
Design and Optimization of the Algorithms and the
Data Structures used in the Chip Analysis Tools

By

Harikrushna G. Vanpariya

08MCE019

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

AHMEDABAD-382481

May 2010

Design and Optimization of the Algorithms and the
Data Structures used in the Chip Analysis Tools

Major Project

Submitted in fulfillment of the requirements

For the degree of

M.Tech. Computer Science and Engineering

By

Harikrushna G. Vanpariya

08MCE019

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

AHMEDABAD-382481

May 2010

iii

Declaration

This is to certify that

i) The thesis comprises my original work towards the degree of Master of Technology

in Computer Science and Engineering at Nirma University and has not been

submitted elsewhere for a degree.

ii) Due acknowledgement has been made in the text to all other material used.

Harikrushna G. Vanpariya

iv

Certificate

This is to certify that the Major Project entitled ”Design and Optimization of the

Algorithms and the Data Structures used in the Chip Analysis Tools” submitted by

Harikrushna G. Vanpariya (08MCE019), towards the fulfillment of the requirements

for the degree of Master of Technology in Computer Science and Engineering of Nirma

University of Science and Technology, Ahmedabad is the record of work carried out

by him under my supervision and guidance. In my opinion, the submitted work has

reached a level required for being accepted for examination. The results embodied

in this major project, to the best of my knowledge, haven’t been submitted to any

other university or institution for award of any degree or diploma.

Dr. S.N. Pradhan Mr. Ashu Talwar

Guide, Professor, Project Manager

Department Computer Engineering, ST Microelectronics

Institute of Technology, Greater NOIDA

Nirma University, Ahmedabad

Prof. D. J. Patel Dr. K Kotecha

Professor and Head, Director,

Department Computer Engineering, Institute of Technology,

Institute of Technology, Nirma University,

Nirma University, Ahmedabad Ahmedabad

v

Abstract

This project aims to minimize the time and space complexity required in the chip

analysis tool. To minimizing the complexity various algorithms has to be implemented

and the various tactics are applied at the various level of implementations. These

algorithms and tactics are described in the thesis.

Following chip analysis tools has been optimized at various levels.

• Component Descriptor Language Utility

• Timing Power Product tool

• CDL Verilog comparison tool

• Pattern Search engine

A new data structure is designed for Component descriptor language utility to mini-

mize the space complexity of the tool.

Level of parsing and collaboration level has been updated to reduce time com-

plexity of the Timing Power Product tool.

Modifying of the programming language for the optimizing the execution timing

for the comparisons in the CDL Verilog comparison tool.

Change in the file structure and the change in the pattern of include file in main

file to minimize the time complexity of the pattern search engine.

vi

Acknowledgements

I am deeply indebted to my thesis supervisor for his constant guidance and moti-

vation. He has devoted significant amount of his valuable time to plan and discuss the

thesis work. Without his experience and insights, it would have been very difficult to

do quality work.

I would also like to extend my gratitude to Mr. Ashu Talwar and Mr. Najaf Zaidi

for fruitful discussions during Design and Optimization of the Algorithms and the

Data Structures used in the Chip Analysis Tools meetings and for their encourage-

ment.

Last, but not the least, no words are enough to acknowledge constant support

and sacrifices of my family members because of whom I am able to partial fulfill the

requirements For the degree program successfully.

- Harikrushna G. Vanpariya

08MCE019

Contents

Declaration iii

Certificate iv

Abstract v

Acknowledgements vi

List of Tables x

List of Figures 1

1 Introduction 2
1.1 Component Descriptor Language Utility 2

1.1.1 Description . 2
1.2 Timing Power Product tool . 3

1.2.1 Description . 3
1.3 CDL Verilog comparison tool optimization 3

1.3.1 Description . 3
1.4 Pattern Search engine . 4

1.4.1 Description . 4
1.5 Thesis Organization . 4

2 Related Terminologies 6
2.1 Component Descriptor Language Utility 6

2.1.1 Garbage collector . 6
2.1.2 Array List in java . 10
2.1.3 vector in Java . 11

2.2 Timing Power Product tool . 12
2.2.1 Certification level 1: Timing Power, Leakage Tool 12
2.2.2 Certification level 2: Timing Power, Leakage Tool 13

2.3 CDL Verilog comparison tool optimization 13
2.3.1 Verilog File Structure . 13

2.4 Pattern Search Engine . 17

vii

CONTENTS viii

2.4.1 Grep function complexity and working 17

3 Problem Definition and Existing Methodologies 21
3.1 Component Descriptor Language (CDL) Utility 21

3.1.1 Existing methodology . 21
3.1.2 Problem statement . 21

3.2 Timing Power Product tool . 22
3.2.1 Existing work . 22
3.2.2 Problem statement . 23

3.3 CDL Verilog comparison tool optimization 24
3.3.1 Existing Methodology . 24
3.3.2 Problem Statement . 25

3.4 Pattern Search engine . 25
3.4.1 Problem Definition . 25
3.4.2 Utile file Optimization . 25

3.5 Summary . 25

4 The Proposed Algorithm 26
4.1 Timing Power Product tool . 26

4.1.1 Proposed Algorithm . 26
4.2 CDL Verilog comparison tool optimization 28
4.3 Pattern Search engine . 28

4.3.1 Proposed Design Structure for Pattern Search Engine 28
4.3.2 Utile file Optimization . 32

4.4 Summary . 33

5 Implementation 36
5.1 Component Descriptor Language Utility 36
5.2 Timing Power Product tool . 37

5.2.1 results . 37
5.3 CDL Verilog comparison tool optimization 37
5.4 Pattern Search engine . 38

5.4.1 Class Description . 44
5.4.2 Class Hierarchy . 44
5.4.3 Snapshot . 44
5.4.4 Utile file Optimized implementation 44

5.5 Summary . 48

6 Conclusion and Future Scope 52
6.1 Result Analysis . 52

6.1.1 Execution time analysis of Utile file optimization 52
6.1.2 Backtracking of the calling class 52
6.1.3 Heap allocation Analysis . 52
6.1.4 Analysis . 53

CONTENTS ix

6.1.5 Thread Analysis . 53
6.1.6 Optimized results . 53
6.1.7 Execution time analysis in Utile File 53

6.2 Conclusion . 54
6.3 Future Scope . 55

References 60

Index 60

List of Tables

I Bad character heuristics . 18
II Good suffix heuristics . 18
III Good suffix heuristics example . 19
IV Good Suffix example case - II . 19

I Design for Pattern Search Engine . 29

I Timing,Power and Leakage complexity 41
II Default package class details - 1 . 45
III Default package class details - 2 . 46
IV DataStructure package class details 46

I Analysis for 5 include file in the main file 54
II Analysis for 7 include file in the main file 54

x

List of Figures

2.1 Timing Library Structure . 13
2.2 Power Library Structure . 14
2.3 Leakage Library Structure . 15
2.4 All Three Library Structure . 16

4.1 Design Architecture of Pattern Search Engine 32
4.2 Execution flow to get missing pin before optimization. 34

5.1 Flow of the Timing Power Product tool 38
5.2 Flow of the Timing Power Product tool before optimization 39
5.3 Flow of the Timing Power Product tool after optimization 40
5.4 Flow of the CDL Verilog comparison tool 42
5.5 Workflow of the search engine tool. 43
5.6 Hierarchy of the default package. 47
5.7 Hierarchy of the data Structure package. 47
5.8 Pattern Search engine tool GUI - with predefine checks 49
5.9 Pattern Search engine tool GUI - add new pattern 50
5.10 Pattern Search engine tool GUI - add new result 50
5.11 Execution flow to get missing pin after optimization. 51

6.1 Execution time of the complete application 56
6.2 Backtracking of the calling class . 57
6.3 Heap allocation Analysis . 57
6.4 Garbage collection Analysis . 57
6.5 Thread Analysis . 58
6.6 Difference with the previous results 59
6.7 Parser class result analysis . 59

1

Chapter 1

Introduction

Real life tools are designed without the complexity measurements.Effective output

can be generated in minimum time by efficiently working tools.

