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Abstract 
 

Computer manipulation of images is generally defined as Digital Image 

Processing (DIP). DIP is employed in variety of applications, including 

video surveillance, target recognition, and image enhancement. These are 

usually implemented in software but may also be implemented in special 

purpose hardware to meet timing constrains. 

 

FPGAs are often used as implementation platforms for real-time image 

processing applications because their structure is able to exploit spatial 

and temporal parallelism. Such parallelization is subject to the processing 

mode and hardware constraints of the system. These constraints can force 

the designer to reformulate the algorithm. This thesis represents some 

general techniques for dealing with the various constraints and efficient 

mappings for various image processing algorithms on parallel hardware.   
 
In this work the Fourier transform operation on image has been proposed 

using hybrid architecture of DSP and FPGA to achieve high throughput and 

to reduce processing time for the same. Hybrid architecture has been 

developed using reconfigurable architecture and hardware is modeled 

using a C-like hardware language called Handle-C. The proposed 

architecture is capable of producing one complex multiplication (Fixed 

point and Floating point) on every clock cycle. The hardware modeled was 

implemented using the DK4 Design Suite on the Xilinx Spartan 1500L 

FPGA. Another part of work focuses on development of Stereo Image 

Matching Algorithm named as Hierarchical Image Matching on the Spartan 

Xilinx Spartan 4000L FPGA. This includes implementation of Image 

Correlation block and Square root block using CORDIC algorithm. The 

algorithm was tested on standard image processing benchmarks and 

significances of the result are discussed. 
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1.                                                                         INTRODUCTION 

 

1.1. General 

Image processing is, in general, characterized by area of very high 

computational demands. Although it can be handled by “standard” 

computers, such solution is not viable for an embedded system, where 

dimensions of the computer system, power consumption or data 

throughput are of concern. For these reasons, specialized hardware 

solutions based on a digital signal processor (DSP) or a Field 

Programmable Gate Array (FPGA) are usually used in embedded systems.  

As increasingly complex algorithms and applications are being developed, 

the performance demands of these algorithms increasing exponentially. 

For cost-sensitive, high-volume applications like stereo image processing 

and PC graphics cards, this has driven the development of extremely 

specialized Application Specific Signal Processors (ASSPs). However, for 

many other applications, the only options for implementing high-

performance digital signal processing have been general-purpose Digital 

Signal Processors (DSPs) and, more recently, FPGAs. 

 

DSPs have typically been used to implement many of these applications. 

Although DSPs are programmable through software, the DSPs’ hardware 

architecture is not flexible. Therefore, DSPs are limited by fixed hardware 

architecture such as bus performance bottlenecks, a fixed number of 

Multiply Accumulate (MAC) blocks, fixed memory, fixed hardware 

accelerator blocks and fixed data widths. The DSPs’ fixed hardware 

architecture is not suitable for many applications that require customized 

DSP function implementations. Embedded DSP processors vary in their 

customization for the specific problem at hand. These processor types will 

range from general purpose processors that handle a wide variety of 

applications, to application-specific processors like DSPs, which are 

specific to a particular application class such as signal processing, to 

single purpose processors, which are customized to a very specific 

function. A single purpose processor is a digital circuit designed and 

implemented to execute a very precise program. In a digital camera, for 
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example, a single purpose processor is often used to implement a JPEG 

codec, which can then be used to perform compression and 

decompression on video frames.  

 

The heart of any digital signal processing architecture is the Multiply-and-

Accumulate (MAC) unit. Most signal processing applications utilize a great 

deal of multiplication: The MAC unit of a DSP accelerates this type of 

calculation by performing the multiplication of two numbers and then 

adding the result to all of the previous multiplications in what is called an 

"accumulator". Another key enabling technology of DSPs is the ability to 

process several operations at the same time. Known as parallel or 

concurrent processing, the concept is that if you can process several 

operations simultaneously, you can finish a task that much faster. One 

way that DSPs can execute four operations at the same time is to use 

what is known as a Very Long Instruction Word or VLIW architecture. A 

VLIW is a single instruction that actually represent several operations. In 

the case of the C64x DSP architecture, the VLIW has eight fields, four of 

which tell the four MAC units what to do next. 

 

The architecture of FPGA, on the other hand, is designed with fine-grain 

parallelism, which makes it well suited for massively parallel algorithms. 

The basic characteristics  of FPGA are relatively small capacity of the on-

chip memory and relatively narrow throughput of memory interfaces, lack 

of wide-word processing units, and high cost of performing complex 

numerical operations, such as division, square root, logarithmic, 

exponential, and goniometrical functions (in smaller devices, these 

operations cannot be implemented at all). FPGAs provide a reconfigurable 

solution for implementing traditional DSP applications and offer higher 

DSP throughput and raw data processing power than DSPs. Since FPGAs 

are reconfigured in hardware, FPGAs offer complete hardware 

customization while implementing various DSP applications. Therefore, 

DSP systems implemented in FPGAs can have customized architecture, 

customized bus structure, and customized memory, customized hardware 

accelerator blocks and a variable number of MAC blocks. 

 2
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A major advantage of FPGAs for many system architectures is the 

availability of package vertical migration which enables a single board 

design to support flexible processing performance and cost without 

respinning the board. System architects use this capability to create 

products with various price points and performance capabilities without 

significantly affecting development costs or inventory. 

 

In Image processing, most of the operations on an image are simple and 

very repetitive – best implemented in an FPGA. However, an imaging 

pipeline is often used to identify "blobs" or "Regions of Interest" in an 

object being inspected. These blobs can be of varying sizes, and 

subsequent processing tends to be more complex. The algorithms used 

are often adaptive, depending on what the blob turns out to be… so a 

DSP-based approach may be better for the back end of the imaging 

pipeline. 

FPGA devices provide a reconfigurable DSP solution for various DSP 

applications. FPGA devices incorporate a variety of embedded features 

such as embedded processors, DSP blocks, and memory blocks. These 

device features provide very high DSP capability in FPGAs compared to 

DSP processors. Using FPGAs, DSP designers can customize their 

hardware for optimal implementation of their applications.  Using 

embedded processors such as the Nios embedded processor; FPGAs also 

offer a software-based design flow similar to the traditional DSP software 

design flow. Using this design flow, a DSP designer can implement a 

complete DSP system in an FPGA and thereby develop a cost-effective, 

high-performance DSP system. 

 

1.2. Motivation 

Image processing is a one of the fast developing research area of 

computer vision. Faster image processing is very essential in current 

scenario for work automation .This work is useful in developing the vision 

using the computerized analysis , object detection and classification of the 

images captured by the sensors for better interpretation and analysis. 

When it comes to  processing the digital images of high resolution in order 

of 4Kx4K, 8Kx8K and higher then this ,normal workstations  can able to 

 3



Chapter 1                                                                                                                                Introduction 

deliver the output but by taking the more computational resources in 

terms  of memory and time to  generate the output (or with decreased 

performance). Space agencies use the special purpose satellites for the 

earth surveillance which results the high resolution satellite images. 

Processing of these satellite images and video takes more time in 

processing .Sometimes it is possible that the real time faster processing is 

required and that work is generally not supported by the workstations. To 

resolve this we require special purpose processors like DSPs or ASPs 

specifically designed for these types of applications.  

 

As basic image processing algorithms focus on the image enhancement, 

correction, object detection and feature detection like tasks. While the 

specific applications like stereo imaging, medical imaging like applications 

needs special treatment than that of the basic tasks. Developing of library 

on the customized DSP and FPGA would require more attention than just 

implementation. FPGAs are use in such applications where the 

requirement of simple mathematical processing can be done very fast and 

in parallel. This is possible using multiple parallel processing units 

available for processing if higher data-rate I/Os are available. So FPGAs 

can work as ASPs as well as DSPs for high throughput achievement. 

Stereo imaging library requires large amount of computation power which 

is not available at the workstation end and also these workstations are not 

efficient and capable handling the resource requirement for these 

applications. These applications require special attention for real time 

execution in timely manner so that the constant high throughput can be 

achieved. 

 

This thesis aims at the proposing the solution for faster throughput by the 

means of using the DSP and FPGA’s hybrid architecture. To achieve the 

mentioned goal would require the development of Library of Image 

processing functions for DSP and FPGA designs developed as special 

purpose processors. 

 

1.3. Scope of Work 

As the title suggests the goal of this dissertation, work carried out in this 

 4
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research is useful for the organizations which require the high 

computation power for processing the high resolution images and videos. 

 

The work of dissertation is analysis, design and implementation of the 

Basic Image processing algorithms on the DSP and FPGA architecture. 

These includes the testing of the various image processing algorithms on 

the DSPs TI c64xx (Texas Instruments), TS-201(Analog Devices), and 

Pentium-4(on SimpleScalar 3.0 Simulator Toolkit) and comparing the 

performance of each Processor .This includes selection of right DSP 

processors and development of algorithms by partitioning the parallel 

computation tasks between the FPGA (Spartan-3) and DSP Processor for 

increased throughput. 

 

In this thesis, development of the Hierarchical Image matching algorithm 

is done on Handel-C language and verification of results of FPGA is done 

on the DK Design Suite Handel-C simulator. Another algorithm FFT 

implemented on DSP-FPGA by implementation of Fixed/Floating Point 

complex Multiplication on FPGA. This work is done based on task division 

of various operations between DSP and FPGA for checking the throughputs 

for each division.  

 

1.4. Outline of Thesis  

This thesis is organized as follows: 

 Chapter 2   provides basics of FPGA architecture, Building 

blocks of FPGA, Working of FPGAs, EDA tools available for 

FPGAS programming and basics stereo imaging algorithms.  

 

 Chapter 3 provides information about DFT and FFT 

algorithms .This includes butterfly algorithms for DIT and DIF 

implementation of FFT. This chapter also discusses the fixed 

point and floating point data types on FPGAs and 

implementations of  arithmetic functions of both on FPGAs  

 

 Chapter 4 provides in brief details of Hierarchical stereo 

image matching algorithm, image pyramid generation for 

 5
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stereo image pair, implementation of matching algorithm by 

preprocessing ,the matching by correlation function by 

windowing method, and finding conjugate point pair from 

image pair.  This also includes development of Square root 

function and correlation function in FPGA using Handel-C and 

CORDIC algorithm. 

 

 Chapter 5 provides detailed results of FPGA performance 

data and analysis of the results obtained. 

 

 Chapter 6 concludes this thesis with a summary, and 

provides possible directions for relevant future research.  
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2.                                                 LITERATURE SURVEY 

 

2.1. INTRODUCTION 

Programmable logic is loosely defined as a device with configurable logic 

and Flip-flops linked together with programmable interconnect. Memory 

cells control and define the function that the logic performs and how the 

various logic functions are interconnected. Though various devices use 

different architectures, all are based on this fundamental idea. 

 

There are few major programmable logic architecture available today. 

Each of the architecture typically has vendor-specific sub-variants within 

each type [10]. The major types include: 

• Simple Programmable Logic Devices (SPLDs), 

• Complex Programmable Logic Devices (CPLDs), and 

• Field Programmable Gate Arrays (FPGAs) 

• Field Programmable Inter-Connect (FPICs) 

 

2.2. FPGA - Field Programmable Gate Array 

An FPGA consists of a matrix of logic blocks that are connected by a 

switching network. Both the logic blocks and the switching network are 

reprogrammable allowing application specific hardware to be constructed, 

while at the same time maintaining the ability to change the functionality 

of the system with ease. As such, an FPGA offers a compromise between 

the flexibility of general purpose processors and the hardware-based 

speed of ASICs. Performance gains are obtained by bypassing the fetch-

decode-execute overhead of general purpose processors and by exploiting 

the inherent parallelism of digital hardware. 

 

FPGA is a silicon chip with unconnected logic gates. It is an integrated 

circuit that contains many (64 to over 10,000) identical logic cells that can 

be viewed as standard components. The individual cells are 

interconnected by a matrix of wires and programmable switches. Field 

Programmable means that the FPGA's function is defined by a user's 

program rather than by the manufacturer of the device. Depending on the 
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particular device, the program is either 'burned' in permanently or semi-

permanently as part of a board assembly process, or is loaded from an 

external memory each time the device is powered up [17]. 

 

 

Figure 2.1: Basic FPGA Architecture [17] 

 

The FPGA has three major configurable elements:  

1. configurable logic blocks(CLBs),  

2. input/output blocks, 

3. Interconnects.  

The CLBs provide the functional elements for constructing user's logic. The 

IOBs provide the interface between the package pins and internal signal 

lines. The programmable interconnect resources provide routing paths to 

connect the inputs and outputs of the CLBs and IOBs onto the appropriate 

networks. Using these three basic components FPGA can implement any 

functions. These basic components are building blocks for FPGA which 

provides flexibility of implementation. 

 

As shown in Figure 2.2, each CLB contains a logic element which is 

implemented as a lookup table. This logic element operates on four one-

bit inputs and outputs single data bit. Using CLB any Boolean function of 

 8
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four inputs can be performed. These include 64K functions available 

functions using FPGA. 

 

 

Figure 2.2: Basic CLB Architecture [17] 

 

The Field-Programmable Gate Arrays (FPGAs) provide the benefits of 

custom Complementary Metal-Oxide Semiconductor (CMOS) Very Large 

Scale Integrated (VLSI), while avoiding the initial cost, time delay, and 

inherent risk of a conventional masked gate array. The FPGAs are 

customized by loading configuration data into the internal memory cells. 

FPGAs are becoming a critical part of every system design. There are 

many different FPGAs with different architectures but all of them have the 

same common feature: that the layout of unit is repeated in matrix form. 

In this case, the unit is consisting of PLDs, logic gates, RAM, and many 

other specific components. There are four main classes of FPGAs currently 

commercially available: symmetrical array, row-based, hierarchical PLD, 

and collection-of-gates. 

 

 

 9
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Figure 2.3: Classes of FPGA Architecture [17] 

 

An FPGA has a large number of these cells available to use as building 

blocks in complex digital circuits. Custom hardware has never been so 

easy to develop. Like microprocessors, RAM based FPGAs can be infinitely 

reprogrammed in-circuit in only a fraction of a second. Design revisions, 

even for a fielded product, can be implemented quickly and painlessly. 

