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Abstract—In resource constrained wireless sensor networks 
(WSN), it is highly desirable to make efficient use of available 
buffer. Hence for the WSN designed for the monitoring 
applications, buffer management is a key requirement at sensor 
nodes. We have proposed an efficient buffer management scheme 
based on random linear network coding as the in-network 
processing on data packets. With buffer allocation from source to 
sink path, our scheme distributes the buffer requirement among 
the nodes on the path. Further in the case of a packet loss, the 
proposed scheme recovers packet from available information 
distributed on the path from source to sink. We have compared 
our scheme with conventional buffer management scheme. 
Results show that network coding based buffer management 
scheme has better buffer availability with less redundancy and 
reduced loss recovery cost. 

Keywords-component; Wireless Sensor Network, Random 
Linear Network Coding, Buffer Management 

I.  INTRODUCTION  
Wireless sensor network is application specific data centric 

network [1-2], One of the application specific classes of WSN 
is monitoring application class [3-5]. Monitoring applications 
perform the micro-level monitoring of sensor field. Here 
network follows the specific data traffic pattern of many to one 
in which all the sensor nodes send their data towards the base 
station. Sensor nodes sense sensor field periodically or on some 
predefined events and generate readings. These readings are 
forwarded towards the base station using store and forward 
method.  

   For this class of applications, buffer is very constrained 
resource. So effective buffer management and maintaining 
minimum number of duplicate packets in the network are of 
prime importance. Further buffer allocation at each node 
should be fair among different sources. To achieve these goals, 
we have proposed a buffer management scheme using in-
network processing for WSN deployed for monitoring 
applications like [3-5]. Our objective here is to distribute the 
buffer load among nodes and provide uniform buffer 
utilization. That helps in reducing the buffer requirement at 
source and intermediate nodes. Secondly, we also minimize the 
number of retransmitted messages required in the case of 
packet loss. We have used network coding as “in-network 
processing” on packets from source to sink [6-7].  In normal 
network, each packet carries its own information while 
network coding distributes information of packets in a 
generation to encoded packets of that generation. We have used 
this property of network coding to distribute the information of 
source buffer along the path from source to sink. 

   Rest of the paper is organized as follows. Section 2 
covers the network coding mechanism and related work. A 
detailed example of random linear network coding (RLC) is 
given in appendix. Section 3 contains our buffer management 
scheme. Simulation results and analysis are provided in section 
4 and we conclude our paper in section 5. 

II. NETWORK CODING AND RELATED WORK 
Ahlswede et al. in their pioneering work [8] showed that 

maximal network flow and sum of cut-edge capacities of any 
minimal cut that separates sender and receiver are equal and it 
is the maximum achievable capacity. This capacity is generally 
not achievable in conventional communication network which 
considers information as a ‘fluid’ which can simply be routed 
or replicated. i.e., independent information streams may share 
network resources but they are kept separate. In network 
coding, instead of forwarding packets as it is, nodes may 
recombine two or more input packets into one or more output 
packets. Li et al. in [9] showed that linear coding with finite 
field size suffices to achieve maximum flow from the source to 
each destination. Among various linear encoding techniques at 
network nodes, random linear coding [10] is widely used as it 
is distributed and less computationally intensive and algorithms 
are well understood. The following explanation is based on 
[11].  

 

A.  Random Linear Coding 
Let each packet contains L bits. If packets to be combined 

are not of the same size, smaller packets are padded with 
trailing zeroes. s consecutive bits of a packet can be interpreted 
as a symbol over the field Fଶ౩. i.e., each packet consists of a 
vector of L/s symbols. Outgoing packet at each node is a linear 
combination of incoming packets or generated packets at that 
node where addition and multiplication operations are 
performed over the field Fଶ౩. The encoded packet also contains 
L bits. So an encoded packet contains information about all 
original packets and multiple such packets can be generated. In 
effect, information of an original packet is spread into number 
of encoded packets. 

