
GUI based NS-2 application in Linux

GUI based NS-2 application in Linux
Akash I. Mecwan (akashnrec@yahoo.com, am_elect.it@nirmauni.ac.in)
Vijay G. Savani (savani1979@yahoo.com, vgs_ec.it@nirmauni.ac.in)

Lecturer in Electronics & communication Department
Institute of Technology, Nirma University

Abstract:This project is based on working with NS-2
(Network Simulator-2). The task is implemented in
Linux .A detailed study of NS2 and making a user
friendly GUI working in the front end and NS-2
working in the back ends in Linux. This project also has
a comparison of Windows and Linux. NS-2 is a script,
which is supported by Linux. It also works in Windows.
But, for that, software called ‘cygwin’ working, as the
shell is required. There are many tools in Linux for
creating GUIs such as KDE GUI Development, Qt,
Glade, Real Basic, Ruby etc. A GUI is created using Qt.
An NS script (a .tcl file) is written in a text editor and
saved with the extension mentioned above. The link
between GUI and NS script is then created. So when a
GUI button is clicked, at the back end, NS script runs
and give the output. This GUI helps in learning NS2
easily.

1. Linux

Linux is an operating system that was initially created
as a hobby by a young student, Linus Torvalds, at the
University of Helsinki in Finland.

Apart from the fact that it's freely distributed, Linux's
functionality, adaptability and robustness, has made it the
main alternative for proprietary Unix and Microsoft
operating systems.

1.1 Introduction

To have Linux in a system, it needs a system that's at
the Pentium III/AMD Athlon class or betters with at least
256 MB of RAM. In order to install all the nice programs
that will help you get your work done, you'll need at least
4 GB of space in your hard drive. You'll also need some
additional space to store your files.

Versions (also known as distributions) of Linux, that
are well suited for this, are: 1) Mandriva 2) SUSE 3)
Linspire 4) Xandros 5) MEPIS 6) Fedora Core 7) Ubuntu

There are many different ways one can install Linux in
PC: 1) Distribution or Version. A "distribution" is the
compiled Linux source code, usually combined with extra
features and software. 2) By downloading through the
Internet. 3) Using CD-ROM from Linux retailers. 4)
Purchasing a book that contains the CD Resource.
However in some PCs and laptops, it is preinstalled.

1.2 Comparison between Linux and Windows

Comparison of Linux and Windows for different

factors shows the following results:
1) Price: Majority of Linux versions is available on

Internet for free, while Microsoft Windows
versions are not that economical ($50.0- $150.0
US dollars per license copy).

2) Ease: It’s very clear that when the point comes
about ease, definitely it’s Windows that’s much
easier than Linux.

3) Reliability: However, Microsoft has improved
Windows versions a lot, Linux is still reliable.

4) Hardware: Windows is the OS that is being
widely used worldwide and it is supported by the
most of the hardware.

5) Security: When it comes to security point, Linux
is safer than Windows.

2. NS-2 (Network Simulator-2)

A Network Simulator is a piece of software that
predicts the behavior of a network, without an actual
network being present. NS (version 2) is an object-
oriented, discrete event driven network simulator written
in C++ and OTcl.

It is also an open source like Linux and can run on
both the platforms, Windows as well as Linux. However,
in Windows, it needs a shell prompt (software called
‘crygwin’) like Linux for NS-2.

2.1 Introduction

NS is primarily useful for simulating local and wide

area networks. Although NS is fairly easy to use once you
get to know the simulator, it is quite difficult for a first
time user, because there are few user-friendly manuals.

The purpose of this project is to give a new user some
basic idea of how the simulator works, how to setup
simulation networks, where to look for further
information about network components in simulator
codes, how to create new network components, etc.,
mainly by giving simple examples and brief explanation.

As shown in Figure 1, in a simplified user's view, NS
is Object-oriented Tcl (OTcl) script interpreter that has a
simulation event scheduler and network component
object libraries, and network setup (plumbing) module
libraries (actually, plumbing modules are implemented as
member functions of the base simulator object).