Taking advantage of reconfiguration can also reduce hardware. Logic 

networks realized in FPGA are slower than those realized in full custom 

design, but are much faster by several orders than simulation of logic 

functions by software. Even application programmers can be run on FPGAs 

and performed much faster than on general purpose computers in many 

cases. With FPGAs, debugging or prototyping of new design can be done 

as easily and quickly as software. Availability of reprogrammable 

technologies has enabled the configuration of flexible system allowing 

runtime configuration of system hardware and software. The design 

methodology combines a C-based software design targeting FPGAs as a 

 10



Chapter 2                                                                                                                        Literature Survey 

device and rapid FPGA hardware design flow based on Handel-C, a C-like 

programmable language [16].  

 

2.3. FPGA Design Options 

In order to create an FPGA design, a designer has several options for 

algorithm implementation. While gate-level design can result in optimized 

designs, the learning curve is considered prohibitory for most engineers, 

and the knowledge is not portable across FPGA architectures. The 

following text discusses several high-level hardware design languages 

(HDLs) in which FPGA algorithms may be designed [19].  

 

2.3.1. Verilog HDL 

Originally intended as a simulation language, Verilog HDL 

represents a formerly proprietary hardware design language. 

Currently Verilog can be used for synthesis of hardware designs and 

is supported in a wide variety of software tools. It is similar to the 

other HDLs, but its adoption rate is decreasing in favor of the more 

open standard of VHDL. Still, many designers favor Verilog over 

VHDL for hardware design, and some design departments use only 

Verilog. Therefore, as a hardware designer, it is important to at 

least be aware of Verilog [33]. 

 

2.3.2. AHDL-a Hardware Design Language 

Altera Hardware Design Language (AHDL) is proprietary, and is only 

supported in Altera-specific development tools. This may be seen as 

a drawback, but since AHDL is proprietary, its use can also result in 

more efficient hardware design, when code portability is not an 

issue. In typical design environments, different FPGA architectures 

are used for different designs, meaning that time spent learning 

AHDL may be wasted if a Xilinx FPGA is later chosen [30].  

 

2.3.3. VHSIC Hardware Design Language 

In recent years, VHSIC (Very High Speed Integrated Circuit) 

Hardware Design Language (VHDL) has become a sort of industry 

standard for high-level hardware design. Since it is an open IEEE 

 11
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standard, it is supported by a large variety of design tools and is 

quite interchangeable (when used generically) between different 

vendors’ tools. It also supports inclusion of technology-specific 

modules for most efficient synthesis to FPGAs. 

 

2.3.4. Handel-C 

Handel-C is a C-based language with true parallelism and priority-

based channel communication, which can be compiled to hardware. 

Handel-C is a programming language developed by the Hardware 

Compilation Group at Oxford University Computing Laboratory, and 

now sold by Celoxica Ltd. It is ANSI-C based, with extensions based 

upon Concurrent Sequential Programs (CSP), such as parallelism and 

channel-based communication. Handel-C compiles directly to low-level 

hardware such as field-programmable grid arrays (FPGAs). To support 

such hardware, Handel-C features several extensions for dealing with 

data types of arbitrary widths [32]. 

 

2.3.5. Catapult-C 

The Catapult C Synthesis tool from Mentor Graphics, targets 

designers developing application-specific integrated circuits (ASICs) 

or field-programmable gate arrays (FPGAs) for next-generation, 

compute-intensive applications such as wireless communication, 

satellite communication and video/image processing. By uniting 

system-level and hardware design, the Catapult C Synthesis tool 

combines with the Mentor Graphics® ModelSim® simulator to 

create the central foundation for a C-based design flow [31]. 

 

2.3.6. SystemCTM 

SystemC™ is a language built in standard C++ by extending the 

language with the use of class libraries. SystemC addresses the 

need for a system design and verification language that spans 

hardware and software. The language is particularly suited to model 

system's partitioning, to evaluate and verify the assignment of 

blocks to either hardware or software implementations, and to 
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architect and measure the interactions between and among 

functional blocks. Leading companies in the intellectual property 

(IP), electronic design automation (EDA), semiconductor, electronic 

systems, and embedded software industries currently use SystemC 

for architectural exploration, to deliver high-performance hardware 

blocks at various levels of abstraction and to develop virtual 

platforms for hardware/software co-design [28]. 

 

2.4. Celoxica’s Handel-C 

A custom edition of Celoxica's market leading DK Design Suite is included 

which enables designers to implement complex C algorithms directly into 

optimized FPGA hardware implementations. This capability removes the 

burden and time consuming effort of manually rewriting algorithms into 

Hardware Description Languages and enables multiple design iterations 

supported by very fast system simulation and verification [4]. 

Handel-C Language 

Handel-C is a truly innovative language for implementing algorithms in 

hardware, architectural design space exploration, and hardware/software 

co-design. Based on ISO/ANSI-C, it has extensions required for hardware 

development. Therefore programs designed for Handel-C, are inherently 

sequential. It includes flexible data widths, parallel processing and 

communications between parallel elements. The language is designed 

around a simple timing model that makes it very accessible to system 

architects and software engineers.  

Sequential Expressions Parallel Expressions 

 
{ 
..... 
a = 1; 
b = 2; 
..... 
} 

par  
{ 
... ... 
a = 1; 
b = 2; 
... ... 

} 

This executes the two 
statements, one after the other 
sequentially 

This executes both statements 
in parallel 

Table 2.1: Comparison between Sequential and Parallel execution  
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Handel-C provides special constructs, which enable expressions to be 

evaluated in parallel. It also provides the ability to specify the width of a 

data variable.Handel-C also enables the use of user defined variable sizes. 

E.g.:- 

int n x; 

This defines a variable x of type int and size of n bits. 

When expressions are evaluated in parallel, communication between the 

parallel branches becomes a problem due to synchronization. Handel-C 

provides a design construct known as a channel to get around this. 

Channel provides a link between branches executing in parallel. One 

parallel branch outputs data onto channel and other branch reads data 

from the channel. Channels can be constructed with or without FIFO 

facility.  

Statement 

Parallel  
Block 

Channel 
Communication 

 

Figure 2.4 Parallel Programming Flow in Handel-C 
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Similarities with ANSI C 

Handel-C has many similarities with C. At the same time Handel-C has 

many features which are not found in C and vice versa. Handel-C doesn't 

support a large variety of data types as C does, the only data types 

supported by Handel-C are Integers and Characters. But unlike C, the 

users can specify the width of Integers. This is possible as the 

implementation is directly in Hardware. 

Handel-C ANSI-C Both 

 double  

 float  

chan enum  

ram  register int 

rom static unsigned 

chain extern char 

chanout struct long 

undefined volatile short 

interface void  

 const  

 union  

Table 2.2: Data types of Handel-C  and ANSI C 

 

Design Procedure 

Handel-C provides a simulator to test the program implementation before 

implementing it in Hardware. The simulator can step through each cycle of 

execution, and display the values of the variables after each cycle.  

Once the designer is satisfied with his/her design, it can be compiled in to 

hardware. When compiling in to hardware the designer can target a 

specific hardware platform. Handel-C compiler currently produces net lists 

for Xilinx and Altera devices. Design procedure is given in Figure 2.5. 

 

Comparison between Handel-C and VHDL 

Prototyping new concepts or building first generation electronic devices is 

time consuming and costly, and in some cases high risk. Most algorithms 
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are prototyped in C and then translated into VHDL or Verilog—a process 

that introduces risks and errors. 

 

 

Are simulation 
results are correct? 

Write Algorithm 
in Handel-C

Compile program for 
Simulator

Use Handel-C compiler and 
target specific Hardware 

Debug and Modify 
program 

Add necessary interface for 
Hardware

Use FPGA tools for Place & 
Route the netlist

Program FPGA 

Figure 2.5:  FPGA Design Flow using Handel-C 

Handel-C avoids this problem because it is a language based on C and 

designed to describe algorithms, which are subsequently compiled down 

to hardware. Changes to the Handel-C code produce predictable changes 

in the resulting hardware. By targeting FPGAs directly, Handel-C provides 

a fast route for hardware prototyping and development of first generation 

electronic products. Functions can be compiled into libraries and used in 

other projects, with a simple declaration providing the interface to other 

code. Cores written in Handel-C can be exported as EDIF or VHDL “black 

boxes” for design reuse. 

HDLs have evolved from an exclusively parallel world for describing the 

hardware rather than describing the desired function. What is needed is a 

language the raises the level of abstraction sufficiently to enable the 

designer to describe in the briefest possible way the desired function 

rather than its underlying structural detail. While Register Transfer Level 

(RTL) subsets of HDLs, such as VHDL and Verilog, do provide a functional 
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interpretation of the hardware description to enable the generation of 

hardware structure at compile time, their parallel nature requires the 

design engineer to add extra logic for sequential execution. By introducing 

a language that is similar to ANSI-C to the hardware design process, 

designers gain a language that is sequential by default with a high-level 

flow that is geared for programming functionality. But hardware is parallel 

and this needs to be accounted for if a software-influenced hardware 

design methodology based entirely on C is going to succeed at the RTL 

level [16]. 

 

Features Benefits 

High level language solution Allows rapid development of multi-

hip 
million 
gate FPGA designs and system-on-c
solutions 

Based on ISO/ANSI-C 
 

Allows application engineers to migrate 
concepts directly to hardware, for rapid 
prototyping and first generation 
electronics 
products 

Well defined timing l I/O 
e  

Fast externa
Simplifies pipelin

Explicit parallelism 
sessment  

‘par’ statement 
Simultaneous as

Supports complex C functionality 
ns including structures ,pointers and 

functions(shared and inline) 

Shallow learning curve for software 
engineers, allows rapid implementatio
of 
very complex, modular systems 

Includes extended operators for bit 

nt) 

manipulation, and high level 
mathematical 
macros(including floating poi

Allows rapid translation of DSP 
Algorithms to efficient hardware 
 

No state machines to design, control 
 

implifies design of complex sequential 
flow comes from C statements like if,
case and while 

S
control flows, intuitive to software 
engineers 

Simple and consistent syntax extensions 
for specific hardware features like 
RAMs / ROMs, signals and external pin 
connections 

Enables efficient use of available 
hardware 
without cumbersome syntax 

Automatically deals with clocks, clock 
enables, and data transfers across clock 
domain boundaries 

Abstracts away much of the complexity 
of hardware design 

Table 2.3: Handel-C features and benefits 
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.5. Celoxica DK4 Design Suite 

ique C direct-to-hardware solution 

4 design suite provides in-depth features normally 

 software compilation in that 

redefined Hardware Libraries 

standard libraries of ANSI-C and other 

2

The Celoxica DK4 design suite is a un

that enables application specialists to migrate concepts directly to 

hardware without requiring the generation, simulation, or synthesis of 

hardware description languages (HDLs). The DK4 design suite focuses on 

the design, validation, iterative refinement and implementation of 

complex algorithms in hardware. It includes built-in design entry, 

simulation, and synthesis, driven directly by Handel-C, a programming 

language based on ISO/ANSI-C. The output of the compiler is either 

architecture optimized EDIF netlist appropriate for FPGAs, or RTL VHDL for 

existing tool suites. 

The debugger of DK

found only in software development. These include breakpoints, single 

stepping, variable watches, and the ability to follow parallel threads of 

execution. The hardware designer can step through the design just like a 

software design system using this approach. Co-simulation and 

verification facilities are built into the tool-chain, facilitating co-design with 

instruction set simulators, VHDL simulators such as ModelSim. A key 

benefit of this is that hardware/software partitioning decisions can be 

changed at any stage in the design process. 

Synthesis in this design system correlates to

it is very fast; software designers are accustomed to compiling changes to 

their designs very quickly and testing the results. This enables them to 

take many turns, make smaller changes and quickly recompile. The speed 

of Celoxica’s design system brings this benefit to hardware design as well 

[16].  

 

P

Predefined libraries much like the 

software environments to hardware design create opportunities for 

simplifying the development of new functionality as well as encouraging 

design reuse. Handle-C has capabilities for accessing internal and external 

memory as well as registers. Via libraries of predefined functions, common 

APIs shield users from low level interfaces to ease the integration of 
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FPGAs to physical resources including both peripherals and processors – 

the latter enabling hardware/software co design. It is an approach that 

can mean significant time savings, giving the designer more time to 

concentrate on core functionality. 

 

The Benefits of Using Handel-C 

SI C constructs, easy porting between 

 
 

Figure 2.6:  System Design Partitioning between Hardware & Software 
 

 Computing applications, part of the Design is implemented in 

possible for the same 

.6. Image Processing Algorithms 

s exists in two major forms: 

Handel-C supports a large set of AN

the two languages is possible. 

  

Overall Design 

Software Section 
Implemented in High Level 

Hardware Section 
Implemented in Handel-C 

In Custom

Hardware while part of it is implemented in software .Since Handel-C is 

itself very similar to an imperative language, it makes the task of dividing 

the original design into a Hardware section and a Software section that 

much easier. The imperative nature of Handel-C also makes it easier to 

debug and upgrade the hardware design. This means that the Hardware 

component can be easily modified to take in to account modifications 

made to the Software component and vice versa.  

Due to Handel-Cs high level nature it makes it 

person to do both the Hardware and Software implementation. This 

greatly reduces the development cost as you do not need a two people to 

handle the Hardware and Software design separately. 

 

2

Parallelism in image processing algorithm

spatial parallelism and temporal parallelism. FPGA implementations have 

the potential to be parallel using a mixture of these two forms. For 
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example, in order to exploit both forms the FPGA could be configured to 

partition the image and distribute the resulting sections to multiple 

pipelines all of which could process data concurrently. In practice, such 

parallelization is subject to the processing mode and hardware constraints 

of the system. This in turn forces the designer to deal with hardware 

issues such as concurrency, pipelining and priming, which many image 

processing experts are unfamiliar with [15]. 

Constraints 

1. Timing Constraint 

tively easy optimization to perform, since it does 

 

. Bandwidth Constraint 

ounts of on-chip RAM (Xilinx calls this 

3. 

s due to the finite number of available 

Pipelining is a rela

not require that the algorithm be modified. Given enough resources, 

any desired throughput can be achieved by pipelining, at the 

expense of added latency. A number of higher-level languages 

already offer automatic pipelining capabilities.  

