
Image Enhancement Techniques by
Texture Synthesis

By

Krupa Shah

08MCE016

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

AHMEDABAD-382481

May 2010

Image Enhancement Techniques by
Texture Synthesis

Major Project

Submitted in partial fulfillment of the requirements

For the degree of

Master of Technology in Computer Science and Engineering

By

Krupa Shah

08MCE016

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

AHMEDABAD-382481

May 2010

iii

Declaration

This is to certify that

i) The thesis comprises my original work towards the degree of Master of Technol-

ogy in Computer Science & Engineering at Nirma University and has not been

submitted elsewhere for a degree.

ii) Due acknowledgement has been made in the text to all other material used.

Krupa Shah

iv

Certificate

This is to certify that the Major Project entitled ”Image Enhancement

Techniques by Texture Synthesis” submitted by Krupa Shah (08MCE016),

towards the partial fulfillment of the requirements for the degree of Master of Tech-

nology in Computer Science and Engineering of Nirma University of Science and

Technology, Ahmedabad is the record of work carried out by her under my supervi-

sion and guidance. In my opinion, the submitted work has reached a level required for

being accepted for examination. The results embodied in this Major Project-I, to the

best of my knowledge, haven’t been submitted to any other university or institution

for award of any degree or diploma.

Dr. S.N. Pradhan Prof. D. J. Patel

Guide,P.G.Coordinator, Professor and Head,

Department of Computer Engineering, Department of Computer Engineering,

Institute of Technology, Institute of Technology,

Nirma University, Ahmedabad Nirma University, Ahmedabad

Dr. K Kotecha

Director,

Institute of Technology,

Nirma University, Ahmedabad

v

Abstract

In many image processing applications,it is often important to accurately expand

images without loss of clarity. Edge and Textures are among the most important

features of an image. They have however very different characteristics, suggestions

that they should be enhanced using different techniques. For edges, we propose a

sobel techniques and finding the edge of all objects .For textures we have used Pixel

base Texture Synthesis and Patch based texture Synthesis approach.

Texture synthesis is the process of algorithmically constructing a large digital im-

age from a small digital sample image.Texture synthesis can be used to fill in holes

in images, create large non-repetitive background images and expand small pictures

and also removing noise.

For cleaning gray scale image two methods Pixel Based Texture Synthesis and

Patch Based Texture Synthesis are implemented and their result have been com-

pared.Also taking different size and shapes of patch and then using both methods

noise is removed. PSNR is used as measure of quality. For Color image(RGB image)

cleaning the image by selecting area(select image area) and segmentation(object se-

lect by boundary).

This dissertation addresses two parts. The first part of this dissertation considers

Texture Synthesis for Gray scale images by Pixel based and Patch based Texture

Synthesis. The second part deals Cleaning the color images by Texture Synthesis.

vi

Acknowledgements

I am deeply indebted to my thesis guide Dr. S.N.Pradhan for his constant

guidance and motivation. He has devoted significant amount of his valuable time

to plan and discuss the thesis work. Without his experience and insights, it would

have been very difficult to do quality work.I would like to extend my gratitude to Dr.

S.N.Pradhan for his continuous encouragement.

I am thankful to Asst. Prof. Swati Jain and all professors at Nirma Institute

of technology who taught the fundamental essentials to undertake such a project.

Without their valuable guidance it would have been extremely difficult to grasp and

visualize the project theoretically.

I am also thankful to members of my class for their delightful company which kept

me in good humor throughout the year.

Last, but not the least, no words are enough to acknowledge constant support and

sacrifices of my family members because of whom I am able to complete the degree

program successfully.

- Krupa Shah

08MCE016

Contents

Declaration iii

Certificate iv

Abstract v

Acknowledgements vi

List of Tables x

List of Figures xi

Abbreviation xii

1 Introduction 1
1.1 Objectives . 1
1.2 statement of Problem . 1
1.3 Texture . 2
1.4 Texture Synthesis . 3

1.4.1 Definition . 3
1.4.2 Methods . 3

1.5 Application . 5
1.5.1 Distorted synthesis . 5
1.5.2 User control . 6
1.5.3 Rendering . 6
1.5.4 Animation . 6
1.5.5 Compression . 7
1.5.6 Restoration and Editing . 7
1.5.7 Computer Vision . 8

1.6 Goal . 8
1.7 Tools And Techniques . 8
1.8 Thesis Organization . 8

vii

CONTENTS viii

2 Literature Survey 10
2.1 General . 10
2.2 Literature Review . 10

2.2.1 Image Replacement through Texture Synthesis 10
2.2.2 Texture Analysis and Synthesis using Tree Structure Vector

Quantization . 11
2.2.3 State of the Art in Example-based Texture Synthesis 14
2.2.4 Real-Time Texture Synthesis By Patch-Based Sampling 16
2.2.5 Feature Matching . 19
2.2.6 Markov Random Field and Gibbs Sampling 19
2.2.7 Edge Handling . 20
2.2.8 Image Enhancement By Texture Synthesis 21

2.3 Conclusion of Research Papers . 24

3 Comparision 25
3.1 Explicit v.s. Implicit Texture Synthesis 25
3.2 Comparison of Texture Synthesis Methods 26

3.2.1 Tiling Based Texture Synthesis 26
3.2.2 Pixel Based Texture Synthesis 27
3.2.3 Patch Based Texture Synthesis 27

4 Segmentation 29
4.1 Texture Segmentation . 30

4.1.1 Edge Detection . 30
4.2 Example of Segmentation . 31

5 Methodologies 32
5.1 Gray Scale Image . 32

5.1.1 Pixel Based Texture Synthesis 32
5.1.2 Patch Based Texture Synthesis 33
5.1.3 Summary . 34

5.2 Color Image . 35
5.2.1 Selecting Area . 35
5.2.2 Edge Detection Using Segmentation 36

6 Implementation 37
6.1 Fixed Patch Size . 37

6.1.1 Pixel based Texture Synthesis 37
6.1.2 Patch Based Texture Synthesis 38
6.1.3 Noise Comparison . 39

6.2 Different size of Patch . 39
6.2.1 Noise Comparision . 40

6.3 PSNR for Texture Synthesis . 40
6.3.1 Result . 41

CONTENTS ix

6.4 Program Complexity . 41
6.5 Color Image . 42

6.5.1 Cleaning image by Selecting Area 42
6.5.2 Cleaning image by Edge Detection 44

7 Conclusion and Future Scope 46
7.1 Conclusion . 46
7.2 Future Scope . 47

Website References 48

References 49

Index 51

List of Tables

2.1 Symbols . 14
2.2 Pseudocode of the algorithm . 15
2.3 Conclusion of Research Papers . 24

6.1 Noise Ratio . 41

x

List of Figures

1.1 Distorted Synthesis . 5
1.2 User Control . 6

2.1 Example of Image Replacement . 11
2.2 Synthesis Process . 12
2.3 Process of Texture Synthesis . 16
2.4 Multi resolution Neighbor . 20
2.5 Image Enhancement By Texture Synthesis 23

4.1 Example-1 of Segmentation . 31
4.2 Example-2 of Segmentation . 31

5.1 Match neighborhood Pixel . 32
5.2 Flow of Pixel Based Texture Synthesis 33
5.3 Pixel in Patch . 34
5.4 Flow of Patch Based texture Synthesis 34
5.5 Program Flow . 35

6.1 Remove noise using Pixel based Texture Synthesis 38
6.2 Remove noise using Pixel based Texture Synthesis 39
6.3 Remove noise . 40
6.4 Select Area . 42
6.5 Cleaning Portion . 42
6.6 Example-2 of Cleaning Image . 43
6.7 Example-3 of Cleaning Image . 43
6.8 Input Image . 44
6.9 Edge Detection . 44
6.10 Output Image . 45

xi

Abbreviation

MRF Markov Random Field

MSE Mean Square Error

PSNR Peak Signal to Noise Ratio

RETS Real time image enhancement using texture synthesis

TSVQ Tree Structured Vector Quantization

xii

Chapter 1

Introduction

1.1 Objectives

The primary challenge was that simply stretching the digital image created a blocky

result, because a digital image contains only small, finite sampling of the continuous

function represent.

