
DISTRIBUTED ENCODER AND DECODER FOR H.264

By

DIPTI SONI

(08MCE025)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

AHMEDABAD-382481

MAY 2010

DISTRIBUTED ENCODER AND DECODER FOR H.264

Major Project

Submitted in partial fulfillment of the requirements

For the degree of

Master Of Technology In Computer Science And Engineering

By

DIPTI SONI

(08MCE025)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

AHMEDABAD-382481

MAY 2010

iii

Certificate

This is to certify that the Major Project entitled ”DISTRIBUTED ENCODER AND DE-

CODER FOR H.264” submitted by DIPTI SONI (08MCE025), towards the partial fulfill-

ment of the requirements for the degree of Master of Technology in Computer Science and

Engineering of Nirma University of Science and Technology Ahmedabad, is the record of

work carried out by her under my supervision and guidance. In my opinion, the submitted

work has reached a level required for being accepted for examination. The results embodied

in this major project, to the best of my knowledge, haven’t been submitted to any other

university or institution for award of any degree or diploma.

Prof. Priyanka Sharma Dr. S.N. Pradhan

Guide,Assistant Professor PG co-ordinator

Department Of Computer Enggineering Department Of Computer Engineering

Institute of Technology Institute of Technology

Nirma University Nirma University

Ahmedabad. Ahmedabad.

Prof.D.J Patel Dr.Ketan Kotecha

Prof. and Head Director

Department Of Computer Enggineering Institute of Technology

Institute of Technology Nirma University

Nirma University Ahmedabad

Ahmedabad

iv

Abstract

This project using H.264 for distributed encoder and decoder,that will be implement using

parallel computing . This is techniques for video compression starting from basic concepts.

The rate-distortion performance of modern video compression schemes is the result of an

interaction between motion representation techniques, intra-picture prediction techniques,

waveform coding of differences, and waveform coding of various refreshed regions. The

project starts with an explanation of the basic concepts of video codec design and then

explains how these various features have been integrated into international standards, up

to and including the most recent such standard, known as H.264.

This project is implemented by using the CABAC algorithm and for parallel computing

using the beowulf cluster .First part of the project is implementation of H.264 systems on

parallel machine. The same set up will be later tested with 8 core processor.

v

Acknowledgements

With immense pleasure, I would like to present this report on the dissertation work related

to DISTRIBUTED ENCODER AND DECODER FOR H.264. I am very thankful to all

those who helped me for the dissertation work and for providing valuable guidance through-

out the project work.

I would First of all like to thank Dr S N Pradhan, Professor In Charge MTech(CSE),Institute

of Technology, Nirma University, Ahmedabad whose keen interest and excellent knowledge

base helped me to finalize the topic of the dissertation work. His constant support and

interest in the subject equipped me with a great understanding of different aspects of the

required architecture for the project work.

My kind and sincere thanks and gratitude to Dr Ketan Kotecha, Director Institute of

Technology, Nirma University, Ahmedabad for his continual kind words of encouragement

and motivation throughout the Dissertation work. My sincere thanks and gratitude to Prof

D J Patel, Professor and Head Computer Engineering Department, Institute of Technology,

Nirma University, Ahmedabad for his continual kind words of encouragement and motiva-

tion throughout the Dissertation work.

I would also like to thank Prof Priyanka Sharma, Assistant Professor, CSE Department,

Nirma Institute of Technology, Nirma University, whose knowledge and expertise in Com-

puter architechure has been a great pillar of support for my work. She has shown keen

interest in this dissertation work right from beginning and has offered a great motivating

factor in outlining the flow of my work.

The blessings of God, faculty members and my family members makes the way for this

major project. I am very much grateful to them.

- DIPTI SONI

08MCE025

Contents

Certificate iii

Abstract iv

Acknowledgements v

List of Tables ix

List of Figures ix

Abbreviations ix

1 Introduction 2
1.1 General Overview . 2
1.2 Motivation . 3
1.3 Objective . 4
1.4 Scope Of Work . 4
1.5 Organization Of Major Project . 5

2 Literature Survey 6
2.1 Concept Video Codec For H.264 . 6

2.1.1 H.264 Encoder . 6
2.1.2 H.264 Decoder . 7

2.2 Parallelization Of H.264 . 8
2.3 Overview Of Cluster Computing . 9
2.4 Conclusion . 9

3 High Efficient Parallel Algorithm For H.264 10
3.1 Parallel Algorithm For H.264 . 10

3.1.1 Data Dependencies In H.264 . 11
3.1.2 Data Dependencies Introduced By Inter-prediction 11

3.2 CABAC Algorithm For H.264 . 12
3.2.1 Context Modeling In CABAC 12
3.2.2 Proposed Grasp Algorithm . 13
3.2.3 Grasp For Group Of Picture . 16

vi

CONTENTS vii

4 Related Work 17
4.1 Example Of Distributed Encoding (Media Encoding Cluster) . . . 17

4.1.1 What Is Media Encoding Cluster 17
4.1.2 Features Of Media Encoding Cluster 17
4.1.3 Output Of Media Encoding Cluster 19

4.2 Parallel Computing Using Erlang Distribution 20
4.2.1 What Is Erlang . 20
4.2.2 Components . 21

4.3 Tools And Libraries . 22
4.3.1 Example Of Erlang Program . 24

4.4 Analysis Of Related Work . 24

5 Implementation Details Of H.264 25
5.1 Data Domain Decomposition Of H.264 25
5.2 Skeleton Of H.264 Reference Code . 26

5.2.1 Implementation Details Of H.264 27
5.2.2 NAL units, Slices,Fields And Frames 27
5.2.3 Slice Types . 27
5.2.4 Motion Compensation . 28
5.2.5 Motion Vector Prediction . 29
5.2.6 Macroblock Layer . 29
5.2.7 Macroblock Modes For I Slice 29
5.2.8 Macroblock Modes For P And B Slices 30
5.2.9 Block Transformation And Encoding 31
5.2.10 Entropy Coding Modes . 31
5.2.11 DC Transformation . 31
5.2.12 In Loop Deblocking Filter . 32
5.2.13 Advanced Prediction . 32
5.2.14 Arbitrary Slice Ordering . 32
5.2.15 Flexible MacroBlock Ordering 33

5.3 CABAC Encoding In H.264 . 34

6 Implementation Of Codec And Simulation Result 37
6.1 Parallelization Of The H.264 Encoder Using C Code 37

6.1.1 Function Documentation . 37
6.2 Parallelization Of The H.264 Decoder Using C Code 40

6.2.1 Function Documentation . 40
6.3 Output Of Encoder And Simulation Result 43

6.3.1 Simulation Result . 44
6.3.2 Performance And Analysis . 44

6.4 Conclusion . 46

7 Parallel Computing Using The Beowulf Cluster 47
7.1 Why Beowulf Cluster? . 47
7.2 Principal Specification . 47
7.3 Use Linux For Beowulf . 49

CONTENTS viii

7.4 A Kernel And A Distribution . 50
7.5 Network Software . 50

7.5.1 Tcp/Ip . 50
7.5.2 Socket . 52
7.5.3 Remote Procedure Call . 53
7.5.4 Distributed File System . 54
7.5.5 Secure Shell . 54
7.5.6 Mpich . 54

8 Implementation Of Beowulf Cluster 55
8.1 Introduction . 55
8.2 Logical View Of Beowulf Cluster . 55
8.3 Requirements . 56
8.4 Setting Up Cluster Installation And Configuration 56
8.5 Testing For Cluster . 60

8.5.1 Xinetd Insatallment . 60
8.5.2 Rsh And Rlogin Configuration 62
8.5.3 Installment Of Pmandel and Cpilog Files 62
8.5.4 Output Of Cluster Testing . 63
8.5.5 Configuration Between Master And Slave Node 63

9 Conclusion And Future Work 66
9.1 Conclusion . 66
9.2 Future Work . 66

References 67

Website References 67

Index 68

CONTENTS ix

Abbreviations

AVC Advanced Video Coding
CABAC Context Analysis Based Adaptive Codec Algorithm
CAVLC Context Adaptive Variable Length Coding
CPU Central Processor Unit
DCT Discrete Cosine Transform
FMO Flexible Macroblock Ordering
GOP Group Of Picture
GRASP Growing, Reordering and Selection by Pruning (GRASP)
IDR Instantaneous Decoding Refresh
JVT Joint Video Team
MB Macro Block
MC Motion Compensation
MPEG Motion Picture Expert Group
MPI Message Passing Interface
PSNR Peak Signal-To-Noise Ratio
QP Quantization Parameter
RPC Remote Procedure Call

List of Figures

2.1 Encoder and Decoder for H.264[4] . 7
2.2 Hierarchy of Data Domain Decomposition in H.264[5] 8

3.1 Data Dependencies Introduced By Inteprediction[5] 11
3.2 Relationship Between a Template of Context Parameters (left)and a Full

Balanced Tree For Binary Data (right)[3] 13
3.3 Example Of Pruned Tree Over Reordered Tree Each Internal Final Tree Is

Labeled By Its Assosiate Context Parameter Index (right)[3] 16

4.1 Media Encoding Processing system . 18
4.2 Output on client side . 19
4.3 Output on Server side . 20
4.4 Output of Erlang Program . 24

5.1 Data Domain Decomposition Of H.264[9] 26
5.2 Parameter Set Use With Reliable ”Out Of Band” parameter set exchange[5] 28
5.3 Macroblock Partition For H.264[8] . 30
5.4 Subdivision Of Picture Into Slices(When Not Using FMO)[7] 33
5.5 Subdivision Of A QCIF Frame Into Slices When Utilizing FMO.[7] 33
5.6 Skeleteon Of H.264 Reference Code . 35
5.7 FlowChart Of CABAC Encoding Process 36

6.1 Output OF Encoder For H.264 . 43
6.2 Performance According To Rate Distortion 45

8.1 Logical View Of Beowulf Cluster . 56
8.2 Requirements for Beowulf Cluster . 57
8.3 Output Of Xinetd Configuration . 61
8.4 Output Of Rsh And Rlogin Configuration 62
8.5 Output Of Pmandel Files . 63
8.6 Output Of Cpilog Files . 64
8.7 Output Of Cluster Testing . 65
8.8 Configuration Between Master And Slave Node 65

1

Chapter 1

Introduction

This chapter covers general overview of the Thesis work. It include the motivation,objectives,

and the scope of the Thesis work. It also guide about the organization of the thesis report.