Following Tools get studied and optimized for effectively working.

• Component Descriptor Language Utility

• Timing Power Product tool

• CDL Verilog comparison tool optimization

• Pattern Search engine

1.1 Component Descriptor Language Utility

1.1.1 Description

For any component (chip) created by the developer there is a file created in the back

end. This file describes the detail of each pin of the component and also describe

that the pin is connected with which pin of internal component. Each component

has some internal components inside, those internal components are also described

in that file and the connection between various components is also described. SO,

2

CHAPTER 1. INTRODUCTION 3

for each component there is a bulky file which describe the complete structure of the

chip. [5]

1.2 Timing Power Product tool

1.2.1 Description

According to various CMOS technology the modeling libraries are defined. These

libraries can be used for the dynamic analysis of the device behavior. Various CMOS

technology has level of certification being defined. This level of certification contains

the libraries in specific format. By using this certification level the functionality

should be fetched from the libraries. These libraries containing the data related

to the leakage, timing and power of the device. Equate these data and create a

summarized and readable file from it. After creating the complete abstract format

from the library, search the minimum and the maximum parameters (timing, power,

leakage, current ,VDD, VDDS, VDDI, load, etc.) so that one can easily analysis the

behavior of the CMOS technology. Using parameter and the minimum and maximum

value of it plot the graph representing the behavior of the device.

1.3 CDL Verilog comparison tool optimization

1.3.1 Description

Minimizing the execution time for the comparison of the CDL (Component Descrip-

tion Language) file and Verilog file. CDL file contains the description of the whole

component with the internal pin connection structure.

Verilog file describe the component structure. Verilog HDL is a hardware descrip-

tion language used to design and document electronic systems. Verilog HDL allows

designers to design at various levels of abstraction.

CHAPTER 1. INTRODUCTION 4

1.4 Pattern Search engine

1.4.1 Description

A new language introduce for the user who do not know the shell programming then

also able to fulfill his requirements using tool using simple English like language.

This tool has to design from the scratch and fulfill all the requirement with minimum

complexity.

The tool has to be dynamically designed so that it can be reusable and modifiable.[3]

1.5 Thesis Organization

The rest of the thesis is organized as follows. Notice how chapters are referred by

means of slashrefhandoff command. Also see in handoff chapter how handoff is la-

beled.

Chapter 2, Related terminologies, describes the various terms like, garbage collec-

tor,working of vector in java, Memory allocation by Array List,working of the

grep function in the Linux,Verilog file format and the Timing power Product

structure overview.

Chapter 3, Problem Definition and Existing Methodologies, presents the problem

definition and describes the existing methodologies used to execute tools.

In chapter 4, The Proposed Algorithm, a new algorithm for minimizing the time or

space complexity of the tools.

Chapter 5, Implementation, describes in brief the implementation performed ac-

cording to the proposed algorithms and the results gained by making updates.

The implementation results along with the performance analysis of the proposed

algorithm are presented.

CHAPTER 1. INTRODUCTION 5

Finally, in chapter 6 concluding remarks and scope for future work is presented.

Chapter 2

Related Terminologies

Various terminologies have been studied for the various tools relate to the working

and requirements of the tool.

2.1 Component Descriptor Language Utility

2.1.1 Garbage collector

The Java virtual machine’s heap stores all objects created by a running Java appli-

cation. Objects are created by the new, newarray, anewarray, and multianewarray

instructions, but never freed explicitly by the code.Garbage collection is the process

of automatically freeing objects that are no longer referenced by the program. This

chapter does not describe an official Java garbage-collected heap, because none ex-

ists. As mentioned in earlier chapters, the Java virtual machine specification does not

require any particular garbage collection technique. It doesn’t even require garbage

collection at all. But until infinite memory is invented, most Java virtual machine im-

plementations will likely come with garbage-collected heaps. This chapter describes

various garbage collection techniques and explains how garbage collection works in

Java virtual machines. Accompanying this chapter on the CD-ROM is an applet that

interactively illustrates the material presented in the chapter. The applet, named

6

CHAPTER 2. RELATED TERMINOLOGIES 7

Heap of Fish, simulates a garbage-collected heap in a Java virtual machine. The

simulation–which demonstrates a compacting, mark-and-sweep collector–allows you

to interact with the heap as if you were a Java program: you can allocate objects

and assign references to variables. The simulation also allows you to interact with

the heap as if you were the Java virtual machine: you can drive the processes of

garbage collection and heap compaction. At the end of this chapter, you will find a

description of this applet and instructions on how to use it.

Importance of Garbage collector

The name ”garbage collection” implies that objects no longer needed by the program

are ”garbage” and can be thrown away. A more accurate and up-to-date metaphor

might be ”memory recycling.” When an object is no longer referenced by the pro-

gram, the heap space it occupies can be recycled so that the space is made available

for subsequent new objects. The garbage collector must somehow determine which

objects are no longer referenced by the program and make available the heap space

occupied by such unreferenced objects. In the process of freeing unreferenced objects,

the garbage collector must run any finalizers of objects being freed.

In addition to freeing unreferenced objects, a garbage collector may also combat

heap fragmentation. Heap fragmentation occurs through the course of normal pro-

gram execution. New objects are allocated, and unreferenced objects are freed such

that free portions of heap memory are left in between portions occupied by live ob-

jects. Requests to allocate new objects may have to be filled by extending the size of

the heap even though there is enough total unused space in the existing heap. This

will happen if there is not enough contiguous free heap space available into which the

new object will fit. On a virtual memory system, the extra paging (or swapping) re-

quired to service an ever growing heap can degrade the performance of the executing

program. On an embedded system with low memory, fragmentation could cause the

virtual machine to ”run out of memory” unnecessarily.

CHAPTER 2. RELATED TERMINOLOGIES 8

Garbage collection relieves you from the burden of freeing allocated memory.

Knowing when to explicitly free allocated memory can be very tricky. Giving this

job to the Java virtual machine has several advantages. First, it can make you more

productive. When programming in non-garbage-collected languages you can spend

many late hours (or days or weeks) chasing down an elusive memory problem. When

programming in Java you can use that time more advantageously by getting ahead

of schedule or simply going home to have a life.

