
Effect of Network Coding on Buffer Management in
Wireless Sensor Network

Sunil Jardosh, Narmawala Zunnun, Prabhat Ranjan, Sanjay Srivastava
ICT, DA-IICT

Gandhinagar, India,
{sunil_jardosh,prabhat_ranjan,narmawala_zunnun,sanjay_srivastava}@da-iict.ac.in

Abstract—In resource constrained wireless sensor networks
(WSN), it is highly desirable to make efficient use of available
buffer. Hence for the WSN designed for the monitoring
applications, buffer management is a key requirement at sensor
nodes. We have proposed an efficient buffer management scheme
based on random linear network coding as the in-network
processing on data packets. With buffer allocation from source to
sink path, our scheme distributes the buffer requirement among
the nodes on the path. Further in the case of a packet loss, the
proposed scheme recovers packet from available information
distributed on the path from source to sink. We have compared
our scheme with conventional buffer management scheme.
Results show that network coding based buffer management
scheme has better buffer availability with less redundancy and
reduced loss recovery cost.

Keywords-component; Wireless Sensor Network, Random
Linear Network Coding, Buffer Management

I. INTRODUCTION
Wireless sensor network is application specific data centric

network [1-2], One of the application specific classes of WSN
is monitoring application class [3-5]. Monitoring applications
perform the micro-level monitoring of sensor field. Here
network follows the specific data traffic pattern of many to one
in which all the sensor nodes send their data towards the base
station. Sensor nodes sense sensor field periodically or on some
predefined events and generate readings. These readings are
forwarded towards the base station using store and forward
method.

 For this class of applications, buffer is very constrained
resource. So effective buffer management and maintaining
minimum number of duplicate packets in the network are of
prime importance. Further buffer allocation at each node
should be fair among different sources. To achieve these goals,
we have proposed a buffer management scheme using in-
network processing for WSN deployed for monitoring
applications like [3-5]. Our objective here is to distribute the
buffer load among nodes and provide uniform buffer
utilization. That helps in reducing the buffer requirement at
source and intermediate nodes. Secondly, we also minimize the
number of retransmitted messages required in the case of
packet loss. We have used network coding as “in-network
processing” on packets from source to sink [6-7]. In normal
network, each packet carries its own information while
network coding distributes information of packets in a
generation to encoded packets of that generation. We have used
this property of network coding to distribute the information of
source buffer along the path from source to sink.

 Rest of the paper is organized as follows. Section 2
covers the network coding mechanism and related work. A
detailed example of random linear network coding (RLC) is
given in appendix. Section 3 contains our buffer management
scheme. Simulation results and analysis are provided in section
4 and we conclude our paper in section 5.

II. NETWORK CODING AND RELATED WORK
Ahlswede et al. in their pioneering work [8] showed that

maximal network flow and sum of cut-edge capacities of any
minimal cut that separates sender and receiver are equal and it
is the maximum achievable capacity. This capacity is generally
not achievable in conventional communication network which
considers information as a ‘fluid’ which can simply be routed
or replicated. i.e., independent information streams may share
network resources but they are kept separate. In network
coding, instead of forwarding packets as it is, nodes may
recombine two or more input packets into one or more output
packets. Li et al. in [9] showed that linear coding with finite
field size suffices to achieve maximum flow from the source to
each destination. Among various linear encoding techniques at
network nodes, random linear coding [10] is widely used as it
is distributed and less computationally intensive and algorithms
are well understood. The following explanation is based on
[11].

A. Random Linear Coding
Let each packet contains L bits. If packets to be combined

are not of the same size, smaller packets are padded with
trailing zeroes. s consecutive bits of a packet can be interpreted
as a symbol over the field Fଶ౩. i.e., each packet consists of a
vector of L/s symbols. Outgoing packet at each node is a linear
combination of incoming packets or generated packets at that
node where addition and multiplication operations are
performed over the field Fଶ౩. The encoded packet also contains
L bits. So an encoded packet contains information about all
original packets and multiple such packets can be generated. In
effect, information of an original packet is spread into number
of encoded packets.