1.1 General Overview

We Know last generation video encoding standards increasing computing demand in or-

der to reach the limits on compression efficiency. This is particularly the case of that is

gaining interest in industry, we are interested in applying parallel processing and parallel

computing to H.264 in order to fulfill the computation requirement imposed by stressing

applications like video on demand , video conference live broadcast etc[1].

In this work we propose a hierarchical parallelization of H.264 encoder very well suited to

low cost cluster our proposal uses message passing parallelization at two levels GOP and

frame optimization at the lowest parallelization level.

The high computational demands of the H.264 decoding process pose serious challenges

on current processor architectures. A natural way to tackle this problem is the use of

multi-core systems. The contribution of this project lies in a systematic overview and

performance evaluation of parallel video decoding approaches.

Video Compression is based on removing sensitive redundant information and in the high

spatial and tempral correlation. Last generation video encoding technique particularly H.264

push the capabilities of these technique to their limits, the result is the reduction in band-

width requirements the several order of magnitude.

2

CHAPTER 1. INTRODUCTION 3

A video sequence is a stream of frames generated at a certain frequency or a frame

rate. H.264 specification allows definition of a number of a consecutive frames as an in-

dependent unit(GOP) to be encoded. H.264 also allows defining slices inside a frame as a

frame portion that can also be independently encoded.

Encoding efficiency has a price that is computation power H.264 encoders has a very high

CPU demand, the most critical case is encoding with latency and real time response re-

quirements. When this is combined with high quality video format the only adequate

platform are those with super computing capabilities clusters, multiprocessor, and special

purpose we are interested in cluster platform because they are becoming a commonly avail-

able resources in an increasing number of companies and institution that require a high

performance system able to cope with large scale application. Parallel programming on

cluster is also very flexible and it allows the design of parallel video encoders adapted to

almost very requirements. Resources available on clusters vary from single to multiple

CPU per node and every node we can have a multimedia extension in the CPU .

1.2 Motivation

We know todays work stations are about hundred times faster than those made just a

decade ago but some computational scientists and engineers need even more speed. They

make great simplifications to the problem they are solving must wait hours , days or even

weeks for their programs to finish running

Faster computers tackle larger computations. Suppose we can afford to wait overnight for

our program to produce a result. If our program suddenly runs 10 times faster,previously

out of reach computations would be within our grasp. We could produce in 15 hour an

answer that previously required nearly weak to generate.

We could simply wait for CPU to get faster . In about 5 years single CPU will be 10 times

faster than today(A consequence of moore’s law).

On the other hand , parallel computing is proven way to get higher performance now.

CHAPTER 1. INTRODUCTION 4

1.3 Objective

Implementation of Distributed encoder and decoder for H.264 using the parallel machines. The

same set up will be tested with 8 core processor. After that we will compare the for parallel

computing and parallel processing.

1.4 Scope Of Work

• The role of parallelism in accelerating computing speeds has been recognized for sev-

eral decades.

• Parallel platforms provide increased bandwidth to the memory system.

• Parallel platforms also provide higher aggregate caches.

• Principles of locality of data reference and bulk access, which guide parallel algorithm

design also apply to memory optimization.

• Applications such as information retrieval and search are typically powered by large

clusters.

CHAPTER 1. INTRODUCTION 5

1.5 Organization Of Major Project

Chapter2, Literature Survey,This Chpater covers the basic Concept of the Video Codec

and high efficient parallel Algorithm for H.264 . It give description of how to parallelize

H.264

Chapter3, High Efficient Parallel Algorithm For H.264,This Chpater covers the descrip-

tion of how to parallelize H.264 using the CABAC algorithm.

Chapter4, Related Work,This Chapter covers the Example of distributed encoding that

is Media Encoding Cluster and problem of parallel computing using the Erlang Dis-

tribution .

Chapter5, Implementation Details Of H.264 This Chapter covers the parallelization of

H.264 Encoder and Decoder

Chapter6, Implementation And Simulation ResultThis Chapter covers the parallelization

of H.264 Encoder and Decoder Using C language

Chapter7, Parallel Computing Using Beowulf Cluster,This Chapter covers the Solution

of Erlang Distribution and how to do parallel computing using the Beowulf Cluster.

Chapter8, Implementation Of Beowulf Cluster,This Chapter covers the how to implement

the beowulf cluster using the fedoa8

Chapter9, Conclusion And Future Work This Chapter covers conclusion and future work

of this project.

Chapter 2

Literature Survey

This chapter covers the brief explanation of the H.264 Encoder relevant to the thesis

work. It covers the parallelization of H.264 and high efficient parallel algorithm for H.264.

2.1 Concept Video Codec For H.264

The standard defines the syntax of an encoded video bitstream together with the method

of decoding this bitstream. The basic functional elements prediction, transform, quan-

tization, entropy encoding are little different from previous standards MPEG1, MPEG2,

MPEG4, H.261, H.263 the important changes in H.264 occur in the details of each func-

tional element.[10]

2.1.1 H.264 Encoder

An input frame is presented for encoding. The frame is processed in units of a macro block

corresponding to 16*16 pixels in the original image. Each macro block is encoded in intra

or inter mode. In either case, a prediction macro block is formed based on a reconstructed

frame. In Intra mode, prediction is formed from samples in the current frame that have

previously encoded, decoded and reconstructed . In Inter mode, prediction is formed by

motion-compensated prediction from one or more reference frame.

However, The for each macro block may be formed from one or two past or future frames

in time order that have already been encoded and reconstructed. The prediction is sub-

tracted from the current macro block to produce a residual or difference macro block. This

6

CHAPTER 2. LITERATURE SURVEY 7

Figure 2.1: Encoder and Decoder for H.264[4]

is transformed using a block transform and quantized to give , a set of quantized transform

coefficients. These coefficients are re-ordered and entropy encoded.

The entropy encoded coefficients, together with side information required to decode the

macro block , quantizer step size, motion vector information describing how macro block

was[5] motion-compensated, etc form the compressed bitstream. This is passed to a Net-

work Abstraction Layer NAL for transmission or storage.[3]

2.1.2 H.264 Decoder

The decoder receives a compressed bitstream from the NAL. The data elements are entropy

decoded and reordered to produce a set of quantized coefficients . These are rescaled and

inverse transformed to give . Using the header information decoded from the bitstream,

the decoder creates a prediction macro block , identical to the original prediction formed

in the encoder. Prediction is added to inverse transform to produce reconstructed macro

block which this is filtered to create the decoded.

The purpose of the reconstruction path in the encoder is to ensure that both and use

identical reference frames to create the prediction . If this is not the case, then the

predictions in encoder and decoder will not be identical, leading to an increasing error or

drift between the encoder and decoder.

CHAPTER 2. LITERATURE SURVEY 8

Figure 2.2: Hierarchy of Data Domain Decomposition in H.264[5]

2.2 Parallelization Of H.264

In this section we answer these questions for video coding/decoding workloads by analyzing

their parallel scalability. Multimedia applications remain important workloads in the future

and video codecs are expected to be important benchmarks for all kind of systems.[11] In

a data-level decomposition the data is divided into smaller parts[8] and each assigned to

a different processor. Each processor runs the[3] same program but on different multiple

data elements . In H.264 data decomposition can be applied at different levels of the data

structure:Group-of-Pictures level, frame-level, slice-level, macro block-level, and block-level.

CHAPTER 2. LITERATURE SURVEY 9

2.3 Overview Of Cluster Computing

A computer cluster is a group of linked computers, working together closely so that in many

respects they form a single computer. The components of a cluster are commonly, but not

always, connected to each other through fast local area networks. Clusters are usually de-

ployed to improve performance and availability over that of a single computer. Computing

with a Beowulf cluster engages four distinct but interrelated areas of consideration.

• Hardware system structure.

• A Resource administration and management environment.

• Distributed programming libraries and tools.

• Parallel algorithms.

2.4 Conclusion

According to literature survey we got that we can parallelize the H.264 using the CABAC

algorithm . Parallel computing easily implemented by using the Beowulf cluster.

Chapter 3

High Efficient Parallel Algorithm

For H.264

3.1 Parallel Algorithm For H.264

This chapter proposes a highly efficient parallel algorithm for H.264 encoder, which is based

on the analysis of data dependencies in H.264 encoder. In the algorithm, the video frames

are partitioned into several MB regions, each of which consists of several adjoining columns

of macro-blocks (MB), which could be encoded by one processor of a multi-processor sys-

tem. While starting up the encoding process, the wave-front technique is adopted, and the

processors begin encoding process orderly.[7] In the MBRP parallel algorithm, the quantity

of data that needs to be exchanged between processors is small, and the loads in different

processors are balanced. The algorithm could efficiently encode the video sequence without

any influence on the compression ratio.

Compared with previous standards, H.264 developed by the Joint Video Team formed by

ISO MPEG and ITU-T VCEG achieves up to 50 percent improvement in bit rate efficiency

and more than 4 times of the computational complexity , due to many new features includ-

ing quarter-pixel motion estimation (ME) with variable block sizes and multiple reference

frames up to 16, intra-prediction, integer transformation based on discrete cosine transform

(DCT), alternative entropy coding mode Context-based Adaptive variable Length Cod-

ing Context-Based Adaptive Binary Arithmetic Coding, in-loop de-blocking filter and so

10

CHAPTER 3. HIGH EFFICIENT PARALLEL ALGORITHM FOR H.264 11

Figure 3.1: Data Dependencies Introduced By Inteprediction[5]

on . Therefore, the parallel structure and parallel algorithm are an alternative ways for

real-time H.264 video application.

3.1.1 Data Dependencies In H.264

In the H.264 encoder, a MB is composed of (16*16) luma pixels and 882 chroma pix-

els. Which results in several types of data dependencies that should be avoided in parallel

algorithm.

3.1.2 Data Dependencies Introduced By Inter-prediction

In inter-prediction, the PMV defines the search center of ME, which comes from the motion

vectors (MV) of the neighboring sub-blocks, A MV, B MV , C MV , and the corresponding

reference indexes , as shown in Fig. Only the difference between the final optimal MV and

the PMV will be encoded. Accordingly, the ME processes of the left, top, and top-right

neighboring MBs should be finished before encoding the current MB.

