables

in different memories, the board needs to be rebooted and reconnected to

make the new option work.

CHAPTER 5. IMPLEMENTATION 41

This is a onetime setting and the partition setup is saved in a file once the Save

button is clicked. It can then be accessed or modified by clicking on Setup menu ->

Setup Memories/Partitions.

Note: This step is necessary for performing any erase or program op-

eration on flash as all the operations are performed on partitions only.

proc SetupWindow {} {

global mems size Partitions ShowParts

global sb

set es(Nor) {

0x0 0x10000 0x40000

}

set es(Nand) {

0x0 0x4000 0x10000 0x20000

}

if {$Partitions($i) > 0} {

for {set j 1} {$j <= $Partitions($i)} {incr j} {

addPart $f.lab $i old

}

}

}

CHAPTER 5. IMPLEMENTATION 42

}

proc saveSetup {w} {

foreach mem $mems {

set max 0

for {set i 1} {$i <= $ShowParts($mem)} {incr i} {

set var [expr $from($mem$i)+$len(memi)]

if {$var > $max} {

set max $var

}

}

for {set j 0} {$j < $max} {incr j} {

set check($j) 0

}

for {set i 1} {$i <= $ShowParts($mem)} {incr i} {

if {$sanity == "FAIL"} {

break

}

set j $from($mem$i)

for {set k 0} {$k < $len($mem$i)} {incr k} {

incr j

}

}

}

if {$sanity == "PASS"} {

if {[info exists lastenvopt]} {

CHAPTER 5. IMPLEMENTATION 43

foreach mem $mems {

while {$i < $p} {

incr i

set line "$names($mem$i)@$from(memi)@$len($mem$i)"

puts $conf $line

}

}

proc delPart {p mem} {

if {$i > 0} {

if {$i == 1} {

}

}

destroy $p.$i

}

5.3.2 Erasing Partitions

Click on the Erase button Select the partitions to erase and click on erase button to

erase the selected partitions[15].

proc EraseSec {p} {

for {set i 1} {$i <= $Partitions(Nor)} {incr i} {

if {$erase(Nor$i) == "on"} {

set eraseall(Nor) off

set erase(Nor$i) off

set cmd "erase 1:$from(Nor$i)-[expr $from(Nor$i) + $len(Nor$i) - 1]"

CHAPTER 5. IMPLEMENTATION 44

Figure 5.3: Erase memory partition

}

}

for {set i 1} {$i <= $Partitions(Nand)} {incr i} {

if {$erase(Nand$i) == "on"} {

set fromadd [expr $from(Nand$i) * $size(Nand)]

set fromadd [format "%x" $fromadd]

set length [expr $len(Nand$i) * $size(Nand)]

set length [format "%x" $length]

set cmd "nand erase 0x$fromadd 0x$length"

}

}

5.3.3 U-boot Through Script File

It provides an additional feature that user can run U-boot commands through script

file. For that user have to write a script file or a text file that contains all the u-boot

commands in sequence.

CHAPTER 5. IMPLEMENTATION 45

To load the script file click on ”Run Script”. It asks from where to get the script

file and then load the file. It launches command written in the script file or text file

one by one. Make sure that the script file is written properly.

proc runscript {} {

if {[string compare $file ""]} {

if {![catch {set conf [open "$file" r]}]} {

set contents [read $conf]

close $conf

set lines [split $contents "\n"]

set opstatus "Running Script"

for {set i 0} {$i < [llength $lines]} {incr i} {

set line [lindex $lines $i]

if {[string compare $line ""]} {

}

}

5.3.4 Selection of SOC

This utility supports four different SPEAr devices.

a. SPEAr600

b. SPEAr300

c. SPEAr310

d. SPEAr320

CHAPTER 5. IMPLEMENTATION 46

runCmd {} {

set command ""

set checkcmd [string range $cmd 0 [expr [string first " " $cmd] - 1]]

if {$checkcmd == ""} {

set checkcmd $cmd

}

for {set i 0} {$i < [llength $checkcmdlist]} {incr i} {

if {$checkcmd == [lindex $checkcmdlist $i]} {

set endstr " "

break

}

5.3.5 Programming Partitions

Click on program button

User can select appropriate SoC according to the SPEAr device going to be used.

Select the partitions to program through check-buttons and select the binary files

for each selected partition. Uncheck buttons of the NAND partition program.Click

on program binaries button to write the flash.