A second advantage of garbage collection is that it helps ensure program integrity.

Garbage collection is an important part of Java’s security strategy. Java program-

mers are unable to accidentally (or purposely) crash the Java virtual machine by

incorrectly freeing memory.

A potential disadvantage of a garbage-collected heap is that it adds an overhead

that can affect program performance. The Java virtual machine has to keep track of

which objects are being referenced by the executing program, and finalize and free

unreferenced objects on the fly. This activity will likely require more CPU time than

would have been required if the program explicitly freed unnecessary memory. In

addition, programmers in a garbage-collected environment have less control over the

scheduling of CPU time devoted to freeing objects that are no longer needed.

Garbage Collection Algorithms

Any garbage collection algorithm must do two basic things. First, it must detect

garbage objects. Second, it must reclaim the heap space used by the garbage objects

and make the space available again to the program.

Garbage detection is ordinarily accomplished by defining a set of roots and deter-

CHAPTER 2. RELATED TERMINOLOGIES 9

mining reachability from the roots. An object is reachable if there is some path of

references from the roots by which the executing program can access the object. The

roots are always accessible to the program. Any objects that are reachable from the

roots are considered ”live.” Objects that are not reachable are considered garbage,

because they can no longer affect the future course of program execution.

The root set in a Java virtual machine is implementation dependent, but would

always include any object references in the local variables and operand stack of any

stack frame and any object references in any class variables. Another source of roots

are any object references, such as strings, in the constant pool of loaded classes.

The constant pool of a loaded class may refer to strings stored on the heap, such as

the class name, superclass name, superinterface names, field names, field signatures,

method names, and method signatures. Another source of roots may be any object

references that were passed to native methods that either haven’t been ”released” by

the native method. (Depending upon the native method interface, a native method

may be able to release references by simply returning, by explicitly invoking a call

back that releases passed references, or some combination of both.) Another potential

source of roots is any part of the Java virtual machine’s runtime data areas that are

allocated from the garbage-collected heap. For example, the class data in the method

area itself could be placed on the garbage-collected heap in some implementations,

allowing the same garbage collection algorithm that frees objects to detect and unload

unreferenced classes.

Any object referred to by a root is reachable and is therefore a live object. Addi-

tionally, any objects referred to by a live object are also reachable. The program is

able to access any reachable objects, so these objects must remain on the heap. Any

objects that are not reachable can be garbage collected because there is no way for

the program to access them.

CHAPTER 2. RELATED TERMINOLOGIES 10

The Java virtual machine can be implemented such that the garbage collector

knows the difference between a genuine object reference and a primitive type (for

example, an int) that appears to be a valid object reference. (One example is an

int that, if it were interpreted as a native pointer, would point to an object on the

heap.) Some garbage collectors, however, may choose not to distinguish between gen-

uine object references and look-alikes. Such garbage collectors are called conservative

because they may not always free every unreferenced object. Sometimes a garbage

object will be wrongly considered to be live by a conservative collector, because an

object reference look-alike referred to it. Conservative collectors trade off an increase

in garbage collection speed for occasionally not freeing some actual garbage.

Two basic approaches to distinguishing live objects from garbage are reference

counting and tracing. Reference counting garbage collectors distinguish live objects

from garbage objects by keeping a count for each object on the heap. The count

keeps track of the number of references to that object. Tracing garbage collectors

actually trace out the graph of references starting with the root nodes. Objects that

are encountered during the trace are marked in some way. After the trace is complete,

unmarked objects are known to be unreachable and can be garbage collected. [11]

2.1.2 Array List in java

public class ArrayList

extends AbstractList

implements List, RandomAccess, Cloneable, Serializable

Resizable-array implementation of the List interface. Implements all optional list op-

erations, and permits all elements, including null. In addition to implementing the

List interface, this class provides methods to manipulate the size of the array that is

used internally to store the list. (This class is roughly equivalent to Vector, except

that it is unsynchronized.)

CHAPTER 2. RELATED TERMINOLOGIES 11

The size, isEmpty, get, set, iterator, and listIterator operations run in constant time.

The add operation runs in amortized constant time, that is, adding n elements re-

quires O(n) time. All of the other operations run in linear time (roughly speaking).

The constant factor is low compared to that for the LinkedList implementation.

Each ArrayList instance has a capacity.The capacity is the size of the array used to

store the elements in the list. It is always at least as large as the list size. As ele-

ments are added to an ArrayList, its capacity grows automatically. The details of the

growth policy are not specified beyond the fact that adding an element has constant

amortized time cost.

An application can increase the capacity of an ArrayList instance before adding a

large number of elements using the ensureCapacity operation. This may reduce the

amount of incremental reallocation.

Note that this implementation is not synchronized. If multiple threads access an

ArrayList instance concurrently, and at least one of the threads modifies the list

structurally, it must be synchronized externally. (A structural modification is any

operation that adds or deletes one or more elements, or explicitly resizes the back-

ing array; merely setting the value of an element is not a structural modification.)

This is typically accomplished by synchronizing on some object that naturally en-

capsulates the list. If no such object exists, the list should be ”wrapped” using the

Collections.synchronizedList method. This is best done at creation time, to prevent

accidental unsynchronized access to the list.[4]

2.1.3 vector in Java

public class Vector

extends AbstractList

implements List, RandomAccess, Cloneable, Serializable

The Vector class implements a growable array of objects. Like an array, it contains

components that can be accessed using an integer index. However, the size of a Vector

CHAPTER 2. RELATED TERMINOLOGIES 12

can grow or shrink as needed to accommodate adding and removing items after the

Vector has been created.

Each vector tries to optimize storage management by maintaining a capacity and

a capacityIncrement. The capacity is always at least as large as the vector size; it

is usually larger because as components are added to the vector, the vector’s storage

increases in chunks the size of capacityIncrement. An application can increase the

capacity of a vector before inserting a large number of components; this reduces the

amount of incremental reallocation.

As of the Java 2 platform v1.2, this class has been retrofitted to implement List,

so that it becomes a part of Java’s collection framework. Unlike the new collection

implementations, Vector is synchronized.

The Iterators returned by Vector’s iterator and listIterator methods are fail-fast:

if the Vector is structurally modified at any time after the Iterator is created, in any

way except through the Iterator’s own remove or add methods, the Iterator will throw

a ConcurrentModificationException. Thus, in the face of concurrent modification,

the Iterator fails quickly and cleanly, rather than risking arbitrary, non-deterministic

behavior at an undetermined time in the future. The Enumerations returned by

Vector’s elements method are not fail-fast.[4]

2.2 Timing Power Product tool

2.2.1 Certification level 1: Timing Power, Leakage Tool

Each component has three libraries to represent its behavior. Formats of the libraries

for certification level -1 are as follow :

In this version each library (Power2.2, Timing2.1 or Leakage2.3) contains the

various cell. Each cell has certain pins. Each pin has specific behavior in terms of

Power, timing and leakage. Each library has approx. size 300MB.