 

B. Encoding 
Let original packets  Mଵ, … , M୬  be generated by one or 

more sources. The encoded packet is X୮ ൌ ∑ g୧M୮
୧୬

୧ୀ଴ , where 
sequence of coefficients gଵ, … , g୬   are chosen uniformly at 
random over the field Fଶ౩ . The summation is to be done for 
every symbol in a vector of L/s symbols in a packet. i.e., 



 ܺ௣ ൌ ∑ ௜݃ܯ௣
௜௡

௜ୀ଴   where ܯ௣
௜   and ܺ௣ is the  ܲ௧௛ symbol of  ܯ௜ 

and ܺ respectively. Coefficients vector ݃ ൌ ሺ݃ଵ, . . , ݃௡ሻ is also 
sent in the encoded packet along with encoded data ܺ . 
Forwarding nodes can also do encoding on already encoded 
packets. Consider a node that has a set 
݃ ൌ ሺ݃ଵ, ܺଵሻ, … , ሺ݃௠, ܺ௠ሻ  of encoded packets, where ݃௝  is 
the encoding vector of the ݆௧௛ packet and ܺ௝ is the information 
vector of ݆௧௛  packet. This node can generate a new encoded 
packet  ሺ݇, ܻሻ  by selecting uniformly at random a set of 
coefficients ݄ଵ, … , ݄௡ and computing the linear combination 
ܻ ൌ ∑ ݄௜ܺ௜௠

௝ୀ଴ . As the coefficients should be with respect to 
the original packets, the corresponding ݇  vector is given by 
݇௜ ൌ  ∑ ݄௜ ௜݃

௝௠
௝ୀ଴ . Encoding example on field ܨଶఴ with  ݉ ൌ 2  

is given in appendix. 

 

C. Decoding 
    Consider that a node has received the 

set ሺkଵ, Yଵሻ … ሺk୫, Y୫ሻ. To retrieve original packets, it needs 
to solve the system of m  linear equations Y୨ ൌ ∑ k୧

୨୬
୧ୀଵ M୧ 

with M୧’s as unknowns. If  m ൌ n, i.e., number of received 
packets are equal to number of original packets, we can recover 
all the original packets provided all the encoded packets are 
linearly independent. But there is a possibility that some of the 
encoded packets are linearly dependent. Simulation results 
indicate that even for small field sizes  ሺe. g.  s ൌ 8 ), the 
probability becomes negligible [10]. For the example given in 
appendix, please note that m ൌ n ൌ 2. 

 

D.  Generation Size 
As the number of originating packets ሺnሻ in a network for 

given destination increases, the amount of memory needed to 
store coefficients  of encoded packets increases because these 
coefficients are to be remembered till a node receives at least n 
packets to decode all original packets. Further, till at least n 
encoded packets are not received, most of the n original 
packets can not be decoded. Thus delivery delay of a packet 
increases with n . To reduce memory requirement and the 
delay, originating packets can be grouped together into so 
called ‘generation’. Now all the nodes in the network will 
encode packets of the same generation. If the generation size is 
k ሺ k ا nሻ, whenever the receiver receives at least k packets of 
a generation, it will able to decode k original packets and the 
corresponding k encoded packets can be discarded, freeing the 
memory and the delay will also be reduced as receiver will 
have to now wait only for k encoded packets to be able to 
decode. But as packets from different generations can not be 
‘mixed’, mixing opportunity reduces with k. 

    In sensor network literature very limited material is there 
which has used the powerful tool of network coding. Wang et 
al. in [12] presented partial network coding (PNC) as a generic 
tool for continuous data collection. PNC generalizes the 
existing network coding (NC) paradigm but enables efficient 
storage replacement for continuous data, which is a major 
deficiency of the conventional NC. They proved that the 
performance of PNC is quite close to NC, except for a sub 
linear overhead on storage and communication.  

