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Abstract— Coherent detection requires full Channel
State Information (CSI) at the receiver. But if the channel
is time-varying, it is difficult to have full CSI at the
receiver because of the need to transmit large overheads
and the need for frequent channel estimation at the receiver.
In this paper we use partial CSI and a simple channel
prediction technique to detect data in a time-varying, flat
fading channel modeled by a second order Auto Regressive
process. The first and second order lag of the process is
matched with the Jake’s correlation function. The results
obtained are quite close to the performance of full CSI.

I. INTRODUCTION

Mobile communication systems are expected to pro-
vide high data rates over time-varying fading channels
with little overhead and complexity. Currently used co-
herent detection techniques assume full channel state
information (CSI) is available at the receiver. But in
a time-varying channel, obtaining full CSI is difficult
because of the need to transmit large overheads and
the need for frequent channel estimation. The other
option of non-coherent schemes is accompanied with a
degradation in performance.

Time-varying, wireless channels are usually character-
ized by Jakes model [1], where the channel correlation
function is represented by J0(ωd) where J0(.) is the
zeroth order Bessel function of the first kind and ωd is
the doppler frequency normalized by symbol time.

It is known that the time evolution of such channels
can also be characterized by parametric models like
ARMA [9][10], AR [8], MA [11] etc. Amongst these
three, the AR model has been used more commonly
due to two advantages: firstly, AR model can represent
time-varying channels over a large range of doppler
frequencies, and secondly, it facilitates prediction of
future samples in the time domain. Thus use of AR1
[2] and AR2 [4][5] have been reported in the literature.
Recently [2] considered partial CSI at the receiver by
taking the channel to be AR1. However, the match
between the correlation functions of AR1 and Jakes
model is not good.

In this paper we begin by using the AR2 model
and then use Yule-Walker equations to estimate its
parameters as done in [3]. This is done by matching
the correlation of the first two lags of AR2 with Jakes
correlation. Subsequently, we use this in the context of
data detection in a system where the channel cannot be

assumed to be same even for two neighboring symbols.
Symbols are transmitted in frames of size N + 2. It
is not assumed that full CSI for the whole frame is
available at the receiver. Instead we assume that only
partial CSI, defined by the doppler frequency and the
channel corresponding to only two consecutive symbols
out of the whole frame of N +2 symbols, is known. We
estimate the channel for the remaining N symbols using
this partial CSI and then detect the received symbols
using these estimates. The performance of the scheme
has been compared with the performance corresponding
to full CSI and found to be quite close. We have also
derived closed form expressions for the Bit Error Rate
(BER).

The rest of the paper is organized as follows. Sections
II and III present the system model and the proposed
partial CSI detection method. Section IV presents the
receiver and its performance analysis. Sections V and
VI present results and conclusion respectively.

II. SYSTEM MODEL

Consider a communication link consisting of a single-
antenna transmitter and receiver that operates in a time-
selective and frequency non-selective fading channel. We
consider the reception of the symbols in a frame of
size N + 2. The low pass equivalent complex symbol,
received at the kth time instant is represented as

yk = hkxk + nk k = −1, 0, 1, 2....N (1)

where nk ∼ CN (0, N0), xk is a symbol from BPSK
constellation taking value from {−√Es,

√
Es} and hk ∼

CN (0, 1), which is characterized by AR2 model as,

hk = f1hk−1 + f2hk−2 + wk k = 1, 2....N (2)

where the parameters f1 and f2 are chosen such that
the correlation of the channel for first and second order
lags satisfy the Jakes model. Hence R(1) = J0(ωd)
and R(2) = J0(2ωd), where R(1) = E[hkh

∗
k−1],

R(2) = E[hkh
∗
k−2] and E denotes the expectation

operator. wk ∼ CN (0, σ2)
Multiplying (2) by h∗k−1 and taking the expected value

of both the sides of the resulting equation we get

E[hkh
∗
k−1] = f1E[|hk−1|2] + f2E[hk−2h

∗
k−1] (3)

R(1) = f1R(0) + f2R(1)
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Now multiplying (2) by h∗k−2 and again taking the
expected value of both the sides, we get

E[hkh
∗
k−2] = f1E[hk−1h

∗
k−2] + f2E[|hk−2|2] (4)

R(2) = f1R(1) + f2R(0)

Equations (3) and (4) are well known Yule-Walker
equations [7] and can be expressed in matrix form as

[
R(0) R(1)
R(1) R(0)

] [
f1
f2

]
=
[
R(1)
R(2)

]

Thus f1 and f2 can be found from R(1) and R(2) which
in turn can be found from the doppler frequency.