CHAPTER 2. RELATED TERMINOLOGIES 13

Figure 2.1: Timing Library Structure

2.2.2 Certification level 2: Timing Power, Leakage Tool

For any component single library contains the all parameters. Format of the library

for certification level 2 is as follow.

Each pin has specific behavior in terms of Power, timing and leakage as mentioned

in 2.4. Each library has approx. size 900MB.

2.3 CDL Verilog comparison tool optimization

2.3.1 Verilog File Structure

Verilog differs from regular programming languages (C, Pascal, ...) in 3 main aspects:

(1) simulation time concept, (2) multiple threads, and (3) some basic circuit concepts

like network connections and primitive gates. If you know how to program in C and

you understand basic digital design then learning Verilog will be easy.

Modules In Verilog, circuit components are designed inside a module. Modules

can contain both structural and behavioral statements. Structural statements repre-

sent circuit components like logic gates, counters, and microprocessors. Behavioral

CHAPTER 2. RELATED TERMINOLOGIES 14

Figure 2.2: Power Library Structure

level statements are programming statements that have no direct mapping to circuit

components like loops, if-then statements, and stimulus vectors which are used to

exercise a circuit. Figure 1 shows an example of a circuit and a test bench module.

A module starts with the keyword module followed by an optional module name and

an optional port list. The key word endmodule ends a module. [10]

‘timescale 1ns / 1ps

//create a NAND gate out of an AND and an Invertor

module some_logic_component (c, a, b);

// declare port signals

output c;

input a, b;

// declare internal wire

wire d;

//instantiate structural logic gates

and a1(d, a, b); //d is output, a and b are inputs

not n1(c, d); //c is output, d is input

CHAPTER 2. RELATED TERMINOLOGIES 15

Figure 2.3: Leakage Library Structure

endmodule

//test the NAND gate

module test_bench; //module with no ports

reg A, B;

wire C;

//instantiate your circuit

some_logic_component S1(C, A, B);

//Behavioral code block generates stimulus to test circuit

initial

begin

A = 1’b0; B = 1’b0;

#50 $display("A = %b, B = %b, Nand output C = %b \n", A, B, C);

A = 1’b0; B = 1’b1;

#50 $display("A = %b, B = %b, Nand output C = %b \n", A, B, C);

CHAPTER 2. RELATED TERMINOLOGIES 16

Figure 2.4: All Three Library Structure

A = 1’b1; B = 1’b0;

#50 $display("A = %b, B = %b, Nand output C = %b \n", A, B, C);

A = 1’b1; B = 1’b1;

#50 $display("A = %b, B = %b, Nand output C = %b \n", A, B, C);

end

endmodule

CHAPTER 2. RELATED TERMINOLOGIES 17

2.4 Pattern Search Engine

2.4.1 Grep function complexity and working

Grep Uses ”Boyer-Moore algorithm” for searching pattern

Boyer-Moore algorithm

The algorithm of Boyer and Moore compares the pattern with the text from right to

left. If the text symbol that is compared with the rightmost pattern symbol does not

occur in the pattern at all, then the pattern can be shifted by m positions behind

this text symbol. The following example illustrates this situation

Example:

0 1 2 3 4 5 6 7 8 9 ...

a b b a d a b a c b a

b a b a c

b a b a c

The first comparison d-c at position 4

produces a mismatch. The text symbol d does not occur in the pattern. Therefore,

the pattern cannot match at any of the positions 0, ..., 4, since all corresponding

windows contain a d. The pattern can be shifted to position 5. The best case for the

Boyer-Moore algorithm is attained if at each attempt the first compared text symbol

does not occur in the pattern. Then the algorithm requires only O(n/m) comparisons

Bad character heuristics

This method is called bad character heuristics. It can also be applied if the bad

character, i.e. the text symbol that causes a mismatch, occurs somewhere else in the

pattern. Then the pattern can be shifted so that it is aligned to this text symbol.

The next example illustrates this situation Example:I

Comparison b-c causes a mismatch. Text symbol b occurs in the pattern at

CHAPTER 2. RELATED TERMINOLOGIES 18

Table I: Bad character heuristics
0 1 2 3 4 5 6 7 8 9 ...
a b b a b a b a c b a
b a b a c

b a b a c

Table II: Good suffix heuristics
0 1 2 3 4 5 6 7 8 9 ...
a b a a b a b a c b a
c a b a b

c a b a b

positions 0 and 2. The pattern can be shifted so that the rightmost b in the pattern

is aligned to text symbol b.

Good suffix heuristics

Sometimes the bad character heuristics fails. In the following situation the compari-

son a-b causes a mismatch. An alignment of the rightmost occurrence of the pattern

symbol a with the text symbol a would produce a negative shift. Instead, a shift by 1

would be possible. However, in this case it is better to derive the maximum possible

shift distance from the structure of the pattern. This method is called good suffix

heuristics Example:II

The suffix ab has matched. The pattern can be shifted until the next occurrence

of ab in the pattern is aligned to the text symbols ab, i.e. to position 2. In the

following situation the suffix ab has matched. There is no other occurrence of ab in

the pattern.Therefore, the pattern can be shifted behind ab, i.e. to position 5.III

Example:

In the following situation the suffix bab has matched. There is no other occurrence

of bab in the pattern. But in this case the pattern cannot be shifted to position 5 as

before, but only to position 3, since a prefix of the pattern (ab) matches the end of

bab. We refer to this situation as case 2 of the good suffix heuristics.

CHAPTER 2. RELATED TERMINOLOGIES 19

Table III: Good suffix heuristics example
0 1 2 3 4 5 6 7 8 9 ...
a b c a b a b a c b a
c b a a b

c b a a b

Table IV: Good Suffix example case - II
0 1 2 3 4 5 6 7 8 9 ...
a a b a b a b a c b a
a b b a b

a b b a b

Example:IV

The pattern is shifted by the longest of the two distances that are given by the

bad character and the good suffix heuristics.

Searching algorithm

The searching algorithm compares the symbols of the pattern from right to left with

the text. After a complete match the pattern is shifted according to how much its

widest border allows. After a mismatch the pattern is shifted by the maximum of the

values given by the good-suffix and the bad-character heuristics

Boyer-Moore searching algorithm

void bmSearch() {

int i=0, j;

while (i<=n-m)

{

j=m-1;

while (j>=0 && p[j]==t[i+j]) j--;

if (j<0)

{

report(i);

CHAPTER 2. RELATED TERMINOLOGIES 20

i+=s[0];

}

else

i+=Math.max(s[j+1], j-occ[t[i+j]]);

}

}

Analysis

If there are only a constant number of matches of the pattern in the text, the Boyer-

Moore algorithm performs O(n) comparisons in the worst case. The proof of this is

rather difficult. In general O(nm) comparisons are necessary, e.g. if the pattern is am

and the text an. By a slight modification of the algorithm the number of comparisons

can be bounded to O(n) even in the general case. If the alphabet is large compared to

the length of the pattern, the algorithm performs O(n/m) comparisons on the average.

This is because often a shift by m is possible due to the bad character heuristics. [3]

Chapter 3

Problem Definition and Existing

Methodologies

3.1 Component Descriptor Language (CDL) Util-

ity

3.1.1 Existing methodology

• Vectors are used to store the structure of the component.

