
Efficient Link Utilization of SIP Proxy
Server for Reducing Load in FoIP

Application

By
 Sarvakar Ketan J.

(06MCE014)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY OF SCIENCE & TECHNOLOGY,
AHMEDABAD 382481

MAY 2008

Major Project

On

Efficient Link Utilization of SIP Proxy
Server for Reducing Load in FoIP

Application

Submitted in partial fulfillment of the requirements

For the degree of

Master of Technology in Computer Science and Engineering

By
Sarvakar Ketan J.

(06MCE014)

Under Guidance of

 Dr. S.N. Pradhan

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY OF SCIENCE & TECHNOLOGY,
AHMEDABAD 382481

MAY 2008

This is to certify that Dissertation entitled

Efficient Link Utilization of SIP Proxy
Server for Reducing Load in FoIP

Application

Submitted by

Sarvakar Ketan J.

has been accepted towards fulfillment of the requirement

for the degree of

Master of Technology in Computer Science and Engineering

Prof. (Dr.) S. N. Pradhan Prof. D. J. Patel
Professor Head of The Department

Prof. A. B. Patel
Director, Institute of Technology

CERTIFICATE

This is to certify that the work presented here by Mr. Ketan Sarvakar

(06mce014) entitled “Efficient Link Utilization of SIP Proxy Server for

Reducing Load in FoIP Application” has been carried out at Institute Of

Technology, Nirma University during the period September 2007 – May

2008 is the bonafide record of the research carried out by him under my

guidance and supervision and is up to the standard in respect of the content and

presentation for being referred to the examiner. I further certify that the work

done by him is his original work and has not been submitted for award of any

other diploma or degree.

Dr. S. N. Pradhan

Professor,

Department of Computer Science and Engineering,

Institute of Technology,

Nirma University, Ahmedabad.

Date: / / 2008

 1

ACKNOWLEDGEMENT

The success that I have got in the accomplishment of the project work is not only

due to my efforts. In fact, I stand on the shoulders of many people. So, with great

pleasure I take this opportunity to express my gratitude towards all the

individuals who have helped and inspired me in my project work. It was a great

experience working on this project, about a totally new concept. The project

taught me many things and added knowledge to my memory bank.

First of all, I would like to express my earnest gratitude to my project guide Dr. S

N Pradhan, (P.G. Coordinator, CSE) Department of Computer Science and

Engineering, Nirma University for their constant guidance, encouragement and

moral support which helped me to accomplish the project.

I would like to convey my sincere thanks to external project guide, Mr. Deepak

Kakadia, CTO & Vice President of Data Centrica (Advanced IT Technologies Pvt.

Ltd.) for providing me such a good project definition and continuous support.

I would like to thank Prof. A. B. Patel, Director, Institute of Technology, Nirma

University of Science & Technology, Ahmedabad for providing me the facilities in

Nirma campus.

I am thankful to all the faculty of Computer Science and Engg department, Nirma

University of Science & Technology, Ahmedabad for providing suggestions with

crucial feedback that influenced me to complete this work.

The blessings of God, my Guruji and my family members make the way for

completion of major project. I am very much grateful to them.

Last but not the least, I am equally thankful to all my friends for everything.

Finally, I would like to thank my friends for their coordination.

Sarvakar Ketan J.

(06MCE014)

 iii

Abstract

It’s been some time now that expressions like “Voice over IP”, “Fax over IP” and

the likes are heard extensively in the telecommunications industry. The idea is

utilizing data networks to deliver telecommunications services which are currently

provided by the PSTN. The incentive is pretty straightforward: cutting costs and

yet being able to provide the previous services, not to mention the added

capabilities to deliver a multitude of other services, hardly imagined feasible with

the PSTN.

When considering the implementation of the aforementioned objective, one

faces a lot of difficulties. Simply put, the current data networks, e.g. the Internet,

have not been designed with telecommunications services in mind. They have

been optimized to carry data which is bursty in nature. This design is in obvious

contradiction to the requirements of the telecommunications services, one of

which is fax. In this dissertation, Fax over Internet protocol (FoIP) is being

considered which has two possible approaches to be accomplished: Real-time and

Store-and-Forward. Real-time approach is the ultimate goal since it is the real-

time faxing which makes the transition from the PSTN to the Internet-based

architecture smooth.

Signaling comprises initiation, management and tear-down of sessions

examples of which are fax, voice, video and the like. Currently there are two

protocols that can provide an end-to-end solution: H.323 and Session Initiation

Protocol (SIP). SIP is the protocol of choice among other standards in the voice

and fax transmission domains due to its numerous advantages.

In this dissertation, It is intend to closely examine some aspects of the new

architecture and its implementation feasibility. Different components of the real-

time Fax over IP architecture are analyzed and attention has been paid to the

signaling part. Utilization of SIP in conjunction with SDP, as companion protocol to

 iv

SIP for capabilities to exchange for fax transmission has been studied. What It is

intend to do is exploring whether fax parameters details can be negotiated using

SIP/SDP. Session establishment, starting a sample file transfer, which can act on

behalf of real-time fax transfer, and the subsequent session tear-down, after file

transfer is complete, are demonstrated. This simulation scenario and its results

exhibit the potential success of the proposed SIP/SDP combination for real-time

fax session establishment, management and tear-down.

Another important analysis carried out in this dissertation is the utilization

of SIP contact header for reducing the load on proxy servers which is a highly

desirable feature.

 v

Contents
Certificate ... I

Acknowledgement .. III

Abstract.. IV

Contents ... VI

List Of Figures ... IX

List Of Tables ... X

Chapter 1 Introduction .. 1

1.1 Introduction ...1

1.2 Existing Problem...2

1.3 Dissertation Objectives ..2

1.4 Dissertation Organization ...3

Chapter 2 Fundamentals.. 5

2.1 Introduction...5

2.2 The PSTN Infrastructure and Architecture5

2.3 Internet Transport Service Classes..............................6

2.3.1 User Datagram Protocol...........................7

2.3.2 Transmission Control Protocol (TCP)8

Chapter 3 Voice/Fax over IP ... 9

3.1 Introduction ...9

3.2 Fax over IP...9

3.2.1 Introduction ...9

3.2.2 Fax over Packet Networks.......................12

3.2.3 Store-and-Forward FoIP Networks T.3713

3.2.4 Real-time Internet Fax-T.38....................15

3.3 Fax over IP survey ..17

Chapter 4 SIP: Session Initiation Protocol..................................... 20

4.1 Introduction...20

4.2 Introducing SIP ..20

4.2.1 A Brief History of SIP20

 vi

4.3 SIP Clients and Servers ...21

4.3.1 SIP User Agents21

4.3.2 SIP Servers ...21

4.4 SIP Request and Response Messages and headers.......24

4.4.1 SIP Request Messages...........................24

4.4.2 SIP Response Messages.........................24

4.4.3 SIP Headers...24

4.5 SDP: A Companion Protocol26

4.6 SIP and T.38 Utilization for FoIP26

Chapter 5 Simulator Implementation Details................................. 28

5.1 Introduction...28

5.2 Introducing J-Sim ...28

5.3 Network Simulation Framework and

 Simulation Scenario Creation....................................29

5.3.1 Create Topologies31

5.3.2 Builders..32

5.3.3 Configuring the Network Scenario and

 Miscellaneous Issues32

Chapter 6 Developed Modules, Simulation Scenario

 & Corresponding Results ... 34

6.1 Introduction ...34

6.2 Things That Are Implemented34

6.3 Developed Modules..35

6.3.1 SIP Message Class.................................35

6.3.2 SIP Proxy Server36

6.3.3 SIP User Agent......................................38

6.4 Simulation Scenario...40

6.4.1 The Network Topology41

6.4.2 Scenario Building...................................41

6.4.3 Scenario Running44

6.5 Simulation Results...45

6.5.1 The Simulated SIP Call Flow....................45

6.5.2 Terminal Output45

 vii

6.5.3 Packets Traces Analyzed With

 Network Animator..................................52

6.6 Possible Fax Data Transfer Analyses...........................52

Chapter 7 Concluding Remarks.. 56

7.1 Conclusions ..56

7.2 Possible Future Works..56

References .. 58

 viii

List of Figures

Figure 2.1 UDP packets 7

Figure 3.1 Conventional Group 3, T.30 Fax Transmission Call Flow 11

Figure 3.2 Internet Fax Gateway, Interworking Function 14

Figure 3.3 Basic TIFF image format 14

Figure 3.4 High-Level IFP/TCP Packet Structure 16

Figure 3.5 High-Level UDPTL/IP Packet Structure 16

Figure 3.6 T.38 High Level Message Flows 17

Figure 3.7 Piper-Jaffray, IP Telephony, Driving the Open

 Communications Revolution 19

Figure 4.1 SIP user agent, server, and location service interaction 22

Figure 6.1 The Simulation Scenario 40

Figure 6.2 The Simulated SIP Call Flow 46

Figure 6.3 Packets Traces Analyzed With Network Animator 52

Figure 6.4 Throughput 53

Figure 6.5 Received Data Packets Sequence Number 53

Figure 6.6 Congestion Window 54

 ix

List of Tables

Table 5.1 Algorithms and protocols supported in J-Sim 29

Table 6.1 SIP Message Class API 35

Table 6.2 SIP Proxy Server API 36

Table 6.3 SIP User Agent API 38

Table 6.4 Results 54

 x

Chapter 1

Introduction

1.1 INTRODUCTION

“Voice over IP”, “Fax over IP” and the likes are gradually becoming the next

big cutting-edge technologies in the telecommunications industry. These are

meant to replace the traditional method of delivery of telecommunications

services by Public Switched Telephone Network (PSTN) through utilization of

data networks e.g. the Internet. By doing so, both the telecommunication

service providers and the users can save fortunes, not to mention the newly-

presented capabilities to deliver a multitude of other services. Venturing into

the actual implementation has proved to be a hard-to-overcome challenge and

a plethora of standards are still being considered to make the new architecture

a reality.

1.2 EXISTING PROBLEM

When considering the implementation of the aforementioned objective, one

faces a lot of difficulties. Simply put, the current data networks, e.g. the

Internet, have not been designed with telecommunications services in mind.

They have been optimized to carry data which is bursty in nature. It

means a discrete series of packets of data which travel through the net from a

source to a destination with frequent idle times in transmission. It is not

strictly continuous and generally the users don’t mind the jitter and

extended delays of the data packets. These are in obvious contradiction to

the requirements of the telecommunications services. Specifically, they

stipulate the existence of a network infrastructure which is either connection-

oriented in nature or at least can resemble its behaviors and therefore is

able to guarantee a stream of data free of any kind of interruption.

One of these telecommunication services is Fax. Fax over Internet protocol

(FoIP) is being considered in this dissertation but needless to say that

most of the technologies are shared with Voice over IP (VoIP). There are two

possible approaches to accomplish faxing over the internet protocol:

Chapter 1 Introduction

 - 2 -

Real- time and Store-and-Forward. Store-and-Forward or non-real-time

usually uses E-mail capabilities to transfer fax between the end-points. In

real-time approach, as the name suggests, fax is transferred in real-time

manner and without delay; like the way it currently sends a fax using the

PSTN. Real-time approach is the ultimate goal since it is the real-time faxing

which makes the transition from the PSTN to the Internet-based architecture

smooth. Signaling as one can imagine is the most important part of any

session initiation, management and tear-down whether it is fax, voice, video

or the like. Currently there are two protocols that can provide an end-

to-end solution: H.323 and Session Initiation Protocol (SIP). H.323 is a

binary protocol which consists of a complex suite of protocols that reuse many

older services and methods borrowed from Integrated Services Digital

Network. Being binary, among other short-comings of H.323 in comparison

with SIP which is text-based, makes H.323 a platform dependant protocol.