B. Encoding
Let original packets Mଵ, … , M୬ be generated by one or

more sources. The encoded packet is X୮ ൌ ∑ g୧M୮
୧୬

୧ୀ଴ , where
sequence of coefficients gଵ, … , g୬ are chosen uniformly at
random over the field Fଶ౩ . The summation is to be done for
every symbol in a vector of L/s symbols in a packet. i.e.,

 ܺ௣ ൌ ∑ ௜݃ܯ௣
௜௡

௜ୀ଴ where ܯ௣
௜ and ܺ௣ is the ܲ௧௛ symbol of ܯ௜

and ܺ respectively. Coefficients vector ݃ ൌ ሺ݃ଵ, . . , ݃௡ሻ is also
sent in the encoded packet along with encoded data ܺ .
Forwarding nodes can also do encoding on already encoded
packets. Consider a node that has a set
݃ ൌ ሺ݃ଵ, ܺଵሻ, … , ሺ݃௠, ܺ௠ሻ of encoded packets, where ݃௝ is
the encoding vector of the ݆௧௛ packet and ܺ௝ is the information
vector of ݆௧௛ packet. This node can generate a new encoded
packet ሺ݇, ܻሻ by selecting uniformly at random a set of
coefficients ݄ଵ, … , ݄௡ and computing the linear combination
ܻ ൌ ∑ ݄௜ܺ௜௠

௝ୀ଴ . As the coefficients should be with respect to
the original packets, the corresponding ݇ vector is given by
݇௜ ൌ ∑ ݄௜ ௜݃

௝௠
௝ୀ଴ . Encoding example on field ܨଶఴ with ݉ ൌ 2

is given in appendix.

C. Decoding
 Consider that a node has received the

set ሺkଵ, Yଵሻ … ሺk୫, Y୫ሻ. To retrieve original packets, it needs
to solve the system of m linear equations Y୨ ൌ ∑ k୧

୨୬
୧ୀଵ M୧

with M୧’s as unknowns. If m ൌ n, i.e., number of received
packets are equal to number of original packets, we can recover
all the original packets provided all the encoded packets are
linearly independent. But there is a possibility that some of the
encoded packets are linearly dependent. Simulation results
indicate that even for small field sizes ሺe. g. s ൌ 8), the
probability becomes negligible [10]. For the example given in
appendix, please note that m ൌ n ൌ 2.

D. Generation Size
As the number of originating packets ሺnሻ in a network for

given destination increases, the amount of memory needed to
store coefficients of encoded packets increases because these
coefficients are to be remembered till a node receives at least n
packets to decode all original packets. Further, till at least n
encoded packets are not received, most of the n original
packets can not be decoded. Thus delivery delay of a packet
increases with n . To reduce memory requirement and the
delay, originating packets can be grouped together into so
called ‘generation’. Now all the nodes in the network will
encode packets of the same generation. If the generation size is
k ሺ k ا nሻ, whenever the receiver receives at least k packets of
a generation, it will able to decode k original packets and the
corresponding k encoded packets can be discarded, freeing the
memory and the delay will also be reduced as receiver will
have to now wait only for k encoded packets to be able to
decode. But as packets from different generations can not be
‘mixed’, mixing opportunity reduces with k.

 In sensor network literature very limited material is there
which has used the powerful tool of network coding. Wang et
al. in [12] presented partial network coding (PNC) as a generic
tool for continuous data collection. PNC generalizes the
existing network coding (NC) paradigm but enables efficient
storage replacement for continuous data, which is a major
deficiency of the conventional NC. They proved that the
performance of PNC is quite close to NC, except for a sub
linear overhead on storage and communication.

 ShanShan et al. in [13] proposed an energy aware
method to combine multipath routing with practical network
coding. Through this method, same reliability as conventional
multipath mechanisms can be guaranteed with significantly
reduced energy consumption by decreasing the number of
paths needed to deliver data. The method only needs little
metadata overhead and some small scale linear operations.
Toledo and Wang in [14] used network coding to achieve an
adaptive equivalent solution to the construction of disjoint
multipath routes from a source to a destination. It exploits both
the low cost mesh topology construction, such as those
obtained by diffusion algorithms, and the capacity achieving
capability of linear network coding. The solution easily adapts
to the changing conditions of the wireless sensor network and it
can be used by the sinks to increase or decrease capacity and
reliability on demand.