The programming configuration can be saved in a file for further use. The con-

figuration saved as defConf.conf is default configuration that opens when Program

button is clicked. Overwrite this configuration according to your PC paths.

Note : The COM port selected in the main window should be the gadget

serial COM port number. It can be seen from the device manager window.

CHAPTER 5. IMPLEMENTATION 47

Figure 5.4: Program memory partition

proc ProgramWindow {} {

1. Set the memory type NOR or NAND want to flash.

2. Check the box which partition want to flash Example: File Syatem, xloader,uboot or Linux kernel image

3. Set the type of partition type if NOR then only jffs2 and if NAND then it can be jffs2 or yaffs2.

4. Write the data on the particular mtdblock address using write command.

}

proc flashImages {f w} {

for {set i 1} {$i <= $Partitions(Nor)} {incr i} {

if {$prog(Nor$i) == "on"} {

set filelength [file size $image(Nor$i)]

CHAPTER 5. IMPLEMENTATION 48

if {$length >= $filelength} {

set filelength [format "%x" $filelength]

set opstatus "Uploading file \"$fname\""

catch {ukermit $image(Nor$i)} id

set cmd "cp.b 0x800000 0x$fromadd 0x$filelength"

for {set i 1} {$i <= $Partitions(Nand)} {incr i} {

if {$prog(Nand$i) == "on"} {

set fromadd [expr $from(Nand$i) * $size(Nand)]

set fromadd [format "%x" $fromadd]

set length [expr $len(Nand$i) * $size(Nand)]

set filelength [file size $image(Nand$i)]

catch {ukermit $image(Nand$i)} id

if {$rootfs(Nand$i) == "YAFFS2"} {

set cmd "nand write.yaffs2 0x800000 0x$fromadd 0x$filelength"

} else {

set cmd "nand write.jffs2 0x800000 0x$fromadd 0x$filelength"

}

CHAPTER 5. IMPLEMENTATION 49

5.4 Bad Block Management

The FLASH chip uses the data management of block and byte. When a block of

storage area became invalid, replace it with the block of backup storage area. If there

is no bad block in actual storage chips, the logic address correspond with physical

address completely. If the physical block which corresponds to logic block become

invalid, a block of reserved storage area will be distributed to replaces it, thus the

physical storage address is made to in continuity. In this condition, if we still make

the logic address corresponded to physical address completely, will brings great com-

plexity to manage data storage address. If the logic address and physical address

mapping mutually, will reduce address management complexity. Particularly, a map-

ping table of logic address to physical address should be built, use continuous logic

address when manage data, transfer the logic address to physical address through

the mapping table only when access FLASH chips. The main function of the table

is to make bad block replacing convenient when storing data, so we call it bad block

replacement table[16][11].

We build 2 bad block tables in data buffer in our design (bad block replacement

table A, B), as the bad block replacement tables of host FLASH memory and backup

FLASH memory separately. The size of every bad block replacement table is 4KB.

Every bad block list item occupy 2 byte, so every bad block replacement table con-

tains 2048 items and corresponds to a storage unit of 128KB. Their data structure is

shown as table 1[11].

The left side of table is the number of bad block replacement table, and it is also the

logic number to access FLASH memory. The right side is 2 byte list item content-the

physical block number corresponds to logic block number. If there is no bad block in

FLASH chips, the physical block number equals logic block number; if the physical

block number which corresponded to the logic block number is a bad block, the phys-

ical block number is the replacement physical block number. Such as the first item of

CHAPTER 5. IMPLEMENTATION 50

lOGIC NUMBER PHYSICAL NUMBER
0000 0000
0001 1024
0002 0002

Table 5.1: Data Structure Of Bad Block Replacement Table

table, the corresponded logic block number is 0. The 0th block of FLASH chip works

normally, so the table item content is 0[16].

The second item of table which logic block number is 1, but the first block of

FLASH chip is bad, so we need to replace it with 1024th block which is the first fine

block of backup FLASH chip. The second table item content is modified to 1024,

show that the later access to the first logic block will be all mapped to the 1024th

block.

5.4.1 Bad Block Singed Table

After built the bad block replacement table, a bad block signed table should be built

to coordinate with it. Therefore, we can find the fine blocks with shortest time when

manage bad blocks and improve efficiency. As same as bad block replacement table,

two bad block signed tables should be built to correspond to the main FLASH and

the backup FLASH.