2

FPGAs have very limited am

BlockRAM). The logic blocks themselves can be configured to act 

like RAM (termed distributed RAM) but this is usually an inefficient 

use of the logic blocks. Typically some sort of off-chip memory is 

used but this only allows a single access to the frame buffer per 

clock cycle, which can be a problem for the many operations that 

require simultaneous access to more than one pixel from the input 

image. This does not allow simultaneous access to elements /pixels 

in one clock cycle like Convolution or interpolation operation 

Resource Constraint 

Resource contention arise

resources in the system such as local and off-chip RAM or other 

function blocks implemented on the FPGA. If there are a number of 

concurrent processes that need access to a particular resource in a 

given clock cycle then some sort of scheduling must be performed. 

The worst case involves redesigning the underlying algorithm. Care 

must also be taken to ensure that concurrent processes avoid 

writing to the same register during a given clock cycle. Pipelining 

results in an increase in logic block usage. This is caused by the 

 20



Chapter 2                                                                                                                        Literature Survey 

need to construct pipeline stages and registers rather than being 

able to reuse the small number of sequential computing elements 

(ALU and registers), as can be done with offline processing. Flip- 

flops introduced by pipelining typically incur a minimum of 

additional area on an FPGA, as they are mapped onto unused flip 

flops within logic blocks that are already used for implementing 

other combinatorial logic in the design. 

 

Image Processing Operations 

are a class of transformation operations where 

2. 

 low-level operations are local filters. 

1. Point Operations 

Point operations 

each output pixel’s value depends only upon the value of the 

corresponding input pixel. The mapping of point operations to 

hardware can be achieved by simply passing the image though a 

hardware function block, that is designed to perform the required 

point operation. For more complex functions LUTs can be used. 

Window based Operations 

A more complex class of

Conceptually, each pixel in the output image is produced by sliding 

an N×M window over the input image and computing an operation 

according to the input pixels under the window and the chosen 

window operator. The result is a pixel value that is assigned to the 

centre of the window in the output image, as shown below in Figure 

2.7 [15]. 

 

Figure 2.7:  Conceptual example of window filtering [15]  
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For proc h is to store 

 

3. Global Processing Operations 

are often more difficult to implement 

Using PGAs for image processing applications presents system designers 

essing purposes, the straightforward approac

the entire input image into a frame buffer, accessing the 

neighborhood pixels and applying the function as needed to 

produce the output image. If real-time processing of the video 

stream is required N×M pixel values are needed to perform the 

calculations each time the window is moved and each pixel in the 

image is read up to N×M times. Memory bandwidth constraints 

make obtaining all these pixels each clock cycle impossible unless 

some form of local caching is performed. Input data from the 

previous N-1 rows can be cached using a shift register (or circular 

memory buffer) for when the window is scanned along subsequent 

lines. This leads to the block diagram shown below in Figure 2.8. 

Instead of sliding the window across the image, the above 

implementation now feeds the image through the window. 

Intermediate level operations 

on FPGAs as they convert pixel data to higher-level representations 

such as chain codes or regions of interest. These algorithms often 

require random access to memory that cannot easily be achieved in 

stream processing mode. The algorithm must be rewritten without 

the requirement of random access to memory using either single or 

multiple passes through the image. Chain coding is an example of 

an algorithm for which this must be performed. For example, 

finding chain code of contours in an image.  

 

F

with some interesting problems. The analysis and manipulation of video 

images is inherently a high-bandwidth process, while software simulations 

do not always provide engineers with enough information to establish the 

performance of their algorithms because they are not in real time. For this 

reason, there is a growing demand for FPGA hardware prototyping 

systems targeted specifically at the requirements of image processing 

engineers – development platforms that provide the real-time I/O and 
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memory interface capabilities necessary to prototype today’s most 

demanding signal processing applications. 

 

Figure 2.8:  Block diagram for hardware implementation of window filtering [15] 

 

2.7. FPGAs for Image Processing Applications 

Required Elements 

When considering the design of an FPGA platform for image processing 

algorithm development, it is useful to review the principal elements that 

are common to the most popular image analysis techniques, and what 

hardware resources are needed to support these elements [11] [12].  

1. High-Speed I/O 

Getting real-time data in and out of an image processor is obviously 

critical to the performance of the system. The images may alternatively be 

transferred asynchronously through a processor or backplane bus (PCI 

(Peripheral Component Interconnect) directly into frame stores.  

The latest generation of serial bus interfaces, such as PCI Express, has 

sufficient bandwidth for multiple streams of uncompressed high-resolution 

images to be transferred in real-time. PCI Express interface and multiple 

MGTs (Multi Gigabit Transceivers), provide an excellent range of I/O 

capabilities for data transfers. 

2. Frame Stores 

The frame stores used for temporary storage of image data are at the 

core of many image processing functions. They serve many purposes, 

such as synchronizing multiple image sources, image re-sizing and 
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manipulation, motion or object detection and tracking, noise reduction, 

and de-interlacing. 

The storage of multiple video frames typically requires a large quantity of 

memory that is accessed sequentially. For this reason, single- or double-

data-rate SDRAM is normally employed. However, in applications where 

image transformations include perspective, rotation, or non-linear “warps” 

of the source image, the frame store architecture is typically based on 

very high speed synchronous static RAMs to give low-latency random 

access operation (rather than linear data bursts from SDRAM). 

 

3. Filtering and Interpolation 

Applications that involve re-sampling of the source image data also need 

to interpolate or filter the image to avoid aliasing problems. Efficient 

implementation of filters is therefore important. Spartan-3A DSP and 

Virtex-5 devices are useful here, as the architecture of their DSP blocks is 

ideally suited to the efficient implementation of all kinds of filters. 

 

4. Delay Elements 

Image processing algorithms typically require a wide range of delay 

elements. For delays of a few pixels – to equalize pipeline processing 

latency or for poly-phase filter taps – the SRL16 blocks in Xilinx FPGAs are 

highly efficient. Block RAMs, with their dual-port architecture, are ideal for 

line delays, which are needed where the vertical columns of data within 

2D raster scan images are processed. 

 

5. Look-Up Tables 

Adjustments to the dynamic range of image data and non-linear transfer 

functions can be efficiently implemented using look-up tables. How such 

tables are implemented – and how they are referred to – depends on the 

number of inputs they have. Look-up tables (LUTs) are said to be “1D” 

where the table output value depends on only one input value, “2D” 

where the output depends on two inputs, and “3D” where it depends on 

three inputs. The 1D and 2D cases can usually be implemented in block 

RAM (depending on the size of the input vectors).  
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6. Software Control and Analysis 

Virtually all image processing systems require some form of software-

programmed control system, either to configure the system correctly or to 

analyze the data and present the results in an efficient manner. These 

control systems may range from a simple soft- or hard-IP core processor 

embedded in the FPGA (such as the PowerPC embedded in Virtex FPGAs). 

With such high performance processors, system designers now have the 

choice to split the image processing tasks between hardware and 

software; hence the importance of implementing a high-bandwidth data 

pipe between the two. 

 

2.8. Stereo Image Processing 

Stereo Imaging is the process of constructing the 3-Dimentional model 

using the 2-Dimentional Images for better human understanding. The task 

of building a general purpose computational-vision system is a grand 

challenge due to the compute-intensive nature of many vision algorithms. 

However, researchers have been successful in designing algorithms and 

building systems that deal with some specific tasks of the human vision 

system. One important feature of the human vision system is its ability to 

perceive depth of a viewed scene. This ability to perceive depth, known as 

stereo vision, or stereopsis is made possible by the difference in 

viewpoints of the scene when sensed by our left and right eyes. The 

information about depth in a scene is of great importance because it helps 

us navigate in a three-dimensional environment and aids us in recognizing 

objects of interest, among other tasks. In computer based stereo-vision 

systems, a stereo-rig is a pair of cameras placed side-by-side, much like 

our eyes, to capture the left and right images. The processing required 

extract depth information from the image pair may seem second nature 

when performed by the human brain due to its immense and complex 

computational capabilities. In a stereo-vision system, this processing is 

carried out using a computing platform that can be based on software, 

hardware, or a mixture of the two. The depth information is encoded in 

the disparity, defined as the difference in pixel locations of corresponding 

points in the image pair. The disparity is inversely proportional to the 

distance of an object from the cameras, so the disparity increases as 
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objects get closer to the cameras. The estimation of this disparity then 

becomes the primary task of a stereo-vision system [12]. 

 

In the simplest setup of a stereo-rig, where the optical axes of the two 

cameras are parallel and the vertical axes are aligned, corresponding 

pixels lie at the same vertical coordinate in the image pair. The search for 

the corresponding pixel is therefore limited to the same scanline in the 

image pair, which allows processing of each scanline as they arrive. In the 

more general case where the cameras are not aligned as described above, 

the search for corresponding pixel may span across numerous scanlines 

and this increases the computational load of the system. When the 

cameras are not in the ideal setup, Image rectification of input images can 

be performed. Rectification is the process by which the input image pair is 

warped to resemble the output from an aligned stereo-rig. 

 

Often, when viewing a scene from different viewpoints as in a stereo 

setup, objects visible in one image may not be visible in the other image. 

A foreground object hides, or occludes, different parts of the background 

in the left and right views, a phenomenon known as occlusion. In addition, 

the information present at the left edge of the image captured by the left 

camera is not available in the right image and vice-versa as this part of 

the scene falls outside the viewing area of the other camera. This further 

complicates the task of accurate disparity estimation because pixels 

visible in one image may not have a corresponding match in the other 

image of the pair. Related areas of Stereo Imaging [19]: 

* Aerial Stereo Photogrammetry 

* Robotic Vision/Machine Vision 

* 3D Computer Graphics 

* Computer Vision Geometry 

 

2.9.   Epipolar Geometry 

The key problem in stereo computation is to find corresponding points in 

the stereo images. Corresponding points are the projections of a single 

point in the three-dimensional scene. When camera attributes are known, 

corresponding image points can be mapped into three-dimensional scene 
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locations. In addition to providing the function that maps pairs of 

corresponding image points onto scene points, a camera model can be 

used to constrain the search for matching pairs of corresponding image 

points to one dimension (Figure 2.10). Any point in the three-dimensional 

world space, together with the centers of projection of two camera 

systems, defines a plane (called an "epipolar" plane). The intersection of 

an epipolar plane with an image plane is called an epipolar line. Every 

point on a given epipolar line in one image must correspond to a point on 

the corresponding epipolar line in the other image. The search for a match 

of a point in the first image may therefore be limited to a one-dimensional 

neighborhood in the second image plane, as opposed to a two-

dimensional neighborhood, with an enormous reduction in computational 

complexity. 

 

Figure 2.19: Epipolar Geometry [2] 

 

When the stereo cameras are located and oriented such that there is only 

a horizontal displacement between them, then disparity can only occur in 

the horizontal direction, and the stereo images are said to be "in 

correspondence." When a stereo pair is in correspondence, the epipolar 

lines are coincident with the horizontal scan lines of the digitized pictures-
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-enabling matching to be accomplished in a relatively simple and efficient 

manner. Stereo systems that have been primarily concerned with 

modeling human visual ability have employed this constraint. In practical 

applications, however, the stereo pair rarely is in correspondence.  

 

The line connecting the focal points of the camera systems is called the 

stereo baseline. Any plane containing the stereo baseline is called an 

epipolar plane. The intersection of an epipolar plane with an image plane 

is called an epipolar line. If the geometrical relationship between the two 

camera systems is known, we need only search for a match along the 

epipolar line in the right image. 

 
Figure 2.10: Stereo image Pair and Epipolar Geometry [18] 

 

Various terminology of Epipolar Geometry 

Epipole: The epipole is the point of intersection of the line joining the 

camera centers (the baseline) with the image plane. Equivalently, the 

epipole is the image in one view of the camera centre of the other view. It 

is also the vanishing point of the baseline (translation) direction.  

Epipolar Plane: An epipolar plane is a plane containing the baseline. 

There is a one-parameter family (a pencil) of epipolar planes. 

Epipolar Line: An epipolar line is the intersection of an epipolar plane 
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with the image plane. All epipolar lines intersect at the epipole. An 

epipolar plane intersects the left and right image planes in epipolar lines, 

and defines the correspondence between the lines. 

 

Terminology shown above are explained well in Figure 2.10  (a) shows 

Epipolar geometry for converging cameras, (b) and (c) show a  pair of 

images with superimposed corresponding points and their epipolar lines 

(in white). The motion between the views is a translation and rotation. In 

each image, the direction of the other camera may be inferred from the 

intersection of the pencil of epipolar lines. In this case, both epipoles lie 

outside of the visible image [2] [3]. 
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3.                   FFT IMPLEMENTATION ON DSP-FPGA 

3.1 Fourier Transform 
The essence of the Fourier transform of a waveform is to decompose or 

separate the waveform into a sum of sinusoids of different frequencies. In 

other words, the Fourier transform identifies or distinguishes the different 

frequency sinusoids, and their respective amplitudes, which combine to 

form an arbitrary waveform. The Fourier transform is then a frequency 

domain representation of a function. This transform contains exactly the 

same information as that of the original function; they differ only in the 

manner of presentation of the information. Fourier analysis allows one to 

examine a function from another point of view, the frequency domain [1]. 

 

The Discrete Fourier Transform (DFT) is described by the following 

formula: 
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Where,  

F(k)=Fourier Transform of  kth point 

N=Total no of Points 

f(n)=Value of function f at nth Point  

 

DFT transforms the sequence of N complex numbers x0. . . xN−1 (time 

domain samples) into the sequence of N complex numbers X0 , . . . , XN−1  

called frequency domain samples. If x0.  . . xN−1 are real numbers, as they 

often are in practical applications, then the DFT obeys the symmetry Xk = 

X∗N−k, where the ∗ denotes complex conjugation and the subscripts are 

interpreted modulo N. Therefore, the DFT output for real inputs is half 

redundant, and one obtains the complete information by only looking at 

roughly half of the outputs. 

 

Computation of N-point DFT requires N2 complex valued multiplications 

(4× N2 real valued multiplications). Typical case in digital signal 

processing is transformation of real valued signals, so the DFT needs only 
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2×N2 real valued multiplications. For both cases DFT’s computational 

complexity is O (N2)[1]. 