SIP, in addition to other advantages which are further discussed in the

coming chapters, is capable of supporting user mobility by proxying and

redirecting requests to the user’s current location. Hence, SIP is the protocol

of choice among other standards in the voice and fax transmission domains.

But SIP has yet to prove its capabilities to be chosen as the ultimate solution

for providing fax services in the Internet.

1.3 DISSERTATION OBJECTIVES

In this dissertation , It is intend to explore the issues related to Fax over IP in

their entirety and closely examine some aspects of the new architecture

and its implementation feasibility. Different components of the real-time Fax

over IP architecture are analyzed and attention has been paid to the signaling

part. Utilizing SIP in fax transmission is studied and feasibility of

implementing Fax over IP architectures using this protocol is discussed. Based

on the reasons briefly mentioned earlier, SIP is better suited to the

task in comparison with H.323. Computer simulations are utilized for the

analysis; specifically, a simplified version of the SIP protocol and

network components are developed to study whether fax parameters details

can be negotiated between the end-points. These simulation scenarios and

their results exhibit the potential success of proposed implementation

approach.

Chapter 1 Introduction

 - 3 -

1.4 DISSERTATION ORGANIZATION

This dissertation comprises 7 chapters. Chapter 2 has been devoted to

introducing the fundamental concepts behind every network. Readers with

sufficient background in network technology can readily bypass these chapters

and move on to Chapter 3. Specifically, in Chapter 2 the discussion has

been started by inspecting the Public Switched Telephone Network (PSTN)

infrastructure and architecture and then move forward to study Internet

Protocol will be examined fully in the third section, because of their prime

importance in this dissertation. The chapter is concluded with a thorough

treatment of the Internet protocol itself and its transport layer protocols:

Transmission Control Protocol (TCP) and User Datagram Protocol (UDP).

In Chapter 3 The issues are treated directly involved in this dissertation:

issues related to V/FoIP. In this chapter, the first section, Fax over IP is

treated by first introducing the conventional Group 3 T.30 fax transmission,

then T.37, ITU-Transfer of facsimile data via store-and-forward on the

Internet recommendation, and T.38, ITU-T real-time Group 3 fax

communication over IP networks recommendation, are explained. Various

approaches to provide QoS in IP networks are discussed next. At the end of

the chapter, a discussion regarding the FoIP trends and economics is

presented.

Chapter 4 is devoted entirely to presenting and exploring the Session

Initiation Protocol (SIP): The protocol of choice in this dissertation. In

Chapter 5, after an introduction, SIP clients and servers, request and

response messages and the protocol headers are introduced. Session

Description Protocol (SDP), a companion protocol to SIP, is introduced in

Section 5. A thorough treatment of SIP programming is presented

afterwards in Section 6. The chapter has been concluded with a discussion

covering T.38 and SIP utilization for FoIP.

In Chapters 5 and 6, a detailed account of computer simulations is

presented. In Chapter 5, J-Sim simulator, a powerful Java-based network

simulation tool is introduced. The source code of this simulator is in the

public domain, so It takes a close look at inner workings of different

components of it, how it operates and how new modules can be developed

Chapter 1 Introduction

 - 4 -

and added to its set of supported protocols. The simulation scenario creation

method has been examined in the simulator.

In Chapter 6, as a major implementation part of this dissertation, the

development and testing of the SIP protocol is explained. SIP network

architecture components i.e. SIP user agents and proxy servers, among other

components, have been developed and added to the simulator. The SIP

components are put together to build a network simulation scenario to

further analyze the behavior of them. As is explained in Chapter 6, building

simulation scenario, node initialization and configuration, addition of

measurement tools to track packets in a real-time manner and performing

measurements of parameters such as throughput, packet sequence numbers

and congestion are made possible with the tool command language (TCL)

scripting language. A detailed analysis of the specific chosen simulation

scenario is given and measurement results are discussed.

In Chapter 7, it has been wrapped up the whole discussion and summarizes

the main points from concept-presenting chapters. Some important analysis

results and future work directions are also presented.

Chapter 2

Fundamentals

2.1 INTRODUCTION

In this chapter, fundamental concepts related to this thesis have been

introduced and discussed. First it has been started by inspecting the Public

Switched Telephone Network (PSTN) infrastructure and architecture and then

move forward to study Internet Protocol will be examined fully in the third

section. In this Section, transport layer protocol has been discussed very

briefly. Then the chapter ends with introducing materials for further studying.

Having built the necessary knowledge base in Chapters 2, issues specific to

V/FoIP networks will be introduced and examined in Chapter 3.

2.2 THE PSTN INFRASTRUCTURE AND ARCHITECTURE

My views about what a network should be designed to support and what the

infrastructure should be comprised of have changed quite a bit over the years,

as applications and technology have changed. This section takes a look at how

the PSTN infrastructure evolved and where it is today. The traditional PSTN is

associated with highly developed, although not necessarily integrated,

operational support systems (such as billing systems, provisioning systems,

network management systems, customer contact systems, and security

systems). These systems have very well-developed business processes and

techniques for managing their environments. But the various systems'

databases cannot yet all speak to one another to give one comprehensive

view.

PSTN Architecture

The PSTN includes a number of transmission links and nodes. There are

basically four types of nodes: CPE nodes, switching nodes, transmission

nodes, and service nodes.

Chapter 2 Fundamentals

 - 6 -

CPE Nodes

CPE nodes generally refer to the equipment that's located at the customer

site. The main function of CPE nodes is to transmit and receive user

information. The other key function is to exchange control information with the

network. In the traditional realm, this equipment includes PBXs, key telephone

systems, and single-line telephones.

Switching Nodes

Switching nodes interconnect transmission facilities at various locations and

route traffic through a network. They set up the circuit connections for a signal

path, based on the number dialed. To facilitate this type of switching, the ITU

standardized a worldwide numbering plan (based on ITU E.164) that

essentially acts as the routing instructions for how to complete a call through

the PSTN. The switching nodes include the local exchanges, tandem exchanges

(for routing calls between local exchanges within a city), toll offices (for

routing calls to or from other cities), and international gateways.

Transmission Nodes

Transmission nodes are part of the transport infrastructure, and they provide

communication paths that carry user traffic and network control information

between the nodes in a network. The transmission nodes include the

transmission media as well as transport equipment, including amplifiers and/or

repeaters, multiplexers, digital cross-connects, and digital loop carriers.

Service Nodes

Service nodes handle signaling, which is the transmission of information to

control the setup, holding, charging, and releasing of connections, as well as

the transmission of information to control network operations and billing.

2.3 INTERNET TRANSPORT SERVICE CLASSES

The Internet model basically assumes that the network can only provide an

unreliable connectionless service, and only provides two transport classes,

TCP, which equates to the ISO Class 4 service, and UDP, which is

connectionless. Both these protocols operate over Internet Protocol.

Chapter 2 Fundamentals

 - 7 -

2.3.1 User Datagram Protocol

The User Datagram Protocol (UDP) provides a simple connectionless

mechanism for applications to exchange messages. While the fact that no

connection is established means that the protocol has very low signaling

overheads, it also means that there is no error or flow control. For some real-

time services with very low delay requirements like voice transmission, a lack

of flow control is an advantage, since any lost data would not be repeated

anyway. UDP is also used for broadcast messages since a connection-

orientated approach is not then appropriate, and for periodic messages like

routing table updates where if the data is lost, it does not matter since the

existing data can be retained until the next update. Some services, like DNS,

which could use TCP, usually use UDP for efficiency. Rather than wasting the

time for setting up a connection, as well as adding to the load of the host, a

connectionless UDP request is made. If the request or its response is lost,

another DNS server will be tried after a timeout [3][4].

Figure 2.1 UDP packets [3]

The UDP PDU has four 16 bit fields, shown in Figure 2.1, with the source and

destination ports referring to application processes on local and remote hosts.

The source port is optional; it is set to zero if it is not used. The length field

refers to the total number of octets in datagram including the header.

Note that the UDP segment does not include the address of the recipient, only

the port number. This is because UDP is designed for transport over IP, and

the IP header holds that information. There is still the problem that since the

UDP header does not contain that information directly, a UDP datagram could

be delivered to the wrong host and the transport layer would be unaware of

this fact. To avoid this, the source address, destination address, protocol and

Chapter 2 Fundamentals

 - 8 -

length of the IP packet header are considered to form a pseudo-header which

is added to the UDP datagram for the purposes of calculating the frame check

sequence. If the datagram is delivered to the wrong host, the checksum will

fail. The checksum is optional and is set to zero if not required, but if it is used

it can be checked by intermediate routers which can drop corrupted packets to

save on network load. IP is not restricted to carrying UDP.

2.3.2 Transmission Control Protocol (TCP)

Transmission Control Protocol (TCP) provides a connection-orientated

communications protocol designed to work over IP. Like UDP, TCP allows

communication between specific processes on each host. So there can be

many different connections between two hosts simultaneously. However, since

the identification of a connection is done on the basis of ports on each host,

there can only be one connection between a given source port and a given

destination port on a pair of hosts. Since IP only provides an unreliable

transfer mechanism, and TCP is connection-orientated, TCP must provide

mechanisms to ensure that any lost or corrupted data is replaced before

delivery to the upper layers. This is done using ARQ mechanisms. TCP has

three phases of operation: connection establishment, data transfer and

connection termination. A three-way handshake is used in the connection

phase because of the unreliable network service. Data is passed to TCP from

an upper layer protocol in a continuous fashion. It is then blocked arbitrarily

into segments. Being full duplex, the protocol allows data to be sent in either

direction between processes.

 Chapter 3

Voice/Fax over IP

3.1 INTRODUCTION

In this chapter, the concepts has been discussed and introduced directly

related to this dissertation: Voice/Fax over IP architectures and standards. the

first section, Fax over IP is treated by first introducing the conventional

Group 3 T.30 fax transmission, then T.37, ITU-Transfer of facsimile data via

store-and-forward on the Internet recommendation, and T.38, ITU-T real-time

Group 3 fax communication over IP networks recommendation, are explained.

At the end of the chapter, a discussion regarding the FoIP trends and

economics is presented.

3.2 FAX OVER IP

3.2.1 Introduction

Facsimile transmission presents a major implementation challenge in the new

packet networks. Voice support is difficult enough, with its own stringent

requirements for maintaining the quality of service and user experience of the

PSTN, but fax transmission escalates the problem to a higher level. Simply

speaking, for the new VoIP networks to succeed, it is mandatory to support

the legacy facsimile equipment, which attaches to plain old telephone system

(POTS) service. The installed base of fax equipment is so large that the

unspoken requirement is for complete support for Group 3 fax at a minimum

in any service deployment. A large percentage of homes with access to the

Internet have at least simple PC-based fax capability, and as the number of

telecommuters grows, this number is expected to increase.

In contrast to the simple transport of voiceband data on the PSTN, packet

networks come with many complexities regarding this transmission. Voiceband

data is interpreted by machines, and they are far less tolerant than the human

ear when things are not according to the highest quality. This is exactly the

issue with fax support over packet networks. While the loss of a single packet

Chapter 3 Voice/Fax over IP

 - 10 -

during a human conversation may go unnoticed, the same lost packet during

the handshake procedures of a fax call can result in a dropped call or lengthy

recovery procedures with possible drop in speed as the outcome. All this is

annoying and disturbing to users, especially if the affected call incurs long

distance or international charges and must be repeated.