 In our work, we have used network coding for better
buffer utilization and loss recovery in wireless sensor networks.
In normal network, each packet has its own information. On
packet loss, lost packet can not be recovered from other
packets. Sink can get that packet either from source or from
intermediate nodes. With random loss, nodes need to store
more packets to reduce message transmission for loss recovery.
It creates trade-off between buffer size and recovery cost and
both are scarce resources for WSN. Network coding helps here
in reducing the buffer requirement. Instead of storing entire
generation or bulk of packets at source or intermediate nodes,
one can distribute load among nodes by distributing encoded
packets of the generation uniformly among the nodes on the
path from source to sink (1) because an encoded packet carries
information of multiple original packets and is useful to
recover any on these lost packets. This helps in reducing the
buffer requirement at each node and reduces the buffer size. In
normal network, it is hard to decide how many number of
packets should be stored and at which nodes because each
packet carries only its own information.

 We have used this fact and designed the buffer allocation
policy. In our scheme, source node applies random linear
coding on generated packets. That spread the information of
current generation in all the packets belonging to that
generation. Intermediate nodes store the encoded packet and
for new packet, update their coefficients to add information in
stored data. Sink node recovers the entire generation after
reversing the process. On packet loss, information that is
uniformly distributed on the path helps the sink to recover
packet loss with less number of messages.

III. BUFFER MANAGEMENT WITH NC
Network nodes have limited buffer size and it is desired to

use it efficiently. Efficiency of buffer management scheme can
be measured by buffer availability, information loss due to
limited buffer size and redundancy in stored data. Buffer
management scheme should also recover lost packets with
minimum retransmitted messages (recovery cost).

 In our network model, source node periodically generates
the packets, applies network coding and sends them towards
the sink node through intermediate nodes. We have assumed
that it is the responsibility of routing protocol to forward the

packet towards the sink. We also depend on network layer for
unique path between sink node and source node.

A. Conventional Coding Scheme
 By Conventional Coding Scheme (CCS), we mean buffer

management scheme for network without network coding. In
CCS, a node stores the arrived packet into its buffer with the
purge time. On purge time, it removes the packet from the
buffer. In the case when there is no room for new packet, it
removers randomly a packet from buffer to make space for
arrived packet.

B. Network Coding Scheme
 In network coding based buffer management scheme

(NCS), after generating packet, as explained above, node
applies random linear network coding on it along with
previously stored packets and then sends the encoded packet to
the network layer. Normally network coding is applied on
group of packets. Required number of packets depends on the
generation size. In the case when packets are less then the
generation size, it can be applied with corresponding
coefficients as zero. Procedure to encode packet is explained in
section 2 under encoding subsection. These generated packets
are forwarded to the network layer. Network layer sends them
to parent node. Each sent packet contains the generation
number and source id with it. With generation number and
source id, network nodes uniquely identify the packet
generation. Here instead of recognizing each packet, network
nodes only need to recognize the unique generation. All the
packets belonging to same generation contain some
information about entire generation. This helps in reducing the
buffer size with group of encoded packets then the bulk of
individual packets.

 Algorithm I covers the steps for the source node. In
conventional network, each packet has its own information so
if a packet is lost, it can not be recovered from other packets.
Sink can get it either from source or from intermediate nodes.
To recover this random packet loss with reduced message
transmissions, nodes have to store more packets and require
larger buffer size. Network coding helps in reducing the buffer
requirement.