 

3.2 FFT (Fast Fourier Transform)  
FFT algorithm has been implemented on 1024 inputs, 512-complex 

twiddle factors. The N-point Discrete Fourier Transform (DFT) of a finite 

duration sequence x(n) is defined as follows. 
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=  is referred as the twiddle factor, N is the transform size 

and 1−=j . The FFT is an efficient algorithm to compute the DFT and 

its inverse (Cooley and Tukey). It generally falls into two classes: 

Decimation In Time (DIT), and Decimation In Frequency (DIF). The DIT 

algorithm first rearranges the input elements in bit reversed order and 

then builds the output transform. The DIF algorithm first transforms and 

then rearranges the output values. The basic idea of these algorithms is to 

break up an N–point DFT transform into successive smaller and smaller 

transform known as a butterfly (basic computational element). The 

smallest transform used is a 2-point DFT known as radix-2, it processes 

groups of 2 samples [9].  

1.  
Figure 3.1: Simplified Butterfly operation 

 

To calculate FFT for N number of inputs, Decimation in Time algorithm 

requires following points. 

 L = log2N stages. 

 ((N/2) * L) number of complex multiplications. 

 (N * L) number of additions. 

 (N/2) twiddle factors should be stored. 

 31



Chapter 3                                                                                         FFT Implementation on DSP-FPGA 
 

 

       
Number 

of 
Points 

N 

Complex 
Multiplications 

in Direct 
Computation 

N2

Complex 
Multiplications 

in FFT 
Algorithm 

(N/2)*log2N 

Speed 
Improvement 

 

4 16 4 4.00 
8 64 12 5.33 
16 256 32 8.00 
32 1024 80 12.80 
64 4096 192 21.33 

128 16384 448 36.57 
256 65536 1024 64.00 
512 262144 2304 113.78 
1024 1048576 5120 204.80 

Table 3.1: Calculation multiplications for varying no of Inputs 

 

Figure 3.2: Butterfly diagram for FFT algorithm (DIT) 
 

In order that the computation may be done in place, the input sequence 

must be stored in a non-sequential order. In fact, the order in which the 

input data are stored and accessed is referred to as bit-reversed order. If 

(n2, n1, n0) is the binary representation of the index of the sequence x[n] , 

then the sequence value x[n2, n1, n0] is stored in the array position X0[n0, 
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n1, n2]. That is, in determining the position of x [n2, n1, n0] in the input 

array, one must reverse the order of the bits of the index n. 

 

0(000) » 0(000) 

1(001) » 4(100) 

2(010) » 2(010) 

3(011) » 6(110) 

4(100) » 1(001) 

5(101) » 5(101) 

6(110) » 3(011) 

7(111) » 7(111) 

C2 C1 C3 C4 C5 

R2 

R1 

R3 

R4 

R5 

R2 R1 R3 R4 R5 

C2 

C1 

C3 

C4 

C5 

Transpose

 
 
 

Figure 3.3: Transpose Operation for 2D FFT of image 

3.3 2D FFT for Image 

As described in above section 3.2, 1D FFT is requires NN
2log

2
 

computations. Image processing is also easy in frequency domain. In 

frequency domain, to generate 2D FFT of image, first 1D FFT of each of 

the rows is calculated. Then 1D FFT on each of the columns is performed. 

Some times instead of doing row wise  and column wise computations, 

transpose of the matrices is performed in between two consecutive row 

wise 1D FFTs. After getting done 2D FFT of image, image enhancement is 

done in frequency domain filtering and enhancement, after that 2D IFFT 

on image is done in reverse order of FFT. Figure 3.4 shows frequency 

domain processing flow by 2D FFT and 2D IFFT [1]. 
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Image 1D FFT 

 
Figure 3.4: Frequency Domain Filtering on Image 

 

3.4 DSP-FPGA Co Processing Architecture 
 
Digital signal processors and FPGA are good solutions for DSP applications, 

each one has its own pros and cons. Digital signal processors provide fast 

arithmetic processing, implementation of complex algorithms for various 

applications. On the other side FPGA serves purpose of real time 

processing at high speed, reprogram ability (easy updating), parallel 

execution of simple algorithm and inherent SIMD architecture for image 

processing like applications [10]. 

 

In proposed architecture given here, involves the use of Digital signal 

processor (Texas Instrument C64xx) [10] and Xilinx Spartan 3 1500L 

FPGA combination for calculation of FFT algorithm on hybrid DSP-FPGA 

architecture. Xilinx Spartan 1500L FPGA is used as co-processor for the 

DSP for generating complex Floating/Fixed point multiplications for the 

performance enhancement FFT. When Fixed point arithmetic is needed, 

TI’s C64xx DSP processor is used, in case of floating point arithmetic is 

used , TI’s C64xx DSP processor is chosen for compatibility.  

 

Transpose 1D FFT 

 
Frequency 

Domain 
Filtering 

 
Enhanced 

Image 
Transpose 1D IFFT 1D IFFT 
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Host 
PC 

 PCI   

 
 

Figure 3.5: Architecture for DSP-FPGA Co-Design 
 

The architecture can be described as below: 

1. Image will be transferred from the Host PC to DSP. 

2. For the particular algorithm (FFT, Convolution, etc.) complex 

data arrangement operations is done on DSP and multiplication 

of complex values is done on the FPGA via   EMIF. Other basic 

operation which can run parallel, are implemented and executed 

on FPGA,  

3. Data transfer to and from   FPGA is done through EMIF from DSP 

side and Block-RAM at the FPGA side.   

  

 

Figure 3.6: Host PC to DSP-FPGA Communication 

 

HOST 
 
 
 
 
 
 
 

TI DSP                     FPGA  
 
 
 
 
     
              

Multipliers & Adders 

 
CCS 

COM 
Client 

VB,VC++ 

E
M
I
F

BRAM1 

BRAM0 

BRAM2 

BRAM3 

P
C
I 

P
C
I 

32,@33/66Mhz

 
 
DSP Processor 
TI C64xx 

FPGA Xilinx Spartan 3 PCI   

32/64 BRAM0

4 Parallel  
Multi

 
E 
M
I 
F 

BRAM1 pliersData  bus 

BRAM2
N 2 Parallel  

AddersBRAM3

Control bus

 35



Chapter 3                                                                                         FFT Implementation on DSP-FPGA 
 

 

N 
N 

Y 

NUMBER 
OF 

COMPLEX 
MULT 

PERFORME
D < 512 ? 

TRANSFER I/P TO FPGA(BRAM) THROUGH EMIF 

Y 

Y 

FOR EACH 
STAGE OF FFT 

N <= 10? 

 
START 

 READING 
RESULTS  

OF COMPLEX 
MULTIPLICATION 

FROM BLOCK 
RAM 

TRANFER 
COMPLETED? 

READ THE OPERANDS TWIDDLE 
FACTORS & INPUT FROM BLOCK RAM 

UNPACK OPERAND VALUES IN FIXED 
POINT STRUCTURE 

FEED THIS OPERANDS IN 4 PARALLEL 
FIXED POINT MULTIPLICATION 

PIPELINED UNIT 

PACK O/P OF AVOVE STAGE INTO 
UNSIGNED VARIABLE & WRITE BACK TO 

BLCOK RAM 

FEED O/P OF ABOVE STAGE TO 
ADDITION/SUBTRACTION UNIT PIPELINE 

AS I/P 

END 

N 

MATLA
B 

OR 
VC++ 

 
TI 
 

DSP 

R 
T 
D 
X 

R 
T 
D 
X 

PERFORM ADDITION  
/ SUBTRACTION 

 

ALL STAGES 
OF FFT 

COMPLETED? 

Y 

 
 Figure 3.7: Flow chart of 1024 point 1-D FFT. 
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As described above in this architecture Host PC communicate with DSP 

using CCS (Code Composer Studio) APIs(Application Programming 

Interfaces). On the Host PC an application communicates with CCS using 

COM (Component Object Model) Client like VB (Visual Basic), VC++ 

(Visual C++), C# and other clients [15]. CCS has capability to 

communicate with FPGA without intervention of Host PC. TI DSP 

communicates with Spartan III FPGA using EMIF (Extended Memory 

Interface). FPGA has no of Block RAMs available, from which 4 Block RAMs 

are used. Each pair of Block RAM is used for storing complex operands 

and complex multiplication results. Block RAMs support simultaneous 

multiple simultaneous read operations and multiple simultaneous write 

operations on different elements of the Block RAMs. Using this unique 

feature one can write data to one portion of Block  RAM from  DSP using 

EMIF and same time data can be read/write to/from the another portion of 

Block RAM by proper scheduling of read –write operations from both side 

(DSP and FPGA) . 

3.5 Floating Point Library for Handel-C  
Handel-C has supported floating point library to carry out various floating 

point operations like addition, subtraction, multiplication, division, Square 

root, etc. and comparison operations. This functionality for FPGA is given 

in PDK (Platform Development Kit) by Celoxica Ltd. This library supports 

functions for IEEE 754 single precision floating point number standard. To 

use Floating point a library needs to be included in the program and 

float_pipe.hcl linked from PDK library [5]. 

#include<float_pipe.hch> 

 Like the name of the header file would suspect, the library uses a pipeline 

for all the mathematical operations. Since the floating point representation 

follows the IEEE 754 definition of single precision floating point numbers, 

the integer and fractional bits do not need to be defined. According to the 

IEEE 754 standard, a floating point number is build, as shown in figure. 

 

In case of a single precision:   ‘sign’ is one bit, ‘exponent' equals 8 bits 

and `mantissa' 23 bits, adding to a total of 32 bits of word length. The 

floating point value is calculated by: 
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Value = sign ×2e× m  

Where: 

s = +1 or -1; 

e = exponent – 127; 

m = 1.”Fraction in binary”:  1≤ m < 2. 

Internally, the floating point value is stored as a structure. 

 

 
Figure 3.8: IEEE 754 Floating Point number standard  

 

Storage Structure for FPGA in Handel-C Library 

struct 

 { 

unsigned int 1 sign; 

unsigned int 8 exponent; 

unsigned int 23 mantissa; 

} 

3.6 Reasons for migration from Floating point to Fixed 
point  

 
Floating-point mathematics : 

1. Provides excellent dynamic range and accuracy 

2. Does not require a designer to worry about overflow, or 

rounding 

3. Is better than fixed-point in every respect but one: it is too 

expensive in terms of resources and time.  

4. Executing floating-point math on the DSP μP, FPGA or ASIC, it is 

difficult to achieve real-time performance.  

5. Requires more DSP μP clock cycles.  

6. Requires more logic on an FPGA/ASIC.  
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Operation Cycles 

FloatPipeFromIntCycles  9 

FloatPipeToIntCycles 11 

FloatPipeToUIntCycles 10 

FloatPipeAddCycles 10 

FloatPipeSubCycles 10 

FloatPipeDivCycles 27 

FloatPipeMultCycles 7 

FloatPipeSqrtCycles 26 

FloatPipeEqCycles 1 

FloatPipeGtCycles 2 

FloatPipeLsCycles  2 

Table 3.2: Operational Delay in Cycles in Floating Point Library 

 

Applications which require high precision results, wide dynamic range of 

input-output floating point arithmetic is generally used these types of 

applications. But drawbacks of floating point processors requirement of 

higher power consumption, higher cost of recourses (gates), slower than 

fixed point arithmetic and large implementation size. This leads to use of 

fixed point arithmetic instead of floating point arithmetic for real time 

applications and also on FPGA developments.  

A B 0 1 65432 Q

 

Figure 3.9: Pipeline Floating Multiplication Implementation 
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3.7 Fixed Point Library for Handel-C 
Handel-C has also supported fixed point library to carry out basic various 

fixed point operations like addition, subtraction, multiplication, division, 

etc. and comparison operations. This functionality for FPGA is given in PDK 

(Platform Development Kit) by Celoxica Ltd. This library supports 

functions for IEEE 754 single precision floating point number standard. To 

use Floating point a library needs to be included in the program and 

fixed.hcl linked from PDK library [6]. 

#include<fixed.hch> 

As there does not exist any particular fixed point representation, general 

structure is fixed no of digit before decimal point (Integer Part) and fixed 

no of digits after decimal point (Fraction part) is used by Handel-C as 

shown below.  

XXXXXX. XXXXXX  

Integer: Fraction  

So, fixed point number is declared as Fixed (Integer bits, Fraction bits) in 

Handel-C. In Handel-C Fixed (16, 8) would occupy same no of bits as 

Fixed (8, 16) or Fixed (12, 12). Using Fixed point numbers overflow –

underflow conditions must be explicitly handled by programmer due to 

range limitation of fixed point numbers [6]. 

 

The usual method for porting an application from floating point to fixed-

point data types involves mathematical analysis of the algorithms involved 

to determine the dynamic range of all values. If the analysis shows that 

the range and precision needed is too great for the memory requirements 

of the application, say 40 bits are needed but only 32 bit data types are 

supported on the target architecture, alterations are made to the 

algorithm to scale the values at various stages of the algorithm so they fit 

into the memory available. For example, if it was found that the values 

were always a multiple of ten, all values would be pre-divided by the 

highest common factor before calculation, and then the final result would 

be multiplied by the highest common factor. As the project does not have 

a mathematician at its disposal, and this method could prove timely, this 

route was not taken.  
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Embedded processors that use fixed-point arithmetic usually saturate the 

result of the calculation on overflow. When the result of an operation is 

greater than the greatest positive number that can be represented, the 

result is set to the maximum number that can be represented. When the 

result is less than the largest negative number that can be represented, 

the result is given as the largest negative number that can be represented. 

In the best case, overflow causes the signal to be distorted support signed 

numbers, as well as negative overflow. Addition and subtraction were 

added for completeness sake and to support saturation of addition and 

subtraction.        

 

Fixed point migration was needed because research suggested that 

floating point values not only required more processing than integral 

values, they also required more gate area on the reconfigurable device. In 

order to maximize the number of functions on the FPGA gate area had to 

be conserved. This would allow a greater level of parallelism in the 

application, especially between the host CPU and the FPGA, which should 

improve performance. As integral operations execute in less time than 

floating point operations, further performance gains are expected from 

migration to fixed-point arithmetic. Also, “all Handel-C conversions start 

by converting floating-points to integers [fixed-point]”. 

3.8 3 Stage Complex Multiplication Pipeline 
For two complex number A+iB and C+iD, complex multiplication is done 
as: 

Real  := AC - BD      
Imag := AD + BC   
Result:=Real + iImag  

Complex multiplication pipeline is divided in four stages 

1. FETCH: Fetch operands from 4 Block RAMs (Each BlockRAM 

contains operand in Real-Imaginary operand pair). 