PHYSICAL NUMBER HEALTH CONDITION
0000 0000
0001 0FFH

Table 5.2: Structure Of Bad Block Signed Table

CHAPTER 5. IMPLEMENTATION 51

The BBM algorithm is defined by system modules external to the NAND device,

which can be hardware and/or software components. To further complicate matters,

various system components can contribute a portion of the larger algorithm. These

components can be from multiple suppliers. Obtaining a comprehensive BBM algo-

rithm specification from a sole source may not be achievable. Components that may

contribute to the BBM scheme include, but arent limited to: commercial, open-source,

or proprietary flash file system software and drivers, microcontrollers or chipsets with

integrated NAND controller hardware, and hardware IP core NAND controllers.

To help with specifying BBM algorithms for production programming, six areas

are important. These include:

a. Bad Block Replacement Strategy

b. Partitioning

c. Error Correction Codes ECC!

d. Spare Area Placement

e. Free Good Block Formatting

f. Dynamic Metadata

There are other aspects of bad block management, such as wear leveling, block

reconditioning, and garbage collection that are important for the target system to

implement. However, only the above listed areas are a requirement during factory

programming.

5.5 Bad Block Manage Algorithm

BBM The bad blocks of FLASH chip includes several types of initial bad block, areas

bad block, program bad block, read bad block etc. any type of bad block would lead

CHAPTER 5. IMPLEMENTATION 52

to a condition that the written data in bad block can not be read out correctly. In

order to simplify logic design, we use uniform readout checking method to all types of

bad blocks. In actual implication, in order to reduce start time, we proposed a new

real-time bad block recognized and replaced method compare to normal replacement

algorithm. When power-up originally, we do not make FLASH check itself. We as-

sumed that all blocks in FLASH are fine. When recording data, we should erase the

block before write data on the first page of it[16].

If erase failed, the block is considered as bad block and then replaces it with backup

Figure 5.5: Replacement Algorithm

CHAPTER 5. IMPLEMENTATION 53

block. Then erased again, if failed too, continue to replace with backup blocks until

the data can write into the replacement bad block. In order to provide enough redun-

dancy blocks, we select larger capacity FLASH chips according to the requirement

of storage capacity and supply of goods. The bad block replacement process chart is

shown as figure.

Chapter 6

Testing and Results

6.1 Testing of Power Management

6.1.1 Test setup:

• SPEAr Board: SPEAr600,SPEAr300,SPEAr320

• Temperature controller(used to vary temp from -10 to 140)

• Voltage and Current analyzer(used to measure current and voltage at different

jumper)

• Linux HOST PC

• DDR Testing utility

Analyzer is used to provide external voltage supply and measure the current at dif-

ferent jumper. Connecting this analyzer to the SPEAr board and boot the board and

measure the current consume in normal mode.Also measure the current in different

three situation:

• When DDR test running.

54

CHAPTER 6. TESTING AND RESULTS 55

Figure 6.1: Power Management Test Setup

• When Copying data from pen-drive.

• Suspending and resuming process.

6.1.2 Using CPUfreq

After completing Power management testing in normal mode recompile linux kernel

with enabling cpufreq option. To enable cpufreq in kernel image run following com-

mands:

make menuconfig;

select cpufreq option:

CHAPTER 6. TESTING AND RESULTS 56

make uImage;

Repeate the above steps with different governors ondemenad,powersave.performance.

echo powersave¿/sys/devices/system/cpu/cpu-0/scaling-governors

Testing Results For SPEAr-300

Operation JP1(1.0v) JP2(1.8v JP3(2.5v) JP3(3.3v)
Linux Prompt 226 47 25 7
Copy process 235 58 26 7
Power Save Mode 153 42 25 7
On Demand Mode 190 42 25 7
Suspend 140 32 25 7
Resume 190 42 25 7

Table 6.1: Power Management testing on SPEAr-300

Figure 6.2: Power Management chart for SPEAr-300

CHAPTER 6. TESTING AND RESULTS 57

Testing Results For SPEAr-320

Operation JP1(1.0v) JP2(1.8v JP3(2.5v) JP3(3.3v)
Linux Prompt 233 134 26 37
Copy process 240 140 26 37
Power Save Mode 162 134 26 37
On Demand Mode 190 134 26 37
Suspend 116 77 25 37
Resume 190 134 25 37

Table 6.2: Power Management testing on SPEAr-320

Figure 6.3: Power Management Chart for SPEAr-320

CHAPTER 6. TESTING AND RESULTS 58

Testing Results For SPEAr-600

Operation JP1(1.0v) JP2(1.8v JP3(2.5v) JP3(3.3v)
Linux Prompt 340 46 10 10
Copy Process 380 66 10 10
Power Save Mode 270 46 10 10
On Demand Mode 300 46 10 10
Suspend 217 36 10 10
Resume 300 46 10 10

Table 6.3: Power Management testing on SPEAr-600

Figure 6.4: Power Management chart for SPEAr-600

CHAPTER 6. TESTING AND RESULTS 59

6.2 Performance of NAND Flash Memory with

Bad Bloack Management Algorithm

The performance measurement has been performed using:

• Hardware: ARM926EJS (333MHz), STMicroelectronics NAND 512W3A2CZA6

flash.