CHAPTER 3. HIGH EFFICIENT PARALLEL ALGORITHM FOR H.264 12

3.2 CABAC Algorithm For H.264

A new algorithm for context modeling of binary sources with application to video[8] com-

pression is presented. Our proposed method is based on a tree rearrangement and tree

selection process for an optimized modeling of binary context trees. We demonstrate its

use for adaptive context-based coding of selected syntax elements in a video coder. For

that purpose we apply our proposed technique to the H.264/AVC standard and evaluate its

performance for different sources and different quantization parameters[7].

CABAC method use some a priori gathered knowledge about the typical properties of the

underlying source for a proper (fixed) selection and ordering of context parameters. How-

ever, in cases where this prior knowledge is not available or a higher degree of agreement

between input source and context model is desired, the proposed GRASP method can be

applied.

3.2.1 Context Modeling In CABAC

Context modeling in CABAC involves pre-defined sets T of past symbols, so-called context

templates. For each symbol x to encode, in a first step the conditional probability p(x—T)

is estimated by switching between different probability models according to the already

coded neighboring symbols in T. Then, the estimated probability distribution p(x—T) is

used to drive an adaptive binary arithmetic coding engine for the actual encoding of the

symbol x. After encoding, the probability model is updated with the value of the encoded

symbol x. Thus, p(x—T) is estimated on the fly by tracking the actual source statistics.

However, estimating p(x—T) using past sample statistics may cause the problem of context

dilution, if there are no appropriate limits on the symbol alphabet size or on the size of

the context templates. In CABAC, this problem is avoided by using very simple context

templates consisting of at most two neighbors (i.e. T = (y0, y1) in Fig. (left)) and by

restricting the symbol alphabet to a binary alphabet. For non-binary valued symbols,

CABAC provides appropriately defined binarization schemes.

CHAPTER 3. HIGH EFFICIENT PARALLEL ALGORITHM FOR H.264 13

Figure 3.2: Relationship Between a Template of Context Parameters (left)and a Full Bal-
anced Tree For Binary Data (right)[3]

3.2.2 Proposed Grasp Algorithm

Tree Growing By Reordering

In this section, we describe a method for exploiting given inter- symbol redundancy to a

greater extent than it is usually achievable with an ad-hoc design of context models like

e.g. that used in CABAC. Our proposed method is based on context trees. The basic

motivation behind this approach is given by the observation that the finite memory model

for a binary alphabet can be represented as a binary tree structure .

In this section, we describe a method for exploiting given intersymbol redundancy to

a greater extent than it is usually achievable with an ad-hoc design of context models

like e.g. that used in CABAC. let yd
j denote the assignment of the context parameteryj

with(jε0, ...N − 1)to a node of the tree at depth d.Let the set(y0
j 0, y1

j 1...yd− 1jd− 1)denote

the sequence of assignments of context parameters to the sequence of nodes over which the

node at depth d is reached in the tree.

In CABAC, this sequence is fixed to (y0
0, y

1
1)where the canonical order of context parame-

ters in is used. Tree growing starts in Step 0 with gathering the population of each basic

context, which correspond to the leaves of a regular full balanced tree Any tree reordered

or with regular order of context parameters can be reconstructed from these basic contexts.

For N context parameters there are (2N) basic contexts. The populated initial full balanced

CHAPTER 3. HIGH EFFICIENT PARALLEL ALGORITHM FOR H.264 14

tree is then grown using the following Steps 1 to 3.

step0 Based on an initial order for the context parameters of a given context template

(T = y0, ...yN − 1) , construct the basic contexts. Populate the corresponding nodes

by gathering the given source statistics such that each basic context contains the

occurrence counts of 0s and 1s.

step 1 Start constructing a new, reordered tree by associating the empty subsequence with

the root node at depth 0.

step 2 Determine the assignment of a context parameter(yj) to the current node at depth

d ¡ N.Let the subsequencey0
j 0, y1

j 1...yd − 1jd− 1be the sequence of assignments to

reach the current node at depth d from the root node the assignment (yd
j d) has to be

determined.

jd = argmin(Lj)jε(0, .., N − 1)(jo, ..., jd − 1) (3.1)

with (Lj) denoting the adaptive code length to encode symbols x from nodes at level

d + 1 given as

Lj =
1∑

i=0

(czij
0 , czij

1 , kzij
0 , kzij

1)where (3.2)

l(c0, c1, k0, k1) = −log2

(
(c0 − 1)!(c1 − 1)!(k0 + k1 − 1)!
(c0 + c1 − 1)!(k0 − 1)(k1 − 1)!

)
(3.3)

zij = y0
j 0, y1

j 1...yd − 1jd− 1 is the subsequence of assignment to reach the node at

depth d+1 and initial counts of 0’s and 1’s at that node, respectively

step 3 Repeat Step 2 recursively until the maximum depth N is reached.

CHAPTER 3. HIGH EFFICIENT PARALLEL ALGORITHM FOR H.264 15

Tree Selection By Pruning

The structure of the chosen tree model has to be transmitted and the gain in information per

context parameter in one branch of a context tree cannot always compensate the increased

side information when the number of nodes grows, an appropriate method for selecting the

best subset of nodes is used. Thus, in order to reduce the dimensionality of the context tree,

a tree selection by pruning is carried out to choose the best performing subtree as follows:

step0 To each node of the full balanced tree, as constructed in the tree growing by reorder-

ing stage, assign the code length.

ls = l(cs
0, c

s
1, k

s
o, k

s
1) (3.4)

where (cs
0, c

s
1, k

s
o, k

s
1) are the occurrence and initial counts at that node. Set the cost

functional J of each terminal node to its code length j(s) = l(s) Note that evaluation

of nodes starts with the terminal nodes of the reordered full balanced tree, i.e., at

depth N - 1.

step1 Compare the code length of the current node s with the sum of the cost functional J

evaluated at the two child nodes sch0 and sch1. If the sum of the costs of the children

is greater than or equal to the adaptive code length at the parent node, prune the

branch below the parent node otherwise, assign the sum of the childrens cost plus a

model cost term mc to the parent node.

step2 Repeat Step 1 recursively until the root is reached.

CHAPTER 3. HIGH EFFICIENT PARALLEL ALGORITHM FOR H.264 16

Figure 3.3: Example Of Pruned Tree Over Reordered Tree Each Internal Final Tree Is
Labeled By Its Assosiate Context Parameter Index (right)[3]

3.2.3 Grasp For Group Of Picture

Grasp Algorithm results in the design of locally optimal trees for a single coding unit. Usu-

ally, frames of the same type (P or B) within one GOP have similar statistical properties

which may result in similar context tree models and further in bit-rate reduction . Thus,

we extend the GRASP algorithm to design a single optimal tree for a given syntax element

of each slice type (I, P or B) within a GOP. For that, the basic GRASP algorithm is slightly

changed .

First, the population of each basic context prior to the tree growing process is gathered by

using all frames of a given type within a GOP. Then the tree is grown by choosing the best

context parameter for splitting each node together with selecting the best initial state for

that node. For the transmission of the corresponding initial count, a fixed length indicator

of 6 bits is used to indicate the choice of the best fit to our pre-defined state table of 64

model probability states.

Chapter 4

Related Work

4.1 Example Of Distributed Encoding (Media Encoding Clus-

ter)

4.1.1 What Is Media Encoding Cluster

Media Encoding Cluster is the first Open Source Cluster Encoding Solution that is written

in C/C++ for distributed Media(Video and Audio) Encoding. It distributes Video Chunks

over Network to Client Nodes and parallelize the Encoding Task for one File over even more

than one Computer to reduce the Encoding Time per File. What it does?

• Collect and Ingest our Multimedia Content.

• Management of our Content.

• Encode and Transport Our Content.

• Distribute our Content

4.1.2 Features Of Media Encoding Cluster

Scalability Enable our network to grow with our business Media Encoding Cluster in-

stallations scale easily as clusters that can be managed from a single interface.Batch

encode video sources, and automate encoding processes to achieve optimal efficiency.

17

CHAPTER 4. RELATED WORK 18

Figure 4.1: Media Encoding Processing system

Broad Format Support Broad format support ingest content in over 40 major formats

giving a wide range of video sources to choose from when encoding content or pro-

cessing user submissions.

Video and audio filtering Modify and enhance video and audio parameters as encode,

normalize audio, adjust volume,adjust color balance, sharpen video, and apply many

more filtering options.

Efficient encoding Convert more source files faster with this high-performance encoder.

Flexible encoding and editing Modify source file parameters on the fly as we encode,editing

our content and making it suitable for delivery to multiple devices. Manipulate frame

size and aspect ratio,crop for delivery to mobile devices, insert logos or watermarks,

extract key frames, and much more.[5]

CHAPTER 4. RELATED WORK 19

4.1.3 Output Of Media Encoding Cluster

This is consist of the output of Media Encoding Cluster for both client and server side.

Figure 4.2: Output on client side

CHAPTER 4. RELATED WORK 20

Figure 4.3: Output on Server side

4.2 Parallel Computing Using Erlang Distribution

4.2.1 What Is Erlang

Erlang is a programming language which has many features more commonly associated with

an operating system than with a programming language: concurrent processes, scheduling,

memory management, distribution, networking, etc. The initial open-source Erlang release

contains the implementation of Erlang, as well as a large part of Ericsson’s middleware for

building distributed high-availability systems.

Concurrency Erlang has extremely lightweight processes whose memory requirements

can vary dynamically. Processes have no shared memory and communicate by asyn-

chronous message passing.

Distribution Erlang is designed to be run in a distributed environment. An Erlang virtual

machine is called an Erlang node. A distributed Erlang system is a network of Erlang

nodes (typically one per processor). An Erlang node can create parallel processes

running on other nodes which perhaps use other operating systems. Processes residing

CHAPTER 4. RELATED WORK 21

on different nodes communicate in exactly the same was as processes residing on the

same node.

Robustness Erlang has various error detection primitives which can be used to structure

fault-tolerant systems. For example, processes can monitor the status and activities

of other processes,even if these processes are executing on other nodes. Processes in

a distributed system can be configured to fail-over to other nodes in case of failures

and automatically migrate back to recovered nodes.

Soft real-time Erlang supports programming ”soft” real-time systems,which require re-

sponse times in the order of milliseconds. Long garbage collection delays in such

systems are unacceptable,so Erlang uses incremental garbage collection techniques.