2. MULT: Same time Fixed/Floating point multiplication of operand 

fetched at N-1 clock cycle is performed. 

3. ADD: At this time Fixed/Floating point addition-subtraction is 

performed on operand fetched at N-2  clock cycle and on which 

multiplication is already performed. 
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4. WRITE BACK: In last stage of pipeline results of subtraction-

addition is write-back to Block RAM for operand fetched at N-3 

clock cycle.  

 

 
STAGE 1 R I R I 

 
 

STAGE 2 

R R I I R I I R X X X X 

 
STAGE 3  

 
 

Real Part 

 
 
 

Imaginary Part 

RR II RI IR - + 

 

 
STAGE 4 

Figure 3.10: Complex Multiplication Pipeline 

 

Operator Pair Calculation Cycle 

64 1+64+7+10 82 

128 1+128+7+10 146 

256 1+256+7+10 274 

512 1+512+7+10 530 

Table 3.3: No of Cycles for variable no of Pairs 

Pipeline Overhead  

• Initialization Overhead              1 Cycle 

• Multiplication Pipeline Delay   7 Cycles 

• Addition Pipeline Delay 10 Cycles 

18 Cycles 
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Total Cycles=Initialization (1) + No of Operator Pair (N) + Multiplication Delay (7) + 

Addition / Subtraction Delay (10) 

Host 
To 

PCI 

(A+iB) * (C+ iD) => 
Real = AC-BD, Imaginary=AD+BC 

 
Figure 3.11: 1024 points 1-D FFT on DSP & FPGA architecture 

3.9 Results 
 

For calculating 10 stage FFT for 1024 inputs, Total time for execution of 

FFT algorithm  

= Data transfer between DSP and FPGA (only inputs)   +  

Execution time of multiplication on FPGA                  +  

Data transfer between FPGA and DSP (only outputs). 

=       1024 + 515 + 1024 

Here one thing is to be noted, that as and when multiplication are getting 

done in FPGA, simultaneously result of those multiplication are to be sent 

from FPGA to DSP. So, if we don’t consider 515 multiplication time then 

total time for execution of single stage FFT algorithm will be, 

= 1024 + 1024=2,048     for one FFT stage, 

10 Stage FFT on DSP 

512 Complex Twiddle 
Factors  

1024 
Input 
Points  

 

BRAM0 A 

1 2 

BRAM1 B 

10 
BRAM2 C 

BRAM3 D 

Complex Multiplication on FPGA 

64 bits@66 MHz 
PCI 

32 bit 
EMIF 

Write Back Complex Result to  
Real->BRAM0, Imaginary->BRAM1 
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= 2048 * 10 =20,480    for all 10 stages, 

How much time 10-Stage FFT with 1024 points inputs will take on hybrid 

architecture, can be shown from following table-5. 

 

Clock cycles Description 

133,000 Clock cycles on Single DSP. 

   33,062 Clock cycles without multiplications on 

DSP. 

   20,480 Clock cycles multiplication on FPGA. 

   53,542 Clock cycles with hybrid architecture. 

(133,000 - 53,542)  

= 79,458 

Clock cycles benefit in comparison with 

single DSP.    

Table 3.4 : Time taken on Hybrid DSP-FPGA architecture 

  

It can be concluded that rather using image processing on single DSP 

processor, if such algorithms are executed on hybrid architecture such 

as DSP & FPGA, in which FPGA will serve the purpose as a co-processor 

then number of clock cycles can be saved. 
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4.1. Introduction 

The final accuracy of the DEM is dependent on conjugate point 

identification in the stereo images. Hence image matching is the most 

important task in DEM generation in digital mode. In general the major 

difficulties in automatic image matching are due to temporal changes of 

the data sets, different view angles, scale changes between the images 

and sensor differences etc. 

Hierarchical image matching is the most used methodology among 

available all strategies stated as in previous chapter. This method has 

advantage of improving of speed up many different approaches by guiding 

search through progressively finer resolutions. The details of an approach 

are shown in subsequent topics [7]. 

 

4.2. Hierarchical Image Matching Technique 

Objects represented in the image space may vary enormously in the size 

and extent. In order to identify and qualitatively describe events in the 

object space, it is necessary to evaluate and combine the image at 

different scales, a procedure known as the multi-space technique. By 

smoothing the original image with a Gaussian low pass filter of varying 

sizes results in images at various scales (levels of hierarchy) [19]. At each 

scale, the corresponding images called image pyramids. Selection of 

optimal number of pyramids depends on the viewing angle of stereo pair 

used, terrain undulations and the seed point selection in the matching 

process. After forming the image pyramids hierarchical matching uses four 

basic steps at each level to get the final match points at the lowest level. 

1. Interest point identification. 

2. Local mapping between stereo images. 

3. Digital correlation up to sub-pixel accuracy. 

4. Blunder detection. 

The hierarchical procedure is shown in detail in figure 4.1 and 4.2. At the 

highest level of pyramid the seed point are identified manually or through 

an interest operator on reference image and blind correlation of these 

points in the other image. The match points of particular level will be used 
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to establish the local correspondence between the stereo pair images at 

next level. 

 

Figure 4.1: Image Pyramid 

After this at each level first interest operator is obtained to get some 

candidate points for match. Local mapping using the previous level’s 

match point establishes a correspondence with the second image for all 

the interest points. Then digital correlation finds the exact location of the 

interest points in the second image. Blunder detection eliminates 

mismatches at each level, if any. This procedure is repeated up to last 

level that is full resolution. The match points obtained in the last level are 

the conjugate points for the Digital Elevation Model (DEM). 

 

Hierarchical matching can be performed on raw data directly or the data 

can be put in epipolar before the image pyramid generation. This has the 

advantage of using one sided mask. But this has disadvantage of twice 

the model accuracy in calculating DEM, as we have to go back from 

epipolar to raw geometry once again after matching, to compute DEM. 

 

4.2.1. Candidate Feature Selection (Interest Operator) 

Good feature extraction is a reliable pre-processing step for good image 

matching. Therefore selecting reliable and accurate approximate values 

fro succeeding fine correlation attracts ever –increasing interest. In the 

field of computer vision and pattern recognition many different operators 

have been developed for feature extraction. Most widely used operators 

are Moravec operator and Forstner .In this section and improved Forstner 

operator, in terms of fastness and simplicity in thresholds. 
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The interest operator has two steps. 

 

Figure 4.2 Hierarchical Matching using Image Pyramid 

A. The Ground Operator 

At each point, the four gradients to the neighbouring pixels are 

calculated (As Figure 4.3.).A point is kept only for the second step, if 

at least two of the gradients are larger than a threshold Dg. As for the 

determination of Dg it can be manually set to achieve visually 

acceptable results, before one have found a method, in which the 

optimal threshold Dg for different images could be automatically 

determined. 

B. Selection of interest points: 

For the second step two versions are possible 

Version I 

1.1 Interest values (IV) for points selected by the ground operator. 

∑
=

=
8

1
)(

i
iDgabsIV

 

where Dgi is the difference of grey levels between two adjacent 

pixels. 
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1.2 Suppression of local non-maxima, in which compared window is 

progressively enlarged. Once IV within the compared window (the 

light hatched parts of the window (Figure 4.4), which indicates 

suppression windows are 3x3 and 5x5) is greater than the center’s 

value of the suppression window, the comparison stops, and the 

center’s IV is set to zero. The size of the suppression window can be 

selected accordingly to the density of interest points expected for 

the results. 

Version II 

Improvement of the Forstner operator, to achieve speed and 

accuracy. 

         

Figure 4.3: Pixel Neighbourhood (4 & 8)  

 

  

Figure 4.4: Suppression for finding local maxima 

 

The interest operator at each pyramid level gives number of interest 

points, almost four times of that of number at previous level. 
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Figure 4.5: Correlation Window in Search Window 

4.2.2. Local Mapping 

This is basically to establish a local transformation between reference 

image and the second image of the stereo pair for each interest point 

located in the reference image .For any interest point ,nearest ten 

neighbours in the previous level ‘s match points are selected and  a first 

order polynomial between match points is used for mapping. 

Xr=a0+a1X1+ a2Y1

Yr=b0+b1X1+ b2Y1

(Xr,Yr) and (Xl, Yl) are the scanline ,pixels positions of the match points in 

left (reference image ) and right (second image of stereo pair) images. 

The polynomial coefficients (a0, a1, a2) and (b0, b1, b2) are obtained 

through least square solutions on ten points. 

 

Local mapping is generally done using Normalized cross correlation or 

using SSD, SAD kind of matching functions. Criteria of maximize or 

minimize depends purely on the algorithm used for matching. 
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4.2.3 Decision Making and Blunder detection  

n criteria are 

 Correlation Coefficient 

hether a point is matched or not by the 

Epipolar Geometry 

ed for strengthening imager matching process by 

3 Height Thresholding   

 elevations of the area for which DEM is to be 

. 

The following decision making and blunder detectio

commonly used in the matching process: 

 

1

A decision can be taken, w

correlation coefficient magnitude. As explained earlier the correlation 

coefficient 1 indicates a perfect match and the window & search areas are 

extracted from same images. However this will not happen anytime, since 

the image chips used are from different images taken at different times 

.Hence always the correlation coefficient is less than 1. But a threshold 

can be fixed on correlation coefficient (>0.5) to identify the probable 

match point. This is further confirmed by two-way correlation, in the 

sense, a reverse correlation taking reference chip from input image and 

search chip from reference image. A point is said to be a match point 

when the correlation coefficients from the both forward and reverse 

correlations are within a particular limit (<0.01).   

    

2 

This is another criteria us

going through object space. The match points in the reference image are 

transformed to ground by using precise relation ship obtained  after space 

resection. Then these co-ordinates are transformed to second input 

(image ) using the  second image’s ground to image relationship .Ideally 

the obtained scanline pixel co-ordinates should match with earlier 

computed co-ordinate of the same point  through conjugate point 

matching algorithm. If the matching at that point is correct .However the 

pixel value will not match, since the height is not used in the computation. 

At least the scanline difference will show the indication of correct match. A 

point is considered as match point, if the scanline difference lies within the 

model accuracy.  

 

The minimum and maximum
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obtained ,are known apriori, from the maps .These values can also be 

used for blunder detection /decision making in deciding match points .If 

the DEM computed for a point is below the minimum elevation of it is 

above the maximum  elevation then  the points are rejected. 

 

4 Interactive Editing 

suming process ,interactive DEM editing is the 

.3. FPGA Implementation 

m by designing several components like 

ed Point Square Root Implementation 

C 

otation Digital Computer) is a simple and efficient 

Though this is time con

powerful tool for blunder detection and correlation of the conjugate points 

identified are digital correlation .in this the conjugate points are viewed 

through a stereo display mode. Cross cursors are put at the conjugate 

points locations in both left and right images. The cursors corresponding 

to, all the points ,which are correctly matched ,normally appear on the 

surface of the terrain in the stereo mode .The mismatches can easily 

identifiable in stereo mode, as they appear out of the model surface or 

below the model surface . All three points can be identified interactively, 

and can be deleted or recomputed .This eliminates the blunders, but this 

process is tedious, if many, mismatches are clustered in a small area. 

 

4

Imple entation of HIM is done 

Square Root block, Correlation block and combining them together for 

execution.  

4.3.1. Fix

CORDI Algorithms 

CORDIC (Coordinate R

algorithm to calculate hyperbolic and trigonometric functions. It is 

commonly used when no hardware multiplier is available (e.g., simple 

microcontrollers and FPGAs) as the only operations it requires are 

addition, subtraction, bitshift and table lookup [15]. The modern CORDIC 

algorithm has proposed in 1959 by Jack E. Volder. John Stephen Walther 

at Hewlett-Packard further generalized the algorithm, allowing calculating 

hyperbolic and exponential functions, logarithm, multiplication, division, 

and square root. 
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Originally, CORDIC was implemented using the binary numeral system. In 

the 1970s, decimal CORDIC became widely used in pocket calculators, 

most of which operate in binary-coded-decimal (BCD) rather than binary 

[14]. 

 

Mode of operation 

CORDIC can be used to calculate a number of different functions. CORDIC 

is part of the class of “shift-and-add” algorithms. Another shift-and-add 

algorithm which can be used for computing many elementary functions is 

the BKM algorithm, which is a generalization of the logarithm and 

exponential algorithms to the complex plane . CORDIC methods describe 

essentially the same algorithm that with suitably chosen inputs can be 

used to calculate a whole range of scientific functions including; sin, cos, 

tan, arctan, arcsin, arccos, sinh, cosh, tanh, arctanh, log, exp, square root 

and even multiply and divide. To compute a square-root with CORDIC the 

number is yielded by multiplying, adding and testing [14].  

CORDIC Square Root 

Following table shows trace of CORDIC Square root algorithm. Here 

initial value is X=12056, for which square root algorithm is verified 

[14].  

L 2^L y x= 12056 
    0 initial value   

7 128 0 128 x 128 > 12056 do nothing 
6 64 64 64 x 64 < 12056 add 64 to yinitial  64 
5 32 96 (64 + 32)2 < 12056 add 32 to last y  96 
4 16 96 (96 + 16)2 > 12056 do nothing 
3 8 104 (96 + 8)2 < 12056 add 8 to last y  104 
2 4 108 (104 + 4)2 < 12056 add 4 to last y  108 
1 2 108 (108 + 2)2 > 12056 do nothing 
0 1 109 (108 + 1)2 < 12056 add 1 to last y  109 

-1 0.5 And so on. And so on  and so on
Table 4.1: CORDIC Square Root Example 

 

Code segment shown in Figure 4.6 is for finding square root for integer 

value and results integer part of square root of any integer number. 
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int sqrt (int x)  

{  

int base, i, y ;  

       base = 256 ;  

       y = 0 ;  

       for (i = 1; i <= 15; i++)  

       {  

               y + =  base ;  

               if  ( (y * y) > x )  

               {  

                       y -= base ;  // base should not have been added, so we substract again  

               }  

               base >> 1 ;      // shift 1 digit to the right = divide by 2  

        }  

        return y ;  

}  

Figure 4.6:   CORDIC Square root Algorithm in C 

 
 

Figure 4.7:    Fixed Point Square root Hardware Design 
Square root finding procedure for Fixed Point (16, 8) is   given as: 

BASE=256, Y=0,  

Step 1: Y = Base + Y 

Step 2: Y= Y * Y 

BASE Y 
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Step 3: Y= Y-Base IF Y2>No 

Step 4: Base= Base>>1 Right shift by 1 Division operation  

This process continues until Base becomes 0. 
 