    ShanShan et al. in [13] proposed an energy aware 
method to combine multipath routing with practical network 
coding. Through this method, same reliability as conventional 
multipath mechanisms can be guaranteed with significantly 
reduced energy consumption by decreasing the number of 
paths needed to deliver data. The method only needs little 
metadata overhead and some small scale linear operations. 
Toledo and Wang in [14] used network coding to achieve an 
adaptive equivalent solution to the construction of disjoint 
multipath routes from a source to a destination. It exploits both 
the low cost mesh topology construction, such as those 
obtained by diffusion algorithms, and the capacity achieving 
capability of linear network coding. The solution easily adapts 
to the changing conditions of the wireless sensor network and it 
can be used by the sinks to increase or decrease capacity and 
reliability on demand.  

    In our work, we have used network coding for better 
buffer utilization and loss recovery in wireless sensor networks.  
In normal network, each packet has its own information.  On 
packet loss, lost packet can not be recovered from other 
packets. Sink can get that packet either from source or from 
intermediate nodes.  With random loss, nodes need to store 
more packets to reduce message transmission for loss recovery. 
It creates trade-off between buffer size and recovery cost and 
both are scarce resources for WSN.  Network coding helps here 
in reducing the buffer requirement. Instead of storing entire 
generation or bulk of packets at source or intermediate nodes, 
one can distribute load among nodes by distributing encoded 
packets of the generation uniformly among the nodes on the 
path from source to sink (1) because an encoded packet carries 
information of multiple original packets and is useful to 
recover any on these lost packets. This helps in reducing the 
buffer requirement at each node and reduces the buffer size. In 
normal network, it is hard to decide how many number of 
packets should be stored and at which nodes because each 
packet carries only its own information. 

   We have used this fact and designed the buffer allocation 
policy. In our scheme, source node applies random linear 
coding on generated packets. That spread the information of 
current generation in all the packets belonging to that 
generation. Intermediate nodes store the encoded packet and 
for new packet, update their coefficients to add information in 
stored data. Sink node recovers the entire generation after 
reversing the process. On packet loss, information that is 
uniformly distributed on the path helps the sink to recover 
packet loss with less number of messages. 

III. BUFFER MANAGEMENT WITH NC 
Network nodes have limited buffer size and it is desired to 

use it efficiently.  Efficiency of buffer management scheme can 
be measured by buffer availability, information loss due to 
limited buffer size and redundancy in stored data.  Buffer 
management scheme should also recover lost packets with 
minimum retransmitted messages (recovery cost). 

   In our network model, source node periodically generates 
the packets, applies network coding and sends them towards 
the sink node through intermediate nodes. We have assumed 
that it is the responsibility of routing protocol to forward the 



packet towards the sink. We also depend on network layer for 
unique path between sink node and source node.  

A. Conventional Coding Scheme 
   By Conventional Coding Scheme (CCS), we mean buffer 

management scheme for network without network coding.  In 
CCS, a node stores the arrived packet into its buffer with the 
purge time. On purge time, it removes the packet from the 
buffer.  In the case when there is no room for new packet, it 
removers randomly a packet from buffer to make space for 
arrived packet.  

B. Network Coding Scheme 
   In network coding based buffer management scheme 

(NCS), after generating packet, as explained  above, node 
applies random linear network coding on it along with 
previously stored packets and then sends the encoded packet to 
the network layer. Normally network coding is applied on 
group of packets. Required number of packets depends on the 
generation size. In the case when packets are less then the 
generation size, it can be applied with corresponding 
coefficients as zero. Procedure to encode packet is explained in 
section 2 under encoding subsection. These generated packets 
are forwarded to the network layer. Network layer sends them 
to parent node. Each sent packet contains the generation 
number and source id with it. With generation number and 
source id, network nodes uniquely identify the packet 
generation. Here instead of recognizing each packet, network 
nodes only need to recognize the unique generation. All the 
packets belonging to same generation contain some 
information about entire generation.  This helps in reducing the 
buffer size with group of encoded packets then the bulk of 
individual packets.     