• Test File-system on the NAND Flash: YAFFS2 and JFFS2 (for /dev/mtdblock7)

• Kernel: linux-2.6.27.

• Driver: DMA was disabled

Result for YAFFS2The steps for testing NAND Flash memory is as follow:-

Mount YAFFS2 fs and write/read to a file. Sequence is as follows:

• mount t yaffs2 /dev/mtdblock7 /mnt

• time dd if=/dev/zero of=/mnt/file.bin bs=4K count=8192 (Write the file)

• umount /mnt

• mount t yaffs2 /dev/mtdblock7 /mnt

• time dd if=/mnt/file.bin of=/dev/null bs=4K count=8192 (Read file back)

• umount /mnt

• mount t yaffs2 /dev/mtdblock7 /mnt

• rm /mnt/file.bin

• umount /mnt

• Repeat for bs = 8, 16, 32, 64K and count=4096, 2048, 1024, 512.

CHAPTER 6. TESTING AND RESULTS 60

Size Count MB Write time MBPS Read time MBPS

4K 8192 32 49.5 0.64 21.9 1.46

8K 4096 32 49.7 0.64 21.9 1.46

16K 2048 32 49.6 0.64 21.9 1.46

32K 1024 32 49.3 0.65 21.9 1.46

64K 512 32 49.6 0.64 21.9 1.46

Table 6.4: Performance of NAND memory

Figure 6.5: NAND Performance chart

Test result for Spear-600 NAND Performance Chart: In order to detect the initial

bad blocks (generated during factory production) and to handle run time bad blocks

(generated by program/erase usage).It remaps a bad block to one of the reserved

blocks so that the data contained in a bad block is not lost and new data writes on

a bad block is avoided.

Chapter 7

Conclusion and Future Scope

7.1 Conclusion

Dynamic power management is an effective means for system-level design of low-

power embedded systems. Dynamic power management is already widely applied to

system design. The experiments were conducted with different ST Spear architecture,

with different temperature. Experimental results shows amount of power that can be

save when the system is sitting ideal for some time or the load on the system varies.

The implementation of Dynamic Power Management algorithm increases battery life

for Embedded system.

Flashing utility and bad block management algorithm improve performance of NAND

flash in Embedded system.Flashing utility used to program the various embedded

system flash memory partitions.By using this utility user can program memory par-

tition at run time according to user requirement.Bad block Management algorithm

improvers the over all read and write time of the memory.

61

CHAPTER 7. CONCLUSION AND FUTURE SCOPE 62

7.2 Future Scope

The current ondemand governor depends on the idle/busy statistics collected at the

scheduler ticks. If at the tick instance the CPU was idle, then whole tick is considered

idle and vice-versa. But, if we can do a microaccounting of idle time then we get a

more accurate number of time spent idle and time spent doing useful work. The ker-

nel can do the micro-accounting by noting the time of entry and exit of idle routine

and interrupts.

ukermit and usb send are two application used in Flashing utilization. Using these

two utility data is flash in NOR or NAND memory and behind these data transfer

USB host is used as a medium.But the data transfer rate is slow as compare to USB

host. So optimization of flashing utility can be possible.

Appendix A

ST SPEArR Architecture

ST Microelectronics customizable processor family, called SPEArR, supplies a pow-

erful digital engine that offers the possibility of designing special user functions with

very low development time and cost. The new family is based on an ARM core archi-

tecture that maximizes hardware and software performances, it includes an advanced

bus system and IPs for connectivity and memory interfaces. The user functions can

be embedded in the configurable logic block[3].

SPEArR concept provides high performances SoC and full custom design capabil-

ities with a quick development cycle.

A.1 SPEArR Technology

SPEArR products are SoC with embedded functional blocks and innovative design

model that makes a project customization easy, reliable, quick, and affordable.The

typical ASIC! design models allow the designer to put together functional blocks

according to a project requirements. SPEArR enables designers to embed functional

blocks (standard or custom IP) within a pre-designed, tested, and validated system

architecture featuring leading ARM processors, peripheral/memory controllers and

state of the art connectivity.