Using an interpolation algorithm reduces the blocky appearance but does not

add details. There is a need for a image enhancement algorithm that synthesized a

higher-resolution image and automatically inserts visually appropriate details.

1.2 statement of Problem

During large few years, researchers have developed proven techniques for enlarging

images. The primary challenges was that simply stretching the digital image created

a blocky result, because a digital image contains only a small , finite sampling of a

continous function is represents.

1

CHAPTER 1. INTRODUCTION 2

1.3 Texture

Reproducing detailed surface appearance is important to achieve visual realism in

computer rendered images. One way to model surface details is to use polygons or

other geometric primitives. However, as details becomes finer and more complicated,

explicit modeling with geometric primitives becomes less practical. An alternative is

to map an image, either synthetic or digitized, onto the object surface, a technique

called texture mapping [1] [2].

The mapped image, usually rectangular, is called a texture map or texture. A

texture can be used to modulate various surface properties, including color, reflection,

transparency, or displacements. In computer graphics the content of a texture can be

very general; in mapping a color texture, for example, the texture can be an image

containing arbitrary drawings or patterns. Unfortunately, the meaning of texture in

graphics is somehow abused from its usual meaning. The Webster’s dictionary defines

texture as follows:

Texture,

a. Something composed of closely interwoven elements; specifically a woven cloth

b. The structure formed by the threads of a fabric ...

In other words, textures are usually refereed to as visual or tactile surfaces com-

posed of repeating patterns, such as a fabric. This definition of texture is more

restricted than the notion of texture in graphics. However, since a majority of nat-

ural surfaces consist of repeating elements, this narrower definition of texture is still

powerful enough to describe many surface properties. This definition of texture is

also widely adopted in computer vision and image processing communities.

CHAPTER 1. INTRODUCTION 3

1.4 Texture Synthesis

1.4.1 Definition

Texture synthesis is the process of algorithmically constructing a large digital im-

age from a small digital sample image by taking advantage of its structural content.

Texture synthesis can be used to fill in holes in images, create large non-repetitive

background images and expand small pictures[1]. The goal of texture synthesis can

be stated as follows: Given a texture sample, synthesize a new texture that, when

perceived by a human observer, appears to be generated by the same underlying pro-

cess.

The major challenges are:

Modeling How to estimate the texture generation process from a given finite

texture sample. The estimated process should be able to model both the structural

and stochastic parts of the input texture. The success of modeling is determined by

the visual fidelity of the synthesized textures with respect to the given samples.

Sampling How to develop an efficient sampling procedure to produce new tex-

tures from a given model. The efficiency of the sampling procedure will directly

determine the computational cost of texture generation.

1.4.2 Methods

• Tiling

The simplest way to generate a large image from a sample image is to tile it.

This means multiple copies of the sample are simply copied and pasted side by

side. The result is rarely satisfactory. Except in rare cases, there will be the

seams in between the tiles and the image will be highly repetitive.

CHAPTER 1. INTRODUCTION 4

• Stochastic Texture Synthesis

Stochastic texture synthesis methods produce an image by randomly choosing

color values for each pixel, only influenced by basic parameters like minimum

brightness, average color or maximum contrast. These algorithms perform well

with stochastic textures only, otherwise they produce completely unsatisfactory

results as they ignore any kind of structure within the sample image.

• Single purpose structured Texture Synthesis

In this use a fix procedure to create an output image, i. e. they are limited to

a single kind of structured texture. Thus, these algorithms can both only be

applied to structured textures and only to textures with a very similar structure.

For example, a single purpose algorithm could produce high quality texture

images of stonewalls; yet, it is very unlikely that the algorithm will produce any

viable output if given a sample image that shows pebbles.

• Chaos Mosaic

This method, proposed by the Microsoft group for internet graphics, is a refined

version of tiling and performs the following three steps:

a. The output image is filled completely by tiling. The result is a repetitive

image with visible seams.

b. Randomly selected parts of random size of the sample are copied and

pasted randomly onto the output image. The result is a rather non-

repetitive image with visible seams.

c. The output image is filtered to smooth edges.

The result is an acceptable texture image, which is not too repetitive and does

not contain too many artifacts. Still, this method is unsatisfactory because the

smoothing in step 3 makes the output image look blurred.

• Pixel-Based Texture Synthesis

They typically synthesize a texture in scan-line order by finding and copying

CHAPTER 1. INTRODUCTION 5

pixels with the most similar local neighborhood as the synthetic texture. These

methods are very useful for image completion. They can be constrained, as

in ”Image Analogies”, to perform many interesting tasks. They are typically

accelerated with some form of Approximate Nearest Neighbor method since the

exhaustive search for the best pixel is somewhat slow.

• Patch-Based Texture Synthesis

Patch-based texture synthesis creates a new texture by copying and stitching

together textures at various offsets. These algorithms tend to be more effective

and faster than pixel-based texture synthesis methods.

• Chemistry Based Texture Synthesis

Realistic textures can be generated by simulations of complex chemical reactions

within fluids, namely Reaction-diffusion systems. It is believed that these sys-

tems show behaviors which are qualitatively equivalent to real processes (Mor-

phogenesis) found in the nature, such as animal markings (shells, fishes, wild

cats.).

1.5 Application

1.5.1 Distorted synthesis

Using a random order of visit of the output pixels and modifying the shape of the cur-

rent neighborhood according to the local distortion of the output image, the synthesis

produces images with both the texture information and the distortion one.

Figure 1.1: Distorted Synthesis

CHAPTER 1. INTRODUCTION 6

1.5.2 User control

Using a image painted by the user instead of the random noised image, with few

modifications of the algorithm of Ashikhmin or other method , it is possible to force

the synthesis to collocate the different features of the texture in different places of

the output image.

Figure 1.2: User Control

1.5.3 Rendering

In rendering, textures can mimic the surface details of real objects, ranging from

varying the surface’s color, perturbing the surface normals (bump mapping), to ac-

tually deforming the surface geometry (displacement mapping). In pen and ink style

illustrations, textures (hatches) can delineate the tone, shade, and pattern of objects.

1.5.4 Animation

Computer generated animations often contain scripted events and random motions.

Scripted events are non-repetitive actions such as opening a door or picking up an ob-

ject, and are usually rendered under direct control. On the contrary, random motions

are repetitive background movements such as ocean waves, rising smoke, or a burning

fire. These kind of motions have indeterminate extent both in space and time, and

CHAPTER 1. INTRODUCTION 7

are often refered as temporal textures[3].

These temporal textures are often difficult to render using traditional techniques

based on physical modeling, since different textures are often generated by very dif-

ferent underlying physical processes. By treating them as textures, we can model and

synthesize them using a single texture synthesis algorithm. In addition to temporal

textures, certain motions such as joint angles of articulated motions, could also be

modeled as one dimensional textures. These textures can be synthesized on the fly

to simulate delicate motions such as eye blinking or human walking.