ITU-T Recommendation T.30 defines the procedures for the transmission of

facsimile over the PSTN, which includes end-to-end capabilities negotiation

between fax terminals and sending of image data encoded in a standard

format. Transmission of images for Group 3 fax is specified in ITU-T

Recommendation T.4. The need for an expedient solution to support facsimile

in packet networks has resulted in additional specifications that preserve a

local nature of Group 3 signaling and transmission. Local signaling executes

between a fax terminal and the network equipment to which it connects. The

packet infrastructure on the network side of the gateways is then used to

transport the image data and re-create fax signaling sequences at each

gateway toward their local fax terminal.

There are currently two methods that accomplish this operation and both are

standards specified by the ITU. Recommendation T.37 specifies store and

forward, non-real time techniques for sending facsimile with legacy equipment

connected via a gateway to a packet network. Recommendation T.38 specifies

a real-time operation which does not use voiceband data transport, but

instead uses packetized information to carry both the handshake sequences

and the digitized image data itself between the terminals. Discussions of both

those techniques are done in this section.

Both the real-time and non-real-time methods for facsimile support over

packet networks have their own benefits and shortcomings, from both a

technical and an economic perspective. The availability of two methods to

send faxes over packet networks has opened a new market in business

segments, where previously there was no choice with POTS service. Both fax

transmission techniques are expected to continue to enjoy success in the IP

networks and find their way into VoIP service offerings as the technologies

mature and their acceptance in the commercial sector increases.

Chapter 3 Voice/Fax over IP

 - 11 -

Let
'
s look now at the details of the most common fax transmission methods.

The call flow diagram in Figure 3.2 shows a typical error-free fax transmission

between an auto-calling and an auto-answer terminal, such as two PCs, or a

PC and a fax machine, or two fax machines. This diagram has been used as a

basis for explaining the basic fax operation and issues.

A fax call in conventional Group 3 facsimile is completed in five phases:

1. Phase A - Call establishment

2. Phase B - Attributes, capabilities, and control signaling

3. Phase C - Single-page fax transmission

4. Phase D - End-of-page signaling and multipage notification

5. Phase E - Call termination

Figure 3.1 Conventional Group 3, T.30 Fax Transmission Call Flow [5].

After dialing the remote fax number, an auto-calling fax terminal plays a CNG

tone, which is an 1100 Hz tone ON for 0.5 secs and OFF for 3 secs. The called

Chapter 3 Voice/Fax over IP

 - 12 -

terminal answers the phone and plays the CED (Called Station ID) tone, which

is a 2100 Hz tone with phase reversals, for 4 secs. The called station also

sends a DIS (Digital Identification Signal) carrying the station capabilities and

optionally two additional signals, NSF (Non Standard Facilities) and CSI (Called

Subscriber Identification). NSF is used to identify requirements for the stations

that are not explicitly covered by the ITU-T T series of recommendations. CSI

provides the identity of the called subscriber in the form of a telephone

number. This signaling exchange completes the call establishment—Phase A—

of the process.

Attributes, capabilities, and control signaling exchange is performed using the

300 bps modulation mode of V.21. Messages are preceded by a preamble

consisting of one second of HDLC flags to condition the line for each

turnaround. Phase B begins with the calling terminal sending DCS (Digital

Command Signal) to send configuration data, complete the digital setup, and

respond to the DIS command. The TCF (Training Check Field) is sent by the

sender, and the called station responds with CFR (Confirmation to Receive). At

that time page transmission is ready to begin. The sender sends training flags

to turn the line around and begins transmission, Phase C, in accordance to

ITU-T Recommendation T.4.

At the end of each page the sender sends post-image handshakes (Phase D),

which are either EOP (if that was the last page), EOM (End of Message), or

MPS (MultiPage Signal) if there are multiple pages to send. MPS results in re-

entering Phase C. If the sending session wishes to return to Phase B at the

end of a page, it sends an EOM command. An MPS signal must be

acknowledged by the receiver. This process continues until the last page has

been transmitted, at which time the sending station disconnects by sending a

DCN command to the receiver. This terminates the fax call.

3.2.2 Fax over Packet Networks

The support of fax over packet networks has major business drivers. Fax is a

major revenue earner for service providers and a major expenditure for

corporations. More than half of the fax transmissions are long distance calls

and therefore the desire to reduce costs is great. The number of installed fax

machines continues to grow. The problem with the fax scenario has been

Chapter 3 Voice/Fax over IP

 - 13 -

described in the previous section is that it is a POTS telephone call incurring

toll charges, just like any voice call. The desire of the business sector to

reduce the cost of fax has led to advances in packet technology to support

facsimile transport.

It has been briefly mentioned the two ITU-T specifications for fax over packet

networks, and it has been visited in this section. Recommendation T.37

defines procedures for store-and-forward fax transmission over the Internet.

The functionality provided through this specification is simple facsimile

transmission with non-real-time requirements. Simply stated, the fax begins

and ends with a local device emulating Group 3 facsimile operation, and the

actual transmission of the image to the intended final destination fax machine

occurs in a second step, a short time later. Recommendation T.38 on the other

hand, defines real-time procedures for fax support over IP networks, and this

is the standard that has been accepted for enterprise and wide area networks.

Both standards address legitimate commercial needs with slightly different

business drivers. The major attributes have been examined, and some major

requirements they impose on the underlying packet networks.

3.2.3 Store-and-Forward Fax over IP Networks-T.37

Recommendation T.37 defines two modes for non-real-time fax, simple and

full. Simple mode supports plain transmission of data, but capabilities

negotiation between terminals may not take place and is undefined in the

specification. All fax terminals must support simple mode. Image data is sent

in TIFF format, specified in RFC 2301, Profile S with Modified Huffman

Compression. It supports Group 3 standard and fine image resolutions. The

fundamental element for T.37 fax operation is the Internet Fax Gateway,

which emulates Group 3 operation toward the attached stations, and has a

direct connection to a packet network, acting as a host or router. In Figure

3.2, the Internet Fax Gateway provides the protocol mapping between the

standard Group 3 fax terminal on one side and the IP network on the other.

On the network side, the gateway interfaces to the IP network conforms to

RFC 2305 for errors in handling and delivery of the fax, information to trace

the origin of the fax, ensuring MIME compliance at both ends of the IP fax

gateways, sending notification to the originator of the fax regarding reception

Chapter 3 Voice/Fax over IP

 - 14 -

problems, and optionally using TIFF profiles for other fax types. The gateway

must also implement the Simple Mail Transfer Protocol (SMTP). The Internet

Fax Gateway functionality can be implemented inside the fax terminal, thus

making it Internet-aware.

The TIFF specification defines the method for describing, storing, and

interchanging image data, such as facsimile and scanned documents. It

defines a core set of fields, shown in Figure 3.3, along with the method to

arrange the image data in a file which includes all the document pages in

chained fashion. The exact header field definition for the image encoding is

specified in RFC 2301, "File Format for Internet Fax".

Figure 3.2 Internet Fax Gateway, Figure 3.3 Basic TIFF image Inter

working Function [5] format [5]

Images in both the T.37 simple and full operating modes are sent to the

remote gateway as MIME-encoded email messages containing the image as

the attachment. T.37 full mode adds the requirement to confirm that the fax

was received properly, and negotiation of the capabilities of the fax terminals.

Any Internet mail transport protocol can be used in full mode to carry the

image data.

Delivery confirmations are returned to the sender as MIME-encoded Delivery

Status Notifications (DSNs) for gateways, as described in RFC 1894. Senders

Chapter 3 Voice/Fax over IP

 - 15 -

and receivers require the use of Message Disposition Notifications (MDN),

defined in RFC 2298.

3.2.4 Real-time Internet Fax-T.38

Store-and-forward fax is a rather primitive approach to support non-realtime

facsimile, with some fairly obvious limitations in functionality. Even so, the

business side of the argument points to substantial interest for this type of

service and it is experiencing continuing growth in the industry. Several

service providers already offer Internet fax, sometimes in package deals with

other services.

The alternative to non-real-time fax over IP networks is Recommendation

T.38. The T.38 protocol gives the "look and feel" of real-time facsimile by

emulating the handshake activities of the T.30 protocol on the packet network

side. Its basic idea is fax demodulation by a T.38 gateway at the source,

packetization of all relevant handshake exchanges, sending of the IP packets

across the network, and remodulation of the analog line by the receiving T.38

gateway from the information carried in the packet data. All this is

accomplished with the simplicity of just two types of messages (packets),

T30_INDICATOR (indicator packets) and T_DATA (data packets), which are

part of the Internet Fax Protocol (IFP) recommendation of the ITU.

Indicator packets carry information to the far end about the presence of a

CNG/CED tone, modem modulation training, or preamble flags each time the

line is turned around. Data packets carry the Phase C data and HDLC control

frames. Packets may carry one or more HDLC control frames, or a complete

image. Adherence to the timing restrictions of T.30 is thus critical during the

handshaking procedures between the terminals.

The IFP allows either TCP or UDP to be used as the transport protocol. When

TCP is used, the IP payload is simply the TCP header and the concatenated

indicator or data packet. It has been figure out in figure 3.4.

When UDP is used, the payload consists of a new layer header (UDPTL),

followed by the concatenated indicator or data packet. The UDPTL header is a

packet sequence number to account for packets arriving via different paths

and out of order. The UDPTL payload also contains an optional Forward Error

Chapter 3 Voice/Fax over IP

 - 16 -

Correction (FEC) field to recover from bit errors. Also optionally, redundant

messages can be included in a single UDPTL packet. It has been figure out in

figure 3.5.

A simplified block diagram of the message flow under T.38 is shown in Figure

3.6. For exact details of the T.38 message types and exchanges, ITU-T

Recommendation T.38 should be studied.

Figure 3.4 High-Level IFP/TCP Packet Structure [7].

Figure 3.5 High-Level UDPTL/IP Packet Structure [7].

Flag sequences are required for every line turnaround and are transmitted as

indicator (T30_INDICATOR) packets. Training is sent as an indicator packet,

with the V-type modulation used by the sending terminal. This is used to

Chapter 3 Voice/Fax over IP

 - 17 -

adjust the speed of the terminal, for instance, to switch from sending image

data with V.17 modulation to V.21 modulation for control sequences.

The same type of training is generated by the receiving gateway at the far end

toward the sending fax terminal. The modulation training sequences have

timing requirements which must be carefully adhered to in an end-to-end

communication, in order for the presence of the IP network between the

gateways to be completely transparent to the fax application.

Finally, the Training Check Field (TCF) can be used in one of two ways in T.38-

compliant networks. For connection-oriented, TCP-based implementations, the

TCF is generated by the far end gateway toward the receiving fax terminal.

When UDP is used, the TCF needs to be sent across the packet network. The

difference is in the decision logic of the speed selection.

The call flow of Figure 3.6 shows the T.30 protocol being executed between

the calling terminal and its local T.38 gateway. All signal types and their

timing restrictions must be supported at that interface, regardless of what

timing constraints may be challenging the gateway on the packet network

side.[5][9]

Figure 3.6 T.38 High Level Message Flows [5]

Chapter 3 Voice/Fax over IP

 - 18 -

3.5 FAX OVER IP SURVEY

Most companies are unaware of just how much time and money is lost by

traditional faxing. The average Fortune 500 company spends $40 million per

year on phone service, 40 percent of which goes to faxing, according to a

Gallop/Pitney Bowes survey [8]. By switching to emerging fax over IP,

companies can save as much as 70 percent on their long distance phone bill,

while gaining some important new features, says Maury Kauffman, managing

partner of The Kauffman Group, a fax technology consulting firm in Vorhees,

NJ. And that's not all. When calculating the full benefits of fax over IP,

companies must factor in the cost of fax machines (which can run as high as

$2,000 to $3,000 per machine); the cost of operating and maintaining those

machines; and wasted labor each time an employee walks to the fax machine,

waits for the fax to go through and returns to work. For larger companies

using fax servers, the cost can be enormous. Companies can eliminate all of

this by switching to fax over IP.