In the sequel we assume that partial CSI, defined by
doppler frequency ωd and the the channel state for two
consecutive symbols (either in the beginning (preamble)
or in the middle (midamble) of the frame), is known to
the receiver.

III. PROPOSED PARTIAL CSI
A. Preamble

We assume that the AR2 parameters have been deter-
mined from the doppler frequency. Thus (h−1 and h0)
i.e. the channel during the first two symbol durations in
a frame of size (N+2) and the parameters of AR2, (f1,
f2), are known at the receiver. With this information, the
channel can be predicted as

ĥ1 = f1h0 + f2h−1

ĥ2 = f1ĥ1 + f2h0

......

ĥk = f1ĥk−1 + f2ĥk−2

......

ĥN = f1ĥN−1 + f2ĥN−2

B. Midamble
Here we assume the positions of the two known

symbols to be in the middle of the frame. Thus hN
2 −1

and hN
2

are known. In this case, channel estimate ĥk

can be shown as

ĥk = aN
2 −1−khN

2 −1 + bN
2 −1−khN

2
(5)

where k = −1, 0, .., N
2 − 2.

ĥk = ak−N
2
hN

2
+ bk−N

2
hN

2 −1 (6)

where k = N
2 + 1, .., N .

As can be seen from (5) and (6), compared to the case
of the preamble, in this case the maximum distance of
a time instant for which the channel is not known to the
receiver and an instant for which it is known is halved.

IV. RECEIVER AND PERFORMANCE ANALYSIS

Using the channel estimate ĥk, we consider sub-
optimum symbol by symbol detection, instead of the
complex Maximum Likelihood Sequence Estimation
(MLSE).

A. Preamble

The decision variable vk, at the kth symbol position,
for received symbol yk can be obtained [6] as

vk = Re

{
ĥ∗k
|ĥk|

yk

}
(7)

where k = 1, 2, .., N . Re{.} and ∗ denote real part and
conjugate respectively. To analyze the performance we
need to know the variance σ2 of wk in (2), which can
be computed as follows.
Multiplying (2) by its conjugate h∗k and taking the
expected value of both the sides of the resulting equation,
we get

E[|hk|2] = f2
1E[|hk−1|2] + f2

2E[|hk−2|2] + E[|wk|2]
+ f1f2E[h∗k−1hk−2] + f1f2E[hk−1h

∗
k−2] (8)

Now using the fact that R(0) = E[|hk|2] = 1 and
E[|wk|2] = σ2, we can write (8) as

σ2 = 1− f1R(1)− f2R(2) (9)

Now we can represent ĥk in terms of h0 and h−1 as
under

ĥk = akh0 + bkh−1 (10)

where

a1 = f1 a2 = f1a1 + f2

b1 = f2 b2 = f1b1

ak = f1ak−1 + f2ak−2

bk = f1bk−1 + f2bk−2 k = 3, 4...N (11)

Using the proposed channel estimate ĥk as in (10),
the channel hk in (2) can be represented as

hk = ĥk + δhk (12)

where

δhk = ak−1w1 + ak−2w2 + ...+ wk (13)

is the estimation error at the kth symbol position and
δhk ∼ CN (0, σ2

k) where

σ2
k =

(
1 +

k−1∑

i=1

a2
i

)
σ2 (14)

for k = 1, 2, .., N .
Now expanding (7) we get

vk = Re

{
|ĥk|xk + δhkxk + nk

ĥk

|ĥk|

}
(15)

where Conditioned on ĥkxk, vk is a Gaussian variable
with mean |ĥk|xk and variance σ2

kEs +N0.
From (15), the instantaneous SNR (γk) for the kth

symbol position is

γk =
|ĥk|2Es

σ2
kEs +N0
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Fig. 1. BER performance of the system with partial CSI (preamble),
full CSI and one ’symbol’ for fdTs = 0.01