Hot code upgrad Many systems cannot be stopped for software maintenance. Erlang

allows program code to be changed in a running system. Old code can be phased

out and replaced by new code. During the transition, both old code and new code

can coexist. It is thus possible to install bug fixes and upgrades in a running system

without disturbing its operation.

Incremental code loading Users can control in detail how code is loaded. In embedded

systems, all code is usually loaded at boot time. In development systems, code is

loaded when it is needed even when the system is running. If testing uncovers bugs,

only the buggy code need be replaced.

External interfaces Erlang processes communicate with the outside world using the

same message passing mechanism as used between Erlang processes. This mecha-

nism is used for communication with the host operating system and for interaction

with programs written in other languages. If required for reasons of efficiency, a spe-

cial version of this concept allows e.g. C programs to be directly linked into the Erlang

runtime system.

4.2.2 Components

Inets HTTP 1.0 server and FTP client.

CHAPTER 4. RELATED WORK 22

Mnesia Distributed real-time database for Erlang Supports RAM-replication as well as

disk storage allows dynamic schema changes allows arbitrarily complex data struc-

tures to be stored.Mnesia is very fast since it runs in the same address space as the

applications that use it.

Orber CORBA (v2.0) Object Request Broker (ORB).

SNMP Extensible SNMP v1/v2 agent and MIB compiler.

4.3 Tools And Libraries

Appmon Graphical monitoring of process groups locally and on remote nodes.

ASN.1 Compile-time and runtime package which supports the ASN.1 . Basic Notation and

the encoding rules BER, DER and PER .

Compiler Erlang Compiler.

Debugger Graphical Erlang debugger.

ERTS Erlang runtime system, including the virtual machine, the garbage collector, and

the port mapper daemon.

GS Library for writing graphical user interfaces.

IC Compiler from OMG’s Interface Definition Language (IDL) to Erlang and C and Java.

Kernel C code necessary to run the Erlang system. Erlang built-in functions (BIFs)

code, boot and name servers networking and distribution support. Loaders, linkers

and loggers, OS and file system interfaces.

Mnemosyne Optional query language for Mnesia.

Mnesia Session Foreign languages interface to Mnesia defined in IDL providing Mnesia

access via the IOP and erlang interface protocols.

OS monitor Monitoring of CPU, disk and memory utilization including SNMP (v1/v2)

MIBs. Interfaces to Solaris syslogd and Windows NT event log.

CHAPTER 4. RELATED WORK 23

Parse tools LALR 1 parser generator for Erlang (yecc)similar to yacc. Yecc takes a BNF

grammar definition as input and produces Erlang code for a parser as output. Yecc is

used to generate the Erlang parser .

PMan Tool for tracing and viewing the state of Erlang processes ,locally or on remote

nodes.

SASL Progress,error,crash report handling, report browsing release handling, overload reg-

ulation.

Table visualizer Tool for viewing ETS and Mnesia tables.

Tool Bar Simplifies access to the Erlang Tools.

Tools Coverage analyser profiler, text-based tracer Emacs mode, Emacs TAGS file gener-

ator, make utility, call graph utility.

CHAPTER 4. RELATED WORK 24

4.3.1 Example Of Erlang Program

ERLANG programming language is use just run code from the shell. So here is a small

Erlang program. Enter it into a file called tut.erl

-module(tut). -export([double/1]). double(X)-2 * X.s

Figure 4.4: Output of Erlang Program

4.4 Analysis Of Related Work

Firstly, We worked parallel computing using erlang distribution that was using ASN1 , IDL

Compiler with Erllide for graphical environment . But in result we got complexity .

We worked in media encoding cluster for C and Erlang language after that we got , parallel

computing easily implemented by the C language and complexity is reduced by using the

BEOWULF cluster.

Chapter 5

Implementation Details Of H.264

5.1 Data Domain Decomposition Of H.264

We Know Video Sequence is divided into many Independent units of Group Of pic-

ture(GOP) and then they are processed by different nodes synchronously. At last connect

the processed bit -stream correctly accordingly to the original bit stream structure. From

the result, We can find that it is exactly the same that the data of Video quality and en-

coding rate[8]. Which are obtained from the serial algorithm and this parallel it is possible

to the encoding process consider by on the system architechure of cluster.

A Video Consist Of each group of picture include each frame divided into, which is the self

content encoding unit and independent of other slices in the same frame, which are the unit

of motion and entropy coding.

25

CHAPTER 5. IMPLEMENTATION DETAILS OF H.264 26

Figure 5.1: Data Domain Decomposition Of H.264[9]

5.2 Skeleton Of H.264 Reference Code

The Implementation presented here only handles a minimal feature set. This means that

the following features are implemented[6]

• CABAC.

• Interlacing.

• Any kind of data partitioning.

• Any kind of arbitrary slice ordering (ASO) or flexible macroblock ordering (FMO).

CHAPTER 5. IMPLEMENTATION DETAILS OF H.264 27

• B and switching slices.

• Any kind of long-term prediction (i.e. only the last frame may be used as reference

frame).

• In-Loop deblocking filtering.

5.2.1 Implementation Details Of H.264

H.264 is a block-based, motion-compensated video compression method. It is designed to

be scalable, that is, its efficiency is roughly equally high for all purposes from low-bandwidth

streaming up to high definition broadcast and storage.

5.2.2 NAL units, Slices,Fields And Frames

A H.264 video stream is organized in discrete packets, called NAL units (Network Ab-

straction Layer units). Each of these packets can contain a part of a slice, that is, there

may be one or more NAL units per slice. But not all NAL units contain slice data, there

are also NAL unit types for other purposes, such as signalling, headers and additional

data. The slices, in turn, contain a part of a video frame. In normal bitstreams, each frame

consists of a single slice whose data is stored in a single NAL unit. Nevertheless, the

possibility to spread frames over an almost arbitrary number of NAL units can be useful

if the stream is transmitted over an error-prone medium. The encoder may re synchronize

after each NAL unit instead of skipping a whole frame if a single error occurs. H.264

also supports optional interlaced encoding. In this encoding mode, a frame is split into

two fields. Fields may be encoded using spacial or temporal interleaving. To encode color

images, H.264 uses the YCbCr color space like its predecessors, separating the image into

luminance (or luma, brightness) and chrominance (or chroma, color) planes. It is, however,

fixed at 4:2:0 subsampling, i.e. the chroma channels each have half the resolution of the

luma channel.

5.2.3 Slice Types

H.264 defines five different slice types: I, P, B, SI and SP.

CHAPTER 5. IMPLEMENTATION DETAILS OF H.264 28

Figure 5.2: Parameter Set Use With Reliable ”Out Of Band” parameter set exchange[5]

• I slices or Intra slices describe a full still image, containing only references to itself. A

video stream may consist only of I slices, but this is typically not used. However, the

first frame of a sequence always needs to be built out of I slices.

• P slices or Predicted slices use one or more recently encoded slices as a reference (or

prediction) for picture construction. The prediction is usually not exactly the same

as the actual picture content, so a residual may be added.

• B slices or Bi-Directional Predicted slices work like P slices with the exception that for-

mer and future I or P slices (in playback order) may be used as reference pictures. For

this to work, B slices must be encoded after the following I or P slice.

• SI and SP slices or Switching slices may be used for transitions between two different

H.264 video streams. This is a very uncommon feature.

5.2.4 Motion Compensation

Since MPEG-1, motion compensation is a standard coding tool for video compression. Us-

ing motion compensation, motion between frames can be encoded in a very efficient man-

ner. A typical P-type block copies an area of the last decoded frame into the current frame

CHAPTER 5. IMPLEMENTATION DETAILS OF H.264 29

buffer to serve as a prediction. If this block is assigned a nonzero motion vector, the source

area for this copy process will not be the same as the destination area. It will be moved by

some pixels, allowing to accomodate for the motion of the object that occupies that block.

Motion vectors need not be integer values: In H.264, motion vector precision is one-quarter

pixel (one eighth pixel in chroma). Interpolation is used to determine the intensity values

at non-integer pixel positions. Additionally, motion vectors may point to regions outside

of the image. In this case, edge pixels are repeated.

5.2.5 Motion Vector Prediction

Because adjacent blocks tend to move in the same directions, the motion vectors are also

encoded using prediction. When a blocks motion vector is encoded, the surrounding blocks

motion vectors are used to estimate the current motion vector. Then, only the difference

between this prediction and the actual vector is stored.[4]

5.2.6 Macroblock Layer

Each slice consists of macroblocks (or, when using interlaced encoding, macroblock pairs)

of 16x16 pixels. The encoder may choose between a multitude of encoding modes for each

macroblock.

5.2.7 Macroblock Modes For I Slice

In H.264, I slices also use a prediction/residual scheme: Already decoded macroblocks of

the same frame may be used as references for this so-called intra prediction process. The

macroblock mode indicates which of two possible prediction types is used.

• Intra 16x16 uses one intra prediction scheme for the whole macroblock. Pixels may

be filled from surrounding macroblocks at the left and the upper edge using one of

four possible prediction modes. Intra prediction is also performed for the chroma

planes using the same range of prediction modes. However, different modes may be

selected for luma and chroma.

• Intra 4x4 subdivides the macroblock into 16 subblocks and assigns one of nine pre-

diction modes to each of these 4x4 blocks. The prediction modes offered in Intra4x4

CHAPTER 5. IMPLEMENTATION DETAILS OF H.264 30

Figure 5.3: Macroblock Partition For H.264[8]

blocks support gradients or other smooth structures that run in one of eight distinct

directions. One additional mode fills a whole subblock with a single value and is used

if no other mode fits the actual pixel data inside a block.

5.2.8 Macroblock Modes For P And B Slices

P and B slices use another range of macroblock modes, but the encoder may use intra coded

macroblocks in P or B slices as well. In regions of uniform motion without texture changes,

macroblocks may be skipped. In this case, no further data is stored for the macroblock, but

it is motion-compensated using the predicted motion vector. Otherwise, the macroblock of

16x16 pixels is divided into macroblock partitions.

• It may be stored as a single partition of 16x16 pixels.

• It may be split horizontally into two partitions of 16x8 pixels each.

• It may be split vertically into two partitions of 8x16 pixels each.

• It may be split in both directions, resulting in four sub-macroblock partitions of 8x8

pixels. Each of these may be split similarly into partitions of 8x8, 8x4, 4x8 or 4x4

pixels. Not all sub macroblock partitions need to be split in the same manner, thus

allowing for any number of partitions from 1 to 16.