• No garbage collector is used to re collect the free space

• Format used to store the structure of the component was not optimum.

3.1.2 Problem statement

• The file more that 500MB cannot be stored in the structure defined.

• It required more memory at the run time to store the complete structure of the

component.

• The execution time required to the complete file is very high.

21

CHAPTER 3. PROBLEM DEFINITION AND EXISTING METHODOLOGIES22

3.2 Timing Power Product tool

3.2.1 Existing work

Algorithm

• Step 1. Parse the input value and store in the corresponding variable

• Step 2. Validate the input value accordingly [Complexity : O(maximum input

value possible)]

– File given as argument does exist

– Validate the cell name in the libraries

• Step 3. Get the all PVT names that has to be parsed

• Step 4. Go through each PVT and parse Power Library

• Step 5. Go through each PVT and parse Timing Library

• Step 6. Go through each PVT and parse Leakage Library

• Step 7. Merge the libraries by cell name and pin name O (n*m*p) n=number

of cells in timing libraries , m=number of cells in power libraries , p= number

of cells in Leakage libraries

• Step 8. Parse Timing Library [O (n*m), n= total cell in the file , m=total pin

in the selected cell]

– Search for the cell name O (n) , n=total cell in the file

– Get the pin from the particular cell

– Search for the timing definition defined in the pin detail

– If the timing details found for the pin then get the related Pin details.

– Get the unique comment to uniquely identify the timing element of the

particular pin

CHAPTER 3. PROBLEM DEFINITION AND EXISTING METHODOLOGIES23

– Get the condition for falling and rising details for the pin

• Step 9. Parse Power Library [O (n*m), n= total cell in the file , m=total pin

in the selected cell]

– Search for the cell name

– Get the pin from the particular cell

– Search for the power definition defined in the pin detail

– If the power details found for the pin then get the related Pin details.

– Get the unique comment to uniquely identify the timing element of the

particular pin

– Get the condition for falling and rising details for the pin

• Step 10. Parse the value from the Leakage library

– Get the supply value defined in the leakage library

– Compare the value of the supply with the minimum and maximum value

of the supply defined by user

3.2.2 Problem statement

Certification level 1: Timing Power, Leakage Tool

• Fetch any parameter (timing ,Power, leakage or supply) for any cell

• Parameter can be fetched for any specific pin or all pins of a particular cell.

• Limit the value of the any parameter

• All parameter for whole library can be extracted

• Store the output in the readable file format (.csv)

• Plot graph for the extracted parameters

CHAPTER 3. PROBLEM DEFINITION AND EXISTING METHODOLOGIES24

• Time Complexity must be optimum

• Optimizing execution time

Certification level 2: Timing Power, Leakage Tool

• Fetch any parameter (timing ,Power, leakage or supply) for any cell

• Fetch any parameter (timing ,Power, leakage or supply) for any cell

• Parameter can be fetched for any specific pin or all pins of a particular cell.

• Limit the value of the any parameter.

• All parameter for whole library can be extracted.

• Store the output in the readable file format (.csv)

• Plot graph for the extracted parameters.

• Time Complexity must be optimum.

• Optimizing execution time

• Compatible with the older version of certification level.

3.3 CDL Verilog comparison tool optimization

3.3.1 Existing Methodology

Existing Parsing Algorithm

Store value assigned to a variable\\

Parse the string and store minimum and maximum value\\

For mimumvalue to maximum value\\

Print pinaname with pinnumber and value\\

End For\\

CHAPTER 3. PROBLEM DEFINITION AND EXISTING METHODOLOGIES25

3.3.2 Problem Statement

Minimize the execution time complexity of the CDL verilog comparison tool.

3.4 Pattern Search engine

3.4.1 Problem Definition

• pattern can be reused many times

• for same file more than one pattern can be defined

• for any file dependency of the pattern can be specified

• instance of pattern in particular file can be mentioned

• to search the whole directory files can be omitted from searching

• specific rules can be defined for specific file in same directory

3.4.2 Utile file Optimization

Utile file contains the details of the total number on a specific cell. It also contains

the detail of the details of the strobe in terms of timing and strobe in terms of value

details. It has the details that which pin should be strobe at which time and the

expected value at the specific time at that pin. The specific check of the pattern

search engine tool get missing or extra pins which are not strobe for timing or value

from the utile file. The execution time of the finding missing/extra pin has to be

optimized.[9]

3.5 Summary

This chapter presented work already done to solve the problem described in section

3.2.2. After studying these terminologies the way to optimize the tool is found. [8]

Chapter 4

The Proposed Algorithm

Describe your approach in this chapter. It may include algorithms, equations, figures

or any other model to support your method.

4.1 Timing Power Product tool

4.1.1 Proposed Algorithm

• Step 1. Parse the input value and store in the corresponding variable

• Step 2. Validate the input value accordingly [Complexity : O(maximum input

value possible)]

– File given as argument does exist

– Validate the cell name in the libraries

• Step 3. Get the all PVT names that has to be parsed

• Step 4. Go through each PVT and parse Power Library

• Step 5. Go through each PVT and parse Timing Library

• Step 6. Go through each PVT and parse Leakage Library

26

CHAPTER 4. THE PROPOSED ALGORITHM 27

• Step 7. Parse Timing Library [O (n*m), n= total cell in the file , m=total pin

in the selected cell]

– Optimization : If user do not want to search all cell and all pins the

complexity reduces to O(n*m) , n=required cells , m=selected pins)

– Search for the cell name [O(n) , n=total cell in the file]

– Get the pin from the particular cell [O(n) , n= total number of pin in

selected cell]

– Search for the timing definition defined in the pin detail

– If the timing details found for the pin then get the related Pin details.

– Get the unique comment to uniquely identify the timing element of the

particular pin

– Get the condition for falling and rising details for the pin

• Step 8. Parse Power Library [O (n*m), n= total cell in the file , m=total pin

in the selected cell]

– Optimization : If user do not want to search all cell and all pins the

complexity reduces to O(n*m) , n= required cells , m=selected pins)

– Search for the cell name [O(n) , n=total cell in the file]

– Get the pin from the particular cell [O(n) , n= total number of pin in

selected cell]

– Search for the power definition defined in the pin detail

– If the power details found for the pin then get the related Pin details.

– Get the unique comment to uniquely identify the timing element of the

particular pin

– Get the condition for falling and rising details for the pin

• Step 9. Combine the out put of the timing and the power library

CHAPTER 4. THE PROPOSED ALGORITHM 28

• Step 10. Do following process to the combination of the timing and power

library

– Uniquely identify the each element of the timing and power

– To collaborate the value of the timing and the power library value.

– Rearrange the value to get the data in specific format (.CSV)

• Step 11. Parse the value from the Leakage library

– Get the supply value defined in the leakage library

– Compare the value of the supply with the minimum and maximum value

of the supply defined by user

4.2 CDL Verilog comparison tool optimization

Generate another file (AWK) for looping and printing the value.

maxCBusValue=15

for (minimumvalue to maximumvalue) {

print pinname with pinnumber and value

}

4.3 Pattern Search engine

4.3.1 Proposed Design Structure for Pattern Search Engine

Design for the pattern search engine is described in the following table.