Fax over IP can also help companies cut down on the cost of other delivery

methods, such as mail, overnight delivery and courier services. Fax over IP

also solves the problem of mobile professionals who cannot receive faxes

when they are out of the office. Users simply create a document in a program

like Microsoft Word, click on file/print and then choose the installed fax-

configured printer. After entering the appropriate fax number, users can send

the document right from their desktops. The technologies allow users to send

and receive fax documents via desktop computers.

The fax over IP market shows no signs of slowing as more and more

companies turn to the Net to transmit documents. According to research by

The Gartner Group, fax over IP reached 5.6 billion pages carried in 2001, up

from 44 million pages in 2001. IDC estimates that fax transmissions

represented an $83 billion dollar market in 2002 and grew to $90 billion in

2006. There is a wide range of numbers describing the current size of the IP

telephony market and the growth of the market over the next three to five

years. While the specific projections vary, even the most conservative analysts

are predicting phenomenal growth. The numbers are summarized below.

Chapter 3 Voice/Fax over IP

 - 19 -

0
0.5

1
1.5

2
2.5

3

2002 2003 2004 2005 2006 2007
Applications Enter
Carrier Class Solution Core Enableing Technology

Figure 3.7 Piper-Jaffray, IP Telephony, Driving the Open

Communications Revolution [8].

Chapter 4

SIP: Session Initiation Protocol

4.1 INTRODUCTION

In this chapter, the Session Initiation Protocol (SIP) is treated thoroughly. In

the next section, an introduction of the protocol is given. In Section 3, SIP user

agents, gateways and the 3 types of servers are discussed. A brief introduction

of SIP request and response messages and headers is given in Section 4.

Session Description Protocol (SDP) is treated next. SIP and T.38 interactions

are explained briefly in Section 6. And the chapter has been concluded with

introduction of the materials for further studying.

4.2 INTRODUCING SIP

4.2.1 A Brief History of SIP

SIP was originally developed by the IETF Multi-Party Multimedia Session

Control Working Group, known as MMUSIC. Version 1.0 was submitted as an

Internet-Draft in 1997. Significant changes were made to the protocol and

resulted in a second version, version 2.0, which was submitted as an Internet-

Draft in 1998. The protocol achieved Proposed Standard status in March 1999

and was published as RFC 2543 in April 1999. In September 1999, the SIP

working group was established by the IETF to meet the growing interest in the

protocol. An Internet-Draft containing bug fixes and clarifications to SIP was

submitted in July 2000, referred to as RFC 2543
"
bis

"
. In June 2002, RFC 3261

was published which defined the latest SIP specification and made RFC 2543

obsolete. To advance from Proposed Standard to Draft Standard, a protocol

must have multiple independent interworking implementations and limited

operational experience. To this end, forums of interoperability tests have been

organized by the SIP working group. The final level, Standard, is achieved

after operational success has been demonstrated.

SIP incorporates elements of two widely used Internet protocols: HTTP (Hyper

Text Transport Protocol) used for web browsing and SMTP (Simple Mail

Chapter 4 SIP: Session Initiation Protocol

 - 21 -

Transport Protocol) used for e-mail. From HTTP, SIP borrowed a client-server

design and the use of uniform resource locators (URLs). From SMTP, SIP

borrowed a text-encoding scheme and header style. For example, SIP reuses

SMTP headers such as To, From, Date and Subject.

In keeping with its philosophy of
"
one problem, one protocol

"
, the IETF

designed SIP to be a pure signaling protocol. SIP uses other IETF protocols for

transport, media transport, and media description.

4.3 SIP CLIENTS AND SERVERS

4.3.1 SIP User Agents

An SIP-enabled end-device is called an SIP user agent (UA). The main purpose

of SIP is to enable sessions to be established between user agents. As the

name implies, a user agent takes direction or input from a user and acts as an

agent on their behalf to set up and tear down media sessions with other user

agents. In most cases, the user will be a human, but the user could be another

protocol, as in the case of a gateway described in the next section. A user

agent must be capable of establishing a media session with another user

agent. Since SIP may be used with any transport protocol, there is no

requirement that a UA must support either TCP or UDP for message transport.

The standard states, however, that a UA should support both TCP and UDP [7].

4.3.2 SIP Servers

SIP servers are applications that accept SIP requests and respond to them. An

SIP server should not be confused with a user agent server or the client-server

nature of the protocol, which describe operation in terms of clients (originators

of requests) and servers (originators of responses to requests). An SIP server

is a different type of entity. The types of SIP servers discussed in this section

are logical entities. Actual SIP server implementations may contain a number

of server types, or may operate as a different type of server under different

conditions. Because servers provide services and features to user agents, they

must support both TCP and UDP for transport. Figure 5.3 shows the interaction

of user agents, servers, and a location service. Note that the protocol used

between a server and the location service or database is not in general SIP

and is not discussed here.

Chapter 4 SIP: Session Initiation Protocol

 - 22 -

An SIP proxy server that receives an SIP request from a user agent acts on

behalf of the user agent in forwarding or responding to the request. A proxy

server typically has access to a database or a location service to aid it in

processing the request (determining the next hop). The interface between the

proxy and the location service is not defined by the SIP protocol. A proxy can

use any number of types of databases to aid in processing a request.

Figure 4.1 SIP user agent, server, and location service interaction [9].

Databases could contain SIP registrations, or any other type of information

about where a user is located.

A proxy server is different from a user agent or gateway in two key ways:

1. A proxy server does not issue a request; it only responds to requests from a

user agent. (A CANCEL request is the only exception to this rule.)

2. A proxy server has no media capabilities.

Chapter 4 SIP: Session Initiation Protocol

 - 23 -

A proxy server can be either stateless or stateful. A stateless proxy server

processes each SIP request or response based solely on the message contents.

Once the message has been parsed, processed, and forwarded or responded

to, no information about the message is stored—no call leg information is

stored. A stateless proxy never retransmits a message, and does not use any

SIP timers. A stateless proxy has no memory of any requests or responses it

has sent or received. A stateless proxy is still capable of detecting message

looping since SIP uses a stateless method to implement loop detection using

via headers.

A stateful proxy server keeps track of requests and responses received in the

past and use that information in processing future requests and responses. For

example, a stateful proxy server starts a timer when a request is forwarded. If

no response to the request is received within the timer period, the proxy will

retransmit the request, relieving the user agent of this task. Also, a stateful

proxy can require user agent authentication.

Redirect Servers

A redirect server is introduced as a type of SIP server that responds to, but

does not forward requests. Like a proxy server, a redirect server uses a

database or location service to look up a user. The location information,

however, is sent back to the caller in a redirection class response, which

concludes the transaction.

Registration Servers

A registration server accepts SIP REGISTER requests; all other requests

receive a 501 Not Implemented response. The contact information from the

request is then made available to other SIP servers within the same

administrative domain, such as proxies and redirect servers. In a registration

request, the To header contains the name of the resource being registered,

and the Contact headers contain the alternative addresses or aliases.

Registration servers usually require the registering user agent to be

authenticated so that incoming calls can not be hijacked by an unauthorized

user. This could be accomplished by an unauthorized user registering someone

else
'
s SIP URL to point to their own phone. Incoming calls to that URL would

Chapter 4 SIP: Session Initiation Protocol

 - 24 -

then ring the wrong phone. Depending on the headers present, a REGISTER

request can be used by a user agent to retrieve a list of current registrations,

clear all registrations, or add a registration URL to the list.

4.4 SIP REQUEST AND RESPONSE MESSAGES AND HEADERS

4.4.1 SIP Request Messages

This section explains the types of SIP requests called methods. Six are

described in the SIP specification document. Two more methods are work

items of the SIP working group. Other proposed methods are still in the early

stages of development, or have not yet achieved working group consensus.

SIP requests or methods are considered
"
verbs

"
 in the protocol, since they

request a specific action to be taken by another user agent or proxy server.

The INVITE, REGISTER, BYE, ACK, CANCEL, and OPTIONS methods are the

original six methods in version 2.0 of SIP. The INFO and PRACK methods are

the subsequent additions.

A proxy does not need to understand a request method in order to forward the

request. A proxy treats an unknown method as if it were an OPTIONS; that is,

it forwards the request to the destination if it can. This allows new features

and methods useful for user agents to be introduced without requiring support

from proxies that may be in the middle. A user agent receiving a method it

does not support replies with a 501 Not Implemented response.

4.4.2 SIP Response Messages

This section covers the types of SIP response messages. An SIP response is a

message generated by a UAS or an SIP server to reply to a request generated

by a UAC. A response may contain additional headers containing information

needed by the UAC. Or, it may be a simple acknowledgement to prevent

retransmissions of the request by the UAC. Many responses direct the UAC to

take specific additional steps. There are six classes of SIP responses. The first

five classes were borrowed from HTTP; the sixth was created for SIP.

4.4.3 SIP Headers

This section describes the headers present in SIP messages. There are four

types of SIP headers: general, request, response, and entity. SIP headers in

Chapter 4 SIP: Session Initiation Protocol

 - 25 -

most cases follow the same rules as HTTP headers. Headers are defined as

header: field where header is the case-insensitive token used to represent the

header, and field is the case-insensitive set of tokens that contain the

information. Header fields can continue over multiple lines as long as the line

begins with at least one space or horizontal tab character. Unrecognized

headers are ignored by proxies. Many common SIP headers have a compact

form, where the header name is denoted by a single lower-case character.

Headers can be either end-to-end or hop-by-hop. Hop-by-hop headers are the

only ones that a proxy may insert, or with a few exceptions, modify. A proxy

should never change the header order. Because SIP typically involves end-to-

end control, most headers are end-to-end.

General headers: The set of general headers includes all of the required

headers in an SIP message. General headers can be present in both requests

and responses. These headers are created by user agents and cannot be

modified by proxies, with a few exceptions. The general headers are: Call-ID,

Contact, CSeq, Date, Encryption, From, Organization, Retry-After, Subject,

Supported, Timestamp, To, User Agent, Via.

Request headers: They are added to a request by a UAC to modify or give

additional information about the request. The request headers are: Accept,

Accept-Contact, Accept-Encoding, Accept-Language, Authorization, Hide, In-

Reply-To, Max-Forwards, Priority, Proxy-Authorization, Proxy-Require, Record-

Route, Reject-Contact, Request-Disposition, Require, Response-Key, Route,

RAck, Session-Expires.

Response headers: They are added to a response by a UAS or SIP server to

give more information than just the response code and reason phrase. They

are generally not added to a request. The response headers are: Proxy-

Authenticate, Server, Unsupported, Warning, WWW-Authenticate, RSeq.

Entity headers: They are used to provide additional information about the

message body or resource requested. This term comes from HTTP where it has

a more specific meaning. In SIP, “entity” and “message body” are used

interchangeably. The entity headers are: Allow, Content-Encoding, Content-

Disposition, Content-Length, Content-Type, Expires, MIME-Version.

Chapter 4 SIP: Session Initiation Protocol

 - 26 -

4.5 SDP: A COMPANION PROTOCOL

The Session Description Protocol, defined by RFC 2327, was developed by the

IETF MMUSIC working group. It is more like description syntax than a protocol

in that it does not provide a full-range media negotiation capability. The

original purpose of SDP was to describe multicast sessions set up over the

Internet
'
s multicast backbone, the MBONE. The first application of SDP was by

the experimental Session Announcement Protocol (SAP) used to post and

retrieve announcements of MBONE sessions.