 1

mailto:akashnrec@yahoo.com
mailto:am_elect.it@nirmauni.ac.in
mailto:savani1979@yahoo.com
mailto:vgs_ec.it@nirmauni.ac.in

GUI based NS-2 application in Linux

Figure 1. Simplified user’s view of NS

In other words, to use NS, you program in OTcl script

language. To setup and run a simulation network, a user
should write an OTcl script that initiates an event
scheduler, sets up the network topology using the
network objects and the plumbing functions in the library,
and tells traffic sources when to start and stop
transmitting packets through the event scheduler.

The term "plumbing" is used for a network setup,
because setting up a network is plumbing possible data
paths among network objects by setting the "neighbor"
pointer of an object to the address of an appropriate
object.

When a user wants to make a new network object, he
or she can easily make an object either by writing a new
object or by making a compound object from the object
library, and plumb the data path through the object.

This may sound like complicated job, but the
plumbing OTcl modules actually make the job very easy.
The power of NS comes from this plumbing. Now we are
going to write a 'template' that you can use for all of the
first Tcl scripts.

2.2 A tcl script for NS-2

 You can write your Tcl scripts in any text editor like
joe or emacs. Let’s call this first example as
'example1.tcl'. First of all, you need to create a simulator
object. This is done with the command

set ns [new simulator]

Now we open a file for writing that is going to be used
for the nam trace data.

set nf [open out.nam w]
$ns namtrace-all $nf

The first line opens the file 'out.nam' for writing and
gives it the file handle 'nf'. In the second line we tell the
simulator object that we created above to write all
simulation data that is going to be relevant for nam into
this file.

The next step is to add a 'finish' procedure that closes
the trace file and starts nam.

proc finish {}
 { global ns nf

 $ns flush-trace
 close $nf
 exec nam out.nam &
 exit 0
 }

You don't really have to understand all of the above

code yet. It will get clearer to you once you see what the
code does.

 The next line tells the simulator object to execute the
'finish' procedure after 5.0 seconds of simulation time.

$ ns at 5.0 “finish”

You probably understand what this line does just by
looking at it. NS provides you with a very simple way to
schedule events with the 'at' command. The last line
finally starts the simulation.

$ ns run

You can actually save the file now and try to run it
with 'ns example1.tcl'. You are going to get an error
message like 'nam: empty trace file out.nam' though,
because until now we haven't defined any objects (nodes,
links, etc.) or events. Let’s define a very simple topology
with two nodes that are connected by a link. The
following two lines define the two nodes. (Note: You
have to insert the code in this section before the line '$ns
run', or even better, before the line '$ns at 5.0 "finish"').

set n0 [$ns node]
set n1 [$ns node]

A new node object is created with the command '$ns
node'. The above code creates two nodes and assigns
them to the handles 'n0' and 'n1'.The next line connects
the two nodes.

$ ns duplex-link $n0 $n1 1Mb 10ms Droptail

This line tells the simulator object to connect the

nodes n0 and n1 with a duplex link with the bandwidth
1Megabit, a delay of 10ms and a DropTail queue. So here
we have made two nodes and connected them with the
above command declaring their bandwidth and delay.
This is a duplex link between the two nodes.

Now you can save your file and start the script with

'ns example1.tcl'. nam will be started automatically and
you should see an output that resembles the figure 2.

Of course, this example isn't very satisfying yet, since
you can only look at the topology, but nothing actually
happens, so the next step is to send some data from node
n0 to node n1.

 2

GUI based NS-2 application in Linux

Figure 2. A connection between n0 and n1

In ns, data is always being sent from one 'agent' to

another. So the next step is to create an agent object that
sends data from node n0, and another agent object that
receives the data on node n1.

#Create a UDP agent and attach it to node n0s

set udp0 [new Agent/UDP]

$ns attach-agent $n0 $udp0

#Create a CBR traffic source and attach it to udp0

set cbr0 [new Application/Traffic/CBR]

$cbr0 set packetSize_ 500

$cbr0 set interval_ 0.005

$cbr0 attach-agent $udp0

These lines create a UDP agent and attach it to the
node n0, then attach a CBR traffic generator to the UDP
agent. CBR stands for 'constant bit rate'. Line 7 and 8
should be self-explaining.

The packetSize is being set to 500 bytes and a packet
will be sent every 0.005 seconds (i.e. 200 packets per
second).The next lines create a Null agent, which acts as
traffic sink and attach it to node n1.

set null0 [new Agent/Null]

$ns attach-agent $n1 $null0

Now the two agents have to be connected with each
other.