1.5.5 Compression

Images depicting natural scenes often contain large textures regions, such as a grass

land, a forest, or a sand beach. Because textures often contain significant high fre-

quency information, they are not well compressed by transform-based techniques

such as JPEG. By segmenting out these textured regions in a preprocessing step,

they might be compressible by a texture synthesis technique. In addition to image

compression, texture synthesis can also be employed for synthetic scenes containing

large amounts of textures [4].

1.5.6 Restoration and Editing

Photographs, films and images often contain regions that are in some sense flawed.

A flaw can be a scrambled region on a scanned photograph, scratches on an old film,

wires or props in a movie film frame, or simply an undesirable object in an image.

Since the processes causing these flaws are often irreversible, an algorithm that can

fix these flaws is desirable. Often, the flawed portion is contained within a region of

texture, and can be replaced by texture synthesis[5][6].

CHAPTER 1. INTRODUCTION 8

1.5.7 Computer Vision

Several computer vision tasks use textures, such as segmentation, recognition, and

classification. These tasks can benefit from a texture model, which could be derived

from a successful texture synthesis algorithm[7].

1.6 Goal

We have to synthesize a high resolution version of a low resolution source image. We

should be able to insert appropriate detail from sample texture and also generate a

new texture and also remove the noise. The system should support multiple sample

textures.

1.7 Tools And Techniques

• To implement Texture Synthesis, we will need the following installed.

– Mat Lab

• In Texture synthesis we will use Pixel Based Texture Synthesis and Patch Based

Texture Synthesis for Gray scale image. For cleaning the Color images used

Selection area and segmentation.

1.8 Thesis Organization

The rest of the thesis is organized as follows.

Chapter 2, The Texture Synthesis and Related Terminologies, describes the meth-

ods and how its work and what is the result of it.

Chapter 3,Comparision, describes the comparison of Methods Tiling based ,pixel

and Patch Based Texture Synthesis.

CHAPTER 1. INTRODUCTION 9

Chapter 4,Segmentation,describes finding the boundary of objects.

Chapter 5, Methodologies, describes the methodologies of Texture Synthesis.

In chapter 6, Implementation, a new algorithm for performing the Texture Synthe-

sis. It remove noise using Pixel Based and Patch Based Texture Synthesis.Also

Cleaning the Image by segmentation.

Finally, in chapter 7, Concluding remarks and scope for future work is presented.

Chapter 2

Literature Survey

2.1 General

Literature in form of research papers, books regarding various aspects of performance

of Texture Synthesis are referred and review is presented in this chapter. The objective

of literature review is to develop basic understanding about different type of Texture

Synthesis and their result.

2.2 Literature Review

Various literatures have referred for basic understanding and analysis of structure

with Texture Synthesis. Some of that are summarized below in the form of books

and research papers.

2.2.1 Image Replacement through Texture Synthesis

Texture synthesis can be useful in a variety of images which need the replacement of

large areas with stochastic textures. This technique, however, is useless for images

that need the replacement of areas with structured texture.

10

CHAPTER 2. LITERATURE SURVEY 11

(a) Input Image (b) Output Image

Figure 2.1: Example of Image Replacement

Image replacement through texture synthesis provides a new solution to the image

replacement problem for a certain class of images. Direct composition of a pure

synthetic texture into an image often works well for stochastic textures, but may

occasionally result in undesirable artifacts due to differences in the grain of the real

texture and the imperfect synthetic texture. By integrating composition into the

texture synthesis algorithm, a smooth transition between real and synthetic texture

grain may be realized[8].

2.2.2 Texture Analysis and Synthesis using Tree Structure

Vector Quantization

In the synthesis process, the output texture will be transformed from a random noise

to a new image based on the estimated F.

The synthesis process can be described by the following pseudo code:

a. Loop through all pixels (x,y) in the output texture in raster scan order.

b. Collect the neighborhood vector, N(x,y), of pixel (x,y).

c. Assign F (N(x,y)) to be the synthesized color of pixel (x,y).

Neighborhood: The output texture is synthesized in a raster scan ordering, we re-

strict our neighborhood system, N(x,y), to a causal neighborhood, which means that

CHAPTER 2. LITERATURE SURVEY 12

Figure 2.2: Synthesis Process

N(x,y) depends only on the previous pixels in the raster scan ordering. A noncausal

neighborhood N(x,y) will lead to an iterative synthesis algorithm, which will take

longer computation time[9].

Because the set of local neighborhoods N(P)is used as the primary model for textures,

the quality of the synthesized results will depend on its size and shape. Intuitively,

the size of the neighborhoods should be on the scale of the largest regular texture

structure; otherwise this structure may be lost and the result image will look too

random[10].

Advantage:The key advantage of this approach is that it can efficiently synthe-

size a wide variety of textures. At the same time, it is simple to implement since

the most complex component is tree structure VQ. This is also easy to use: im-

age along with a few parameters are required to generate a new texture of any size

and shape[9]. Texture synthesis is an alternative way to create textures. Because

synthetic textures can be made any size, visual repetition is avoided. Texture syn-

thesis can also produce tileable images by properly handling the boundary conditions.

Given a texture sample, synthesize a new texture that, when perceived by a human

observer, appears to be generated by the same underlying stochastic process.

The major challenges are

CHAPTER 2. LITERATURE SURVEY 13

• modeling- how to estimate the stochastic process from a given finite texture

sample

• sampling- how to develop an efficient sampling procedure to produce new tex-

tures from a given model.

Algorithm:MRF

Markov Random Field methods model a texture as a realization of a local and sta-

tionary random process. That is, each pixel of a texture image is characterized by a

small set of spatially neighboring pixels, and this characterization is the same for all

pixels. The image is stationary if, under a proper window size, the observable portion

always appears similar. The image is local if each pixel is predictable from a small

set of neighboring pixels and is independent of the rest of the image.

Using Markov Random Fields as the texture model, the goal of the synthesis algo-

rithm is to generate a new texture so that each local region of it is similar to another

region from the input texture. First describe how the algorithm works in a single res-

olution, and then extend it using a multi resolution pyramid to obtain improvements

in efficiency. List the symbols used in Table1 and Summarize the algorithm in Table2.

The algorithm starts with an input texture sample Ia and a white random noise

Is. We force the random noise Is to look like a Ia by transforming Is pixel by pixel

in a raster scan ordering, i.e. from top to bottom and left to right.

To determine the pixel value p at Is , its spatial neighborhood N(p) is compared

against all possible neighborhoods N(pi) from Ia. The input pixel pi with the most

similar N(pi) is assigned to p. We use a simple L2 norm (sum of squared difference) to

measure the similarity between the neighborhoods. The goal of this synthesis process

is to ensure that the newly assigned pixel p will maintain as much local similarity

between Ia and Is as possible. The same process is repeated for each output pixel

until all the pixels are determined. This is akin to putting together a jigsaw puzzle:

the pieces are the individual pixels and the fitness between these pieces is determined

CHAPTER 2. LITERATURE SURVEY 14

Table 2.1: Symbols

Symbol Meaning

Ia Input Texture Sample
Is Output Texture Sample
Ga Gaussian pyramid built from Ia
Gs Gaussian pyramid built from Is
pi An input pixel in Ia or Ga

p An output pixel in Is or Gs

N(p) Neighborhood around the pixel p
G(L) Lth level of pyramid G
G(L,x,y) Pixel at level L and position (x,y) of G
{RxC,k} (2D)neighborhood containing k levels,

with size RxC at the top level
{RxCxD,k} 3D neighborhood containing k levels,

with size RxCxD at the top level

by the colors of the surrounding neighborhood pixels.