63

APPENDIX A. ST SPEARR ARCHITECTURE 64

Adapting the project requirements to SPEArR architecture is easy, fast, and re-

liable. The customizable logic accepts any digital project requirements by intercon-

necting metal and via layers, combining ”logic tiles” with a very high integration

yield. Moreover the customizable logic allows the design of a single platform device

to respond to changes in the customer’s specification.

A.2 SPEArR architecture

Of course SPEArR family components are different: single/dual cores, customizable

logic size, connectivity and so on, but have been designed sharing some important

architectural concepts and therefore providing scalable solutions:

a. State of art ARM cores (from ARM9 to Cortex A9) single/dual cores

b. Very good memory interface; especially for the DRAM path. Multiport memory

controllers, providing buffers for each SoC internal path (main IPs are connected

via dedicated bus), are used to solve latency issues and optimize memory access.

c. Rich set of connectivity IPs (USBs, Ethernet etc.) having dedicated busses for

the memory controller ports connection.

d. HW accelerators and HMIs (JPEG codecs, crypto engines, LCD controllers with

touchscreen capabilities etc.)

e. Internal multilayer bus matrix to avoid bottlenecks and latency issues accessing

”low speed peripherals”

f. A set of legacy IPs (UARTs, timers, ADC etc.)

g. The customizable block with SRAM resources. SRAM blocks (single and dual

ports) can be configured to act as IPs buffers (FIFOs, local memories et.) or

APPENDIX A. ST SPEARR ARCHITECTURE 65

directly accessible by the ARM core like other ”Master peripherals”.

Each memory cut has dedicated address/data/control paths connected to the cus-

tomizable logic so the customization process can freely create the required memory

sizes (different depths and widths).

Since each memory cut is independent, the total provided bandwidth is really

impressive.For example SPEAr600 provides 28 singleport and 12 dualports SRAM

cuts (32bits data wide), so running them at 166MHz it can achieve 276 Gbits per

second (34.5GBytes per second: [28 + 2 x 12] x 4 x 166MHz).

Figure A.1: SPEAr Architecture

APPENDIX A. ST SPEARR ARCHITECTURE 66

Features

a. Processor: ARM926EJ-S running at 333MHz

b. 32 Kbytes of Instruction cache, 16 Kbytes of Data cache

c. 8-Kbyte Data-TCM (Tightly Coupled Memory), 8-Kbyte Instruction-TCM

d. 3 USB2.0 ports (two hosts and one device supporting high speed mode)

e. Ethernet 10/100 MAC

f. 16-channel 8-bit A/D converter

g. I2C interface, 3 UARTs

h. SDRAM memory interfaces at 133MHz supporting DDR and SDR

i. SPI interface supporting serial FLASH/ROM

j. 1 full USB-dedicated PLL and one dithered system PLL

k. 200-kgate (ASIC equivalent) of configurable logic connected to four banks of 4

KBytes SRAM each

l. A Real Time Clock, Watchdog and 4 general-purpose timers complete the SoC

structure

m. Supports a wide range of operating systems, including Linux, Nucleus, uItron,

and Vxworks.

Website References

[1] http://www.linuxjournal.com/article/6699

[2] http://en.wikipedia.org/wiki/EmbeddedLinux

[3] http://embedded-system.net/spear-basic-customizable-arm-based-soc-stmicroelectronics.

html

[4] http://www.ibm.com/developerworks/linux/library/l-embl.html

[5] http://www.embedded-computing.com/articles/singh/

[6] https://oprofile.sourceforge.net

[7] http://www.kernel.org/pub/linux/utils/kernel/cpufreq/cpufreq.html

[8] http://acpi.sourceforge.net

[9] http://www.datio.com/nand/nandflash.asp

[10] http://tali.admingilde.org/linux-docbook/gadget/ch05.html

[11] http://www.omen.com/knt.html

[12] http://www.st.com/stonline/stappl/cms/press/news/year2006/p2104.