CHAPTER 4. THE PROPOSED ALGORITHM 29

Table I: Design for Pattern Search Engine
Name Description Example
Pattern Name(M): Name of the pattern frstPatrn
Pattern(M): pattern syntax A ∗ [0− 9] ∗ [A− Z]

Expression Name of the frstExpr
Name(M): expression(unique)
Expression(M): syntax of the expression frstPatrn [joiner] secPatrn

[joiner] thrdPatrn
Delimiter(O): delimiter to which field should ”:”

be separated
field number(O): after applying delimiter which 4

field have to be fetched from
the file

Depends on Name of the expression on thrdExpr
Expression(O) which this expression

depends

Range Name (M): Name of range RngNm
start pattern / line line number or the regular frstPatrn (or 5)
number expression from which the
(M if end pattern is data has to start fetching
not defined)

end pattern / line last line number or the regular lstPatrn (or 100)
number(M) expression till which the data

has to be fetched

Delimiter(O): delimiter to which field should ”:”
be separated

field number(O): after applying delimiter which 4
field have to be fetched from
the file

CHAPTER 4. THE PROPOSED ALGORITHM 30

Joiner: eq,AND, OR,!(can be

used instead of joiner)

Pattern List(M): Name of pattern List patrnLst

(Sequence is

important here):

Pattern(M/O): Name of the already defined frstPatrn

pattern

Pattern(M/O): Name of the already defined thrdPatrn

pattern

Script Name(M/O): Name of the script which want scrptNm

to execute

Range name of the range already RngNm

Name(M/O): defined in the file

Expression Name of the expression thrdExpr

Name(M/O): already defined

Collection(M): Name of collection frstCol

Filename(M): complete path of the file with subdir1/subsubdir2/file30

the name file3

Patterns Name pattern name or expression frstPatrn thrdExpr patrnLst

/Expression Name name or patten list separated Rngnm

/Range Name by space which wanted to

apply to the file is written here

CHAPTER 4. THE PROPOSED ALGORITHM 31

Patterns/Expression repeat as above

/pattern List(O):

Place to search(O): repeat as above

Instance of repeat as above

pattern(O):

Directory File(O): true (if directory for file is specified) true/false(not req. to def.)

Collection(M): collection for a directory colYYY

Directory name of the directory in which dir1

Name(M): the pattern has to be searched

Files to exclude(O): pattern not to search from some subdir1/subsubdir2/file30

file then mention its name in this

field

Patterns pattern name or expression frstPtrn thrdExpr ptrnLst

Name/Expression name or patten list separated RngNm

/Range name by space which wanted to

Pattern List(M) apply to the file is written here

Place to search(O): particular place to search the EOF (End of File)

pattern EOF (End of File),

EOL (End of Line),BOF(Begin

of File),BOL(Begin of Line)

Instances of number of instances wanted to 5

pattern(O): search from the file more than

this will result in negative output

Special File(O): if special pattern has to apply to file1

some files of the directory

Output(O): to reuse the intermediate outFrstCol

search result

Patterns/Expression repeat as above

/pattern List(O):

Place to search(O): repeat as above

Instance of repeat as above

pattern(O):

Special File(O): repeat as above

Joiner: eq,AND,OR,! - can be used eq,AND,OR,!

instead of the joiner

CHAPTER 4. THE PROPOSED ALGORITHM 32

Output Status

successfully and all 0 If search

Non-zero: log will be generated

for the failure file

or directory

Design Diagram for Pattern Search Engine

Figure 4.1: Design Architecture of Pattern Search Engine

4.3.2 Utile file Optimization

Utile file format is as follow :

filename_extention.utile

Program "fileName" "extention"; #include

"relativePath/includeFile1"

CHAPTER 4. THE PROPOSED ALGORITHM 33

All required pin details.

#include "relativePath/includeFile2"

For i:=0 to 100

Set pin value for i

Strobe for timing to set value for various cycle . . .

Strobe for value to set the value at each pin . . .

Current implementation

Include the file in the main file with the file name above it. If the extra pin found then

it has to backtrack the complete included file to get the extra pin location. Depicted

in the figure 4.2

4.4 Summary

• Timing Power Product tool

By using this algorithm the time complexity and the space complexity can be

very with the number of the cells required in the output. [2] [1] [7]

• CDL Verilog comparison tool optimization

The algorithm defined for the tool will optimize the time complexity required to

generate the pin list from the verilog file which is the maximum time consuming

task of the tool

• Pattern Search engine

The Design for the tool is the used friendly and reusable with the optimum

CHAPTER 4. THE PROPOSED ALGORITHM 34

Figure 4.2: Execution flow to get missing pin before optimization.

CHAPTER 4. THE PROPOSED ALGORITHM 35

options. [6] [5]

Chapter 5

Implementation

5.1 Component Descriptor Language Utility

• Use of vector

– Internally, both the ArrayList and Vector hold onto their contents using

an Array. When you insert an element into an ArrayList or a Vector,

the object will need to expand its internal array if it runs out of room.

A Vector defaults to doubling the size of its array, while the ArrayList

increases its array size by 50 percent.[4]

– Due to use of vector the memory was getting out of room at the time of

execution[4]

– Thus data structure used in the tool was updated to ArrayList instead of

Vector[4]

• Garbage Collector

– Garbage collector execute during the execution of the java code at regular

interval of time. When the garbage collector called it frees the memory of

variable which is not in used, but it cannot be able to free the memory of

36

CHAPTER 5. IMPLEMENTATION 37

any data structure used. So increase the number of variables instead of

data structure. [11]

5.2 Timing Power Product tool

Timing Power Product Tool operates in steps described in the algorithm. The diagram

describes the complete working before and after the optimizing the tool.

Basically the tool work in following steps

• Get path of various libraries like timing, power and leakage

• Merge the libraries fetch the required parameter from the external parameters

applied to the tool

• Generate the .csv file as output

• By using Macros the graph can be plotted from the .csv(output) file.

Above steps are depicted in following diagram 5.1

The merging of the library was performed before the fetching the useful data in

the previous version of the tool.5.2

To minimize the time complexity the merging of the file is performed only after

the useful data has been fetched from the file. 5.3

5.2.1 results

After the optimization following optimization has been achieve in the tool execution

time.I

5.3 CDL Verilog comparison tool optimization

CDL Verilog comparison tool works on the Algorithm described in the Algorithm

section. CDL Verilog comparison tool generate the pin list from both CDL and

CHAPTER 5. IMPLEMENTATION 38

Figure 5.1: Flow of the Timing Power Product tool

Verilog file and compare it. Time consumed to the generate pin list from the Verilog

file has to be reduced to optimize the tool’s time complexity. 5.4

5.4 Pattern Search engine

Pattern search engine is the tool which is used to create custom collection of the

pattern through which particular result get fetched from the files or the directories.It’s

working is described in the following steps:

• Checks are defined with the list of the patterns and the global patterns

• Function file is defined by the developer and time by time new function can be

updated to this file to add more functionality to the tool.