4.3.2. Normalized Correlation Implementation  

Cross–correlation is a basic statistical approach for the image matching. 

In Hierarchical matching for conjugate point identification, cross 

correlation is used as matching cost function. Other cost functions can be 

sum of absolute differences (SAD), sum of squared differences (SSD),sum 

of multiplications(SM) and many more [14]. Cross correlation gives a 

measure of similarity between an image and a template. For hierarchical 

image matching a window WA of size NxN (N<M) is sliding in a search 

areal SA of size MxM and best match is selected based on highest 

correlation value(Ideally for best match correlation value is 1). Following 

equation shows the correlation formula [1]. 
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Where s(x, y) and w(x, y) are pixel values at location (x, y) of s and w 

respectively. The value of R changes between 0 to +1, and the R more 

closer to +1, more similar the two windows will be. R has to be calculated 

for (M-N+1)2 shift positions. Numerator gives the simple cross correlation, 

while denominator in equation gives normalizing factor. Correlation can be 

explained in frequency domain by using Fourier transform as follows:    

)}()({ *1 sFTwFTFT −
 

Where FT is a Fourier transform, FT-1 is a inverse Fourier transform,* 

denotes complex conjugate. 

 

4.3.3. Hierarchical Matching Implementation on FPGA 

Hierarchical image matching algorithm as described in above section, here 

same matching algorithm is proposed to develop on FPGA. Development 
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of hierarchical matching algorithm starts with image at the top of image 

pyramid and sparse set of features are detected as describen in [7]. 

Steps for implementation of Hierarchical Matching Algorithm can be given 

as below: 

STEP 1:  Select Ground Points (GPs) using appropriate threshold value of 

Dgi as described in section 4.2.1. 

STEP 2:   Assign IV values to All GPs found by STEP 1. 

STEP 3:  Filter the GPs by suppression of GPs which not local maximum in 

their corresponding window. This will generate candidate feature for next 

stages. Size of suppression window directly affects density of features.  

STEP 4:  Select appropriate search area (SA) around feature selected in 

both directions. 

STEP 5:  Select Appropriate correlation window and for each feature 

(pixels) in reference image , find pixels in second image in SA using 

maximum correlation as cost function of similarity measure.   

STEP 6:  Map the point selected on the second level image of image 

pyramid and apply STEP 1 to STEP 6 until original image available for 

processing.     
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5.                                           RESULTS AND ANALYSIS 
 

5.1. Floating Point Complex Multiplication Pipeline Unit 

Floating point numbers can accommodate wide range of numbers ranging 

from 1.2E-38 to 3.4E38. As proposed DSP-FPGA architecture has 

suggested that FPGA will be used for carry out complex multiplications. To 

implement this requirement of complex floating point multiplications on 

FPGA, PDK of DK Design Suite, Celoxica Ltd. has been used. PDK provides 

already implemented library for various blocks like Floating Point, Fixed 

Point libraries for rapid FPGA development. IEEE 754 Floating point library 

supports various functions/blocks for Addition, Multiplication, Subtraction, 

Square root, Division and comparison blocks. All of these blocks are 

implemented as pipeline manner, so the library is called Pipelined 

Floating Point Library. Latency of each of block is given in Table 3.2.   

Following table gives the no of clock cycles to calculate complex 

multiplications for the   different no of input operand pairs. 

No of  
Inputs 

Result 
Latency 

1 19 
2 20 
4 22 
8 26 
16 34 
32 50 
64 82 
128 146 
256 274 
512 530 

Table 5.1: Floating Point Complex Multiplication Pipeline latency input 

Floating Point 
Bits 

Gates 
Flip-
Flops 

Latency 

32 760764 13058 7+10=17 
Table 5.2: Floating Point Pipeline Resources 

 

Floating point library had implemented IEEE 754 floating point standard as 

described in Chapter 3. For complex multiplication of floating point we 

require resources as given in table 5.2. As floating point operations 

multiplication is implemented by using gates instead of inbuilt multipliers, 

so it requires higher no of resources in terms of gates/flip-flops.  Graph 

given below gives the latency verses no if input pairs.  
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Figure 5.1 Graph of no of inputs-Execution latency 

This complex multiplication is useful when use of floating point DSP like TI 

C6713 is used, which is a floating point DSP by Texas Instruments.  

 

5.2. Fixed Point Complex Multiplication Pipeline Unit 

 

Fixed Point Bits 
Integer Fraction 

Gates 
Flip-
Flops 

Max  No Accuracy 

32 16 904397 3924 
±2147483647.999984741 
 

1.52588E-05 

32 8 514749 3284 
±2147483647. 99609375 
 

0.00390625 

16 16 526937 2652 ±32767.999984741 1.52588E-05 

Table 5.3: Fixed Point Complex Multiplication Pipeline 

Since implementing floating point operation on FPGAs are never preferred 

due to high amount of resource usage. So it is always preferred to avoid 

the floating point multiplications wherever possible.  Same complex 

multiplication operation is implemented on fixed point number 

representation. Here fixed point multiplication is implemented; because of 

it is being compatible with TI’s C6416 DSP processor. From the figures of 
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gates being used by fixed point implementation, it can be noticed that the 

no of gates increase in high amount as the no of bits representing number 

increases. So it is a tradeoff between no of resources (gates) to the 

accuracy in representing number and range represented by that no of 

bits.  

Handel-C is also supports Fixed Point Library for carry out various 

arithmetic operation on the fixed point numbers of variable no of integer 

and fraction bits as described in Chapter 3. 

5.3. Square Root Unit 

To find normalize cross correlation it is required to implement square root 

block to calculate denominator. Implementation of square root function is 

done here by using CORDIC as described in Chapter 4. Here in table 5.4 

statistics and comparisons for various configurations of square root block 

are given in Table 5.4. 

Here it can be noticeable from the figures shown in table 5.4 that as the 

no of bits representing increases no of gates used also increases. For 

example Fixed point number (I:8 , F:8) requires 38027 gates while 

number with (I:16, F:16) require almost four times gates(135219 gates ). 

It can also observe that as the no of bits increases the delay in finding 

square root also increases. Delay for finding square root can be given as 

following equation. 

Delay D= I/2+F+1, where, I=Integer Bits and F=Fraction Bits 

 

Fixed Point 
Integer Fraction 

Total 
Bits 

Gates Flip 
Flops 

Result 
Latency 

Max Accurac
y 

8 1 9 9450 103 14 16 0.5 
8 8 16 38027 139 41 16 0.0039062 
16 1 17 24006 144 32 256 0.5 
16 8 24 64035 178 47 256 0.0039062 
16 16 32 135219 219 77 256 1.5258E-05 
32 1 33 73178 224 56 65536 0.5 
32 8 40 136587 258 68 65536 0.0039063 
32 16 48 234974 299 101 65536 1.5258E-05 
32 32 64 509675 379 149 65536 2.3283E-10 

 
IEEE 754 Floating 

Point Number  32 262250 2712 29 3.4E38 --------------- 

Table 5.4 Statistics for Square Root block on FPGA 

 

 58



Chapter 5                                                                                                                      Results & Analysis 

5.4. Correlation on FPGA 

As given in [7], here normalized cross correlation is used as a cost 

function for similarity measure. Maximum correlation value signifies better 

match. Correlation value ranges from -1 to +1 whew +1 signifies Perfect 

match, while -1 signifies no match. To implement correlation function 

requires fixed size window from both of the images and correlation is 

performed on that window of values. Correlation value gives the similarity 

of pixel of one image with pixel of another image.  

There are two stages in calculating correlation value. 

Without 
Parallel Execution 

With 
Parallel Execution 

Clock 
Savings Window 

Size Total 
Cycles 

SQRT 
Cycles 

Total 
Cycles 

SQRT 
Cycles 

% % 

4x4 377 197 252 126 33.16 36.0
6x6 588 202 396 126 32.65 37.6
8x8 874 202 596 126 31.81 37.6

12x12 1,679 195 1,164 126 30.67 35.3
16x16 2,810 194 1,956 126 30.39 35.0

Table 5.5 Statistics of Correlation Window with Different Size on FPGA  

STAGE 1:  In this stage average value of both window is calculated. This 

is carried out by following simple equation for NxN size of window W.  
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STAGE 2:  In this stage differences with average value for window W and 

S are calculated as follows: 
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After this, Correlation is calculated as following equation: 
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D
NC =  

Where, C= Correlation, N=Numerator, D=Denominator 

Here, Square root is implemented as a one block using CORDIC algorithm 

as given in 4.3.1, so it is also useable other applications [17]. 

 

5.5. Image Matching Results 

MATLAB is a one of the best tools for developing image processing 

algorithms. Here in this thesis work it also helped for verification of 

algorithms before implementation on FPGA. Initially here results of 

MATLAB implementation of Hierarchical algorithm is discussed in 5.5.1, 

then results of FPGA implementation is discussed in section 5.5.2. 

 

5.5.1. Results of Implementation in MATLAB 

As the title of dissertation suggests, Design of FPGA based co-processor 

for stereo imaging algorithms using Handel-C, here Hierarchical image 

matching algorithm and FFT algorithm on DSP-FPGA hybrid architecture is 

implemented. In order to garner a full understanding of the algorithms, 

the algorithms are written using MATLAB prior to any hardware 

development. This provides better understanding of the algorithms and 

also provides result verification support for hardware implementation. 

Because in hardware results are available in form of numbers, so 

visualizing the results is done on MATLAB. Main reason for selection of this 

algorithm is the speed of the algorithm. The speed of the algorithm is 

mainly because of the less computation involved in the algorithm and the 

correlation is calculated for only identified interest points.  

 

Implementation 

As part of the implementation the hierarchical algorithm has been 

implemented for 5 levels of calculations. The whole implementation has 

been done in MATLAB (version2007-b). The algorithm   has been applied 

on high resolution satellite images. The algorithm works as follows: 

Step 1. From the image pair highest level of image pyramid is 

calculated. 
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Step 2. For top level reference image interest points are identified. 

Step 3. For all these interest-points correlation is performed within 

search window in second image. 

Step 4. All the interest points and its matches are mapped to image pair 

of next lower level. 

Step 5. For all lower level image pair Step 1 to 4 are performed. 

Step 6. Finally all matched pixel pair are used for disparity map 

generation.  

Results 

This implementation of the algorithm has been applied to get the disparity 

map. The input image and matches found are shown in preceding Figure 

5.2 , Figure 5.3 and Figure 5.4. To calculate disparity map correlation 

algorithm has been implemented and disparity map calculated from those 

interest points are used as input and disparity map is calculated. This is 

shown in Figure 5.5 and ground truth disparity map is shown in figure 5.6. 

It can be seen in the Figure 5.5 the disparity map shows most of the 

objects well distinguished. The correlation window size is 32 and Dg is 10. 

 

  
Figure: 5.2 Input stereo image pair. 

         
   ‘A’      ‘B’ 

Figure:5.3 –‘A’ Interest points –‘B’ matches found window-size:32 
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Figure 5.4: Match for window-size 8 

 
 

 
 

Figure 5.5: Disparity map from HIM algorithm 
 

 
 

Figure 5.6: Ground truth disparity. 
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5.5.2. Results of Implementation in FPGA 

A detail of stereo image matching using Hierarchical Image Matching 

(HIM) algorithm is discussed in sections 4.2.1, 4.2.2, and 4.2.3. 

Implementation of these algorithms on FPGA as in form of Square Root 

calculation unit, Correlation unit, and is discussed in section 4.3.1 and 

section 4.3.2. Handel-C code for each of the unit can be found in 

Appendix-I. Development of Hierarchical Algorithm for size of 61x61 

image pair on FPGA is done in Handel-C. Code for Hierarchical Algorithm 

can be found in Appendix-I. 

 

Following Table 5.6 shows the statistics involved in HIM algorithm. Here, 

HIM is performed with different size of correlation window on image pair 

stored in BlockRAM. It can be observed that as the window size of 

correlation increases computations increases for correlation, which results 

into delay in results. After some threshold of window size, if further 

window size is increased, execution latency starts decreasing. Reason 

behind this scenario is that as the size of window increases the possible 

candidate pixels for matching decreases due to neighbouring constraints 

for calculations (Correlation requires same dimensions of both windows). 

So, As the size of window increases, candidate pixels for matching 

decreases. Table 5.8 shows statistics for the HIM algorithm using 

variable size of search windows. Here two variations are made, one with 

search window of 32x32 size and another with 16x16 size. Here for both 

of the variations results of matching are verified with MATLAB results of 

same algorithm.  From the statistics from the table, one can observe that 

if search window size is reduced by half, computations are theoretically 

reduced by 4 times.  

Clock Cycles 

Window Size Without 
Parallel 

Execution 

With 
Parallel 

Execution 

Clock 
Savings 

% 

4x4 15,954,847 9,097,592 42.98 
6x6 20,174,627 11,414,380 43.42 
8x8 25,522,887 14,211,936 44.32 
12x12 29,454,673 16,138,222 45.21 
16x16 27,139,314 14,760,600 45.61 

Table 5.6 Matching Algorithm on FPGA Statistics with and without Parallel Execution 
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Without 
Parallel 

Execution 

With Parallel 
Execution 

Gate 
Reduction 

% 
Gate Utilization 3,351,412 3,159,054 5.74 

Table 5.7: Gate Utilization for HIM. 
 

From the Table 5.7 it can be seen. Here practically also the computations 

are decreasing by that much amount. But preprocessing of image pair like 

calculation of average map for image pair, candidate pixel identification 

for matching and other overhead of calculations remains same for the any 

search window size. These overhead calculations restrict to achieve 4 

times faster execution because they are independent from the search 

window size and always require to calculate for any window size. Table 

5.7 gives the statistics for gate utilization of HIM on FGPA with/without 

parallel execution.  Here, it can be observed from the Table 5.8 that for 

reduction in cycles in percentage is increasing the as the window size 

increasing, which also supports the observations and conclusions from the 

Table 5.6. 