   Algorithm I covers the steps for the source node. In 
conventional network, each packet has its own information so 
if a packet is lost, it can not be recovered from other packets. 
Sink can get it either from source or from intermediate nodes.  
To recover this random packet loss with reduced message 
transmissions, nodes have to store more packets and require 
larger buffer size. Network coding helps in reducing the buffer 
requirement. 

Instead of storing entire generation at source or 
intermediate nodes, we only store limited information. Some 
part of information is stored on source and other on the path 
from source to sink uniformly (1) for loss recovery as shown in 
Line 10-14 where Slevel is number of hops from source to sink 
and  GSize is the generation size .  

 

         limit ൌ

ە
ۖ
۔

ۖ
ۓ ቔGS୧୸ୣ

S୪ୣ୴ୣ୪
ቕ ൅ ቔቀGS୧୸ୣ

S୪ୣ୴ୣ୪
െ ቔGS୧୸ୣ

S୪ୣ୴ୣ୪
ቕቁ ൈ 2ቕ ,

 if  Slevel ൏ ݈݁ݒ݈݁ ݊݁ݒ݁ ݀݊ܽ ݁ݖ݅ݏܩ

ቒGS୧୸ୣ
S୪ୣ୴ୣ୪

ቓ                         otherwise 

 (1)  

 

On the way from source to destination, packet passes 
through intermediate nodes. Nodes identify the packet based on 
its source id and generation number. On new generation, a  

   Algorithm I: Source Node 
1 Line 2-6 packet generation & buffering  

2 ݈ ՚ 1
3 Generate packet ௟ܲ 

4 If l൏ ݁ݖ݅ܵܩ  

ݎ݂݂݁ݑܾ 5 ௟ܲ, 

6 ݐ݊݁݉݁ݎܿ݊݅    ݈,   
7 Line 8-10 first level encoding before sending 

ݎ݋݂ 8 ݅ ൌ 1 ݋ݐ ݁ݖ݅ܵܩ  ,݋݀

9 ݁ݐܽݎ݁݊݁݃    ݀݁݀݋ܿ݊݁ ܧ  ݐ݁݇ܿܽ݌ ௜ܲ 
ܧ       10 ௜ܲ ൌ ܥܮܴܧ ሺ ଵܲ, … , ௟ܲ. . , ܲீ ௦௜௭௘ሻ 

11 Line 12-16 second level encoding for buffering 

ݎ݋݂ 12 ݅ ൌ 1 ݋ݐ ݐ݈݅݉݅  ,݋݀

݁ݐܽݎ݁݊݁݃    13 ݁݀݋ܿ݊݁ ܧܧ ݐ݁݇ܿܽ݌ ௜ܲ 

ܧܧ    14 ௜ܲ ൌ ܥܮܴܧ ൫ ܧ ௜ܲ, … . . , ܧ ௚ܲ௦௜௭௘൯ 
15                Store ܧܧ ௜ܲ in buffer with purge time  

16                remove unwanted packets 

17 Forwarding packet to down layer 

18 Forward encoded packet with random delay  

19 Purging the packet to make buffer free  

20 On purge event remove ܧܧ ௜ܲ from buffer    
 

 

node stores the first packet in its buffer and forwards this 
packet to parent without processing it.  If node has packet in its 
buffer from same generation and source, node applies network 
coding on stored packets of given generation and source and 
incoming packet to generate encoded packet. Node updates its 
buffer with this newly encoded packet. It also increments 
received packet count for given generation and source. Node 
then forwards the received packet to its parent. Buffer space is 
allocated based on sources level number and generation size. 
Equation 1 states the buffer size for given source level Slevel 
and generation size GSize. With this we have uniformly 
distributed the buffer load on network path.  This helps in 
reducing number of messages required for loss recovery with 
reduced buffer size. Periodically node purges its buffer, 
removing old packets from it. Purge delay is calculated based 
on node’s hop distance (level) from the sink and expected load 
in the network. Purge delay is multiple of maximum RTT and 
generation size. Algorithm II covers the steps for intermediate 
nodes.  