htm

[13] http://blog.datalight.com/tag/bad-block-management

67

http://www.linuxjournal.com/article/6699
http://en.wikipedia.org/wiki/Embedded Linux
http://embedded-system.net/spear-basic-customizable-arm-based-soc- stmicroelectronics.html
http://embedded-system.net/spear-basic-customizable-arm-based-soc- stmicroelectronics.html
http://www.ibm.com/developerworks/linux/library/l-embl.html
http://www.embedded-computing.com/articles/singh/
https://oprofile.sourceforge.net
http://www.kernel.org/pub/linux/utils/kernel/cpufreq/cpufreq.html
http://acpi.sourceforge.net
http://www.datio.com/nand/nandflash.asp
http://tali.admingilde.org/linux-docbook/gadget/ch05.html
http://www.omen.com/knt.html
http://www.st.com/stonline/stappl/cms/press/news/year2006/p2104.htm
http://www.st.com/stonline/stappl/cms/press/news/year2006/p2104.htm
http://blog.datalight.com/tag/bad-block-management

References

[1] Carl van Schaik Ben Leslie and Gernot Heiser. A portable user-mode linux for
embedded systems. National ICT,Australia, Sydney, Australia.

[2] Alain Mosnier. Embedded/real-time linux survey. July 2005.

[3] ST Microelectronics. SPEAr-300 User manual.

[4] Pratyush Anand. Testing strategy for spear power managment. Department:
CPG-CSD, Noida,ST Microelectronics.

[5] William E. Cohen. Tuning programs with oprofile. WIDE OPEN MAGA-ZINE,
2004.

[6] Deepika Dhamija Karun Saraswat. Linux regression platform. Department:
CPG-CSD, Noida,ST Microelectronics.

[7] A. Bogliolo G. A. Paleologo, L. Benini and G. D. Micheli. Policy optimization
for dynamic power management. In Design Automation Conference, pages 182–
187, 1998.

[8] Alessandro Bogliolo Giovanni De Micheli, Luca Benini. Dynamic power manage-
ment of embedded systems.

[9] Lattice Semiconductor. Dynamic power management in an embedded system. A
Lattice Semiconductor White Paper.

[10] IBM and MontaVista Software. Dynamic power management for embedded sys-
tems.

[11] SAMAUNG. BAD BLOCK MANAGEMENT Application Note.

[12] BPM Microsystem. Understanding nand flash factory programming. October,
2008.

[13] Alexey Starikovskiy Venkatesh Pallipadi. The ondemand governor. Intel Open
Source Technology Center.

[14] Armando Vipin Kumar. Flashing utility requirements. ST Internal.

68

REFERENCES 69

[15] Vipin Kumar Shiraz Hazhim. Bootrom spear300. ST Internal.

[16] ST Microelectronics. Nand Bad Block Replacement method, September 16, 2009.

Index

Bad Block Management, 49

BBM Algorithm, 51

CPUfreq Algorithm, 35

CPUfreq Scaling, 31

Dynamic Power Management, 24

Flashing Utility, 39

Frequency power relation, 32

Governors, 33

Introduction, 1

Linux Regression, 14

Oprofile, 12

OProfiler installation steps, 13

OSPM, 23

Power Management, 21

Resume, 27

SPEArR architecture, 64

Suspend, 27

Test Result, 54

70

	Declaration
	Certificate
	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	Abbreviation
	Introduction
	Embedded linux
	Need of Embedded Linux
	Advantages of Embedded Linux
	Motivation
	Scope of work
	Thesis Organization

	Literature Survey
	Embedded Systems
	Embedded systems design
	Challenges
	Plan Of Development

	Profiling Embedded Linux
	Oprofile
	Linux Regression
	Features of Linux Regression
	List file format
	Platform Launching

	Dynamic Power Management
	Power Management for embedded linux
	Types of Power Management
	Why OSPM!?

	Dynamic Power Management
	Application operating system interface
	Operating System
	Operating system-hardware interface.
	States of Processor
	C states: Almost all idle
	P states: In operation

	Suspend and Resume
	Standby
	Suspend to Ram

	NAND Flash Memory

	Implementation
	CPUfreq Scaling
	Frequency power relation
	Governors

	Algorithm
	Steps for modifying frequency
	Prerequisites

	Flashing Utility Design
	Setting up memory partitions
	Erasing Partitions
	U-boot Through Script File
	Selection of SOC
	Programming Partitions

	Bad Block Management
	Bad Block Singed Table

	Bad Block Manage Algorithm

	Testing and Results
	Testing of Power Management
	Test setup:
	Using CPUfreq

	Performance of NAND Flash Memory with Bad Bloack Management Algorithm

	Conclusion and Future Scope
	Conclusion
	Future Scope

	ST SPEArR Architecture
	SPEArR Technology
	SPEArR architecture

	Website References
	References
	Index