 

Search Window 
Window Size 

Window=32 Window=16 
Reduction of 

Cycles % 
4x4 9,097,592 3,551,136 60.97 
6x6 11,414,380 3,894,968 65.88 
8x8 14,211,936 4,195,376 70.48 

12x12 16,138,222 3,097,126 80.81 
16x16 14,760,600 1,497,720 89.85 

Table 5.8 Matching Algorithm on FPGA Statistics with Search Window of size 32 and 16  

So from Table 5.8 data it can be observed that if the possible match is 

highly predictable (maximum pixel disparity can be predicted from the 

previous results or can be predictable using mathematical calculations 

using camera parameters and epipolar geometry) then one can finally 

decide optimum window size that requires less computations and faster 

matching of candidate pixels is possible. 
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6.                                                          CONCLUSION  

 

It is a challenging task to develop complex computer vision algorithm with 

constrains and meet real time requirement of the applications on FPGA. It 

is necessary to implement the efficient customized architecture rather 

than simply porting software implementation on hardware. 

 

As the aim of the dissertation, Design of FPGA based Co-Processor for 

Stereo Imaging Algorithms Using Handel-C, hierarchical image matching 

algorithm has been studied and implemented on FPGA. For 

implementation on FPGA various basic building block like fixed-point  

square root unit, complex multiplication unit for fixed point and floating 

point arithmetic are implemented with pipeline to increase throughput. For 

image matching, normalized cross correlation function is implemented as 

similarity measure. Finally all this building blocks are used for 

implementation of Hierarchical matching algorithm on stereo image pair. 

Fixed-Point complex multiplication unit (TI’s C64xx) and Floating-Point 

complex multiplication unit (TI’s C67xx) is designed for FFT calculation on 

DSP-FPGA hybrid architecture.    

 

Selection between Floating point calculations and Fixed point calculations 

is dependant on the various parameters like accuracy, execution latency, 

resources available, range of number that can be represented for 

requirement of applications. Selection is always a trade-off among these 

parameters. 

 

Programming hardware using high level language Handel-C provides many 

advantages like rapid hardware design, faster debugging, less 

programming efforts then languages like VHDL.   
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                                                               APPENDIX-A               
HANDEL-C SOURCE CODE 

 
1. Floating Point Complex Pipelined Multiplication Unit 
#include<stdlib.hch> 
#include<fixed.hch> 
 
set family= XilinxSpartan3; 
set clock = external "P35"; 
 
 
#define N 512 
#define M 32 
 
 
void main() 
{ 
 
FS P1_R1[2],P1_R2[2],P1_I1[2],P1_I2[2]; 
FS P2_R1[2],P2_R2[2],P2_I1[2],P2_I2[2]; 
FS FloatRR[2],FloatII[2],FloatRI[2],FloatIR[2]; 
FS ResultImag[M],ResultReal[M]; 
int 16 Real[M],Imag[M]; 
 
unsigned int 1 FUP,FUPI,FM,FMI; 
unsigned int 9 k; 
unsigned int 10 RI; 
 
/*static unsigned 10 ML = FloatPipeMultCycles; 
static unsigned 10 SL =N+FloatPipeSubCycles;*/ 
 
static mpram Fred 
{ 
 ram <unsigned 32> P1[N*2]; 
    ram <unsigned 32> P2[N*2]; 
     
}Result with {block="BlockRAM"}; 
 
static mpram Fred  
    { 
    ram <unsigned 32> P1[N]; 
    ram <unsigned 32> P2[N]; 
    }BRAM_R1={ 
    0x40156543,0x400CCCCD,0x40833333,0x40866666,0x42306666, 
/*RAM can be initlized or written witrh 32 bit Hex data */ 
0x40166666,0x400CCCCD,0x40833333,0x40866666,0x42306666,0x4230CCCC}with 
{block="BlockRAM"}; 
 static mpram Fred 
    { 
    ram <unsigned 32> P1[N]; 
    ram <unsigned 32> P2[N]; 
    }BRAM_I1={ 
0x40833333,0x40866666,0x42306666,0x4230CCCD,0x43CA0CCD,0x43CA199A,… /*RAM can be 
initlized or written witrh 32 bit Hex data */ 
     
 ……,0x43CA0CCD,0x43CA199A,0x40166666,0x400CCCCD}with {block="BlockRAM"}; 
 static mpram Fred 
    { 
    ram <unsigned 32> P1[N]; 
    ram <unsigned 32> P2[N]; 
    }BRAM_R2={ 
    0x40866666,0x42306666,0x4230CCCD,0x43CA0CCD,0x43CA199A,0x40166666, /*RAM can be 
initlized or written witrh 32 bit Hex data */ 
0x43CA0CCD,0x43CA199A,0x43CA0CCD,0x43CA199A,0x40166666,0x400CCCCD}with 
{block="BlockRAM"}; 
 static mpram Fred 
    { 
    ram <unsigned 32> P1[N]; 



    ram <unsigned 32> P2[N]; 
    }BRAM_I2={ 
    0x42306666,0x4230CCCD,0x43CA0CCD,0x43CA199A,0x40166666,0x400CCCCD, /*RAM can be 
initlized or written witrh 32 bit Hex data */ 
,0x40166666,0x400CCCCD,0x40833333,0x40866666}with {block="BlockRAM"}; 
par 
{ 
FUP=0; 
FUPI=1; 
FM=0; 
FMI=1; 
k=0; 
RI=0; 
} 
do 
{ 
    par 
        { 
           FUP++; 
           FUPI++;  
           FM++; 
           FMI++; 
            k++; 
  RI++; 
           P1_R1[FUP]=FloatUnpackFromInt32(BRAM_R1.P1[k]); 
           P1_R2[FUP]=FloatUnpackFromInt32(BRAM_R2.P1[k]); 
           P1_I1[FUP]=FloatUnpackFromInt32(BRAM_I1.P1[k]); 
      P1_I2[FUP]=FloatUnpackFromInt32(BRAM_I2.P1[k]); 
 
      P2_R1[FUP]=FloatUnpackFromInt32(BRAM_R1.P1[k]); 
      P2_R2[FUP]=FloatUnpackFromInt32(BRAM_R2.P1[k]); 
      P2_I1[FUP]=FloatUnpackFromInt32(BRAM_I1.P1[k]); 
      P2_I2[FUP]=FloatUnpackFromInt32(BRAM_I2.P1[k]); 
           if (ML)  
            { 
                ML--; 
            } 
            else 
            { 
            delay; 
            } 
            if (SL!=0 && ML==0)  
            {    
                SL--; 
            } 
            else 
            { 
            delay; 
            } 
      /*R1*R2*/ 
FloatPipeMult (P1_R1[FUPI],P1_R2[FUPI],&FloatRR[FM],3,&P1_R1[FUPI], 
&P1_R2[FUPI],__clock,FloatPipeChipTypeGeneric);  
      /*I1*I2*/ 
FloatPipeMult (P1_I1[FUPI],P1_I2[FUPI],&FloatII[FM],3,&P1_I1[FUPI], 
&P1_I2[FUPI],__clock,FloatPipeChipTypeGeneric);  
      /*R1*I2*/ 
FloatPipeMult (P2_R1[FUPI],P2_I2[FUPI],&FloatRI[FM],3,&P2_R1[FUPI], 
&P2_I2[FUPI],__clock,FloatPipeChipTypeGeneric); 
      /*R2*I1*/ 
FloatPipeMult (P2_R2[FUPI],P2_I1[FUPI],&FloatIR[FM],3,&P2_R2[FUPI], 
&P2_I1[FUPI],__clock,FloatPipeChipTypeGeneric); 
            /*(R1*R2)-(I1*I2)*/ 
FloatPipeSub(FloatRR[FMI],FloatII[FMI],&ResultReal[(k<-5)-1],3,&FloatRR[FMI], &FloatIR[FMI]); 
            /*(R1*I2)+(I1*R2)*/  
FloatPipeAdd(FloatRI[FMI],FloatIR[FMI],&ResultImag[(k<-5)-1],3,&FloatRI[FMI], &FloatIR[FMI]); 
            Result.P1[RI+0]=(unsigned)FloatPackInInt32(ResultReal[k<-5]); 
            Result.P2[RI+N]=(unsigned)FloatPackInInt32(ResultImag[k<-5]);  
  } 
 
}while (ML+SL!=0); 
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/*Block Main End*/ 
 
/*k=0; 
do 
{ 
    par 
    { 
    Real[k<-5]= FloatPackInInt32(ResultReal[k<-5]); 
    Imag[k<-5]= FloatPackInInt32(ResultImag[k<-5]); 
    k++; 
    } 
}while(k<32);*/ 
delay; 
 
} 

 
2. Square Root Calculation Unit & Correlation Calculation Unit 
#include<fixed.hch> 
#include<stdlib.hch> 
set clock = external "P35"; 
#define N 16 
#define CW 4 
#define INT 32 
#define FRAC 8 
typedef FIXED_SIGNED(INT,FRAC) FS; 
typedef FIXED_SIGNED(INT*2+1,FRAC) FSS; 
ram <unsigned int 8> Left[N][N]={ 
    139,49,11,210,196,28,0,21,141,177,27,45,14,45,152,254,… 
/* RAM can be initialized or can be written */ 
    …,248,67,50,213,23,252,170,53,137,21,131,114,26,47,26,211}; 
ram <unsigned int 8> Right[N][N]={ 
    86,199,174,93,199,110,15,25,142,41,108,174,206,203,201,6, 
    /* RAM can be initialized or can be written */ 
    16,240,22,39,193,156,34,180,97,189,27,9,235,208,36,163}; 
 
//SQRT// 
void SQRT(FSS* F) 
{ 
FIXED_UNSIGNED(INT*2+1,8)  FXA,Base,Y,FXY,AA; 
unsigned int 6 i; 
 
par 
{ 
FXA=FixedCastSigned(FIXED_ISUNSIGNED,INT*2+1,FRAC,*F); 
Base = FixedLiteral(FIXED_ISUNSIGNED,INT*2+1,FRAC,4294967296.0); 
Y    = FixedLiteral(FIXED_ISUNSIGNED,INT*2+1,FRAC,0.0); 
i=1; 
} 
do 
    { 
             
            Y=FixedAdd(Y,Base); 
            AA=FixedMultUnsigned(Y, Y); 
             
            par 
            { 
                if  ( FixedGT(AA, FXA) ) 
                { 
                    Y=FixedSub(Y, Base);  // base should not have been added, so we substract again 
                } 
                Base=FixedRightShift(Base,1);      // shift 1 digit to the right = divide by 2 
                i++;             
            } 
        } while(i<=41); 
 
    *F=FixedCastUnsigned(FIXED_ISSIGNED,INT*2+1,FRAC,Y); 
     
 
//return (Y); 
 

 69



} 
 
//SQRT// 
void main() 
{ 
unsigned int 5 i,j; 
unsigned int 1 Index,IndexI; 
FS NumSUM,Den1,Den2,SumL,SumR,L[2],R[2],AvgL,AvgR,Num,FP1,FP2,FPMUL1,FPMUL2,T1,T2; 
FSS Denom,Corr,D1,D2,Numerator; 
par 
{ 
NumSUM = FixedLiteral(FIXED_ISSIGNED,INT,FRAC,0.0); 
Den1   = FixedLiteral(FIXED_ISSIGNED,INT,FRAC,0.0); 
Den2   = FixedLiteral(FIXED_ISSIGNED,INT,FRAC,0.0); 
Num    = FixedLiteral(FIXED_ISSIGNED,INT,FRAC,CW*CW); 
i=0; 
j=0; 
SumL=FixedLiteral(FIXED_ISSIGNED,INT,FRAC,0.0); 
SumR=FixedLiteral(FIXED_ISSIGNED,INT,FRAC,0.0); 
} 
//Calculation AVG 
do 
{ 
    do 
    { 
           par 
        { 
        T1.FixedIntBits=(signed)(0@Left[i<-4][j<-4]); 
        T2.FixedIntBits=(signed)(0@Right[i<-4][j<-4]); 
        } 
        par 
        { 
        SumL=FixedAdd(SumL,T1); 
        SumR=FixedAdd(SumR,T2); 
        j++; 
        } 
    }while(j<=(CW-1) ); 
    par 
    { 
    i++; 
    j=0; 
    } 
}while(i<=(CW-1)); 
par 
{ 
 
AvgL=FixedDivSigned(AvgL,Num); 
AvgR=FixedDivSigned(AvgR,Num); 
//Calculation Correlation 
 
    i=0; 
    j=0; 
} 
do 
{ 
    do 
    { 
         
        par 
        { 
 
            FP1.FixedIntBits =(signed)(0@Left[i<-4][j<-4]); 
            FP2.FixedIntBits =(signed)(0@Right[i<-4][j<-4]); 
        } 
        par 
        {       
            FP1 =FixedSub(FP1,AvgL); 
            FP2 =FixedSub(FP2,AvgR); 
        }     
        FPMUL1=FixedMultSigned(FP1,FP2); 
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        NumSUM = FixedAdd(NumSUM,FPMUL1); 
        par 
        { 
        FPMUL1=FixedMultSigned(FP1,FP1); 
        FPMUL2=FixedMultSigned(FP2,FP2); 
        } 
        par 
        { 
        Den1   = FixedAdd(Den1,FPMUL1); 
        Den2   = FixedAdd(Den2,FPMUL2); 
        j++; 
        } 
    }while(j<=(CW-1)); 
    par{ 
    i++; 
    j=0; 
    } 
}while(i<=(CW-1) ); 
Numerator=FixedCastSigned(FIXED_ISSIGNED, INT*2+1, 8, NumSUM); 
D1=FixedCastSigned(FIXED_ISSIGNED, INT*2+1, 8, Den1); 
D2=FixedCastSigned(FIXED_ISSIGNED, INT*2+1, 8, Den2); 
Denom=FixedMultSigned(D1,D2); 
SQRT(&Denom); 
Corr =FixedDivSigned(Numerator,Denom); 
delay; 
} 

 
 