   Lines 26 to 37 cover the steps that intermediate node takes on 
query received from parent. Based on loss count and buffered 
packets, node sends the reply. If node does not have sufficient 
packets to recover loss, it forwards the query to child. Until the 
query is fully resolved, network keeps on sending query 
towards the source node.  

    At last packet reaches  sink node. On sink node, when packet 
arrives, sink identifies the source id and generation number. 
Nodes wait for sufficient number of packets that is equal to 
generation size. On receiving sufficient packets sink node 
applies the decoding on received generation. The decoding 
method is given in section 2 under decoding sub section. 
Generation is successfully decoded if it ends with identity 
matrix with rank equal to generation size. If rank is lower or  
sink  receives  next  generation  packet before all the  



   Algorithm II: Intermediate Nodes 
1  Line 2-6 & 14-16 buffers received packet 

2 On packet receive ܲ 
3 Get  ݀ܫݏ, ܲ from  ݎܾ݁݉ݑ݊ܩ ݀݊ܽ ݈݁ݒ݈݁ܵ   
4 If first pkt from ݈ܵ݁ݎܾ݁݉ݑ݊ܩ ݀݊ܽ ݈݁ݒ 

 as ௦ܲூௗ,ீ௡௨௠௕௘௥,௞  ܲ ݎ݂݂݁ݑܾ     5

6    update ܥ௦ூௗ
ீ௡௨௠௕௘௥, ݇ //Counters 

7       go to Line 22     
8 Line 10-13 & 18-21 Encode received packet with  

9 buffered packets 

10 If ݈݈ܵ݁݁ݒ ൐  ݁ݖ݅ܵܩ

11      Encode ܲ  with buffered ௦ܲூௗ,ீ௡௨௠௕௘௥,௞ 

12      ௦ܲூௗ,ீ௡௨௠௕௘௥,௞ ൌ , ൫ܲ ܥܮܴܧ  ௦ܲூௗ,ீ௡௨௠௕௘௥,௞൯ 
13  Else   

14    If ܥ௦ூௗ
ீ௡௨௠௕௘௥< ݈݅݉݅ݐ௦ூௗ

ீ௡௨௠௕௘௥  
   ܲ  ݎ݂݂݁ݑܾ       15
16        update ܥ௦ூௗ

ீ௡௨௠௕௘௥, ݇ 
17     Else       

18               Encode ܲ  with buffered ௦ܲூௗ,ீ௡௨௠௕௘௥,௞ 

݅ ݎ݋݂        19 ൌ ௦ூௗݐ݈݅݉݅ ݋ݐ 1
ீ௡௨௠௕௘௥ ݀݋, 

20         ௦ܲூௗ,ீ௡௨௠௕௘௥,௜ ൌ , ൫ܲ ܥܮܴܧ  ௦ܲூௗ,ீ௡௨௠௕௘௥,௜൯ 
21         store   ௦ܲூௗ,ீ௡௨௠௕௘௥,௜ with purge time 

22 Forward Packet to parent 

23  Forward ܲ 

24 Removing packet from buffer 

25 On purge event remove ࢑,࢘ࢋ࢈࢓࢛࢔ࡳ,ࢊࡵ࢙ࡼ  from buffer    
26 Send packets to sink to recover from packet loss 

27  On Query  Q(݀ܫݏ, ,ݎܾ݁݉ݑ݊ܩ  ሻݏݏ݋݈

՚ ݐ      28 ݇ 
29   while  ݎܾ݁݉ݑ݊ܩ െ ௦ூௗܥ > ݏݏ݋݈

ீ௡௨௠௕௘௥, t  >  0 and  loss >0 
30       Send encoded packet 

31       Decrement t, loss 

32    If loss > 0 

33 If insufficient packets to recover then forward query  

34 to child 

35    Forward query Q(݀ܫݏ, ,ݎܾ݁݉ݑ݊ܩ  ሻݏݏ݋݈

  
 