CHAPTER 5. IMPLEMENTATION DETAILS OF H.264 31

5.2.9 Block Transformation And Encoding

The basic image encoding algorithm of H.264 uses a separable transformation. The mode

of operation is similar to that of JPEG and MPEG, but the transformation used is not an

8x8 DCT, but an 4x4 integer transformation derived from the DCT. This transformation

is very simple and fast. It can be computed using only additions/subtractions and binary

shifts. It decomposes the image into its spacial frequency components like the DCT, but

due to its smaller size, it is not as prone to high frequency mosquito artifacts as its prede-

cessors.

An Image block B is transformed to B0 using the following formula. The necessary post-

scaling step is integrated into quantization (see below) and therefore omitted.

M =

1 1 1 1

2 1 −1 −2

1 −1 −1 1

1 −2 2 −1

B′ = MBMT (5.1)

5.2.10 Entropy Coding Modes

H.264 supports two different methods for the final entropy encoding step: CAVLC, or

Context-Adaptive Variable Length Coding, is the standard method using simple variable

length huffmann-like codes and codebooks. CABAC, or Context-Adaptive Binary Arith-

metic Coding, on the other side, is an optional, highly efficient binary encoding scheme.

5.2.11 DC Transformation

The upper left transform coefficient (i.e. the first coefficient in scan order) is treated sepa-

rately for Intra 16x16 Macroblocks and chroma residuals. Because this coefficient indicates

the average intensity value of a block, correlations between the DC values of adjacent equally

predicted blocks can be exploited this way. For Intra 16x16 Macroblocks, the DC coefficients

CHAPTER 5. IMPLEMENTATION DETAILS OF H.264 32

are transformed using a separable 4x4 Hadamard transform with the following matrix.

M =

1 1 1 1

1 1 −1 −1

1 −1 −1 1

1 −1 1 −1

(5.2)

Chroma residuals are always transformed in one group per Macroblock. Thus, there are 4

chroma blocks per Macroblock and channel. A separable 2x2 transform is used.

M =

1 1

1 −1

 (5.3)

5.2.12 In Loop Deblocking Filter

After each individual frame has been decoded, a de blocking filter that reduces the most

visible blocking artifacts is applied. This has been available since MPEG-4 Simple Profile

as an optional post-processing operation, but in H.264, it is closely integrated into the

encoding and decoding process. The already deblocked frames are used as reference frames

by the following P or B slices. This technique circumvents noticeable blocking artifacts as

far as possible.

5.2.13 Advanced Prediction

H.264 may not only use interframe references to the last decoded frame, but to a arbitrary

number of frames. This greatly improves the encoding efficiency of periodic movements

prediction. Moreover, multiple predictions may be mixed by arbitrary ratios.

5.2.14 Arbitrary Slice Ordering

Since the slices of a picture can be decoded independently , slices need not be decoded in

the correct order to render an image in acceptable quality. This is useful e.g. for UDP

streaming where packets may be delivered out-of-order.

CHAPTER 5. IMPLEMENTATION DETAILS OF H.264 33

Figure 5.4: Subdivision Of Picture Into Slices(When Not Using FMO)[7]

5.2.15 Flexible MacroBlock Ordering

The Macroblocks inside a slice may be encoded in any order. This can be used to increase

robustness against transmission errors, for example. It is also reminiscent of MPEG-4s video

object planes system which could be used to encode each object of a scene individually. In

normal video streams, however, this feature is not used, and macroblocks are sent in the

normal scanline order.

Figure 5.5: Subdivision Of A QCIF Frame Into Slices When Utilizing FMO.[7]

CHAPTER 5. IMPLEMENTATION DETAILS OF H.264 34

5.3 CABAC Encoding In H.264

The CABAC Encoder reads in bit stream and outputs meaningful information. The

H.264/AVC standard defines this meaningful information as syntax element (SE). It also

defines three variables: codlOffset, codlRange and MPS (the most probable symbol). The

CABAC Encoder determines the value of output bit according to the values of codlOffset

and codlRange. For example, when codlRange is lager than codlOffset, the value of output

bit will be equivalent to that of MPS.

The H.264/AVC standard defines for the CABAC Encoder five tables: context table,

initial table,qCodIRangeIdx table, transIdxLPS table, and transIdxMPS table. The context

table is constructed from the initial table and is indexed by the variable context. Each entry

of the context table contains two variables: pStateIdx and MPS. The bigger the value of

pStateIdx is, the more probable the output bit equals to MPS. During the encoding process,

we update codlRange by looking up the qCodIRangeIdx table and update the corresponding

entry in the context table by looking up the transIdxLPS table and the transIdxMPS

table. The flow chart of CABAC encoding is shown in Figure.[9] At the beginning of a new

slice, we build the context table from the initial table. Then we initialize codlOffset and

codlRange by using the first 2 bytes of the bit stream. After initializing the context table,

codlOffset and codlRange, we go on to Encode one macroblock.

In the macroblock layer, the CABAC Encoder should first decide which syntax element (SE)

to be Encoded Secondly the Encoder calculates context by referring to the syntax elements

of the left, top, or current macroblock. The Encoding process is now divided into three

stages: normal encoding process, bypass Encoding process and terminal Encoding process.

CHAPTER 5. IMPLEMENTATION DETAILS OF H.264 35

Figure 5.6: Skeleteon Of H.264 Reference Code

CHAPTER 5. IMPLEMENTATION DETAILS OF H.264 36

Figure 5.7: FlowChart Of CABAC Encoding Process

Chapter 6

Implementation Of Codec And

Simulation Result

6.1 Parallelization Of The H.264 Encoder Using C Code

Here, the main() of H.264 Encoder is described by the following function

int main (int argc ,char ** argv)

6.1.1 Function Documentation

• static void alloc encoder(EncoderParams ** p Enc)

It allocate encoder structure.

• static void alloc img (ImageParameters ** p Img) [static]

It allocate the Image structure

• static void alloc params (InputParameters ** p Inp) [static]

It allocate the Input structure.

• static void chroma mc setup (ImageParameters * p Img) [static]

It setup Chroma MC Variables.

• static int determine coding level (ImageParameters * p Img, InputParameters * p

Inp, int curr frame)

Determine coding level a frame belongs to.

37

CHAPTER 6. IMPLEMENTATION OF CODEC AND SIMULATION RESULT 38

• void encode one redundant frame (ImageParameters * p Img, InputParameters * p

Inp)

It encode one redundant frame.

• static void encode sequence (ImageParameters * pImg, InputParameters * p Inp)

It Encode a sequence.

• static void free encoder (EncoderParams * p Enc) [static]

Free memory allocated for the encoder.

• void free encoder memory (ImageParameters * p Img, InputParameters * p Inp)

Free allocated memory of frame size related global buffers buffers are defined in

global.h, allocated memory is allocated in int get mem4global buffers().

• static void free global buffers (ImageParameters * p p Img, InputParameters * p Inp

)

Free allocated memory of frame size related global buffers buffers are defined in

global.h, allocated memory is allocated in int get mem4global buffers().

• static void free img (ImageParameters * p Img, InputParameters * p Inp)

Free the Image structures.

• void free mem ACcoeff (int **** cofAC)

Free memory of AC coefficients.

• void free mem ACcoeff new (int ***** cofAC)

Free memory of AC coefficients.

• void free mem DCcoeff (int *** cofDC)

Free memory of DC coefficients.

• void free orig planes (ImageParameters * p Img, InputParameters * p Inp, ImageData

* imgData)

Free allocated memory of original picture buffers.

• static void free params (InputParameters * p Inp)

CHAPTER 6. IMPLEMENTATION OF CODEC AND SIMULATION RESULT 39

• void free picture (Picture * pic)

Free the Input structures.

• int get mem ACcoeff (ImageParameters * p Img, int ***** cofAC)

Allocate memory for AC coefficients.

• int get mem ACcoeff new (int ****** cofAC, int chroma))

Allocate memory for AC coefficients.

• static void init encoder (ImageParameters * p Img, InputParameters * p Inp)

It Initialize encoder.

• static int init global buffers (ImageParameters * p Img, InputParameters * p Inp)

Dynamic memory allocation of frame size related global buffers buffers are defined in

global.h, allocated memory must be freed in void free global buffers().

• static void init img (ImageParameters * p Img, InputParameters * p Inp)

Initializes the Image structure with appropriate parameters.

• int init orig buffers (ImageParameters * p Img, InputParameters * p Inp, ImageData

* imgData)

Memory allocation for original picture buffers

• static void init poc (ImageParameters * p Img, InputParameters * p Inp)

• void Init redundant frame (ImageParameters * p Img, InputParameters * p Inp)

Initializes the POC structure with appropriate parameters.

• int main (int argc, char ** argv)

• Picture* malloc picture ()

It initialize key frames and corresponding redundant frames

• static void prepare first layer (ImageParameters * p Img, InputParameters * p Inp,

int curr frame to code)

Prepare first coding layer

CHAPTER 6. IMPLEMENTATION OF CODEC AND SIMULATION RESULT 40

• static void prepare second layer (ImageParameters * p Img, InputParameters * p

Inp, int enh frame to code)

Prepare second coding layer.

• void Set redundant frame (ImageParameters * p Img, InputParameters * p Inp)

It allocate redundant frames in a primary GOP.

• static void SetImgType (ImageParameters * p Img, InputParameters * p Inp, int gop

frame num)

Set the image type for I,P and SP pictures (not B!).

• static void SetLevelIndices (ImageParameters * p Img)

Sets indices to appropriate level constraints, depending on current level idc.

6.2 Parallelization Of The H.264 Decoder Using C Code

Here, the main() of H.264 Decoder is described by the following function

int main (int argc,char ** argv)

6.2.1 Function Documentation

• static void alloc decoder (DecoderParams ** p Dec) [static]

Allocate the Decoder Structure

• static void alloc img (ImageParameters ** p Img) [static]

Allocate the Image structure.

• static void alloc params (InputParameters ** p Inp) [static]

Allocate the Input structure.

• DataPartition* AllocPartition (int n)

Allocates a stand-alone partition structure. Structure should be freed by FreeParti-

tion(); data structures.

• static void conf read check (int val, int expected)

exit with error message if reading from config file failed.

CHAPTER 6. IMPLEMENTATION OF CODEC AND SIMULATION RESULT 41

• void Configure (ImageParameters * pImg, InputParameters * p Inp, int ac, char *

av)

set default bitstream name,set default output file name, set default reference file name.