SDP contains the following information about the media session:

I. IP Address (IPv4 address or host name);

II. Port number (used by UDP or TCP for transport);

III. Media type (audio, video, fax, interactive whiteboard, etc.);

IV. Media encoding scheme (PCM A-Law, MPEG II video, etc.).

In addition, SDP contains information about the following:

I. Subject of the session;

II. Start and stop times;

III. Contact information about the session.

Like SIP, SDP uses text coding. An SDP message is composed of a series of

lines, called fields, whose names are abbreviated by a single lowercase letter,

and are in a required order to simplify parsing.

SDP was not designed to be easily extensible, and parsing rules are strict. The

only way to extend or add new capabilities to SDP is to define a new attribute

type. However, unknown attribute types can be silently ignored. An SDP parser

must not ignore an unknown field, a missing mandatory field, or an out-of-

sequence line.

4.6 SIP AND T.38 UTILIZATION FOR FOIP

The best current practices for SIP T.38 fax and SIP fax pass-through sessions

are documented in this IETF Internet-Draft: “SIP Support for Real-time Fax:

Call Flow Example And Best Current Practices” [20]. Here a brief overview of

Chapter 4 SIP: Session Initiation Protocol

 - 27 -

this document has been provided.

The Session Initiation Protocol (SIP) allows the establishment of real-time

Internet fax communications. Real-time facsimile communications over IP

may follow 2 modes of operation: T.38 fax relay as defined by the ITU-T T.38

recommendation or fax pass through.

This document clarifies the options available to Internet telephony gateway

vendors to handle real-time fax calls using SIP. While the primary focus is to

address the more reliable real-time T.38 Group 3 fax mode, fax pass-through

mode to enable fallback operations and super G3 fax communications using

SIP are also briefly covered. Examples of SIP call flows for real-time Internet

fax gateways or SIP proxy redirect servers are given as well. Elements in these

call flows include SIP User Agents, SIP Proxy Servers, and Gateways to the

PSTN (Public Switch Telephone Network).

A session starts with audio capabilities, and, upon fax tone detection, T.38 fax

capabilities are negotiated; upon successful negotiation, the session continues

with fax capabilities and the media termination hosts exchange T.38 Internet

fax packets. The T.38 fax call scenarios include various aspects of the call

sequence: the detection of fax transmission, the usage of the T.38 session

description attributes the optional fallback into fax pass-through mode and the

session termination. The fax pass-through call scenarios involve some specific

SDP media attributes to enable proper fax transmission. Fax transmission can

be detected by the receiving side, the emitting side or both.

For T.38, this document deals primarily with one transport protocol for the

media: T.38 over UDP/UDPTL; T.38 fax packet transport over TCP using SIP

session establishment can easily be considered as well. These T.38 call flows

were developed in the design of carrier-class SIP Telephony products

supporting voice and real-time fax traffic.

The Internet telephony gateway only supports T.38 real-time fax

communications. In this case, the Internet fax gateway should initiate the SIP

session with T.38 SDP capabilities.

Chapter 5

Simulator Implementation Details
5.1 INTRODUCTION

In this chapter, J-Sim, an open-source simulator, is introduced. This simulator

is utilized throughout the implementation part of this thesis to explore the

behavior of the developed protocol and components. Many details have been

left out to simplify the introduction of the simulator. A brief introduction is

given and the salient features of the simulator are discussed in the Section 3.

A quick overview of the inner workings of the simulator and how one can

develop new modules are given in Section 4. Simulation scenario creation,

configuration and running are briefly introduced in the last section.

5.2 INTRODUCING J-SIM

The implication of the implementation is three fold:

1. With all the Internet protocol classes available, one can compose the

protocol stack and conduct the simulation under different network scenarios

in a plug-and-play fashion.

2. With the abstract classes that capture the fundamental features of network

entities and yet are flexible enough to accommodate new technology

advances, one can extend J-Sim to a new network architecture, e.g.,

wireless LANs, optical networks with WDM technology, networks with

satellite communication links, or ad hoc networks consisting primarily of

mobile sensors. This is done by subclassing appropriate network modules

and redefining their network attributes and methods that manipulate the

attributes. For example, one needs only to modify the network interface

card (NIC) component and the link component to incorporate the error

characteristics and the mobility Characteristics in order to model wireless

mobile networks. Similarly, one can readily implement a new

algorithm/protocol for experimentation and validation, simply by sub

classing one or more appropriate protocol modules.

3. By virtue of the component hierarchy (i.e., a component can be a

 Chapter 5 Simulator Implementation Details

 - 29 -

composite component that contains child components), one can vary the

level of details to which simulation is conducted.

Table 5.1 Algorithms and protocols supported in J-Sim.

Network
Architecture

Applica

tion

Socket
Layer

Transport Routing Traffic Model
Tagger
Marker

Buffer
Managem

t

NI
Schedu-

ling

Best Effect

Services

FTP,

FSP,

WWW

BSD

4.3

TCP Reno

TCP

Tahoe
TCP

Vegas
TCP Sack

UDP

RIP (DV)

OSPFv2

Multicast shortest
path tree, Multicast

minimum load tree
, Multicast Steiner

tree, DVMRP
MOSPF CBT

Drop-

Tail

FIFO

Differentiated
Services

Token

Bucket
TSW

ETSW

RED

FRED
SRED

BRED

FIFO

Integrated

Services

RSVP

Unicast QoS

routing

QoS-enhanced

OSPFv2
QoS-enhanced CBT

Periodic message
(CBR)

Peak rate model
Leaky bucket

model
Token bucket

model
IETF/Intserv

Flowspec (r,t)-

smooth model

(C,D)-smooth

model

RM

EDF

Stop-

and-go
DCTS

VirtualC

lock

LFVC
SCFQ

PGPS

STFQ

WF2Q

Leave-
in-time

BSD: Berkeley socket distribution FSP: file service protocol

RIP: routing information protocol TCP: transmission control protocol

DVMRP: distance vector multicast routing protocol OSPF: open shortest path first
CBT: core based tree protocol MOSPF: multicast extension to OSPF

TSW: time sliding window FIFO: first in first out

RED: random early drop ETSW: enhanced time sliding window

SRED: stable random early drop FRED: fair random early drop
RSVP: Resource reservation protocol BRED: balanced random early drop

RM: rate monotonic CBR: constant bit rate

DCTS: distance constrained task system EDF: earliest deadline first

SCFQ: self-clocked fair queuing LFVC: leap forward virtual clock
STFQ: start time fair queuing PGPS: packet-by-packet generalized processing shari

 WF2Q: worst-case fair weighted fair queuing

5.3 NETWORK SIMULATION FRAMEWORK AND SIMULATION
SCENARIO CREATION

INET is a network simulation framework built upon the autonomous component

architecture and specific to network simulation. Essentially features common to

each network component (such as an IP layer, a network interface card, a link,

etc.) have been factored out and all the network components (and their

 Chapter 5 Simulator Implementation Details

 - 30 -

contracts) are defined and implemented in INET. Internal structure of a node

(either an end host or a router) is also defined. Users may then compose a

network scenario in a plug-and-play fashion, by connecting components in

their desired manner. Users may also subclass an appropriate component and

redefine new attributes and methods to incorporate their own

protocols/algorithms. To create a network simulation scenario, following items

should be taken into consideration:

-Topology creation
-Building the internal structure of nodes
-Configuring the network scenario and miscellaneous issues

A network is a composite component which consists of nodes, links and smaller

networks. A node is also a composite component which consists of

applications, protocol modules, and a core service layer (CSL).

The core service layer is an abstract component which encapsulates the

functions of the network layer and the layers beneath the network layer. It

provides network services and events to protocols, in the form of inter-

component contracts.

In particular, since configuring the internal structure of nodes usually follows

similar patterns and repetitively cycles through several tedious steps, some

utility classes have been provided to automate the process. The basic way to

compose a scenario is to build it "by hand". That is, every necessary

component, from networks, nodes, links to protocols and modules inside a

node is created and they are connected together afterwards. The idea is very

simple but the tasks are repetitive and can get a bit tedious even for a small-

sized network. Fortunately, both tasks of creating a network topology and

building network nodes can be made follow certain patterns and then

automate the processes. The utility class drcl.inet.InetUtil and the builder

classes drcl.inet.NodeBuilder and drcl.inet.CSLBuilder are developed for this

purpose. Building a network simulation scenario in J-Sim is outlined in the

following TCL script:

Create a container to hold the scenario cd
[mkdir drcl.comp.Component scene]

Step 1: Create topology

 Chapter 5 Simulator Implementation Details

 - 31 -

...
Step 2: Build nodes
...
Step 3: Configure nodes
...
Attach simulator runtime to "scene" attach_simulator.
Start all "active" components under "scene" if there is anyrun.

In what follows, the process of creating a scenario with the utility functions in

drcl.inet.InetUtil are introduced. Followed by that, builder classes and their

usages are introduced. Finally, few other utility functions in drcl.inet.InetUtil

are introduced (The process of building/configuring scenario by hand is not

discussed here).

5.3.1 Create Topologies

There is a set of createTopology(...) methods in the drcl.inet.InetUtil class for

automating the process of creating a topology . The simplest form of all is as

follows:

public static void createTopology(Component network_,

 int[][] adjMatrix_, Link link_);

The network_ argument is where the nodes are to be created in. The most

important argument in all the createTopology() methods is the adjacency

matrix, adjMatrix_. It is a two-dimensional array. The length of the first

dimension, i.e., adjMatrix_.length, is the number of nodes. Each element in

the first dimension is a one-dimensional array, which represents the neighbors

of the node. The position of a neighbor in this one-dimensional array is the ID

of the port that the node uses to connect to the neighbor. Nodes are indexed

as 0, 1,... (adjMatrix_.length-1). The neighbors are represented by their

indices. Each node may have a different number of neighbors. link_ is the

physical link component used to connect two nodes. The most complete form

of all the createTopolgy() methods is the following:

public static void createTopology(Component network_,

String routerIDPrefix_,

String hostIDPrefix_,

Object[] existing_,

int[][] adjMatrix_,

long[] ids_,

 Chapter 5 Simulator Implementation Details

 - 32 -

Link link_,

boolean assignAddress_);

5.3.2 Builders

After a network topology is created, the next task is to build the nodes. Note

that the nodes created during the process of creating a network topology are

just empty composite components. Appropriate protocols and modules need to

be put in to make them functional. One way to do this, is of course building

them by hand. In this section, using builder classes to automate the process is

explained. The rationale behind this is very simple. Instead of building network

nodes one by one by hand, nodes are first categorized. Supposedly there

should be far less types of nodes in the network than the number of nodes

themselves. Then a node template for each type of node is built by hand, and

then the nodes of the same type are built by duplicating the structure of the

template node.

5.3.3 Configuring the Network Scenario and Miscellaneous Issues

I) Static Routes Setup
Instead of using the node properties to manually set up static route entries

along a path, drcl.inet.InetUtil includes a set of setupRoutes(...) methods to

automate the task. Given source and destination nodes, the methods compute

the unicast or multicast routes with minimum hop count, and then install

appropriate route entries in the nodes along the routes. The following is one of

the forms of the method:

public static void setupRoutes(Node src_, Node dest_, String bidirect_);

II) Online Interactions

In addition to creating scenarios, running simulations often involve a lot of

online activities such as debugging, tuning parameters and collecting results. A

set of RUV system commands and utility components are developed to

facilitate these tasks:

III) Save Results Directly to a File - drcl.comp.io.FileComponent

The drcl.comp.io.FileComponent component saves incoming data to a file. To

use it, connect a FileComponent to the port at which the target component

 Chapter 5 Simulator Implementation Details

 - 33 -

originates interested results.

IV) xy Plot - drcl.comp.tool.Plotter

The drcl.comp.tool.Plotter component displays incoming data on an xy plot.