Application:One of the chief advantages of our texture synthesis method is its

low computational cost[10].

a. Constrained Texture Synthesis

b. Temporal Texture Synthesis

2.2.3 State of the Art in Example-based Texture Synthesis

The process of texture synthesis could be decomposed into two main components,

analysis and synthesis:

Analysis: How to estimate the underlying generation process from a given finite

texture sample. The estimated process should be able to model both the structural

CHAPTER 2. LITERATURE SURVEY 15

Table 2.2: Pseudocode of the algorithm

function Is ←− Texture Synthesis(Ia,outputSize)
Is ←− Initialize(outputSize);
Gs ←− BuildPyramid(Ia);
Ga ←− BuildPyramid(Is);
for each level L from lower to higher resolution of Gs

loop through all pixels (xs,ys) of Gs(L)
C ←− FindBestMatch(Ga,Gs,L,xs,ys);
Gs(L,xs,ys) ←− C;
Is ←− ReconPyramid(Gs);
return Is

function C ←− FindBestMatch(Ga,Gs,L,xs,ys);
Ns ←− BuildNeighborhood(Gs,L,xs,ys)
Na

best ←− null; C ←− null;
loop through all pixels (xs,ys) of Gs(L)
Na ←− BuildNeighborhood(Ga,L,xa,ya);
if Match (Na,Ns) 〉 Match(Na

best,Ns)
Na

best ←− Na ; C ←− Ga(L,xa,ya);
return C;

and stochastic parts of the input texture. The success of the model is determined by

the visual fidelity of the synthesized textures with respect to the given samples.

Synthesis: How to develop an efficient generation procedure to produce new

textures from a given analysis model. The efficiency of the sampling procedure will

directly determine the computational cost of texture generation.

Basic algorithm:

• Pixel based Texture synthesis

• Patch Based Texture Synthesis

The quality and speed of pixel-based approaches can be improved by synthesizing

patches rather than pixels. Intuitively, when the output is synthesized by assembling

patches rather than pixels from the input, the quality ought to improve as pixels

CHAPTER 2. LITERATURE SURVEY 16

(a) Pixel Based (b) Patch Based

Figure 2.3: Process of Texture Synthesis

within the same copied patch ought to look good with respect to each other[11].

2.2.4 Real-Time Texture Synthesis By Patch-Based Sampling

High-quality texture can be synthesized in realtime. A key ingredient of the algorithm

we propose is a patch-based sampling scheme that uses texture patches of the sample

texture as building blocks for texture synthesis.

The advantages of patch-based sampling include

• Speed:For synthesizing textures of the same size and comparable (or better)

quality, our algorithm is orders of magnitude faster than existing texture syn-

thesis algorithms, including TSVQ-accelerated non-parametric sampling. As a

result, high-quality texture synthesis is now a real-time process on a midlevel

PC.

• Quality:The patch-based sampling algorithm synthesizes high-quality textures

for a wide variety of textures ranging from regular to stochastic. Like , that is

also a greedy algorithm for non-parametric sampling. However, the patches in

sampling scheme implicitly provide constraints for avoiding garbage. For this

reason, algorithm continues to synthesize high-quality textures even when and

cease to be effective. For natural textures, the results of patch-based sampling

look subjectively better.

CHAPTER 2. LITERATURE SURVEY 17

Patch Based Sampling

The patch-based sampling algorithm uses texture patches of the input sample texture

Iin as the building blocks for constructing the synthesized texture Iout In each step,

paste a patch Bk of the input sample texture Iin into the synthesized texture Iout. To

avoid mismatching features across patch boundaries, select Bk based on the patches

already pasted in Iout,{B0 Bk−1}. The texture patches are pasted in the order.

For simplicity,use square patches of a prescribed size wB x wB.

Sampling Strategy

IR1 and IR2 be two texture patches of the same shape and size. Say that IR1 and

IR2match if d(R1, R2) < δ , where the d() represents the distance between two texture

patches and δ is a prescribed constant.

Assuming the Markov property, the patch-based sampling algorithm estimates the

local conditional MRF (FRAME or Gibbs) density p(IR|I∂R)

in a non-parametric form by an empirical histogram. Define the boundary zone

∂R of a texture patch IR as a band of width wE along the boundary of R . When the

texture on the boundary zone I∂R is known, we would like to estimate the conditional

probability distribution of the unknown texture patch IR . Instead of constructing

a model, we directly search the input sample texture Iin for all patches having the

known I∂R as their boundary zones. The results of the search form an empirical his-

togram for the texture patch IR . To synthesize IR , we just pick an element from at

random. Mathematically, the estimated conditional MRF density is

p(IR/I∂R) =
∑

i

αiδ(IR − IRi),
∑

i

αi = 1 (2.1)

where IRi is a patch of the input sample texture Iin whose boundary zone I∂Ri matches

the boundary zone I∂R. The weight αi is a normalized similarity scale factor. With

CHAPTER 2. LITERATURE SURVEY 18

patch-based sampling, the statistical constraint is implicit in the boundary zone ∂R.

A large boundary zone implies a strong statistical constraint. Generally speaking,

a non-parametric local conditional PDF is faster to estimate than the analytical

FRAME model. On the down side, the nonparametric density estimation is subject

to greater statistical fluctuations, because in a small sample texture Iin there may be

only a few sites that satisfy the local statistical constraints.

A more serious problem with existing non-parametric sampling techniques is that

they tend to wonder into the wrong part of the search space and grow garbage in

the synthesized texture. The patches in our sampling scheme implicitly provide con-

straints for avoiding garbage.

Patch Based Sampling Algorithm

a. Randomly choose a wB x wBtexture patch B0 from the input sample texture

Iin. Paste B0 in the lower left corner of Iout. Set k = 1.

b. Form the set ΨB of all texture patches from Iin such that for each texture patch

of ΨB, its boundary zone matches Eo
kut.

c. If ΨB is empty, set ΨB = {Bmin} where {Bmin}is chosen such that its boundary

zone is the closest to Eo
kut.

d. Randomly select an element from ΨB as the kth texture patch Bk. Paste Bk

onto the output texture Iout. Set k = k + 1.

e. Repeat steps (b), (c), and (d) until Iout is fully covered.

f. Perform blending in the boundary zones.

The patch-based sampling algorithm is easy to use and flexible. It can generate

tileable textures if so desired. It can be used for constrained synthesis as well. The

algorithm has an intuitive randomness parameter. The user can use this parameter

CHAPTER 2. LITERATURE SURVEY 19

to interactively control the randomness of the synthesized texture.

Algorithm combines the strengths of nonparametric sampling and patch-pasting .

In fact, both patch-pasting and the pixel-based non-parametric sampling are special

cases of the patch based sampling algorithm. The patches in our sampling scheme

implicitly provide constraints for avoiding garbage. For this reason, algorithm con-

tinues to synthesize high-quality textures even when cease to be effective. For natural

textures, the results of patch-based sampling look subjectively better[12].

2.2.5 Feature Matching

Some algorithms model textures as a set of features, and generate new images by

matching the features in an example texture These algorithms are usually more effi-

cient than Markov Random Field algorithms. Heeger and Bergen [13]model textures

by matching marginal histograms of image pyramids. Their technique succeeds on

highly stochastic textures but fails on more structured ones. De Bonet [14]synthesizes

new images by randomizing an input texture sample while preserving the cross-scale

dependencies.