 

packets of current generation, it generates the query message 
asking for packets of incomplete generation which contains 
loss details and the number of independent packets required to 
successfully decode the generation. The required number of 
independent packets is the difference between generation size 
and rank of the identity matrix. Intermediate nodes send the 
required packet if they have or they forward the query message 
to the child node. As all the packets have information about 
generation, it helps to reduce packet recovery cost. Here loss is 
the difference between generation size and rank of received 
packets. 

Algorithm III: Sink Node 
1 Line 2 -6 receive packet 

2 On packet receive ܲ 
3 Get  ݀ܫݏ,  ܲ from  ݎܾ݁݉ݑ݊ܩ ݀݊ܽ ݈݁ݒ݈݁ݏ
݀ܫݏܥ  ݂݅ 4

ݎܾ݁݉ݑ݊ܩ ൏  or not new generation ݁ݖ݅ݏܩ
 as ௦ܲூௗ,ீ௡௨௠௕௘௥,௞  ܲ  ݎ݂݂݁ݑܾ    5

6      update ܥ௦ூௗ
ீ௡௨௠௕௘௥, ݇ 

7 Line 9 to 16 packet decoding and sending query  

8 to child on information loss. 

9 else  

10         Rank ൌ ܥܮܴܴ ሺ ௦ܲூௗ,ீ௡௨௠௕௘௥,ଵ, … . . , ௦ܲூௗ,ீ௡௨௠௕௘௥,௞) 
11         If  rank < Gsize or On time out  

12              update ܥ௦ூௗ
ீ௡௨௠௕௘௥, ݇ 

13              Send Query(݀ܫݏ, ,ݎܾ݁݉ݑ݊ܩ ݁ݖ݅ݏܩ െ rank ) 

14         Else ݂ݎ݋ ݅ ൌ 1 ݋ݐ  ݋݀ ݁ݖ݅ܵܩ

15           ௜ܲ ൌ ܥܮܴܦ ሺ ௦ܲூௗ,ீ௡௨௠௕௘௥,ଵ, … . . , ௦ܲூௗ,ீ௡௨௠௕௘௥,௞) 
16           remov݁ ݃݁݊݁݊݋݅ݐܽݎ ,݀ܫݏ  ݎ݂݂݁ݑܾ ݉݋ݎ݂ ݎܾ݁݉ݑ݊ܩ

 
 

IV. SIMULATION RESULTS 
  We have done our simulation on Network Simulator-2 

(NS-2). In our simulation 100 nodes are deployed on a 10x10 
grid. Nodes allocate fixed buffer B to each passing generation. 
Boundary nodes are source nodes and the sink node is located 
at the centre of the grid. We have compared our network 
coding scheme (NCS) with conventional coding scheme 
(CCS). Since generation size concept is only applicable to NCS 
and not to CCS, to make a fair comparison, we have kept the 
bulk size (number of packet generated at a time) equal to the 
generation size.  For the given generation or bulk, total 
available buffer TB୳୤୤ୣ୰ ൌ Slevel כ B  is same in both the 
schemes. Performance parameters of interest are buffer 
availability, information loss, and cost for packet recovery. Due 
to limited buffer or network conditions, packets are lost in the 
network. We have analyzed the cost to recover packet loss and 
effect of limited buffer on information loss and redundant 
information in the network.   