The Plotter component is able to display multiple datasets on a plot as well as

display multiple plots at the same time. Multiple plots are ordered by IDs

starting from 0, so the datasets on a plot. The port ID and the port group ID of

the port at which data arrives are used as the dataset ID and the plot ID

respectively to draw the data on its corresponding plot. In addition to be

integrated as part of the component system, Plotter can be used as a

standalone Java Program with the following usage:

java drcl.comp.tool.Plotter ?-1? <file1> ?<file2>...?

V) NAM Trace - drcl.inet.tool.NamTrace

The NamTrace component is an instrument class that probes appropriate

components to collect interested events and produce trace outputs in the NAM

(VINT/UCB Network Animator) trace format. Currently, NamTrace supports the

following NAM events/configurations: node, link, queue, color and packet. The

first four events are usually used in the initial/configuration part of a trace that

defines the network topology and the color index. Packet events are collected

from probing appropriate components in the system. In all cases, the traces

are produced at the output port of the NamTrace component. To save the

output in a file, one must connect a file component,

drcl.comp.io.FileComponent, to the output port of the NamTrace component.

With the following utility method, all the necessary configurations can be done

in one line no matter how many nodes and links exist:

set nam [java::call drcl.inet.InetUtil setNamTraceOn [! .] \
"SimNAMTrace.nam" [_to_string_array "red blue yellow green black orange"]]

Here I wrap up the introduction of the relevant simulator capabilities and move

on to study the developed modules and the simulation scenario in the next

chapter.

Chapter 6
Developed Modules, Simulation

Scenario & Corresponding Results

6.1 INTRODUCTION

In this chapter, as the title of the chapter suggests, the thesis has been

wrapped up with presenting the final elements, i.e. presenting the developed

modules, studying the simulation scenario and presenting the accomplished

results. In Section 3, the developed SIP protocol and components are

presented. Specifically, some extracts of the outputs of the Javadoc software

pro duced from sifting through the source codes are presented. These APIs

can visualize the outline of how modules really operate. In Section 4, a typical

simulation scenario is analyzed and different stages of scenario construction

and running are explained. In the last section, results of the aforementioned

scenario are presented and discussed.

6.2 THINGS THAT ARE IMPLEMENTED

First, I review what is supposed to come out of this simulation and then move

on to the modules details in the next section. It has been intended to explore

whether fax parameters details can be negotiated using SIP/SDP. Specific SDP

attributes and the interaction of SIP and T.38 protocols are not of high

importance in this thesis. The implemented parts are the session

establishment, starting a typical file transfer, which can serve as a

demonstration of T.38 fax transfer, and the subsequent session tear-down

after file transfer is complete. Due to the fact that specific T.38 protocol SDP

headers are not studied in this thesis, in the message content prints in the

simulation results section, only few constant symbolic SDP header fields are

present. As pointed out in the next chapter, studying of these fields is

considered as possible future work. One other important analysis carried out in

this simulation, is the utilization of SIP contact header for reducing the load on

proxy servers which is a highly desirable feature.

Chapter 6 Developed Modules, Simulation Scenario & Corresponding Results

 - 35 -

6.3 DEVELOPED MODULES

In total, six modules have been developed and they are: SDPMessage which is

a class implementing SDP headers; SIPMessage which is a class implementing

SIP headers and also embeds an instance of SDPMessage in itself if the body

type indicates so; SipPS which is a class implementing an SIP proxy server;

SipUA which is a class implementing an SIP user agent and finally T38Receiver

and T38Sender which subclass ftpd and ftp respectively and act on behalf of

real T.38 modules.

The classes implementing SDP headers and T.38 receiver and sender are some

simple classes, source codes of which are provided in the appendix. Some

extracts of the APIs of classes implementing SIP message, user agent and

proxy server are provided here and briefly explained. The full source codes of

these modules can be found in the appendix as well.

6.3.1 SIP Message Class

This class provides a mechanism for storing the SIP headers. It utilizes the

java.util.Properties class of Java for easily setting and retrieving the SIP

headers and their corresponding values. It also embeds an instance of

SDPMessage in itself if in its constructor the type of content is set to

“application/sdp”. It also provides methods for retrieving both SIP and SDP

headers as Properties objects to further manipulate them. Part of its API

appears in Table 6.1.

Table 6.1 SIP Message Class API.

Field Summary

 java.util.Properties
headers
SIP headers are held in this Properties
object.

SDPMessage sdpMessage
 An SDP message which is in the SIP
message.

java.lang.String SIPContentType
 If set to "application/sdp", an SDP
message is created as an embedded
object.

Constructor Summary

Chapter 6 Developed Modules, Simulation Scenario & Corresponding Results

 - 36 -

SIPMessage(java.lang.String contentType)

Constructor.

Method Summary

 java.util.Properties returnSDPHeaders()
This is for someone who wants to set
other SDP headers as well.

java.util.Properties returnSIPHeaders()
This is for someone who wants to set
other SIP headers as well.

6.3.2 SIP Proxy Server

This class implements the SIP proxy server. It provides some initializing

methods such as: setAddress(), setNodeViaField(), setRegisteredNode() and

setOtherNetworkProxyServerAddress(). These method are called with

appropriate arguments during the scenario building in the TCL script. It also

defines methods for sending and processing these SIP requests: ACK, INVITE

and BYE. It defines a response processor which prints informational messages

based on the response class and it especially handles the OK response. The

method dataArriveAtDownPort() handles the incoming data and directs it to

the appropriate processor. Two utility methods, constructMessage() and

printMessageContent(), are also provided and they carry out tasks described

by their names. User agent registers itself with the proxy server during the

initialization process through the TCL script. The transaction ID of the first

received SIP message, its Call-ID header, is stored in the proxy server so the

server can discard messages not belonging to this transaction. The rest of the

details about the proxy server can be found in the following API or its full

source code in the appendix.

Table 6.2 SIP Proxy Server API.

Field Summary

 java.lang.String contentType
 A variable used for setting the content
type of the SIP message, typically set to
"application/sdp".

java.lang.String messageType
 An intermediate variable which is used
for checking whether a message is a
request or it is a response and directing

Chapter 6 Developed Modules, Simulation Scenario & Corresponding Results

 - 37 -

it to the related processor.
int nodeAddress

Node address is set during initialization
through the TCL interface.

java.lang.String nodeViaField
 It is set during initialization through the
TCL interface.

int otherNetworkProxyServerAddress
 It is set during initialization through the
TCL interface.

SIPMessage receivedMessage
 An intermediate variable which is used
for processing.

int registeredNode
All requests of the set node first goes to
this proxy server and it is set during
initialization through the TCL interface.

int responseMessageClass
 A vaiable to store the response class
from one of six possible classes.

SIPMessage toBeSentMessage
 This is a message which is created by
different methods of the class.

java.lang.String transactionID
Used for storing the transaction ID so
that junk messages can be discarded.

Constructor Summary

SipPS()

Constructor.

Method Summary

SIPMessage constructMessage
(java.lang.String startLine,java.lang.String via,
java.lang.String to,java.lang.String from,
java.lang.String callID,java.lang.String contentType)

protected void
dataArriveAtDownPort
(java.lang.Object data, drcl.comp.Port downPort)
Arrived data first gets processed by this method.

void duplicate(java.lang.Object source)
 java.lang.String info()

 void printMessageContent(SIPMessage message)
 void processACK(SIPMessage receivedMessage)
 void processBYE(SIPMessage receivedMessage)
 void processINVITE(SIPMessage receivedMessage)
 void processResponse(SIPMessage receivedMessage)

 This method first checks to see whether the message is
a valid one then checks to see if it's a response or an

Chapter 6 Developed Modules, Simulation Scenario & Corresponding Results

 - 38 -

unsupported request, after that if the message is a
response it goes on to handle each type of response
classes.

void reset()
 void sendACK(SIPMessage receivedMessage, int nextHop)
 void sendBYE(SIPMessage toBeSentMessage, int nextHop)
 void sendINVITE(SIPMessage toBeSentMessage, int

nextHop)
 void sendOK(SIPMessage receivedMessage, int address)
 void setAddress(int address)
 void setNodeViaField(java.lang.String s)
 void setOtherNetworkProxyServerAddress(int address)
 void setRegisteredNode(int address)

6.3.3 SIP User Agent

This class implements the SIP user agent. Like proxy server, it provides some

initializing methods: setAddress(), setConfiguredProxyServerAddress(),

setNodeViaField() and setAlwaysUseProxyServer(). The last method sets the

user agents to always use the proxy servers and never bypass them and

contact each other directly. The default is false which means user agents,

whenever they can, contact each other directly using the address found in the

received SIP message Contact header. The same set of sending and

processing requests and responses methods, found in proxy servers, are

present here as well with some modifications. Some other methods which

were in the proxy server class, as can be seen in the API, are also present

here. There is also a field call faxPort which is used to alert the T.38 module to

start sending the fax after the session establishment is complete. Again, the

rest of the details about the user agent can be found in the following API or its

full source code in the appendix.

Table 6.3 SIP User Agent API

Field Summary

 boolean alwaysUseProxyServer
 It is set during initialization through the TCL
interface.

int configuredProxyServerAddress
 All requests of the node first goes to this address
which is set during initialization through the TCL
interface.

java.lang.String contentType
A variable used for setting the content type of the

Chapter 6 Developed Modules, Simulation Scenario & Corresponding Results

 - 39 -

SIP message, typically set to "application/sdp".
int destination

 Used for storing the other party's address.
drcl.comp.Port faxPort

Used for alerting the T.38 fax module to start
sending the fax.

java.lang.String messageType
 An intermediate variable which is used for checking
whether a message is a request or it is a response
and directing it to the related processor.

int nodeAddress
Node address is set during initialization through the
TCL interface.

java.lang.String nodeViaField
 It is set during initialization through the TCL
interface.

SIPMessage receivedMessage
 An intermediate variable which is used for
processing.

int responseMessageClass
A vaiable to store the response class from one of six
possible classes.

SIPMessage toBeSentMessage
This is a message which is created by different
methods of the class.

java.lang.String
transactionID
Used for storing the transaction ID so that junk
messages can be discarded.

boolean transactionInitiator
 Used for determining if the node should respond like
acknowledging an OK with ACK only if the node is
indeed the initiator of the request-response.

Constructor Summary

SipUA()

Constructor.

Method Summary

SIPMessage constructMessage
(java.lang.String startLine,java.lang.String via,
java.lang.String to,java.lang.String from,
java.lang.String callID,java.lang.String contentType)

protected void dataArriveAtDownPort
(java.lang.Object data,drcl.comp.Port downPort)
Arrived data first gets processed by this method.

void Duplicate
(java.lang.Object source)

 java.lang.String info()
 void printMessageContent(SIPMessage message)

Chapter 6 Developed Modules, Simulation Scenario & Corresponding Results

 - 40 -

 void processACK(SIPMessage receivedMessage)
 void processBYE(SIPMessage receivedMessage)
 void processINVITE(SIPMessage receivedMessage)
 void processResponse(SIPMessage receivedMessage)

 This method first checks to see whether the message
is a valid one then checks to see if it's a response or
an unsupported request, after that if the message is
a response it goes on to handle each type of response
classes.

void reset()
 void sendACK(SIPMessage receivedMessage)
 void sendBYE()

sendINVITE(SIPMessage toBeSentMessage)
 void sendOK(SIPMessage receivedMessage)
 void setAddress(int address)
 void setAlwaysUseProxyServer(boolean x)
 void setConfiguredProxyServerAddress(int address)
 void setNodeViaField(java.lang.String s)

6.4 SIMULATION SCENARIO

As pointed out in the previous chapter, J-Sim simulator uses TCL scripts to

carry out scenario building and configuration. In this section the TCL scripts

used to do such tasks are analyzed line by line. In the first part, the script has

been analyzed used for building the simulation scenario and in the next part,

the script used for running the simulation is presented.