• void error (char * text, int code)

Error handling procedure. Print error message to stderr and exit with supplied code.

• void free global buffers (ImageParameters * pImg)

Free allocated memory of frame size related global buffers buffers are defined in

global.h, allocated memory is allocated in int init global buffers().

• static void free img (ImageParameters * p Img) [static]

Free the Image structure.

• static void free slice (Slice * currSlice) [static]

Memory frees of the Slice structure and of its dependent data structures.

• void FreePartition (DataPartition * dp, int n)

Frees a partition structure (array).

• static void init (ImageParameters * p Img) [static]

Initilize some arrays.

• static void init conf (ImageParameters * p Img, InputParameters * p Inp, char *

config filename)

Read parameters from configuration file.

• void init frext (ImageParameters * p Img)

Initialize FREXT variables.

• int init global buffers (ImageParameters * pImg)

Dynamic memory allocation of frame size related global buffers buffers are defined in

global.h, allocated memory must be freed in void free global buffers().

• void JMDecHelpExit(void)

• int main (int argc, char ** argv)

main function for decoder.

CHAPTER 6. IMPLEMENTATION OF CODEC AND SIMULATION RESULT 42

• static void malloc slice (InputParameters * p Inp, ImageParameters * p Img) [static]

Allocates the slice structure along with its dependent data structures.

• static void Report (ImageParameters * p Img) [static]

Reports the gathered information to appropriate outputs.

CHAPTER 6. IMPLEMENTATION OF CODEC AND SIMULATION RESULT 43

Figure 6.1: Output OF Encoder For H.264

6.3 Output Of Encoder And Simulation Result

Firstly We Parallelize the Code For H.264 Encoder Using The CABAC Algorithm. Then

We Got The Output Of Encoder.

CHAPTER 6. IMPLEMENTATION OF CODEC AND SIMULATION RESULT 44

6.3.1 Simulation Result

The simulator of our MBRP parallel algorithm for H.264 encoder is developed using C lan-

guage and implemented on a PC with a P4 1.7GHz processor and a 512MB memory. The

simulation results are compared with , which is a sequential encoding structure. In our soft-

ware simulation of H.264 encoder, processors are simulated. The main encoder parameters

are shown in Table . The simulator collects the maximal encoding time among concurrently

processed MB regions and the corresponding time spent on data exchanging. Some of the

simulation results are presented in Table. we used ”Foreman as video source, and frames

were encoded.

Table I: Simulation Result
Simulation Result Of Encoder
QP 28
Snr Y 37.442
Snr U 41.308
Snr V 43.113
Time(ms) 672

6.3.2 Performance And Analysis

We Can measure the performance of the H.264 Encoder And Decoder By using the following

points.

Quantization Parameter A quantization parameter (QP) is used for determining the

quantization of transform coefficients in H.264/AVC. It can take on 52 values. The

quantization step size is controlled logarithmically by QP rather than linearly as in

previous standards, in a manner designed to reduce decoding complexity and enhance

bit rate control capability. Each increase of six in QP causes a doubling of the quanti-

zation step size, so each increase of one in QP increases the step size by approximately

12 percent.

Distortion Measures Rate Distortion Optimization Requires an ability to measure the

distortion. However The Perceived Distortion in visual content is very difficult quan-

tity to measure as the characteristics of the human visual system. This problem is

CHAPTER 6. IMPLEMENTATION OF CODEC AND SIMULATION RESULT 45

Figure 6.2: Performance According To Rate Distortion

aggrevated in video coding because the addition of the temporal domain relative to

still picture coding further complicates.

In practice highly imperfect distortion models such as the sum of the squared differ-

nces(SSD) or its equivalent, known as mean squared error(MSE) , or Peak signal to

noise ratio (PSNR)are used in motion actual comparison, they are defined as.

SSDA(F,G) = |F (S)−G(S)|2 (6.1)

MSEA(F,G) = 1/|A| SSDA(F,G) (6.2)

PSNRA(F,G) = 10log10 (255)2/MSEA(F,G) (6.3)

CHAPTER 6. IMPLEMENTATION OF CODEC AND SIMULATION RESULT 46

6.4 Conclusion

H.264/AVC represents a number of advances in standard video coding technology, in terms

of coding efficiency improvement, error/loss robustness enhancement, and flexibility for

effective use over a broad variety . Its VCL design is based on conventional block-based

motion-compensated hybrid video coding concepts, but with some important differences

relative to prior standards, which include:

• Enhanced Motion Prediction Capability.

• Use of a small block-size exact-match transform.

• Adaptive in-loop deblocking filter.

• Enhanced entropy coding methods.

Chapter 7

Parallel Computing Using The

Beowulf Cluster

7.1 Why Beowulf Cluster?

The node is responsible for all activities and capabilities associated with executing an ap-

plication program and supporting a sophisticated software environment. These fall into

four general categories[2]

• Instruction execution.

• High-speed temporary information storage.

• High-capacity persistent information storage.

• Communication with the external environment, including other nodes.

7.2 Principal Specification

In selecting the proper node configuration for a new Beowulf. Fortunately, only a small

number of critical parameters largely characterize a particular Beowulf node. These param-

eters usually relate to a few peak capabilities or capacities and are only roughly predictive

of the performance of any given application.

47

CHAPTER 7. PARALLEL COMPUTING USING THE BEOWULF CLUSTER48

Processor Clock Rate The frequency (MHz or GHz) of the primary signal within the

processor that determines the rate at which instructions are issued.

Peak floating-point performance The combination of the clock rate and the number of

floating-point operations that can be issued and retired per instruction (Mflops)

Cache size The storage capacity (KBytes) of the high-speed buffer memory between the

main memory and the processor.

Main memory capacity The storage capacity (MBytes) of the primary system node

memory in which resides the global dataset of the applications as well as myriad

other supporting program, buffering, and argument data.

Disk capacity The storage capacity (GBytes) of the permanent secondary storage internal

to the processing node.

SAN network port peak bandwidth The bandwidth (Mbps) of the network control

card and system area network communication channel medium.

The node is responsible for performing a set of designated instruction specified by the appli-

cation program code or system software.The lowest -level binary encoding of the instructions

and the actions they perform are dictated by the microprocessor instruction set architecture

(ISA).

CHAPTER 7. PARALLEL COMPUTING USING THE BEOWULF CLUSTER49

7.3 Use Linux For Beowulf

The most important reason for using Linux to build a Beowulf is its flexibility. Because

Linux is open source, it can easily be modified, rearranged, and tweaked for whatever the

task. Linux is actually very friendly. Because of the distributed development environment

that has helped it become so successful, it is also easily modified and tweaked. Compa-

nies such as IBM, Fujitsu, NEC, Compaq, and Dell have all incorporated Linux into their

business model, creating a marketplace around a distribution of kernel source code that is

free. Other companies are simply using Linux because it makes practical business sense.

Another reason to choose Linux is its support for many types of processors. Alpha, Pow-

erPC, IA32, IA64, and many others are all supported in Linux. We can choose to build our

Beowulf from the fastest Apple Macintosh servers or IBM pSeries servers. As an example

of the flexibility and speed .

The first reason that smaller is better comes from decades of experience with source code

development and stability. Whenever a line of code is added to a source tree, the probabil-

ity increases that a hidden bug has been introduced. For a kernel that controls the memory

system and precious data on disk, robustness is vital. Having fewer functions running in

privileged mode makes for a more stable environment. A small kernel is a kernel that is

more likely to be stable. Linux was chosen for its stability, robustness, and the ease with

which it could be modified for the task.

The second reason for a small kernel is that the most stable code path is the most used

code path. It tend to congregate in out of-the-way locations, away from the well-worn code

paths. The smaller the kernel, the fewer the hidden and rarely tested code paths. Finally,

smaller is better when it comes to kernel memory and CPU cycles on a Beowulf. Because

kernel operations such as task switching are run extremely often, even a small amount of

additional kernel overhead can noticeably impact application performance. For Beowulf,

a small kernel is advantageous.

CHAPTER 7. PARALLEL COMPUTING USING THE BEOWULF CLUSTER50

7.4 A Kernel And A Distribution

The term ”Linux” is most correctly applied to the name for the Unix-like kernel, the heart

of an operating system that directly controls the hardware and provides true multitask-

ing, virtual memory, shared libraries, demand loading, shared copy-on-write executables,

TCP/IP networking, and file systems. The term ”Linux” has also been applied in a very

general way to mean the entire system, the Linux kernel combined will all of the other

programs that make the system easy to use, such as the graphic interface, the compiler

tools, the e -mail programs, and the utilities for copying and naming files.

A Linux distribution packages up all the common programs and interfaces that most users

think of when they imagine Linux, such as the desktop icons or the Apache Web server or,

more important, for scientific users, compilers, performance monitoring tools. Many Linux

distribution companies exist. In fact, companies Red Hat, Turbo linux, Caldera, SuSE, and

a host of smaller companies, have the freedom to customize,optimize, support, and extend

their Linux distribution to satisfy the needs of their users. How the Linux kernel and Linux

distributions are developed and maintained is key to understanding how to get support and

how to get a Beowulf cluster up and running on the network as quickly as possible.

7.5 Network Software

In this part we turn to the networking software options available to the Beowulf programmer,

administrator, and user. Networking software is usually described as a stack, made up of

different protocol layers that inter operate with one another. We survey a few of the layers

in the networking stack, focusing on those services and tools that are used extensively on

Beowulf system.

7.5.1 Tcp/Ip

Parallel computers have traditionally used special high-performance inter processor com-

munication networks that use custom protocols to transmit data between processing ele-

ments. In contrast, Beowulf clusters rely on commodity networks whose original design

goals did not include serving as the interconnect for a commodity supercomputer. The use

CHAPTER 7. PARALLEL COMPUTING USING THE BEOWULF CLUSTER51

of commodity networks implies the use of commodity protocols when costs must be kept

down. Growth of the Internet during the last decade of century, has become the de facto

standard network communication protocol. The IP protocol is conceptually divided into

different logical layers that combine to form a protocol stack. The IP layer is a rout able

datagram layer. Data to be transferred is fragmented into datagrams individual packets of

data. Packet length is limited by the physical transport layer, and the IP layer contains the

logic to fragment requests that are too large into multiple IP packets that are reassembled

at the destination. Each datagram is individually routable and contains a four-byte IP

address that specifies the destination host. This version of IP is called IPv4. A new

version, called IPv6, will increase the address space a vailable to IP applications. The

four-byte addresses used in IPv4 are too small for the total number of computers currently

connected to the world’s networks. This address depletion will be remedied by IPv6, which

uses 16 bytes to represent host addresses. Currently, however, IPv4 remains dominant,

particularly in the United States. The IP stack commonly supports two services: TCP

(Transmission Control Protocol) and UDP (User Datagram Protocol). TCP, the most

common IP service, provides a reliable, sequenced byte stream service.