This method works better than on structured textures, but it can produce bound-

ary artifacts if the input texture is not tileable. Simoncelli and Portilla [15]generate

textures by matching the joint statistics of the image pyramids. Their method can

successfully capture global textural structures but fails to preserve local patterns.

2.2.6 Markov Random Field and Gibbs Sampling

Many algorithms model textures by Markov Random Fields (or in a different mathe-

matical form, Gibbs Sampling), and generate textures by probability sampling[5].Since

Markov Random Fields have been proven to be a good approximation for a broad

range of textures, these algorithms are general and some of them produce good results.

CHAPTER 2. LITERATURE SURVEY 20

A drawback of Markov Random Field sampling, though, is that it is computationally

expensive: even small texture patches can take hours or days to generate.

2.2.7 Edge Handling

Proper edge handling for N(p) near the image boundaries is very important. For the

synthesis pyramid the edge is treated toroidally. In other words, if Gs(L;x; y) denotes

the pixel at level L and position (x; y) of pyramidGs, thenGs(L;x; y)=Gs(L;xmodM ; ymodN),

where M and N are the number of rows and columns, respectively, of Gs(L). Handling

edges toroidally is essential to guarantee that the resulting synthetic texture will tile

seamlessly.

A causal multi resolution neighborhood with size f5x5,2g. The current level of the

Figure 2.4: Multi resolution Neighbor

pyramid is shown at left and the next lower resolution level is shown at right. The

current output pixel p, marked as X, is located at (L; x; y), where L is the current level

number and (x; y) is its coordinate. At this level L of the pyramid the image is only

partially complete. Thus, we must use the preceding pixels in the raster scan ordering

(marked as O). The position of the parent of the current pixel, located at (L + 1; x

/2; y/ 2), is marked as Y. Since the parents level is complete, the neighborhood can

CHAPTER 2. LITERATURE SURVEY 21

contain pixels around Y, marked by Q. When searching for a match for pixel X, the

neighborhood vector is constructed that includes the Os, Qs, and Y, in scanline order.

For the input pyramid Ga, toroidal neighborhoods typically contain discontinuities

unless Ia is tileable. A reasonable edge handler for Ga is to pad it with a reflected

copy of itself. Another solution is to use only those N(pi) completely inside Ga,

and discard those crossing the boundaries. Because a reflective edge handler may

introduce discontinuities in the derivative, we adopt the second solution which uses

only interior blocks.

2.2.8 Image Enhancement By Texture Synthesis

Real time Enhancement using texture synthesis combines interpolation ,classification

and patch based texture synthesis to enhance low resolution imagery. RETS uses as

input a low resolution source image and several high resolution sample textures. The

output of RETS is a high resolution image with the structure of the source image,

but with detail consistent with the high resolution sample textures.

Image Interpolation: Interpolation is the primary technique used for image scal-

ing. Image scaling is the process of taking a source image and extending it to create a

large image. The primary problem with enlarging images using interpolation is that

the large result contains the same amount of discrete data as smaller source image.

Two types of interpolation are bilinear and bicubic. Bilinear interpolation uses

2x2 neighborhood of data points to calculate pixel color between data points. Bicubic

interpolation uses 4x4 neighborhood of data points to calculate pixel color between

data points[16].

CHAPTER 2. LITERATURE SURVEY 22

Using texture Synthesis solve two problems

• It allows to user to specify the detail to be inserted into the output image by

providing a representative sample for the system to replicate.

• Applying texture synthesis appropriately will allow us to avoid the unnatural

repetition of texture tiles that can occur with standard texture mapping.

Image enhancement using texture synthesis combines interpolation, classification

and texture synthesis to enhance low resolution imagery, particular aerial imagery. In

that input as low resolution source image and several high resolution sample textures.

The output is high resolution image with the structure of the source image but with

detail consistent with the high resolution sample textures[16].

CHAPTER 2. LITERATURE SURVEY 23

Figure 2.5: Image Enhancement By Texture Synthesis

(a)Original Photograph (b)Sample version of Image (c)Enhanced version of Image

CHAPTER 2. LITERATURE SURVEY 24

2.3 Conclusion of Research Papers

Table 2.3: Conclusion of Research Papers

No.Title Of Paper Summary Method

1 Image Replacement Image replacement texture synthesis provides Stochastic
through Texture a new solution to the image replacement
Synthesis problem for a certain class of images.

2 Deterministic Texture Advantage of approach is that it can efficiently Pixel
Analysis and Synthesissynthesize a wide variety of textures.At the
using Tree Structure same time,it is simple to implement since
Vector Quantization the most complex component is tree structure VQ.

3 Composite Texture Segmentation uses fixed filters, Pixel
Synthesis which are texture- and mutually-

independent, while the synthesis
uses an optimal texture- and
mutually-dependent pixel pair type
selection obtained during
the analysis-by-synthesis procedure[17].

4 Fast Texture SynthesisTexture synthesis method is its low Patch
using Tree-structured computational cost.This permits us
Vector Quantization to explore a variety of applications,

in addition to the usual texture mapping
for graphics, that were previously impractical.

5 Synthesis Algorithms Patch based approach can produce better Patch
synthesis results while requiring less computation[18].

6 Real time image Combination of Interpolation and Patch
enhancement by patch based texture synthesis to
texture synthesis enhance low resolution images while

they are being large.
7 An Efficient Texture An algorithm to speed up texture Patch

Synthesis Algorithm synthesizing using WT technique
Based On WT using patch based texture synthesis[19].

Chapter 3

Comparision

3.1 Explicit v.s. Implicit Texture Synthesis

Texture synthesis techniques can be classified as either explicit or implicit[20].An

Explicit algorithms generates a whole texture directly while an Implicit algorithm

answers a query about a particular point (much like scan-converting polygons versus

raytracing implicit surfaces). Most existing statistical texture synthesis algorithms

are explicit; because the value of each texture pixel is related to other pixels (such

as spatial neighboring ones in Markov Random Field approaches) it is impossible to

determine their values separately. On the other hand, most procedural texture syn-

thesis techniques are implicit since they allow texels to be evaluated independently

(such as Perlin noise).

Implicit texture synthesis offers several advantages over explicit texture synthesis.

Because only those excels that are actually used need to be evaluated, implicit meth-

ods are usually computationally cheaper than the explicit ones. Implicit methods

often consume less memory since they don’t need to store the whole texture (espe-

cially for high dimensional textures).

25

CHAPTER 3. COMPARISION 26

Implicit methods are also more flexible since they allow texture samples to be

evaluated independently and in any order. Unfortunately, implicit methods are usu-

ally less general than explicit ones. Because of the requirement of independent texel

evaluation, implicit methods cannot use general statistical texture modeling based on

inter-pixel dependencies.

3.2 Comparison of Texture Synthesis Methods

Here there are comparison of three method of Texture synthesis.

a. Tiling Based Texture Synthesis

b. Pixel Based Texture Synthesis

c. Patch Based Texture Synthesis

3.2.1 Tiling Based Texture Synthesis

The simplest way to generate a large image from a sample image is to tile it. This

means multiple copies of the sample are simply copied and pasted side by side. The

result is rarely satisfactory. Except in rare cases, there will be the seams in between

the tiles and the image will be highly repetitive.

Synthesization: Synthesization is fast[21].

Time: Neighbor pixel comparison is not done so not more time consuming.

Execution: Execution is faster.

Seams: In between two texture seams are present.