The average SNR (Γk), for the kth symbol position is

Γk =
(1− σ2

k)Es

σ2
kEs +N0

(16)

In case of full CSI, σ2
k = 0 and hence Γk is Es/N0

which represents coherent detection. Finally, BER at the
kth symbol position with average SNR Γk is given by
[6],

Pe(k) = 0.5

(
1−

√
Γk

1 + Γk

)
(17)

The average BER Pe for the whole frame is given by

Pe,pre =
1
N

N∑

k=1

Pe(k) (18)

B. Midamble

Similarly for the midamble, the average BER Pe for
the whole frame N is given by

Pe,mid =
2
N

N/2∑

k=1

Pe(k) (19)

V. RESULTS

Simulations were carried out for different channel
conditions (fdTs) and different frame sizes (N ) and
found to be closely matching with (18) and (19). In this
section we show the BER performance of the receiver
using the proposed partial CSI and full CSI for both
the preamble and the midamble cases using analytical
expressions.

Fig. 1 presents the performance of the receiver for
fdTs = 0.01 and N = 40 for (1) full CSI, (2) partial
CSI and (3) ’one symbol’ (by simulations) cases. In
the ’one symbol’ case, the receiver knows the channel

Fig. 2. BER performance of the system with partial CSI using
preamble and midamble with N = 40 for fdTs = 0.01

Fig. 3. BER performance of the system with partial CSI (midamble)
for fdTs = 0.01

corresponding to only the first symbol and it detects all
the remaining symbols in the frame with this known
state assuming that the channel remains constant through
out the frame. We also show the performance of ’one
symbol’ case for half the frame size i.e. N/2 = 20. It
can be seen that compared to the full CSI and partial
CSI cases, the performance of this receiver is severely
degraded even after the frame size has been halved.

Fig. 2 shows the performance of the receiver with
partial CSI considering the two known channel symbols
as preamble and midamble for fdTs = 0.01 and N = 40.
For the midamble the performance is better and also
close to full CSI.

Fig. 3 shows the performance of the receiver for
fdTs = 0.01 and N = 50, 60 and 70. Performance
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Fig. 4. BER performance of the system with partial CSI (midamble)
for N = 40

degrades with increasing the value of N because channel
estimation error (σ2

k) will increase as we increase the
frame size. To achieve the BER of 10−2 with full CSI,
the required average SNR is 13.85 dB. Let us consider
the required average SNR (X dB) and excess average
SNR (δX = X − 13.85 dB) to recover the loss in
performance for the same BER using the partial CSI.
For N = 50 the values of X = 14.1 and δX = 0.25
dB, which shows that the excess SNR of only 0.25 dB
is required.

Fig. 4 shows that the performance of the receiver
degrades with increasing the value of fdTs from 0.01
to 0.014 when N = 40. Because compared to slow
varying channel, fast varying channel introduces larger
error (due to larger σ2 in (14)) in the predicted value at
the same symbol position in the frame. In other words,
for lower value of doppler, larger increase in frame size
is possible without much degradation in performance.
For fdTs = 0.01, the values of X = 14 and δX = 0.15
dB, but for fdTs = 0.012, the values of X = 14.15 and
δX = 0.3 dB. It indicates that penalty of SNR is less in
case of slow varying channel.

VI. CONCLUSION

We have used a channel prediction technique along
with partial CSI to detect data in a time varying channel
modeled by AR2 process. The parameters of the AR2
process are related to the Jakes correlation function. The
predicted values of the channel are used as estimates
for detecting the received symbols. The performance of
the obtained receiver is analyzed for various values of
doppler and frame sizes and found to be quite close to
that of full CSI.
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