While the underlying physical transport layer usually provides error checking, TCP provides

its own final data integrity checking. Most multiple-hop physical transports provide only a

best-effort delivery promise. TCP incorporates a positive -acknowledgment sliding-window

retransmission mechanism that recovers from packet loss. It also tolerates latency while

maintaining high performance in the normal case .

IP Addresses

The destination of an Internet Protocol packet is specified by a 32-bit (or 128 bits) for

IPv6 that uniquely identifies the destination host. The portion of the address that

remains fixed within a network is called the network address, and the remainder is the

host address. The division between these two parts is specified by the netmask. A typical

netmask is 255.255.255.0, which specifies 24 bits of network address and 8 bits of host

addresses. Three IP address ranges have been reserved for private networks:

• 10.0.0.0 10.255.255.255

CHAPTER 7. PARALLEL COMPUTING USING THE BEOWULF CLUSTER52

• 172.16.0.0 172.31.255.255

• 192.168.0.0 192.168.255.255

Zero Copy Protocol

One way to improve network performance, especially for high-performance networks, is to

eliminate unnecessary copying of data between buffers in the kernel or between the kernel

and user space. So-called zero-copy protocols give applications nearly direct access to

the network hardware, which copies data directly to and from buffers in the application

program.

7.5.2 Socket

are the low-level interface between user-level programs and the operating system and hard-

ware layers of a communication network. They provide a reasonably portable mechanism

for two (or more) applications to communicate, and they support a variety of addressing

formats, semantics, and underlying protocols.

On Linux, the socket API is supported directly by the operating system, but research

projects have proposed lower-level zero-copy protocols that would allow applications more

direct access to the kernel. The socket API is powerful but not particularly elegant. Many

programmers avoid working with sockets directly, opting instead to hide the socket interface

behind one or more additional layers of abstraction (e.g., remote procedure calls or a library

like MPI).

Client Tasks

The client has four basic tasks:

• Create a local socket with an otherwise unused address.

• Determine the address of the server.

• Establish a connection (TCP only).

• Send and receive data.

CHAPTER 7. PARALLEL COMPUTING USING THE BEOWULF CLUSTER53

Server Tasks

Servers are more complicated than clients. There are a number of different design choices

for servers, with various tradeoffs between response time, scalability ,how many clients can

be supported, resource consumption, programming style, and robustness. Popular choices

include a multithreaded server, a server that forks a new process for every connection, or a

server that is invoked by the Internet daemon inetd. A few tasks are common to all these

design choices.[2]

• Create a local socket.

• Select a port number.

• Bind the port number to the socket.

• Make the port number known to clients.

• Listen for connections (TCP only).

• Accept connections (TCP only).

• Send And Receive data.

7.5.3 Remote Procedure Call

Programming with sockets is part of the client/server programming model, where all data

exchange is explicitly performed with sends and receives. A (RPC) follows a different

paradigm of distributed computation, removing the programmer from explicit message

passing. The idea behind an RPC is to make distributed programs look like sequen-

tial programs. A procedure is called inside a program rather than executing on the local

machine, however, the local program suspends while the procedure executes on a remote

machine. When the procedure returns,the local program wakes up and receives any results

that may have been produced by the procedure.

RPC was designed not so much for parallel programming as for distributed program-

ming. Parallel programming is a more tightly coupled concept where a single program

works on a problem, concurrently executing on multiple processors. Distributed program-

ming is a looser concept where two or more programs may require services from one another

CHAPTER 7. PARALLEL COMPUTING USING THE BEOWULF CLUSTER54

and therefore need to communicate, but they are not necessarily working on the same prob-

lem. RPC can be used effectively on Beowulf systems, especially for porting applications

that are already designed .

Two different RPC implementations are commonly found on Unix systems. The first is

ONC ,for Open Network Computing. This is the RPC standard used by Linux and Be-

owulf systems. Distributed Computing Environment. The two systems are incompatible

and offer different features.

7.5.4 Distributed File System

Every node in a Beowulf cluster equipped with a hard drive has a local file system that

processes running on other nodes. The worldly node’s file system that they may boot and

execute programs. The need for internode file system access requires Beowulf clusters to

adopt one or more distributed file systems.

7.5.5 Secure Shell

or SSH is a network protocol that allows data to be exchanged using a secure channel

between two networked devices. It used on Linux and Unix based systems to access

shell accounts. It send information, notably passwords, in plaintext, leaving them open for

interception. The encryption used by SSH provides confidentiality and integrity of data

over an insecure network, such as the Internet .

7.5.6 Mpich

Parallel computing system is a robust and flexible implementation of the MPI (Message

Passing Interface). MPI is often used with parallel or distributed computing projects.

MPICH is a multi-platform, configurable system (development, execution, libraries, etc) for

MPI. It can achieve parallelism using networked machines or using multitasking on a single

machines.

Chapter 8

Implementation Of Beowulf

Cluster

8.1 Introduction

This chapter describes a step by step Instruction on building Beowulf cluster. We implement

the Beowulf Cluster using the Fedora8 with two nodes that consist of Redhat Distribution.

8.2 Logical View Of Beowulf Cluster

Beowulf is a class of computer clusters similar to the original NASA system. Originally

developed by Thomas Sterling and Donald Becker at NASA, Beowulf systems are now

deployed worldwide,chiefly in support of scientific computing. It is a group of what are

normally identical, commercially available computers, which are running a Free and Open

Source Software (FOSS), Unix-like operating system, such as BSD, GNU/Linux, or So-

laris. They are networked into a small TCP/IP and have libraries and programs installed

which allow processing to be shared among them. There is no particular piece of software

that defines a cluster as a Beowulf. Commonly used parallel processing libraries include

Message Passing Interface (MPI) and Parallel Virtual Machine (PVM). Both of these per-

mit the programmer to divide a task among a group of networked computers, and collect

the results of processing. Examples of MPI software include OpenMPI or MPICH .

55

CHAPTER 8. IMPLEMENTATION OF BEOWULF CLUSTER 56

Figure 8.1: Logical View Of Beowulf Cluster

8.3 Requirements

The following figure specify the requirement of the Beowulf Cluster with setup the two

nodes.

8.4 Setting Up Cluster Installation And Configuration

THE FOLLOWING STEPS FOR MASTER AND SLAVE BOTH ,WE ADD ANOTHER

USER CALLED ”ROOT”

a. First step to get rsh and similar tools installed,for that we will do the following steps:

• Make sure that xinetd is installed

• If xinetd will not install in our pc ,it can be done by the following command.

yum install xinetd

CHAPTER 8. IMPLEMENTATION OF BEOWULF CLUSTER 57

Figure 8.2: Requirements for Beowulf Cluster

• Then We will install The two necessary packages

yum install rsh-server

yun install rsh

b. Go to the /etc/securetty.. then add the following command line by line Rsh

rlogin

rexec

pts/0

pts/1

c. Go to the /etc/pam.d/rsh when something in this file then replace it and add the

following line

auth sufficient /lib/security/pam nologin.so

auth optional /lib/security/pam securetty.so

CHAPTER 8. IMPLEMENTATION OF BEOWULF CLUSTER 58

auth sufficient /lib/security/pam env.so

auth sufficient /lib/security/pam rhosts auth.so

account sufficient /lib/security/pam stack.so service=system-auth

session sufficient /lib/security/pam stack.so service=system-auth

d. Go to the /etc/xinetd.d there rlogin, rexec,rsh and telnet are available, in their we

will modify, disables yes to no

service shell

socket type=stream

wait =no

user=root

log on sucess +=USERID

log on failure +=USERID

Server=/in/usr/sbin.rshd

Disable=no

e. Check command for remote service

• chkconfig -list—grep rsh

It checks that our remote service is active or not?

• rpm -qa —grep rsh-server

It specifies what rsh version is installed our computer

• Netstat -tap—grep LISTEN

It check the rsh service

f. SERVICES make sure that services ,we want are up using following command

• Chkconfig add sshd

CHAPTER 8. IMPLEMENTATION OF BEOWULF CLUSTER 59

• Chkconfig add nfs

• Chkconfig add rexec

• Chkconfig add rlogin

• Chkconfig level 3 rsh on

• Chkconfig level 3 nfs on

• Chkconfig level 3 rexec on

• Chkconfig level 3 rlogin on

• Chkconfig del atd

• Chkconfig del rsh

• Chkconfig del sendmail

g. We will create a file

/ root/vi.rhosts in user Root directory.

Node00 Root

Node01 Root

Here,Node00 is our Master Node and Other are slave node

h. Go to the /etc/hosts and add ip address ,host name of all nodes,and other are ip

address node number like this

example: suppose 10.1.3.25 is IP address of my machine ,then 10.1.3.25 localhost.localdomain

Node00 10.1.3.4 Node01 THE FOLLOWING STEPS IS FOR MASTER NODE:

i. Configuration For MPICH-1.2.7p1

• mkdir /home/Root/mpich1

• ./configure –prefix=/home/Root/mpich1

• make

CHAPTER 8. IMPLEMENTATION OF BEOWULF CLUSTER 60

• make install

WHERE MPICH1 IS THE NEW DIRECTORY.

j. Go to the /Root/.bash profile and add the following path, where mpich is installed,

this will look like that:

/root/mpich1.2.7p1/bin:/Root/mpich-1.2.7p1/util

k. Go to the /mpich-1.2.7p1/util/machines/vi machines.LINUX and add host name of

all nodes.

Node00

Node01

8.5 Testing For Cluster

a. GO to the mpich-1.2.7p1/examples/basic¿make -cpilog files are comes.

b. Go to the mpich-1.2.7p1/mpe/contribe.mandel¿make—-pamndel files are comes.

c. Go to the mpich-1.2.7p1/examples/basic—./cpilog .