CHAPTER 3. COMPARISION 27

3.2.2 Pixel Based Texture Synthesis

They typically synthesize a texture in scan-line order by finding and copying pixels

with the most similar local neighborhood as the synthetic texture. These methods are

very useful for image completion. They can be constrained, as in ”Image Analogies”,

to perform many interesting tasks. They are typically accelerated with some form of

Approximate Nearest Neighbor method since the exhaustive search for the best pixel

is somewhat slow.

Synthesization: Too slow when the synthesized image is large.

Time: Finding the neighbor so more time taken and also control over individual

pixel value[22].

Execution: Execution is slower[23].

Seams: Here seams are not present.

In this approach employs a pixel-based multi-resolution texture synthesis algo-

rithm, which is based on a non-parametric sampling method. In it assumes a Markov

random field texture model, which means a pixel value at a certain location only

depends on its immediate neighborhood.

3.2.3 Patch Based Texture Synthesis

Patch-based texture synthesis creates a new texture by copying and stitching together

textures at various offsets. These algorithms tend to be more effective and faster than

pixel-based texture synthesis methods.

Synthesization: Synthesizing high quality textures as they can maintain global

structure of the texture. But slow when the synthesized image is large.

Time: Compare to pixel based texture synthesis this is faster [24].

Execution: Execution is faster than pixel based texture synthesis.

Seams: Here seams are present but we overlapping the patch so remove the seams.

CHAPTER 3. COMPARISION 28

The method synthesis’s a new image by stitching together small patches from the

sample image. In this method synthesis’s a result image block by block in raster

order. Square blocks are used to capture the primary pattern in the sample texture.

First, a block is randomly selected from the sample image and pasted into the new

image beginning at the first row and the first column. Then another block is selected

as a candidate neighbor. It is placed next to the first block so that they overlap one

another.

Chapter 4

Segmentation

Image segmentation is to cluster pixels into salient image regions, i.e., regions corre-

sponding to individual surfaces, objects, or natural parts of objects. A segmentation

could be used for object recognition, occlusion boundary estimation within motion or

stereo systems, image compression, image editing, or image database look-up.

Image Segmentation is a subset of an expansive field of Computer Vision which

deals with the analysis of the spatial content of an image. In particular, it is used to

separate regions from the rest of the image, in order to recognize them as objects. It

is a method used in the vast field of Artificial Intelligence.

Region Growing is an approach to image segmentation in which neighboring pix-

els are examined and added to a region class if no edges are detected. This process

is iterated for each boundary pixel in the region. If adjacent regions are found, a

region-merging algorithm is used in which weak edges are dissolved and strong edges

are left in tact.

Region Growing offers several advantages over conventional segmentation tech-

niques. Unlike gradient and Laplacian methods, the borders of regions found by

region growing are perfectly thin (since we only add pixels to the exterior of our

29

CHAPTER 4. SEGMENTATION 30

region) and connected. The algorithm is also very stable with respect to noise. Our

region will never contain too much of the background, so long as the parameters

are defined correctly. Other techniques that produce connected edges, like boundary

tracking, are very unstable. Most importantly, membership in a region can be based

on multiple criteria. We can take advantage of several image properties, such as low

gradient or gray level intensity value, at once.

There are, however, several disadvantages to region growing. First and foremost,

it is very expensive computationally. It takes both serious computing power (pro-

cessing power and memory usage) and a decent amount of time to implement the

algorithms efficiently.

4.1 Texture Segmentation

The purpose of texture segmentation is to differentiate textured regions from the rest

of the image, which include smooth regions and well-defined edges such as object

boundaries. Noticing the fact that textured regions are usually covered with dense

edges when performing the edge detection, we use the local edge pixel number as a

feature for texture segmentation.

4.1.1 Edge Detection

By applying the horizontal and vertical Sobel operators to the luminance channel Y of

the image, we can obtain the gradient magnitude and direction for each pixel. Pixels

with gradient magnitude larger than a certain threshold Tg are initialized as edge

pixels. Since a lot of textures in video images are blurred, in order to obtain a sufficient

number of edge pixels in textured regions for the purpose of segmentation, we set a

low threshold Tg = 10 based on experiments. Raw edge maps usually contain thick

CHAPTER 4. SEGMENTATION 31

edges and are not suitable to be directly used for feature extraction and edge-based

interpolation. Therefore we carry out non-maximal suppression to thin the edges.

This operation re-classifies an edge pixel to be non-edge if its gradient magnitude is

less than that of either of its two neighbors along the gradient direction[25].

4.2 Example of Segmentation

Simple Scenes Segmentations of simple gray-level images and color images (RGB

images)can provide useful information about the surfaces in the scene.

(a) Input Image (b) Segmented Image

Figure 4.1: Example-1 of Segmentation

(a) Input Image (b) Segmented Image

Figure 4.2: Example-2 of Segmentation

Chapter 5

Methodologies

5.1 Gray Scale Image

5.1.1 Pixel Based Texture Synthesis

pixel-based multi-resolution texture synthesis algorithm, which is based on a non-

parametric sampling method. It also assumes a Markov random field texture model,

which means a pixel value at a certain location only depends on its immediate

neighborhood[18]. When choosing the value of the next pixel in the output image

Figure 5.1: Match neighborhood Pixel

32

CHAPTER 5. METHODOLOGIES 33

the algorithm uses the populated portion of the pixels neighborhood to exhaustively

search for the best matched region in the sample image.

synthesizing texture in raster order. If pixel (i, j) has the most similar neighbor-

Figure 5.2: Flow of Pixel Based Texture Synthesis

hood, the value of pixel (i, j) in the sample pyramid is assigned to pixel (x, y) in the

result pyramid.

5.1.2 Patch Based Texture Synthesis

The method synthesists a new image by stitching together small patches from the

sample image. The method in synthesists a result image block by block in raster

order. Square blocks are used to capture the primary pattern in the sample texture.

A block is randomly selected from the sample image and pasted into the new

image beginning at the first row and the first column. Then another block is selected

as a candidate neighbour. It is placed next to the first block so that they overlap one

another. newpage

CHAPTER 5. METHODOLOGIES 34

Figure 5.3: Pixel in Patch

Figure 5.4: Flow of Patch Based texture Synthesis

5.1.3 Summary

In Pixel Based Texture Synthesis assumes a Markov Random Field texture model,

which means a pixel value at a certain location only depends on its immediate neigh-

borhood. A multi-resolution scheme is applied to construct the neighborhood around

a given pixel.

In Patch Based Texture Synthesis can produce high-quality synthesis results while

requiring little computation.

CHAPTER 5. METHODOLOGIES 35

5.2 Color Image

In Image select four points using data cursor and take this four points as input and

store its position value in variable. Using that position value of four points to select

area which we want to remove or replace with some other texture which are surround-

ing this selecting area.

5.2.1 Selecting Area

Flow Chart

Figure 5.5: Program Flow

CHAPTER 5. METHODOLOGIES 36

Four points are rectangles points then we are sorting x and y coordinates for this

selecting four points. Find height and width.

Height = x(max)− x(min), (5.1)

Width = y(max)− y(min) (5.2)

Select one by one pixel from selecting area and check the value or height and width.

Selecting pixel h<height/2 and w<width/2 then replace that pixel value by

I(x, y) = I(x− height, y) (5.3)

Or h > height/2 and w > width/2 then replace that pixel value by

I(x, y) = I(x+ height, y) (5.4)

Now,using get area which we want to replaced. After, cleaning that area we can

that output. And highlight that area which can be clean using Texture Synthesis.

5.2.2 Edge Detection Using Segmentation

Using Sobel Operation of segmentation finding the Edges of all Objects and then

selecting the pixel of Object which we want to replaced for cleaning the image.