• By using check file and the function admin can generate different kind of checks

CHAPTER 5. IMPLEMENTATION 39

Figure 5.2: Flow of the Timing Power Product tool before optimization

according to requirements.

• By using the check files and the function files Pattern search engine tool generate

three type of data.

– Template for AQA tool. Which contains the path of the check list in shell

format and function file path

– Checks in Shell programming

– All function files in collaborate format.

• AQA tool collaborate all the checks and with the functions using AQA template

file. The tool generate single executable product out of it.

CHAPTER 5. IMPLEMENTATION 40

Figure 5.3: Flow of the Timing Power Product tool after optimization

• Some dynamic parameters are set to the final product which can be changed at

the run time.

• Final executable single product can be executed by changing the dynamic vari-

ables in it.

Work flow diagram

Workflow of the Pattern search engine is describe in the following diagram. 5.5

Implemented components

Function Files These files are created by the programmer(s). It contains shell pro-

gramming functions. These functions get the arguments as inputs and generate

CHAPTER 5. IMPLEMENTATION 41

Table I: Timing,Power and Leakage complexity
Previous Timing Power O(n*m*p), n= total
Leakage algorithm number of cell in timing library, m=

total number of
cell in leakage library, p= total
number of cell
in Leakage Library

Optimized Timing Power O(n*m*p), n= selected
Leakage Algorithm number of cell in timing

library, m= selected number of
cell in leakage library, p=
selected number of cell
in Leakage Library

two parameters.

a. Output of searched pattern in a log file.

b. Status of executed commands.

Check Files These files created by the Admin. Checks are created using functions

defined in the function files. Each check can individually save and integrated

with other check. Checks define the sequence of results and the pattern/files to

generate these results.

Parser Parser parses the saved function and check files. Parser generates suitable

data structure according to the file given as the input. It supports following

two kind of data structure:

• Data Structure for functions

Function Data Structure

Name of function

Argument Data Structure

Name of argument

CHAPTER 5. IMPLEMENTATION 42

Figure 5.4: Flow of the CDL Verilog comparison tool

Valid Types of Argument (List)

Function description

• Data Structure for checks

Check Data Structure

Check name

Variable Data Structure

Name of Variable

Type of Variable

Value of Variable

Result Data Structure

CHAPTER 5. IMPLEMENTATION 43

Figure 5.5: Workflow of the search engine tool.

CHAPTER 5. IMPLEMENTATION 44

Name of Result

Type of Result

Values of Result

Final Result

AQA Template file • These file is used to configure AQA tool

• It also contains the relative paths of the shell files and supporting function

files

Shell files • These files contain the script to execute and generate the output

(log) file and status (Success/Fail) of the execution.

• This file contains the relative path of Function files

Supporting function files • Supporting function file contains the function with

the description of the each function defined in it

5.4.1 Class Description

5.4.2 Class Hierarchy

Class hierarchy for the default package is defined in the figure 5.6 Class hierarchy for

the Data structure package is defined in the figure 5.7

5.4.3 Snapshot

5.4.4 Utile file Optimized implementation

Suffix the special kind of the line number at the time of including the file inside the

main file(as depicted below).

Eg. filename_extention.utile

CHAPTER 5. IMPLEMENTATION 45

Table II: Default package class details - 1
Package Default
Class Summary

AddCheck Add check to the form.
AddElement Add Elements to the Form and update UI.
AddFileToPtrnList Add file type variable to the variable space in the

application.
AddNewFunctionFile User define function can be added to the tool at

the run time by this class.
AddNewResult New result can be added to the result area of

the tool.
BlankPanelForm This form internally consist the variable space

and the result space in which the variables and
results can be defined.

CheckFileSelection Valid check file can be imported to reuse the
saved checks.

CodeGeneration Generated Code will be displayed in this Form.
ConfirmProductGenration Generated product path will be given to the user

after successfully creation of the product.
CreateTemplateForm CreateTemplateForm contains the blank

template in which various checks can be added
accordig to user requirements.

DraggableTabbedPane Dragable property will be set to all the tabbed
pane.

FunctionFileChooser valid function file will be selected using this file
chooser.

PreviewCheck Preview of the created check can be displayed at
the runtime.

CHAPTER 5. IMPLEMENTATION 46

Table III: Default package class details - 2
Package Default
Class Summary

PublicClass This calss contains the global variables that can
be accessed across various classes.

SaveGeneratedTemplate Save generated template with proper format for
reusing it in future.

SaveTemplate Save generated template with proper format for
reusing it in future.

SelectDirectory Form to select directory from the hard drive
UpdateElement Update the Element values in the Form.
UpdateResult Update the values of the already added result in

the result field.

Table IV: DataStructure package class details
Package DataStructure

Class Summary
Argument Parser to store arguments of the function

file or the script file.
Check Bean to store check details.
Function Bean to store Function details.
Parser This class perform various parsing

operations required to get the data from file.
Result Bean to store the Result Details from the

check file of from Form.
Variable Bean for Variable of the Check
VariableFieldClass This java bean contains the getter and setter

CHAPTER 5. IMPLEMENTATION 47

Figure 5.6: Hierarchy of the default package.

Figure 5.7: Hierarchy of the data Structure package.

CHAPTER 5. IMPLEMENTATION 48

1 Program "fileName" "extension";

2_0 #include "relativePath/includeFile1" 2_1 content of file

"relativePath/includeFile1"

3 All required pin details.

4_0 #include "relativePath/includeFile2" 4_1 content of file

"relativePath/includeFile2"

5 For i:=0 to 100 6 Set pin value for i

7 Strobe for timing to set value for various cycle . . .

81 Strobe for value to set the value at each pin . . .

Include the file in the main file with the file name and the special line number

allocation according to the include file name. If the extra pin found then it does not

have to backtrack the complete included file to get the extra pin location. Depicted

in the figure 5.11

5.5 Summary

Above implementation is performed according to the proposed algorithms and study-

ing the related terminologies for the tool.

CHAPTER 5. IMPLEMENTATION 49

Figure 5.8: Pattern Search engine tool GUI - with predefine checks

CHAPTER 5. IMPLEMENTATION 50

Figure 5.9: Pattern Search engine tool GUI - add new pattern

Figure 5.10: Pattern Search engine tool GUI - add new result

CHAPTER 5. IMPLEMENTATION 51

Figure 5.11: Execution flow to get missing pin after optimization.

Chapter 6

Conclusion and Future Scope

6.1 Result Analysis

6.1.1 Execution time analysis of Utile file optimization

The execution time analysis is performed in java profiler tool. As shown in the

figure 6.1 the class createTemplateForm requires the maximum time for execution.

The second highest time required by the DataStructure.Parser class. To optimize this

parser class various parsing techniques have been used to optimize the execution time.

Structure of the output template has been modified to optimize the parser class.

6.1.2 Backtracking of the calling class

Backtracking of the calling class (6.2) helps to find out the all calling class of the

particular class and the time taken by the class during the calling that class.