$ns connect $udp0 $null0

And now we have to tell the CBR agent when to send
data and when to stop sending. Note: It's probably best to
put the following lines just before the line '$ns at 5.0
"finish"'.

$ns at 0.5 “$cbr0 start”
$ns at 4.5 “$cbr0 stop”

This code should be self-explaining again. Now you
can save the file and start the simulation again. When you
click on the 'play' button in the nam window, you will see
that after 0.5 simulation seconds, node 0 starts sending
data packets to node 1. You might want to slow nam
down then with the 'Step' slider.

Another major component of NS beside network
objects is the event scheduler. An event in NS is a packet
ID that is unique for a packet with scheduled time and the
pointer to an object that handles the event.

In NS, an event scheduler keeps track of simulation
time and fires all the events in the event queue scheduled
for the current time by invoking appropriate network
components, which usually are the ones who issued the
events, and let them do the appropriate action associated
with packet pointed by the event.

Network components communicate with one another
passing packets, however this does not consume actual
simulation time.

All the network components that need to spend some
simulation time handling a packet (i.e. need a delay) use
the event scheduler by issuing an event for the packet and
waiting for the event to be fired to itself before doing
further action handling the packet.

Figure 3. Data Transfer through n0 and n1

For example, a network switch component that

simulates a switch with 20 microseconds of switching
delay issues an event for a packet to be switched to the
scheduler as an event 20 microseconds later.

The scheduler after 20 microseconds dequeues the
event and fires it to the switch component, which then
passes the packet to an appropriate output link
component. Another use of an event scheduler is timer.

For example, TCP needs a timer to keep track of a
packet transmission time out for retransmission
(transmission of a packet with the same TCP packet
number but different NS packet ID). Timers use event
schedulers in a similar manner that delay does. The only
difference is that timer measures a time value associated
with a packet and does an appropriate action related to
that packet after a certain time goes by, and does not
simulate a delay.

 3

GUI based NS-2 application in Linux

NS is written not only in OTcl but in C++ also. For
efficiency reason, NS separates the data path
implementation from control path implementations. In
order to reduce packet and event processing time (not
simulation time), the event scheduler and the basic
network component objects in the data path are written
and compiled using C++.

These compiled objects are made available to the OTcl
interpreter through an OTcl linkage that creates a
matching OTcl object for each of the C++ objects and
makes the control functions and the configurable
variables specified by the C++ object act as member
functions and member variables of the corresponding
OTcl object.

In this way, the controls of the C++ objects are given
to OTcl. It is also possible to add member functions and
variables to a C++ linked OTcl object. The objects in
C++ that do not need to be controlled in a simulation or
internally used by another object do not need to be linked
to OTcl. Likewise, an object (not in the data path) can be
entirely implemented in OTcl.

3. NAM Editor

The NAM Window gives a graphical display of the
code written in the tcl format. We can either start nam
with the command 'nam <nam-file>' where '<nam-file>' is
the name of a nam trace file that was generated by ns, or
we can execute it directly out of the Tcl simulation script
for the simulation which we want to visualize. The figure
below gives somewhat idea of how the Nam window
looks like.

Figure 4. The Network Animator Window

The Nam Window has the option of recording the
simulation, edit the nodes, zoom in and out of the view,
relayout the nodes if they are formed without orientation
and starting and stopping the simulation at any time. The
analysis also can be done and help is given in it.
4. Making a GUI

Comparing all the softwares mentioned in the abstract Qt
was the best among them and very user friendly.

4.1 Introduction to Qt

Qt (pronounced "cute") is a cross-platform application
development framework, widely used for the
development of GUI programs (in which case it is known
as a Widget toolkit), and also used for developing non-
GUI programs such as console tools and servers. Qt is
most notably used in KDE, the web browser Opera,
Google Earth, Skype, Qtopia and Photoshop Elements. It
is produced by the Norwegian company Trolltech.

Qt is a cross-platform rich application development
framework. It is a multi-platform toolkit. When you
implement a program with Qt, you can run it on the X
Window System (Unix/X11), Apple Mac OS X, and
Microsoft Windows NT/9x/2000/XP by simply compiling
the source code for the platform you want. One of the key
design goals behind Qt is to make cross-platform
application programming intuitive, easy and fun. Qt
achieves this goal by abstracting low-level infrastructure
functionality in the underlying window and operating
systems, providing a coherent and logical interface that
makes sense to programmers.