For this first convert color image into Gray scale image by function “RGB2gray” and

then apply sobel operation and finding the edge and select the pixel of object. And

which pixel of objects are replaced that changes are made in color image.

Chapter 6

Implementation

For implementation select one image and then add some noise in that image and

taken that image as an input image. Then after removing the noise from that input

image and get the output image. Below implementation of the methods for removing

the noise from that input image.

6.1 Fixed Patch Size

Here taken noise patch is fixed size.

6.1.1 Pixel based Texture Synthesis

A pixel value at a certain location depends only on its immediate neighborhood. In

this approach, for a certain percentage of the selections,use the next column neighbor

pixel’.

There are two common steps:

a. Searching for the best match for the current output neighborhood within the

sample texture

b. Merging a patch or a pixel with the synthesized output texture.

37

CHAPTER 6. IMPLEMENTATION 38

After this two steps we get an output image which is noiseless. The result is shown

below.

(a) Input Image (b) Output Image

Figure 6.1: Remove noise using Pixel based Texture Synthesis

6.1.2 Patch Based Texture Synthesis

In patch based approach synthesiss the result image by stitching together small

patches selected from the sample image. In this method synthesiss a result image

block by block in raster order. Square blocks are used to capture the primary pattern

in the sample texture.

There are two common steps:

a. Searching for the best match for the current output neighborhood within the

sample texture

b. Merging a patch or a pixel with the synthesized output texture.

CHAPTER 6. IMPLEMENTATION 39

After this two steps we get an output image which is noiseless. The result is shown

below.

(a) Input Image (b) Output Image

Figure 6.2: Remove noise using Pixel based Texture Synthesis

6.1.3 Noise Comparison

After analyzing both the output images(Pixel based and Patch based) it can be

concluded that Patch Based Texture Synthesis is better than Pixel Based Texture

Synthesis because in Pixel Based Texture Synthesis the portion of noise is not com-

pletely removed so it can be possible that some information will be lost. Patch Based

Texture Synthesis gets good effect after removing the noise in image compare to Pixel

Based Texture Synthesis.

6.2 Different size of Patch

Taking different size of matrix n× n as noise (10× 10 ,20× 20) in image and remove

that noise and compare that in which method removal of noise is better.

CHAPTER 6. IMPLEMENTATION 40

(a) Input Image (b) pixel Output Image (c) Patch Output Image

Figure 6.3: Remove noise

6.2.1 Noise Comparision

In Pixel Based Texture Synthesis some Information is lost because of different size of

patch is taken. Using Patch Based Texture Synthesis information is not lost and give

better output than the Pixel Based Texture Synthesis.

6.3 PSNR for Texture Synthesis

The PSNR block computes the peak signal-to-noise ratio, in decibels between two

images. The MSE and PSNR are the two error metrics used to compare image

compression quality. The MSE represents the cumulative squared error between the

compressed and the original image, whereas PSNR represents a measure of the peak

error. The lower the value of MSE, the lower the error.

To compute the PSNR, the block first calculates the mean-squared error using the

following equation:

MSE = (
∑
M,N

[I1(m,n)− I2(m,n)]2)/(M ×N) (6.3.1)

In the above equation, M and N are the number of rows and columns in the input

images, respectively.

CHAPTER 6. IMPLEMENTATION 41

Then the block computes the PSNR using the following equation:

PSNR = 10× (log10(R
2/MSE)) (6.3.2)

6.3.1 Result

Table 6.1: Noise Ratio

Patch Size PSNR for Pixel Based PSNR for Patch Based
Texture Synthesis Texture Synthesis

5x5 27.5197 27.5197
10x10 27.4716 27.4946
15x15 27.4548 27.4532
20x20 27.3606 27.3555
25x25 24.0651 24.3302
30x30 21.0408 21.3612

The higher the PSNR, the better the quality of the reconstructed image.

6.4 Program Complexity

In Pixel Based Texture Synthesis taking One by one pixel and then find its near

neighbor pixel and replaced it. So, program complexity is Θ(n2). In Patch Based

Texture Synthesis taking a group of pixels. so not taking one by one pixel so com-

plexity is Θ(n2)−
∑

(x× y) where x is a patch size and y is number of patches. So,

Patch Based Texture Synthesis complexity is less than Pixel Based Texture Synthesis.

CHAPTER 6. IMPLEMENTATION 42

6.5 Color Image

6.5.1 Cleaning image by Selecting Area

(a) Input Image (b) selected area

Figure 6.4: Select Area

We can get area which is to be replaced by selecting four points. By applying

Texture on that area we can get the output in which that area is replaced by sur-

rounding pixels to clean that area.

In Fig. 6.5a shown that area is cleaned and in Fig. 6.5bit is highlighted.

(a) Cleaning Area (b) Output Image

Figure 6.5: Cleaning Portion

In Fig. 6.6 first select an area enclosed by arrow and in the output image that

area is removed.

CHAPTER 6. IMPLEMENTATION 43

Figure 6.6: Example-2 of Cleaning Image

In Fig. 6.7 first select an area enclosed by donkey and in the output image that

area is removed.

Figure 6.7: Example-3 of Cleaning Image

CHAPTER 6. IMPLEMENTATION 44

6.5.2 Cleaning image by Edge Detection

Figure 6.8: Input Image

By applying the horizontal and vertical Sobel operators to the luminance chan-

nel Y of the image, we can obtain the gradient magnitude and direction for each

pixel. Pixels with gradient magnitude larger than a certain threshold are initialized

as edge pixels. Since a lot of textures in video images are blurred, in order to obtain

a sufficient number of edge pixels in textured regions for the purpose of segmentation.

Figure 6.9: Edge Detection

CHAPTER 6. IMPLEMENTATION 45

After Finding the Edge of all objects choose one pixel of that object which we

want to replaced by other texture. So,after choosing the pixel check the surrounding

pixel values. when we get change in that surrounding pixel value we have to stop this

process and replace selected pixel by surrounding values.

Figure 6.10: Output Image

Chapter 7

Conclusion and Future Scope

7.1 Conclusion

Patch Based Texture Synthesis is better than Pixel Based Texture Synthesis. Using

Patch Based Texture Synthesis removal of noise is better than Pixel Based Texture

Synthesis. Sometimes some information will be lost in Pixel Based Texture Synthesis.

Compare to Pixel Based Texture Synthesis, loss of information is less in Patch Based

Texture Synthesis. In PSNR there is less difference between Patch Based Texture

Synthesis and Pixel Based Texture Synthesis but Program complexity is less in Patch

Based Texture Synthesis than Pixel Based Texture Synthesis.

In color image applying Pixel based Texture Synthesis on selected area some in-

formation is lost even though it is not an object. In Segmentation we have to find

edges of objects only so selecting and cleaning that object give better result compare

to selecting an area of the image.

46

CHAPTER 7. CONCLUSION AND FUTURE SCOPE 47

7.2 Future Scope

Although the goals we set when this research began have been met, there is much

room for future research.

• One area of particular interest is real time enhancement using Oriented texture

synthesis.

• A second area of interest is that of oriented motion synthesis. Whereas image

enhancement using texture synthesis synthesized static texture, there is a need

for motion synthesis. Example of motion synthesis are: waves moving towards

shore, a stream flowing, grass blowing in the wind, etc.

• A third area of interest is that more than one object will be removing. And

for that more than one pixel will be selecting so know that which object would

removed by user.