Figure 6.1 The Simulation Scenario.

Chapter 6 Developed Modules, Simulation Scenario & Corresponding Results

 - 41 -

6.4.1 The Network Topology

The simulated network scenario is depicted in Figure 6.1.

6.4.2 Scenario Building

1 ##
2 # Topology:
3 #
4 # -------------------------
5 # / \
6 # h0-------n1-------n4-------n5-------n2-------h3
7 #
8 ##
9 cd [mkdir drcl.comp.Component /SimScenario]
10
11 puts "Creating topology..."
12 set link [java::new drcl.inet.Link]
13 $link setPropDelay 0.3; # 300ms
14 set adjMatrix [java::new {int[][]} 6 {{1} {0 2 4} {5 1 3} {2} {1 5}
{4 2}}]
15 java::call drcl.inet.InetUtil createTopology [! .] $adjMatrix $link
16
17 puts "Creating builders..."
18 # router builder:
19 set rb [mkdir drcl.inet.NodeBuilder .routerBuilder]
20 $rb setBandwidth 1.0e6; #1Mbps
21 # Host builder:
22 set hb [cp $rb .hostBuilder]
23 #Setting up transport protocols
24 set TCPModule [mkdir drcl.inet.transport.TCPb $hb/tcp]
25 set UDPModule [mkdir drcl.inet.transport.UDP $hb/udp]
26
27 # Adding a Data Counter to each host:
28 mkdir drcl.comp.tool.DataCounter $hb/counter
29
30 #Setting up T.38 Fax Senders/Receivers:
31
32 $TCPModule addPort "up" "t38fax"
33 set T38FaxReceiver [mkdir ketan.sip.T38Receiver $hb/t38FaxReceiver]
34 connect -c $hb/t38FaxReceiver/down@ -and $hb/tcp/up@
35
36 set T38FaxSender [mkdir ketan.sip.T38Sender $hb/t38FaxSender]
37 connect -c $hb/t38FaxSender/down@ -and $hb/tcp/t38fax@up
38
39 puts "Building Nodes ..."
40 $rb build [! n?]
41 $hb build [! h?]
42
43 #Setting up UAs:
44 set SipUA1 [mkdir ketan.sip.SipUA h0/ua]
45 set SipUA2 [mkdir ketan.sip.SipUA h3/ua]
46 $SipUA1 setName "SIP User Agent 1"
47 $SipUA2 setName "SIP User Agent 2"
48 $SipUA1 setAddress 0
49 $SipUA2 setAddress 3
50 $SipUA1 setNodeViaField "SIP/2.0/UDP here.com:5060"
51 $SipUA2 setNodeViaField "SIP/2.0/UDP there.com:5060"
53 # $SipUA1 setAlwaysUseProxyServer true
54 # $SipUA2 setAlwaysUseProxyServer true

Chapter 6 Developed Modules, Simulation Scenario & Corresponding Results

 - 42 -

55
56 connect -c h0/ua/down@ -and h0/udp/5060@up
57 connect -c h3/ua/down@ -and h3/udp/5060@up
58
59 # Fax port configuration:
60
61 connect -c h3/ua/faxPort@down -to h0/t38FaxSender/faxPort@down
62 connect -c h3/ua/faxPort@down -to h3/t38FaxReceiver/faxPort@down
63
64 # For sending a BYE request after fax transfer completes:
65 connect -c h3/t38FaxReceiver/notify@ -to h3/ua/down@
66
67 #Setting up proxy servers:
68 set SipPS1 [mkdir ketan.sip.SipPS n4/ps]
69 set SipPS2 [mkdir ketan.sip.SipPS n5/ps]
70 $SipPS1 setName "SIP Proxy Server 1"
71 $SipPS2 setName "SIP Proxy Server 2"
72 $SipPS1 setAddress 4
73 $SipPS2 setAddress 5
74 mkdir drcl.inet.transport.UDP n4/udp
75 mkdir drcl.inet.transport.UDP n5/udp
76 connect -c n4/ps/down@ -and n4/udp/5060@up
77 connect -c n5/ps/down@ -and n5/udp/5060@up
78
79 $SipUA1 setConfiguredProxyServerAddress 4
80 $SipUA2 setConfiguredProxyServerAddress 5
81 $SipPS1 setOtherNetworkProxyServerAddress 5
82 $SipPS2 setOtherNetworkProxyServerAddress 4
83 $SipPS1 setRegisteredNode 0
84 $SipPS2 setRegisteredNode 3
85 $SipPS1 setNodeViaField "SIP/2.0/UDP SIP Proxy Server 1:5060"
86 $SipPS2 setNodeViaField "SIP/2.0/UDP SIP Proxy Server 2:5060"
87
88 # Configure the bottleneck bandwidth and buffer size
89 ! n1 setBandwidth 1 1.0e5; # 100Kbps at interface 1
90 ! n1 setBufferSize 1 6000; # ~10 packets at interface 1
91
92 puts "Setting up static routes..."
93 java::call drcl.inet.InetUtil setupRoutes [! h0] [! h3]
"bidirection"
94 java::call drcl.inet.InetUtil setupRoutes [! h0] [! n4]
"bidirection"
95 java::call drcl.inet.InetUtil setupRoutes [! n4] [! n5]
"bidirection"
96 java::call drcl.inet.InetUtil setupRoutes [! n5] [! h3]
"bidirection"
97 ! h0/tcp setPeer 3
98 ! h3/tcp setPeer 0
99 # Realistically, these should be set from "destination" fields of UAs
100 puts "Creating The Plotters..."
101 set plot1 [mkdir drcl.comp.tool.Plotter .plot1]
102 set file1 [mkdir drcl.comp.io.FileComponent .file1]
103 $file1 open "SimPlot.plot"
104 connect -c $plot1/.output@ -to $file1/in@
105
106 attach -c $plot1/0@0 -to h0/tcp/cwnd@
107 attach -c $plot1/3@0 -to h3/tcp/cwnd@
108
109 set tm1 [mkdir drcl.net.tool.TrafficMonitor .tm1]
110 connect -c h3/csl/6@up -to $tm1/in@
111 connect -c $tm1/bytecount@ -to $plot1/3@1

Chapter 6 Developed Modules, Simulation Scenario & Corresponding Results

 - 43 -

112
113 attach -c $plot1/3@2 -to h3/tcp/rcv/seqno@
114 attach -c $plot1/0@2 -to h0/tcp/rcv/seqno@
115
116 attach -c h0/counter/in@ -to h0/csl/6@up
117 attach -c h3/counter/in@ -to h3/csl/6@up
118
119 puts "Setting up the NAM trace..."
120 set nam [java::call drcl.inet.InetUtil setNamTraceOn [! .] \
"SimNAMTrace.nam" [_to_string_array "red blue black orange"]]
121
122 puts "Building the scenario is finished now, you can proceed with
running the simulation ..."

Analysis of Scenario:

-Line 9: Creating the network element itself to hold the network components.

-Lines 12-13: Creating and configuring the link element.

-Line 14: Creating the adjacency matrix; the matrix which defines the topology

by determining the neighboring nodes of each node.

-Line 15: Creating the network by calling createTopology() and passing the

network component, adjacency matrix and link component as arguments.

-Lines 19-20: Creating a typical node builder and naming it rb.

-Line 22: Duplicating the rb object and naming it hb for building the hosts after

further customizing the host builder (hb).

-Lines 24-25: Creating the transport protocol modules (The UDP module is

used for signaling and the TCP module is used for the fax data transfer).

-Line 28: Putting a data packet counter in each of the hosts.

-Lines 32-37: Creating T.38 sender and receiver modules and putting them in

the host builder and connecting the modules to the TCP module.

-Lines 40-41: Building the hosts and routers using the previously configured

host builder and node builder.

-Lines 44-51: Creating the SIP user agent modules in the hosts and

configuring their names, addresses and nodeViaField parameters.

-Lines 53-54: Setting whether the user agents always have to use the proxy

servers for signaling or they are allowed to bypass them if they can.

-Lines 56-57: Configuring the SIP modules to use UDP as transport.

-Lines 61-65: Setting a mechanism for auto-starting the fax transfer

immediately after signaling is complete and also auto-starting the signaling (the

last BYE-OK) after the fax transfer is complete.

-Lines 68-77: Creating SIP proxy server modules in the nodes and configuring

Chapter 6 Developed Modules, Simulation Scenario & Corresponding Results

 - 44 -

their names and addresses. The UDP modules are also setup in the nodes and

proxy server modules are set to use them for transport.

-Lines 79-86: Further customizing the SIP modules: Setting user agents’

configured proxy server addresses, making each proxy server know the other

network’s proxy server, setting each proxy server’s registered node and setting

the nodeViaField of each proxy server.

-Lines 89-90: A sample bottleneck is incorporated in the node 1 to examine its

effect on fax data transfer parameters.

-Lines 93-98: Setting up the nodes routing table entries and TCP peers.

-Lines 101-117: Creating the plotters and data counter instruments. Plotters

monitor fax data throughput, congestion window and received packets

sequence numbers. The parameters are shown in real-time manner during the

simulation and since the plots are saved into file, they can be seen and

examined later as well.

-Line 120: The nodes are configured to output packets traces in the format

understandable by Network Animator.

6.4.3 Scenario Running

1 puts ""
2 puts "Starting the Simulation..."
3 set sim [attach_simulator .]
4
5 puts "Fax initiation..."
6 puts "Negotiating the fax parameters with the other party..."
7
8 ##
9 # Fax Signaling and sending
10 ##
11
12 set message [$SipUA1 constructMessage "INVITE" "SIP/2.0/UDP
here.com:5060" "sip: user@there.com" "0" 1234@here.com "application/sdp"]
13
14 $SipUA1 sendINVITE $message
15
16
17
18
19 ##
20 ## SIP message constructing method syntax:
21 ##
22 ## SIPMessage constructMessage(String startLine, String via, String
to, String from, String ##callID, String contentType)
23 ##
24
25 ##
26 ## Further SIP message headers customization can be done using this
syntax:

Chapter 6 Developed Modules, Simulation Scenario & Corresponding Results

 - 45 -

27 ##
28 ## set hd [$message returnSIPHeaders]
29 ## set SDPhd [$message returnSDPHeaders]
30 ## puts "SIP header (Call-ID):"
31 ## $hd getProperty "Call-ID"
32 ## puts "SDP header (v):"
33 ## $SDPhd getProperty "v"
34 ## $hd setProperty "CSeq" "1"
35 ##
36
37 ##
38 ## SIP message sending method syntax:
39 ##
40 ## sendINVITE(SIPMessage toBeSentMessage)
41 ##
42
43
44 ### The command for viewing the plots:
45 ### java drcl.comp.tool.Plotter SimPlot.plot

Analysis:

Line 3: Attaching simulation run-time to the network.

Line 12: Creating an SIP message in user agent 1 using its

constructMessage() method according to the syntax given in line 22.

Line 14: The constructed message is then sent using the sendINVITE()

method of user agent 1 (The syntax is given in line 40).

Lines 19-45: These are provided to serve as reference and because each line

is prefixed with a #, it doesn’t get executed.

6.5 SIMULATION RESULTS

6.5.1 The Simulated SIP Call Flow

Please note that the generation and processing of informational class

responses have not been simulated. The simulated call flow is depicted in

Figure 6.2.