3. Hierarchical Image Matching Algorithm of FPGA 
#include<stdlib.hch> 
#include<fixed.hch> 
 
#define X 61                                                    // Image width 
#define Y 61                                                    // Image height 
#define CorrWin 6                                               // Window size 
#define ss 32                                                   // Search space size 
#define OffSet CorrWin/2                                        // Dynamic offset 
#define Thresold 20                                             // Ground point threshold 
#define N 16                         
#define CW 6 
#define INT_SQR 32                                              // Number of integer bits in fixed point number 
#define FRAC_SQR 8                                              // Number of fraction bits in fixed point number 
 
typedef FIXED_SIGNED(INT_SQR*2+1,FRAC_SQR) FSS;                 // Typedefinition of fixed signed 
number   - (64,8) 
typedef FIXED_SIGNED(INT_SQR,FRAC_SQR) FS;                      // Typedefinition of fixed signed 
number   - (32,8) 
typedef FIXED_UNSIGNED(16,8) FU;                                // Typedefinition of fixed unsigned number 
- (16,8) 
 
 
set clock =external "P1";                                       // Operating clock given on pin - 1 
 
extern macro expr abs(a);                                       // Absolute macro definition 
 
                                                                // Left Image data 
ram <unsigned 8>  ArrLeft[X][Y] 
={104,95,93,102,115,128,122,119,117,117,118,117,118,129,….. 
/* RAM can be initialize using 8 bit unsigned numbers or writing RAM */ 
…..,81,86,87,86,88,84,80,82,105,133,145,153,156,157};  
 
                                                                // Right Image data     
ram <unsigned 8> ArrRight[X][Y] 
={92,97,96,94,100,109,125,126,120,118,119,120,118,117,130,…… 
/* RAM can be initialize using 8 bit unsigned numbers or writing RAM */ 
……..,82,83,88,88,87,89,84,80,85,113,137,149,155,159};  
 
ram <unsigned 12> IV_Point[X][Y];                    // Interest point array 
ram <unsigned 40> AvgMapL[X][Y];                   // Average map for left image 
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ram <unsigned 40> AvgMapR[X][Y];                   // Average map for right image 
ram <unsigned 8> I_J_REFI_REFJ[256][4];         // Correlation array 
 
void SQRT(FSS* F)                                               // Square root function definition 
{ 
unsigned int 6 i; 
FIXED_UNSIGNED(INT_SQR*2+1,8)  FXA,Base,YY,FXY,AA; 
 
par{ 
FXA=FixedCastSigned(FIXED_ISUNSIGNED,INT_SQR*2+1,FRAC_SQR,*F); 
Base = FixedLiteral(FIXED_ISUNSIGNED,INT_SQR*2+1,FRAC_SQR,4294967296.0); 
YY    = FixedLiteral(FIXED_ISUNSIGNED,INT_SQR*2+1,FRAC_SQR,0.0); 
i=1; 
} 
 
do 
{ 
     
    YY=FixedAdd(YY, Base); 
    AA=FixedMultUnsigned(YY, YY); 
    par{  
          if( FixedGT(AA, FXA) ) 
                { 
                       YY=FixedSub(YY, Base);  // base restoration  
                } 
             
                Base=FixedRightShift(Base,1);      // shift 1 digit to the right = divide by 2 
                i++;             
          } 
} while(i<=41); 
 
*F=FixedCastUnsigned(FIXED_ISSIGNED,INT_SQR*2+1,FRAC_SQR,YY); 
} 
 
 
 
 
 
void main() 
{ 
 
int 32 SumL, SumR; 
int 16 P; 
int  8 P1,P2; 
signed   int 8 condition_i,condition_j,condition_ii,condition_jj; 
 
unsigned int 6 i,j,ii,jj; 
unsigned int 11 Index,Count; 
unsigned int 8 temp,XX,YY,GP[2][512],ti,tj; 
unsigned int 12 temp1,temp2; 
unsigned int 3 count; 
unsigned int 12 Mask[3][3];  
unsigned int 24 SQR; 
unsigned int 8 k; 
unsigned int 6 var1,var2,var3; 
unsigned int 6 II,JJ,IV_counter; 
unsigned 1 suppresed,flag; 
unsigned 6 refi,refj,refi_start,refi_end,refj_start,refj_end,mi,mj; 
 
FS FP1,FP2,Avg,FPMUL1,FPMUL2,CorrSum,Den1,Den2,AvgLS,AvgRS,TempSQR,AvgL,AvgR,Num; 
FSS Denom,FinalCorr,D1,D2,Numerator,GlobalCorr; 
par 
{ 
    Num = FixedLiteral(FIXED_ISSIGNED,INT_SQR,FRAC_SQR,49.0); 
    GlobalCorr= FixedLiteral(FIXED_ISSIGNED,INT_SQR*2+1,FRAC_SQR,-1.0); 
    k=0; 
    Index=0; 
    suppresed = 1; 
    flag=0; 
    SumL=0; 
    SumR=0; 
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    IV_counter=0; 
} 
for (i=OffSet;i<61-OffSet;i++)                                  // Ground point calculation start 
{ 
    for (j=OffSet;j<61-OffSet;j++) 
    { 
        Mask[0][0]=0@ArrLeft[i-1][j-1]; 
        Mask[0][1]=0@ArrLeft[i-1][j]; 
        Mask[0][2]=0@ArrLeft[i-1][j+1]; 
 
        Mask[1][0]=0@ArrLeft[i][j-1]; 
        Mask[1][1]=0@ArrLeft[i][j]; 
        Mask[1][2]=0@ArrLeft[i][j+1]; 
         
        Mask[2][0]=0@ArrLeft[i+1][j-1]; 
        Mask[2][1]=0@ArrLeft[i+1][j]; 
        Mask[2][2]=0@ArrLeft[i+1][j+1]; 
  if(i==6 && j==9) 
  { 
   delay; 
  } 
         
IV_Point[i][j]=abs(Mask[1][1]-Mask[0][0])+abs(Mask[1][1]-Mask[0][1])+ abs(Mask[1][1]-
Mask[0][2]) +abs(Mask[1][1]-Mask[1][0]) +abs(Mask[1][1]-Mask[1][2]) +abs(Mask[1][1]-
Mask[2][0]) +abs(Mask[1][1]-Mask[2][1]) +abs(Mask[1][1]-Mask[2][2]); 
 
  if(IV_Point[i][j] == 0) 
  { 
   delay; 
  } 
            par{ 
                    SumL=0; 
                    SumR=0; 
               } 
            for (ii=0;ii<=6;ii++) 
            { 
                for(jj=0;jj<=6;jj++) 
                { 
                    par 
                    { 
                        SumL+=(signed)(0@ArrLeft[i+ii-3][j+jj-3]);               
                        SumR+=(signed)(0@ArrRight[i+ii-3][j+jj-3]);      
                    } 
                }     
            } 
            par 
            {    
                AvgL.FixedIntBits=SumL; 
                AvgR.FixedIntBits=SumR; 
            } 
            par{ 
                AvgL=FixedDivSigned(AvgL,Num); 
                AvgR=FixedDivSigned(AvgR,Num); 
               } 
            par{ 
                AvgMapL[i][j]=((unsigned)(AvgL.FixedIntBits))@((unsigned)(AvgL.FixedFracBits)); 
                AvgMapR[i][j]=((unsigned)AvgR.FixedIntBits)@((unsigned)AvgR.FixedFracBits); 
               } 
    }        
 
}                                                               // Ground point calculation over 
for (i=OffSet;i<61-OffSet-1;i++)                                // Interest point calculation start 
{ 
    for (j=OffSet;j<61-OffSet-1;j++) 
    { 
  par{ 
            count =0; 
            temp1=0@ArrLeft[i][j]; 
            } 
        temp2=0@ArrLeft[i-1][j]; 
        if (abs(temp1-temp2)>Thresold) 
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            { 
            count++; 
            } 
        temp2=0@ArrLeft[i+1][j]; 
        if (abs(temp1-temp2)>Thresold) 
            { 
            count++; 
            } 
        temp2=0@ArrLeft[i][j-1]; 
        if (abs(temp1-temp2)>Thresold) 
            { 
            count++; 
            } 
         
        temp2=0@ArrLeft[i][j+1]; 
        if (abs(temp1-temp2)>Thresold) 
            { 
            count++; 
            } 
 
 
 
        if(count>=2) 
        { 
            par 
            { 
            GP[0][Index<-9]=0@i; 
            GP[1][Index<-9]=0@j; 
            Index++; 
            suppresed = 0; 
            } 
            Mask[0][0]=IV_Point[i-1][j-1]; 
         Mask[0][1]=IV_Point[i-1][j]; 
         Mask[0][2]=IV_Point[i-1][j+1]; 
         Mask[1][0]=IV_Point[i][j-1]; 
         Mask[1][1]=IV_Point[i][j]; 
         Mask[1][2]=IV_Point[i][j+1]; 
         
         Mask[2][0]=IV_Point[i+1][j-1]; 
         Mask[2][1]=IV_Point[i+1][j]; 
         Mask[2][2]=IV_Point[i+1][j+1]; 
 
   if( (Mask[0][0] > Mask[1][1]) ||  (Mask[0][1] > Mask[1][1]) || 
(Mask[0][2] > Mask[1][1]) || (Mask[1][0] > Mask[1][1]) || (Mask[1][2] > Mask[1][1]) || 
(Mask[2][0] > Mask[1][1]) || (Mask[2][1] > Mask[1][1]) || (Mask[2][2] > Mask[1][1])) 
   { 
          suppresed = 1; 
   } 
 
   else 
   { 
          delay; 
   } 
                   
 
            if(suppresed == 0) 
            { 
       par 
                { 
                    GlobalCorr= FixedLiteral(FIXED_ISSIGNED,INT_SQR*2+1,FRAC_SQR,-1.0); 
            IV_counter++; 
                    flag=1; 
                    II=i; 
                    JJ=j; 
                } 
 
                 par 
                 { 
                 condition_ii = (signed )(0@II)-(ss/2); 
        condition_jj = (signed)(0@JJ)-(ss/2); 
                 condition_i = (signed)(0@II)+(ss/2); 
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                 condition_j = (signed)(0@JJ)+(ss/2); 
                 } 
        par 
                 { 
                         if(condition_ii <= 1) 
                { 
                 refi_start = (1)+(CorrWin/2); 
                } 
                else 
                { 
                refi_start =abs(i-(ss/2))+(CorrWin/2); 
                } 
                if(condition_jj <= 1) 
                { 
                 refj_start = (1)+(CorrWin/2); 
                } 
                else 
                { 
                            refj_start= abs(j-(ss/2))+(CorrWin/2); 
                } 
 
                if(condition_i > X)  
                { 
                            refi_end=X-(CorrWin/2); 
                }  
                else 
                { 
                 par 
                            { 
                                var1 = (ss/2);   
                                var2 = (CorrWin/2); 
                            } 
                                var3 = abs(var1-var2); 
                                refi_end = i+var3; 
                   } 
 
                if(condition_j > Y)  
                { 
                 var2 = (CorrWin/2);  
                            refj_end = (Y)-(CorrWin/2); 
                }  
                else 
                { 
                 par 
                            { 
                                var1 = (ss/2);  
                                var2 = (CorrWin/2); 
                            } 
                                var3 = abs(var1-var2); 
                                refj_end = j+var3; 
                         } 
                    } 
 
                     for (refi=refi_start;refi<=refi_end;refi++) 
                         { 
                            for (refj=refj_start;refj<=refj_end;refj++) 
                            { 
                             
                                    par 
                                    { 
                                            CorrSum= FixedLiteral(FIXED_ISSIGNED,INT_SQR,FRAC_SQR,0.0); 
                                            Den1     = FixedLiteral(FIXED_ISSIGNED,INT_SQR,FRAC_SQR,0.0); 
                                            Den2     = FixedLiteral(FIXED_ISSIGNED,INT_SQR,FRAC_SQR,0.0); 
                                    } 
                                    for(mi=0;mi<=CorrWin;mi++) 
                                    { 
                                        for(mj=0;mj<=CorrWin;mj++) 
                                        { 
                                            par 
                                            { 
                                                FP1.FixedIntBits =0@((signed)ArrLeft[i+mi][j+mj]); 
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                                                FP2.FixedIntBits =0@((signed)ArrRight[refi+mi][refj+mj]); 
                                                AvgL.FixedIntBits=(signed)(AvgMapL[i][j]\\8); 
                                                AvgR.FixedIntBits=(signed)(AvgMapR[refi][refj]\\8); 
                                            } 
                                            par 
                                            { 
                                                AvgL.FixedFracBits=(signed)(AvgMapL[i][j]<-8); 
                                                AvgR.FixedFracBits=(signed)(AvgMapR[refi][refj]<-8); 
                                            } 
                                             
                                            par 
                                            { 
                                                FP1 =FixedSub(FP1,AvgL); 
                                                FP2 =FixedSub(FP2,AvgR); 
                                            } 
 
                                                FPMUL1=FixedMultSigned(FP1,FP2); 
                                                CorrSum = FixedAdd(CorrSum,FPMUL1); 
 
                                            par 
                                            { 
                                                FPMUL1=FixedMultSigned(FP1,FP1); 
                                                FPMUL2=FixedMultSigned(FP2,FP2); 
                                            } 
                                            par 
                                            { 
                                                Den1   = FixedAdd(Den1,FPMUL1); 
                                                Den2   = FixedAdd(Den2,FPMUL2); 
                                            } 
                                     
             } 
                                                                            
                                    }                                 
                                                               
         
par 
{ 
Numerator=FixedCastSigned(FIXED_ISSIGNED, INT_SQR*2+1, FRAC_SQR, CorrSum); 
D1=FixedCastSigned(FIXED_ISSIGNED, INT_SQR*2+1, FRAC_SQR, Den1); 
D2=FixedCastSigned(FIXED_ISSIGNED, INT_SQR*2+1, FRAC_SQR, Den2); 
} 
Denom=FixedMultSigned(D1,D2); 
SQRT(&Denom); 
 FinalCorr =FixedDivSigned(Numerator,Denom); 
                                 
                                    if (FixedLT(GlobalCorr,FinalCorr)) 
                                    { 
                                        par 
                                        { 
                                            GlobalCorr=FinalCorr; 
                                            ti=0@refi; 
                                            tj=0@refj; 
                                        } 
                                    } 
                                    else 
                                    { 
                                    delay; 
                                    } 
                            } 
                         } 
         par 
            { 
                I_J_REFI_REFJ[k][0]=0@i; 
                I_J_REFI_REFJ[k][1]=0@j; 
                I_J_REFI_REFJ[k][2]=ti; 
                I_J_REFI_REFJ[k][3]=tj; 
                k++; 
            } 
           } 
            else  
            { 
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            delay; 
            } 
       } 
    } 
}                                                          // Interest point calculation ends 
 
delay; 
}  
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