Website References

[1] http://en.wikipedia.org/wiki/Texture_synthesis

[2] http://www.mathworks.com/access/helpdesk/help/toolbox/vipblks/ref/

psnr.html

[3] http://www.math.ucla.edu/~getreuer/matlabimaging.html

[4] http://www-iplab.ece.ucsb.edu/courses/ece178/W00/matlabip.htm

[5] http://matlab.izmiran.ru/help/techdoc/ref/image.html

[6] http://cnx.org/content/m15696/latest/

[7] http://www.aquaphoenix.com/lecture/matlab10/page3.html

48

http://en.wikipedia.org/wiki/Texture_synthesis
http://www.mathworks.com/access/helpdesk/help/toolbox/vipblks/ref/psnr.html
http://www.mathworks.com/access/helpdesk/help/toolbox/vipblks/ref/psnr.html
 http://www.math.ucla.edu/~getreuer/matlabimaging.html
 http://www-iplab.ece.ucsb.edu/courses/ece178/W00/matlabip.htm
 http://matlab.izmiran.ru/help/techdoc/ref/image.html
 http://cnx.org/content/m15696/latest/
 http://www.aquaphoenix.com/lecture/matlab10/page3.html

References

[1] J. F. Blinn and M. E. Newell. Texture and reflection in computer generated
images. Communications of the ACM, (19):542546, 1976.

[2] E. Catmull. A Subdivision Algorithm for Computer Display of Curved Surfaces.
Phd thesis, Computer Science Department, University of Utal,, Salt Lake City,
Utah, 1974.

[3] Martin Szummer and Rosalind W. Picard. Temporal texture modeling. Inter-
national Conference on Image Processing, 3:823–826, sep 1996.

[4] Maneesh Agrawala Andrew C. Beers and Navin Chaddha. Rendering from com-
pressed textures. Proceedings of SIGGRAPH 96, pages 373–378, August 1996.

[5] Alexei Efros and Thomas Leung. Texture synthesis by non-parametric sampling.
International Conference on Computer Vision, 2:1033–1038, sep 1999.

[6] Homan Igehy and Lucas Pereira. Image replacement through texture synthesis.
International Conference on Image Processing, 3:186–189, oct 1997.

[7] Li-Yi Wei. Texture Synthesis By Fixed Neighborhood Searching. PhD thesis,
STANFORD UNIVERSITY, November 2001.

[8] Lucas Pereira Homan Igehy. Image replacement through texture synthesis. Com-
puter Science Department,Stanford University.

[9] LI-YI WEI. Deterministic texture analysis and synthesis using tree structure
vector quantization. Gates Computer Science Building,Stanford University,CA
94309, U.S.A., (386).

[10] Li-Yi Wei Marc Levoy. Fast texture synthesis using tree-structured vector quan-
tization. Stanford University.

[11] Vivek Kwatra Greg Turk4 Li-Yi Wei, Sylvain Lefebvre. State of the art in
example-based texture synthesis. The Eurographics Association, 2009.

[12] Yingqing Xu Baining Guo Lin Liang, Ce Liu and Heung-Yeung Shum. Real-time
texture synthesis by patch-based sampling. Technical Report, (MSR-TR-2001-
40), March 2001.

49

REFERENCES 50

[13] David J. Heeger and James R. Bergen. Pyramid-based texture analysis/synthesis.
SIGGRAPH 95 Conference Proceedings, pages 229–238, Aug 1995.

[14] Jeremy S. De Bonet. Multiresolution sampling procedure for analysis and syn-
thesis of texture images. SIGGRAPH 97 Conference Proceedings, pages 361–368,
August 1997.

[15] E. Simoncelli and J. Portilla. Texture characterization via joint statistics of
wavelet coefficient magnitudes. Fifth International Conference on Image Pro-
cessing, 1:62–66, oct 1998.

[16] Matthew Sorenson. Real time image enhancement using texture synthesis.
November 2004.

[17] G. Caenen L. Van Gool A. Zalesny, V. Ferrari. Composite texture synthesis.
International Journal of Computer Vision, 2004.

[18] D. Scharstein. Synthesis Algorithm, volume 1583/1999 of Lecture Notes in Com-
puter Science. Springer Berlin / Heidelberg, 1999.

[19] Hai-Feng Cui Xin Zheng Tong Ruan. An efficient texture synthesis algorithm
based on wt. 6:3472–3477, 2008.

[20] Darwyn Peachey Ken Perlin David S. Ebert, F. Kenton Musgrave and Steven
Worley. Texturing and modeling. In A Procedural Approach. Morgan Kaufmann
Publishers, 1998.

[21] Ning Zhou Weiming Dong, Ning Zhou. Optimized tile-based texture synthesis.
Graphics Interface, Montreal, Canada, 2007.

[22] W. Guo Y. Meng, W.H. Li and Y.L. Liu. Particle swarm optimization method
used in pixel-based texture synthesis.

[23] Aaron Bobick Nipun Kwatra Vivek Kwatra, Irfan Essa. Texture optimization
for example-based synthesis.

[24] Pizzanu Kanongchaiyosy Jakrapong Narkdej. An efficient parameters estimation
method for automatic patch-based texture synthesis.

[25] Xiaojun Feng and Jan P. Allebach. Segmented image interpolation using edge
direction and texture synthesis. IEEE Xplore, 2008.

Index

Advantage, 12

Algorithm, 15

Analysis, 15

Application, 5

Challenges, 12

Comparision, 25

Complexity, 41

Edge detection, 30

Flow chart, 33, 35

MRF, 13, 32

MSE, 40

Neighbor, 33

Noise, 39

Patch Based Texture Synthesis, 5, 38

Pixel Based Texture Synthesis, 4, 37

PSNR, 40

RETS, 21

RGB, 31, 36

Segmentation, 29

Synthesis, 15

Texture, 2

Texture Synthesis , 3

51

	Declaration
	Certificate
	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Abbreviation
	Introduction
	Objectives
	statement of Problem
	Texture
	Texture Synthesis
	Definition
	Methods

	Application
	Distorted synthesis
	User control
	Rendering
	Animation
	Compression
	Restoration and Editing
	Computer Vision

	Goal
	Tools And Techniques
	Thesis Organization

	Literature Survey
	General
	Literature Review
	Image Replacement through Texture Synthesis
	Texture Analysis and Synthesis using Tree Structure Vector Quantization
	State of the Art in Example-based Texture Synthesis
	Real-Time Texture Synthesis By Patch-Based Sampling
	Feature Matching
	Markov Random Field and Gibbs Sampling
	Edge Handling
	Image Enhancement By Texture Synthesis

	Conclusion of Research Papers

	Comparision
	Explicit v.s. Implicit Texture Synthesis
	Comparison of Texture Synthesis Methods
	Tiling Based Texture Synthesis
	Pixel Based Texture Synthesis
	Patch Based Texture Synthesis

	Segmentation
	Texture Segmentation
	Edge Detection

	Example of Segmentation

	Methodologies
	Gray Scale Image
	Pixel Based Texture Synthesis
	Patch Based Texture Synthesis
	Summary

	Color Image
	Selecting Area
	Edge Detection Using Segmentation

	Implementation
	Fixed Patch Size
	Pixel based Texture Synthesis
	Patch Based Texture Synthesis
	Noise Comparison

	Different size of Patch
	Noise Comparision

	PSNR for Texture Synthesis
	Result

	Program Complexity
	Color Image
	Cleaning image by Selecting Area
	Cleaning image by Edge Detection

	Conclusion and Future Scope
	Conclusion
	Future Scope

	Website References
	References
	Index