6.5.2 Terminal Output

As shown in the terminal output following Figure 6.2, after building and

configuring the network, the simulation starts by user agent 1 sending an

INVITE request. From there, one can track the call flow from the terminal

output and also from Figure 6.2. As can be seen, user agents contact each

other directly after knowing each other’s address from the SIP contact header.

Chapter 6 Developed Modules, Simulation Scenario & Corresponding Results

 - 46 -

Figure 6.2 The Simulated SIP Call Flow.

Chapter 6 Developed Modules, Simulation Scenario & Corresponding Results

 - 47 -

Terminal Output 1

It has been shown in terminal output-1 that Fax initiation is started. The fax

parameters have been negotiated with the other party and an SIP message

and an SDP body has been created. The SIP message has been sent by SIP

User Agent 1. An SIP message has been received and is being processed by

SIP Proxy Server 1. INVITE request has been received by the requested

processor. Then message is being forwarded to the other network’s proxy

server. An SIP message has been received and is being processed by SIP

Proxy Server 2.

Chapter 6 Developed Modules, Simulation Scenario & Corresponding Results

 - 48 -

Terminal Output 2

It has been shown in terminal output-2 that the SIP message has been sent

by SIP Proxy Server 2. An SIP message has been received and is being

processed by SIP User Agent 2. INVITE request has been received by the

requested processor. Then response of that is being issued. Then OK message

has been sent by SIP User Agent 2.

Chapter 6 Developed Modules, Simulation Scenario & Corresponding Results

 - 49 -

Terminal Output 3

It has been shown in terminal output-3 that an SIP message has been

received and is being processed by SIP Proxy Server 2. This is success class

response. Then message is being forwarded to the other network’s proxy

server. Then OK message has been sent by SIP Proxy Server 2.An SIP

message has been received and is being processed by SIP Proxy Server 1.

This is success class response.

Chapter 6 Developed Modules, Simulation Scenario & Corresponding Results

 - 50 -

Terminal Output 4

It has been shown in terminal output-4 that the message has been forwarded

to the intended node. The OK message has been sent by SIP Proxy Server 1.

An SIP message has been received and is being processed by SIP User Agent

1. This is success class response. Then ACK message has been sent by SIP

User Agent 1. An SIP message has been received and is being processed by

SIP User Agent 2. And then ACK has been received.

Chapter 6 Developed Modules, Simulation Scenario & Corresponding Results

 - 51 -

Terminal Output 5

And finally it has been shown in terminal output-5 that T.38 fax transmission

has been started. After some time it has been completed. Then BYE request

has been received by the requested processor. Then OK message has been

sent by SIP User Agent 1. An SIP message has been received and is being

processed by SIP User Agent 2.

Chapter 6 Developed Modules, Simulation Scenario & Corresponding Results

 - 52 -

6.5.3 Packets Traces Analyzed With Network Animator

Figure 6.3 Packets Traces Analyzed With Network Animator.

With the help of Network Animator (NAM), the simulation’s packets traces

can be gathered and analyzed after the simulation is finished and output file

is opened using NAM. A snapshot of my simulation scenario analyzed using

this program is provided in Fig. 6.3. A time instance when fax data is being

sent directly from user agent 1 to user agent 2, bypassing proxy servers, is

shown in Figure 6.3.

6.5.4 Possible Fax Data Transfer Analyses

Fax data analysis is not a concern of this thesis and the carried out simulation.

But for depicting the types of possible analyses which can be done using J-

Sim, as pointed out in the scenario building TCL script lines 89-90, a

bottleneck is incorporated in node 1 and its effect in fax data transfer is shown

in the following figures:

Chapter 6 Developed Modules, Simulation Scenario & Corresponding Results

 - 53 -

Throughput

0
5000

10000
15000
20000
25000
30000
35000
40000

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Time

Da
ta

 p
ac

ke
t

Figure 6.4 Throughput

Throughput, defining it "as the average number of packets successfully

delivered per unit time". Here this data may be delivered over a physical link

that is passing through a network node. The throughput is usually measured in

bits per second (bit/s or bps), and sometimes in data packets per second or

data packets per timeslot.

Figure 6.5 Received Data Packets Sequence Number.

Chapter 6 Developed Modules, Simulation Scenario & Corresponding Results

 - 54 -

Figure 6.6 Congestion Window

Table 6.4 Results

Throughput Receive Data

Packet Seq. No.

Congestion Window

Size

Time Data Time Data Time Data

10 0 10 0 10 1

15 0.4*104 15 2 15 4

20 0.5*104 20 9 20 7

25 2.4*104 25 30 25 21

28 3.5*104 27 51 27 21

30 2.5*104 28 51 30 22

35 0.0*104 29 53 31 22

The congestion window determines the number of bytes that can be

outstanding at any time. This is a means of stopping the link between two

places from getting overloaded with too much traffic. The size of this window

is calculated by estimating how much congestion there is between the two

places. Once this size is calculated that is the maximum number of bytes that

can be transmitted without acknowledgment that they have been received

(done through ACK packets). Basically the size of the window, to a large

Chapter 6 Developed Modules, Simulation Scenario & Corresponding Results

 - 55 -

degree, controls the speed of transmission as transmission pauses until there

is acknowledgment.

It has been point out that in my simulation; fax packets do not visit the proxy

servers. This is a natural behavior, since proxy servers are highly specialized

resources and I do not want to unnecessarily overload them. Hence, proxy

servers will be able to handle more calls in the network.

Here the discussion regarding simulation scenario building and configuration

and corresponding analyses comes to an end. In the next chapter a summary

of all the important points of this thesis including this chapter is given.

Chapter 7

Concluding Remarks
7.1 CONCLUSIONS

What it has been intended to do was investigating whether fax parameters

details could be negotiated using SIP/SDP. In this direction, session

establishment, starting a typical file transfer, which served as a demonstration

of T.38 fax transfer, and the subsequent session teardown, after file transfer

was complete, were demonstrated in this thesis, through computer simulation.

Call flow could be tracked and analyzed using the terminal output and also the

simulation schematic diagram; the former was in complete agreement with the

claimed results regarding the SIP capabilities.

Based on the investigated simulation scenario, it has been showed that SIP

nicely lends itself to the task. Although only few constant symbolic SDP fields

were used and hence present in the terminal output, but as mentioned before,

the simulation results provided a good starting point for the full definition and

usage of SDP attribute fields to thoroughly specify the T.38 fax parameters.

This simulation scenario and its results exhibited the potential success of the

proposed SIP/SDP combination for real-time fax session establishment,

management and tear-down.

Another important analysis carried out in this simulation was utilization of SIP

contact header for reducing the load on proxy servers for FoIP application

which is a highly desirable feature. As shown in the terminal output of the

simulator, after building and configuring the network, the simulation started by

user agent 1 sending an INVITE request. From there, the call flow could be

tracked from the terminal output and as could be seen, user agents contacted

each other directly after knowing each other’s address from the SIP contact

header.

7.2 POSSIBLE FUTURE WORK

Specific T.38 protocol SDP attributes have not been studied in this thesis. As a

natural next step, if the thorough investigation of real-time fax is

contemplated, one can refer to this IETF Internet-Draft: “SIP Support for Real-

Chapter 7 Concluding Remarks

 - 57 -

time Fax: Call Flow Example and Best Current Practices” [20], which can serve

as a very good starting point. Addition of few more capabilities to the proxy

server can be a good proposition as well. Additional capabilities can be:

handling multiple transactions at the same time, stateful operation of the

proxy server, having location server and multiple registered nodes,

implemented either in the proxy server code itself or in separate entities, to

name a few.

References

[1] Bur Goode ”Voice over Internet Protocol (VoIP)” , Proceedings of the IEEE,

Vol.90, No.9, September 2002

[2] “Voice and fax over IP”, The International Engineering Consortium,

http://www.iec.org

[3] James Irvine and David Harle, “Data Communications and Networks: An

Engineering Approach”, John Wiley 2002

[4] Lillian Goleniewski, “Telecommunications Essentials”, Addison-Wesley 2002

[5] Bill Douskalis, “IP Telephony: The Integration of Robust VoIP Services”,

Prentice Hall 2000

[6] Kimmo Ahonen, Juha Koskelainen, “Transport Control Protocol”, University of

Helsinki, October 1998

[7] Henning Schulzrinne (Columbia University), Jonathan Rosenberg (Bell

Laboratories Lucent Technologies), “Internet Telephony: Architecture and

Protocols an IETF Perspective”, July 1998

[8] “An Introduction to IP Telephony”, Mockingbird Networks

[9] Alan B. Johnston, “SIP: Understanding the Session Initiation Protocol”, Artech

House 2001

[10] “Voice Performance over packet-based networks”, Alcatel, October 2002

[11] “IP Telephony Design Guide”, Alcatel, April 2003

[12] Mike Gray, “FAX Technology Tutorial and Testing Issues”, Agilent

Technologies, February 2002

[13] ITU-T Recommendation T.4, “Standardization of Group 3 facsimile terminals

for document transmission”, Terminals For Telematic Services, July 2007

[14] “T.38 and the Future of Fax”, Intel 2003

[15] K. Toyoda, H. Ohno, J. Murai and D. Wing, " A Simple Mode of Facsimile

Using Internet Mail",RFC 2305, IETF, March 1998.

[16] K.Mimura, K.Yokoyama, T.Satoh and C.Kanaide, " Internet FAX Gateway

Functions", Internet Draft, IETF, draft-ietf-fax-gateway-protocol-09.txt, April 14

2003.

[17] Y.Rafiq, O.Bashir,S.I.Shah and S,A.Khan, “FoIP gateways-architectures,

implementation and QoS issues”, IEEE International Multi Topic Conference, 2001.

 References

 - 59 -

IEEE INMIC 2001. Technology for the 21st Century. Proceedings., Page(s): 87 -

92, 28-30 Dec. 2001

[18] “eBusiness Companies Can Reap Rewards by Faxing over IP”, DCI 1999,

http://www.dci.com

[19] Phelim O’Doherty, “SIP Specifications and the Java Platforms”, 2003 Sun

Microsystems

[20] Jean-Francois Mule and Jieying Li, "SIP Support for Real-time Fax: Call Flow

Examples And Best Current Practices", draft-ietf-realtimefax-01.txt, August 2003.

[21] M. Handley, H. Schulzrinne, E. Schooler and J. Rosenberg, "SIP: Session

Initiation Protocol",RFC 2543, IETF, March 1999.

[22] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson. R.

Sparks, M. Handley "SIP: Session Initiation Protocol",RFC 3261, IETF, June 2007.

[23] A. Johnston, S. Donovan, R. Sparks, C. Cunningham and K. Summers,

"Session Initiation Protocol (SIP) Basic Call Flow Examples", RFC 3665, IETF,

December 2007.

[24] M. Handley " SDP: Session Description Protocol",RFC 2327, IETF, April 1998.

[25] J. Rosenberg and H. Schulzrinne, " An Offer/Answer Model with the Session

Description Protocol (SDP)",RFC 3264, IETF, June 2002.

[26] Xiaotao Wu and Henning Schulzrinne, ”Programmable End System Services

Using SIP”, IEEE International Conference on Communications ICC '03, Volume: 2

, Page(s): 789 -793, 11-15 May 2003

[27] G.Stojsic, R.Radovic and S.Srbljic, “Formal Definition of SIP Proxy Behavior”,

EUROCON'2001, International Conference on Trends in Communications, Volume:

2, Page(s): 289 -292, 4-7 July 2001

[28] Phelim O’Doherty and Mudumbai Ranganathan, “JAIN SIP Tutorial", Sun

Microsystems 2008

[29] JAIN team, “JAIN Technology”, Sun Microsystems 2007

[30] http://www.j-sim.org

	1. Title
	certi
	2 Certificate for sign..
	Main_2