6.1.3 Heap allocation Analysis

Heap allocation analysis 6.3 depicts the heap size required by the application and the

available heap size in JVM for that application. Due to use of the ArrayList instead

of the Vector, when the heap will be full it will be expanded to the half of the actual

52

CHAPTER 6. CONCLUSION AND FUTURE SCOPE 53

size of the heap. If the vector is used for storing data then the heap size will be

doubled when heap will be full. The figure-7 depicts the heap allocation during the

execution of the application.

6.1.4 Analysis

The garbage collection analysis 6.4 shows the invocation on the garbage collection

during the execution of the application.

6.1.5 Thread Analysis

The thread analysis result 6.5 depicts the number of threads at the some instance of

the time and the number of the classes at that instance of the time.

6.1.6 Optimized results

Following diagram (6.6) depicts that due to making change in the classes taking more

time for execution the execution time will be reduces.

Optimized parser class

As shown in the 6.7, Parser class requires lesser number of the bytes for the execution

and the less objects will be created at the time of the execution which reduces the

time to execute.

6.1.7 Execution time analysis in Utile File

The time required for the backtracking will be reduces which decrease the time to

required the get the missing pins from the utile file.The optimized results are depicted

in the table I II [LSF is used to find the execution time]

CHAPTER 6. CONCLUSION AND FUTURE SCOPE 54

Table I: Analysis for 5 include file in the main file

(for 5 include file in the main file) execution time
Time before the optimization 515 ms

Time after the optimization 468 ms

Table II: Analysis for 7 include file in the main file

(for 7 include file in the main file) execution time
Time before the optimization 749 ms

Time after the optimization 612 ms

6.2 Conclusion

In this dissertation, we proposed to optimized the following tool by analyzing and

make proper degradation to it. Also design Pattern Search engine from scratch with

minimum time complexity and with user friendly environment.

• Component Descriptor Language Utility

• Timing Power Product tool

• CDL Verilog comparison tool optimization

• Pattern Search engine

From the results we can see that the tools get optimized with time complexity and

Component Descriptor Language Utility had drastically decrease it’s space complexity

also.Pattern Search engine tool is designed with user friendly and dynamic environ-

ment for further improvements.

CHAPTER 6. CONCLUSION AND FUTURE SCOPE 55

6.3 Future Scope

• Component Descriptor Language Utility

– The tool can further optimized using the changing the structure of the

data structured.

– Parsing of the file can be performed by the Shell programming decrease

the time complexity of the tool.

• Timing Power Product tool

– This tool can further optimized by parallel processing the timing, power

and leakage libraries to get the detailed output terms.

• CDL Verilog comparison tool optimization

– Optimize the time to generate pin list from the CDL can further optimize

the time complexity, because it is the next higher time consuming process

after the verilog to pin generation.

• Pattern Search engine

– Pattern search engine is dynamic tool which can be used for any new

required search requirements.

– It can further implemented for any languages instead of the shell program-

ming only.

CHAPTER 6. CONCLUSION AND FUTURE SCOPE 56

Figure 6.1: Execution time of the complete application

CHAPTER 6. CONCLUSION AND FUTURE SCOPE 57

Figure 6.2: Backtracking of the calling class

Figure 6.3: Heap allocation Analysis

Figure 6.4: Garbage collection Analysis

CHAPTER 6. CONCLUSION AND FUTURE SCOPE 58

Figure 6.5: Thread Analysis

CHAPTER 6. CONCLUSION AND FUTURE SCOPE 59

Figure 6.6: Difference with the previous results

Figure 6.7: Parser class result analysis

References

[1] Anders P. Ravn Hans Sndergaard, Bent Thomsen. A ravenscar-java profile im-
plementation. Paris, France, October 2006. Proceedings of the 4th international
workshop on Java technologies for real-time and embedded systems.

[2] Steve King Jagun Kwon, Andy Wellings. Predictable memory utilization in the
ravenscar-java profile. Sixth IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC’03), 2003.

[3] J.S. MOORE R.S. BOYER. A fast string searching algorithm. pages 762–772.
Communications of the ACM, 1977.

[4] Tony Sintes. Find out the difference between vector and arraylist.
http://www.javaworld.com/javaworld/javaqa/2001-06/03-qa-0622-vector.html.,
June 2001.

[5] ST Microelectronics, Greater NOIDA. The component descriptor language doc-
umentation. Internal document.

[6] ST Microelectronics, Greater NOIDA. Optimizing Tactics. Internal document.

[7] ST Microelectronics, Greater NOIDA. Profiling in Java. Internal document.

[8] ST Microelectronics, Greater NOIDA. Usage of LSF to measure the execution
time. Internal document.

[9] ST Microelectronics, Greater NOIDA. Utile File Structure. Internal document.

[10] ST Microelectronics, Greater NOIDA. Verilog file Format. Internal document.

[11] Bill Venners. Javas garbage-collected heap.
http://www.javaworld.com/javaworld/jw-08-1996/jw-08-gc.html, Aug 1996.

60

Index

ArrayList, 10

Boyer-Moore algorithm, 17, 20

Certification level, 13

Component Descriptor Language, 3, 21,

36, 54, 55

Garbage collection, 6, 7, 36, 53

Heap allocation, 52

Java virtual machine, 6, 10

Pattern Search Engine, 17, 32

Thread, 53

Timing Power Product tool, 12

Utile file, 25, 32, 44, 52

Verilog, 3

Verilog File Structure, 13

61

	Declaration
	Certificate
	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Component Descriptor Language Utility
	Description

	Timing Power Product tool
	Description

	CDL Verilog comparison tool optimization
	Description

	Pattern Search engine
	Description

	Thesis Organization

	Related Terminologies
	Component Descriptor Language Utility
	Garbage collector
	Array List in java
	vector in Java

	Timing Power Product tool
	Certification level 1: Timing Power, Leakage Tool
	Certification level 2: Timing Power, Leakage Tool

	CDL Verilog comparison tool optimization
	Verilog File Structure

	Pattern Search Engine
	Grep function complexity and working

	Problem Definition and Existing Methodologies
	Component Descriptor Language (CDL) Utility
	Existing methodology
	Problem statement

	Timing Power Product tool
	Existing work
	Problem statement

	CDL Verilog comparison tool optimization
	Existing Methodology
	Problem Statement

	Pattern Search engine
	Problem Definition
	Utile file Optimization

	Summary

	The Proposed Algorithm
	Timing Power Product tool
	Proposed Algorithm

	CDL Verilog comparison tool optimization
	Pattern Search engine
	Proposed Design Structure for Pattern Search Engine
	Utile file Optimization

	Summary

	Implementation
	Component Descriptor Language Utility
	Timing Power Product tool
	results

	CDL Verilog comparison tool optimization
	Pattern Search engine
	Class Description
	Class Hierarchy
	Snapshot
	Utile file Optimized implementation

	Summary

	Conclusion and Future Scope
	Result Analysis
	Execution time analysis of Utile file optimization
	Backtracking of the calling class
	Heap allocation Analysis
	 Analysis
	Thread Analysis
	Optimized results
	Execution time analysis in Utile File

	Conclusion
	Future Scope

	References
	Index