4.2 GUI building in Qt

We can start a C++ Project which would prompt us to
give the name to the project and path of the directory
where the project is to saved. After creating a project we
can include dialogs, wizards, Main Window, etc and other
things.

After we include the dialogs the forms will open that
can be named and must be saved where the project is
saved so that we know how many files have been made.
A header file is made every time we make a new form.
Here a Filename.ui file is made for every dialog which
stores all the widgets in it that have been included in it.
The Filename.ui.h is the source code file of that form
where we include the variables, libraries and accordingly
form the code.

There is main cpp file which is normally connected to
the main window and it can be made in the same way as
we include a new dialog but this optoion will be visible
only when we are making a project else while working on
a dialog with buttons without a project would not have a
main cpp file.

The Drag and Drop option helps to put the widgets
from the ToolBox into the Form very easily and the
Object Explorer, Property Editor/Signal Handler and the
Project Overview Windows help the user in knowing
what elements are present in the project and the functions,
handles, variables, signals and slots.

 4

GUI based NS-2 application in Linux

The Slots are functions which when connected by
some action like for eg. Clicking a Pushbutton can be
executed to perform some action according to the code
written in it.

In this way a simple GUIs can be made. I personally
feel that one should first try to make a GUI on his own
without reading the manual by experimenting so that one
would be familiar about certain things before reading the
manual and which would make it easy for the user to
make the GUI later on.

No readymade examples are present in Qt but the
Designer Manual helps in making one with the code and
how to execute it in the terminal.
GUI building is thus easy in Qt.

5. Future Scope and Application

This Project was made with the prevision of making a
simple user friendly GUI which helps the inexpert users
to learn working with NS-2 and get familiarized with it.
NS-2 is a network simulator software and is less obscure
than other softwares. Hence to make it notable we have
learned how to work on NS-2 and made a GUI.

This GUI made in Qt can be modified more for more
options by the user once the user knows more about
working with Qt. The more people know about NS-2 the
more usage it will have and through this more complex
scripting of NS-2 will start being built and we will see
people coding in it so that more complex real-time
network simulations can be implemented in it.

The future of NS-2 is bright and we might even see
more and more GUIs being built for NS-2 to increase its
popularity among people and hence its usage.

6. Conclusion

The aim of the project was to learn how NS-2 works
and make a GUI for it so that the user finds it easy to
work with it. We have learned how to install Linux and
how to install NS-2 in it. We have learned the scripting
language of NS-2 and how to run the tcl script in NS-2
and do the graphical analysis using the NAM (Network
Animator). We have also made a GUI using Qtopia of
Trolltech in Linux which is quite a user friendly GUI
Builder and have successfully made a GUI for NS-2 so
that the user can simple with the help of some buttons
make an NS-2 script and run it in the NAM. We thus have
implemented a GUI for NS-2 so that any new NS-2 user
can work on NS-2 with ease. Many options have been
kept in the GUI so that the user can modify according to
the requirement of the simulation.

7. References

[01] Sumitabha Das, Unix: concepts and applications, TATA
McGRAW HILL, New Delhi, 2nd Edition, 2001.

[02] http://www.linux.org/info/

[03] http://en.wikipedia.org/wiki/Linux

[04] http://www.isi.edu/nsnam/nam/index.html

[05] http://www.isi.edu/nsnam/ns/tutorial/index.html)

[06] http://cygwin.com/

[07] http://www.isi.edu/nsnam/ns/ns-build.html

[08] http://labs.nec.com.cn/tcpeval/tcpeval-manual.pdf

[09] http://dirt.cs.unc.edu/packmime/#Installation

[10] http://www.isi.edu/nsnam/ns/ns-tutorial/index.html

[11] http://nile.wpi.edu/NS/

[12] http://aplawrence.com/Linux/c_compiling_linux.html

[13] http://www.cs.binghamton.edu/~nael/cs528/proj1.html

[14] http://ftp.gnome.org/pub/GNOME/sources/glade3/3.4/

[15] http://linux.about.com/cs/softofficeutility/a/gui_cli.htm

 5