    Figure 1 shows the availability of buffer.  Here we have 
plotted available buffer size as function of generation size. This 
analysis is of limited buffer case, where each node has fixed 
buffer for a generation of a source node. The figure shows that 

 

 
Figure 1: Average un-utilized buffer in network coding scheme and 

conventional coding scheme 
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Figure 2: Recovery cost (in # packets) for network coding scheme and 

conventional coding scheme. 

as the generation size (bulk size) increases, free buffer size 
decreases in both schemes but in NCS, the rate of decrease in 
much less then in CCS. It means that NCS requires less buffer 
size for given generation size (bulk size) compared to CCS. 
Once the bulk size is greater than the buffer size, packets are 
lost with significant rate in CCS. 

   From the result, we conclude that CCS has more 
redundant packets in the network compared to NCS and so 
more packets get dropped once buffer is full resulting in more 
information loss. As a result, more messages are required for 
packets recovery. In NCS, equation 1 and network coding 
spread the source information on nodes along the path and 
amount of redundant information is between 0 to 15% which is 
much lower than CCS. 

Figure 2 shows the recovery cost of packet loss as function 
of generation size. CCS performs better then NCS when the 
generation size (bulk size) is smaller then the buffer size. It 
performs better because sink gets required packets nearer to it. 
This analysis is average case analysis with random packet loss 
at each level. At higher generation size (bulk size), nodes 
randomly remove packets from buffer to make room for new 
packet. But as the generation size (bulk size) increases, CCS 
has more information loss. To recover packet, it has to travel 
more hops towards the source. That increases the recovery 
cost. In case of NCS, packets belonging to same generation 
have information about all the packets of generation. That 
reduces the search compared to individual packet search. For 
recovery, it requires any independent packet of same 
generation than the specific individual packet. This helps in 
reducing the recovery cost. 

V. CONCLUSION 
In this paper we have proposed buffer management scheme 

for uniform buffer utilization with minimum redundancy in 
stored data and reduced loss recovery cost with limited buffer 
size.  Our scheme is designed for many to one data traffic 
pattern but it can also work when network layer provides 

bidirectional path between source and destination.  We have 
used in-network processing of packets which is random linear 
coding.  Source node and intermediate nodes apply network 
coding on generated or forwarded packets and store only 
required number of packets which depends on loss rate and 
uniform buffer allocation. Our results show that compared to 
CCS, NCS requires smaller buffer size and has uniform buffer 
allocation with minimum redundancy. NCS also has less 
recovery cost compared to CCS.  
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APPENDIX 
Following example explains the working of random linear 

network coding. In the example we have take n ൌ 2, p ൌ 1,
m ൌ 2  and field size s ൌ 8, Fଶఴ.  
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A. Encoding  
 

   M is our original packet generated by one of the source 
and G is our coefficient vector from field Fଶఴ. 
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   Following steps are for applying encoding on already 
encoded packets. Node receives g ൌ ሺgଵ, Xଵሻ applies encoding 
on it and generates new encoded packet ሺk, Yሻ.   Here new 
coefficient vector k  is calculated by  k୧ ൌ  ∑ h୧g୧

୨୫
୨ୀ଴  and  

ܻ ൌ ∑ ݄௜ܺ௜௠
௝ୀ଴ . 
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Getting re-encoded packet using new coefficient  ݄ from ܨଶఴ. 
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Calculation new coefficient vector ݇ from ݄ and ݃ 

. 
݄݃ ൌ ቀ 39 202

236 141ቁ ቀ230 33
155 85ቁ ൌ ቀ133 33

155 85ቁ 
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B. Decoding 
 

   At decoding node, node receives the encoded packet ሺ݇, ܻሻ. 
To get original packets node applies gauss-elimination for the 
system of  ݉ linear equation.  
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   After applying gauss-elimination we have following results. 
In which left-hand side matrix is identity matrix with rank 
equals to ݊ . To decode it successfully one need ݉  
independent equations, in other words ݉ independent packets. 
If its rank is less than ݊  then our  ݉ linear equations are not 
independent and generation can not get decoded. 
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