8.5.1 Xinetd Insatallment

Xinetd performs the same function as inetd. It starts programs that provide Internet

services. Instead of having such servers started at system initialization time, and be dormant

until a connection request arrives, xinetd is the only daemon process started and it listens

on all service ports for the services listed in its configuration file. When a request comes in,

xinetd starts the appropriate server. Because of the way it operates, xinetd (as well as inetd)

is also referred to as a super-server. The services listed in xinetd’s configuration file can be

separated into two groups. Services in the first group are called multi-threaded and they

require the forking of a new server process for each new connection request. The new server

then handles that connection. For such services, xinetd keeps listening for new requests

CHAPTER 8. IMPLEMENTATION OF BEOWULF CLUSTER 61

so that it can spawn new servers. On the other hand, the second group includes services

for which the service daemon is responsible for handling all new connection requests. Such

services are called single-threaded and xinetd.

Figure 8.3: Output Of Xinetd Configuration

CHAPTER 8. IMPLEMENTATION OF BEOWULF CLUSTER 62

8.5.2 Rsh And Rlogin Configuration

Rsh stands for remote shell and allows us to execute non-interactive programs on another

system. On some systems, this command is sometimes called remsh or rcmd. It executes

the command on the other system and returns the program’s standard output and standard

error output. The other system must be running a remote shell daemon (rshd) to handle

the incoming rsh command. Unix and Linux systems include a remote shell daemon,

The rsh command does not require us to enter a password for the other system. Trust is

established by defining host equivalency.

Figure 8.4: Output Of Rsh And Rlogin Configuration

8.5.3 Installment Of Pmandel and Cpilog Files

A Mandelbrot program that uses the MPE graphics pack age that comes with mpich It

should work with any other MPI implementation as well but we have not tested it This is

a good demo program if we have a fast server and too many processes.

CHAPTER 8. IMPLEMENTATION OF BEOWULF CLUSTER 63

Figure 8.5: Output Of Pmandel Files

8.5.4 Output Of Cluster Testing

It contains a few short programs in Fortran C and C++ for testing the simplest features of

MPI. It contains multiple test directories for the various parts of MPI Enter make testing

in this directory to run our suite of function Tests.

8.5.5 Configuration Between Master And Slave Node

For Doing Parallel Computing Between Master And Slave Node We do Configuration Be-

tween Master And Slave Node.

CHAPTER 8. IMPLEMENTATION OF BEOWULF CLUSTER 64

Figure 8.6: Output Of Cpilog Files

CHAPTER 8. IMPLEMENTATION OF BEOWULF CLUSTER 65

Figure 8.7: Output Of Cluster Testing

Figure 8.8: Configuration Between Master And Slave Node

Chapter 9

Conclusion And Future Work

9.1 Conclusion

We propose the MBRP parallel algorithm for H.264 encoder in which frames are split

into several MB regions each MB region includes several adjoining columns of MBs and is

mapped onto a different processor to be encoded by the CABAC algorithm . We can do

parallel computing using Beowulf cluster with reduction of the complexity. Commonly used

parallel processing libraries include MPI (Message Passing Interface) and PVM (Parallel

Virtual Machine). Both of these permit the programmer to divide a task among a group

of networked computers, and collect the results of processing.

9.2 Future Work

C code for H.264 ENCODER and DECODER that will be implemented in Beowulf Cluster

for parallel computing and The same set up will be tested with 8 core processor. Then we

will compare the result of parallel computing and parallel processing .

66

References

[1] M.P Malumbres A Rodriguez, A. Gonzalez. Hybrid parallelization of an h.264/avc
video encoder. Albacete, page 6, September, 2006.

[2] Gorden Bell. Beowulf Cluster Computing with Linux. MIT Press, October 2001.

[3] Tian-Sheuan Chang Chao-Chung Cheng. An hardware efficient deblocking filter for
h.264/avc. page 10, 2003.

[4] T. Hidaka. Description of the proposing algorithm and its score for moving image.
ISO/IEC JTC 1/SC, page 4, oct,1989.

[5] youn-long lin jian-ven chain, cheng-vu cheng. A hardware accelerator for context based
adaptive binary arithmatic decoding in h.264 /avc. IEEE., page 4, 2005.

[6] Gopal Raghavan Kermin Fleming, Chun-Chieh Lin. H.264 decoder: A case study in
multiple design points. page 10.

[7] Detlev Marpe Marta Mrak and Thomas Wiegand. A context modeling algorithm and its
application in video compression. Proc. ICIP,, September 14-17, Barcelona, Spain.:4,
2003,.

[8] S. Ramachandran 2 N. Keshaveni 1 and K.S. Gurumurthy. Implementation of context
adaptive variable length coder for h.264 video encoder. International Journal of Recent
Trends in Engineering,, vol.2:5, November 2009.

[9] G. M. Schuster and A. K. Katsaggelos. a video compression scheme with optimal
bit allocation among segmentation, motion and resuidal error. IEEE Trans. Image
Process.,, 6:5, 1997.

[10] Gary J. Sullivan and Thomas Wiegand. Video compressionfrom concepts to the
h.264/avc standard. Proceedings Of The IEEE, vol.93:14, January 2005.

[11] Liang P Zhao, Z. A highly efficient parallel algorithm for h.264 encoder based on
macro-block region partition. IEEE International Conference on Acoustics, Speech,
and Signal Processing, 31st:9, 2006.

67

Website References

[1] http://google.com

[2] http:///www.erlang.org

[3] http://www.codergrid.de

[4] http://iphome.hhi.de/suehring/tml/

[5] http://www.videolan.org/developers/x264.html

[6] http://www.tandberg.net

[7] http://www.scyld.com

[8] http://www.lam-mpi.org

[9] http://www.mcs.anl.gov/mpi/mpich

[10] http://www.myricom.com

[11] http://www.niu.edu/mpi

[12] http://www.ens-lyon.fr/mercierg/mpi.html

[13] http://www.disi.unige.it/project/gamma/mpigamma/

[14] http://www.mpi-softtech.com

[15] http://www.lhpca.univ-lyon1.fr/mpibip.html

[16] http://www.lfbs.rwth-aachen.de/users/joachim/MP-MPICH/

[17] http://www.nersc.gov/research/ftg/mvich/

[18] http://www.stewe.org/itu-recs/h264.pdf/

[19] http://www.bs.hhi.de/wiegand/ct2003.pdf/

[20] http://www.nersc.gov/research/ftg/mvich/

[21] http://www.ffmpeg.sourceforge.net/

68

http://google.com
http:///www.erlang.org
http://www.codergrid.de
 http://iphome.hhi.de/suehring/tml/
http://www.videolan.org/developers/x264.html
http://www.tandberg.net
http://www.scyld.com
http://www.lam-mpi.org
http://www.mcs.anl.gov/mpi/mpich
http://www.myricom.com
http://www.niu.edu/mpi
http://www.ens-lyon.fr/mercierg/mpi.html
http://www.disi.unige.it/project/gamma/mpigamma/
http://www.mpi-softtech.com
http://www.lhpca.univ-lyon1.fr/mpibip.html
http://www.lfbs.rwth-aachen.de/users/joachim/MP-MPICH/
http://www.nersc.gov/research/ftg/mvich/
http://www.stewe.org/itu-recs/h264.pdf/
http://www.bs.hhi.de/wiegand/ct2003.pdf/
http://www.nersc.gov/research/ftg/mvich/
http://www.ffmpeg.sourceforge.net/

Index

Beowulf cluster, 55
IP address, 51
TCP/IP, 51

Beowulf, 47

CABAC, 10
CAVLC, 10

Decoder, 7

Encoder, 7
Erlang, 20

LAN, 55

MBRP, 10
Media Encoding Cluster, 17
MPI, 2
MPICH, 54

Predicton, 6

Remote procedure call, 53

Secure Shell, 54
Sockets, 52

69

	Certificate
	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	General Overview
	Motivation
	Objective
	Scope Of Work
	Organization Of Major Project

	Literature Survey
	Concept Video Codec For H.264
	H.264 Encoder
	H.264 Decoder

	Parallelization Of H.264
	Overview Of Cluster Computing
	Conclusion

	High Efficient Parallel Algorithm For H.264
	Parallel Algorithm For H.264
	Data Dependencies In H.264
	Data Dependencies Introduced By Inter-prediction

	CABAC Algorithm For H.264
	Context Modeling In CABAC
	Proposed Grasp Algorithm
	Grasp For Group Of Picture

	Related Work
	Example Of Distributed Encoding (Media Encoding Cluster)
	What Is Media Encoding Cluster
	Features Of Media Encoding Cluster
	Output Of Media Encoding Cluster

	Parallel Computing Using Erlang Distribution
	What Is Erlang
	Components

	Tools And Libraries
	Example Of Erlang Program

	Analysis Of Related Work

	Implementation Details Of H.264
	 Data Domain Decomposition Of H.264
	Skeleton Of H.264 Reference Code
	Implementation Details Of H.264
	NAL units, Slices,Fields And Frames
	Slice Types
	Motion Compensation
	Motion Vector Prediction
	Macroblock Layer
	Macroblock Modes For I Slice
	Macroblock Modes For P And B Slices
	Block Transformation And Encoding
	Entropy Coding Modes
	DC Transformation
	In Loop Deblocking Filter
	Advanced Prediction
	Arbitrary Slice Ordering
	Flexible MacroBlock Ordering

	CABAC Encoding In H.264

	Implementation Of Codec And Simulation Result
	Parallelization Of The H.264 Encoder Using C Code
	Function Documentation

	Parallelization Of The H.264 Decoder Using C Code
	Function Documentation

	Output Of Encoder And Simulation Result
	Simulation Result
	Performance And Analysis

	Conclusion

	Parallel Computing Using The Beowulf Cluster
	Why Beowulf Cluster?
	Principal Specification
	Use Linux For Beowulf
	A Kernel And A Distribution
	Network Software
	Tcp/Ip
	Socket
	Remote Procedure Call
	Distributed File System
	Secure Shell
	Mpich

	Implementation Of Beowulf Cluster
	 Introduction
	 Logical View Of Beowulf Cluster
	Requirements
	Setting Up Cluster Installation And Configuration
	Testing For Cluster
	Xinetd Insatallment
	 Rsh And Rlogin Configuration
	Installment Of Pmandel and Cpilog Files
	Output Of Cluster Testing
	Configuration Between Master And Slave Node

	Conclusion And Future Work
	Conclusion
	Future Work

	References
	Website References
	Index