Instead of storing entire generation at source or
intermediate nodes, we only store limited information. Some
part of information is stored on source and other on the path
from source to sink uniformly (1) for loss recovery as shown in
Line 10-14 where Slevel is number of hops from source to sink
and GSize is the generation size .

 limit ൌ

ە
ۖ
۔

ۖ
ۓ ቔGS୧୸ୣ

S୪ୣ୴ୣ୪
ቕ ൅ ቔቀGS୧୸ୣ

S୪ୣ୴ୣ୪
െ ቔGS୧୸ୣ

S୪ୣ୴ୣ୪
ቕቁ ൈ 2ቕ ,

 if Slevel ൏ ݈݁ݒ݈݁ ݊݁ݒ݁ ݀݊ܽ ݁ݖ݅ݏܩ

ቒGS୧୸ୣ
S୪ୣ୴ୣ୪

ቓ otherwise

 (1)

On the way from source to destination, packet passes
through intermediate nodes. Nodes identify the packet based on
its source id and generation number. On new generation, a

 Algorithm I: Source Node
1 Line 2-6 packet generation & buffering

2 ݈ ՚ 1
3 Generate packet ௟ܲ

4 If l൏ ݁ݖ݅ܵܩ

ݎ݂݂݁ݑܾ 5 ௟ܲ,

6 ݐ݊݁݉݁ݎܿ݊݅ ݈,
7 Line 8-10 first level encoding before sending

ݎ݋݂ 8 ݅ ൌ 1 ݋ݐ ݁ݖ݅ܵܩ ,݋݀

9 ݁ݐܽݎ݁݊݁݃ ݀݁݀݋ܿ݊݁ ܧ ݐ݁݇ܿܽ݌ ௜ܲ
ܧ 10 ௜ܲ ൌ ܥܮܴܧ ሺ ଵܲ, … , ௟ܲ. . , ܲீ ௦௜௭௘ሻ

11 Line 12-16 second level encoding for buffering

ݎ݋݂ 12 ݅ ൌ 1 ݋ݐ ݐ݈݅݉݅ ,݋݀

݁ݐܽݎ݁݊݁݃ 13 ݁݀݋ܿ݊݁ ܧܧ ݐ݁݇ܿܽ݌ ௜ܲ

ܧܧ 14 ௜ܲ ൌ ܥܮܴܧ ൫ ܧ ௜ܲ, … . . , ܧ ௚ܲ௦௜௭௘൯
15 Store ܧܧ ௜ܲ in buffer with purge time

16 remove unwanted packets

17 Forwarding packet to down layer

18 Forward encoded packet with random delay

19 Purging the packet to make buffer free

20 On purge event remove ܧܧ ௜ܲ from buffer

node stores the first packet in its buffer and forwards this
packet to parent without processing it. If node has packet in its
buffer from same generation and source, node applies network
coding on stored packets of given generation and source and
incoming packet to generate encoded packet. Node updates its
buffer with this newly encoded packet. It also increments
received packet count for given generation and source. Node
then forwards the received packet to its parent. Buffer space is
allocated based on sources level number and generation size.
Equation 1 states the buffer size for given source level Slevel
and generation size GSize. With this we have uniformly
distributed the buffer load on network path. This helps in
reducing number of messages required for loss recovery with
reduced buffer size. Periodically node purges its buffer,
removing old packets from it. Purge delay is calculated based
on node’s hop distance (level) from the sink and expected load
in the network. Purge delay is multiple of maximum RTT and
generation size. Algorithm II covers the steps for intermediate
nodes.

 Lines 26 to 37 cover the steps that intermediate node takes on
query received from parent. Based on loss count and buffered
packets, node sends the reply. If node does not have sufficient
packets to recover loss, it forwards the query to child. Until the
query is fully resolved, network keeps on sending query
towards the source node.

 At last packet reaches sink node. On sink node, when packet
arrives, sink identifies the source id and generation number.
Nodes wait for sufficient number of packets that is equal to
generation size. On receiving sufficient packets sink node
applies the decoding on received generation. The decoding
method is given in section 2 under decoding sub section.
Generation is successfully decoded if it ends with identity
matrix with rank equal to generation size. If rank is lower or
sink receives next generation packet before all the

 Algorithm II: Intermediate Nodes
1 Line 2-6 & 14-16 buffers received packet

2 On packet receive ܲ
3 Get ݀ܫݏ, ܲ from ݎܾ݁݉ݑ݊ܩ ݀݊ܽ ݈݁ݒ݈݁ܵ
4 If first pkt from ݈ܵ݁ݎܾ݁݉ݑ݊ܩ ݀݊ܽ ݈݁ݒ

 as ௦ܲூௗ,ீ௡௨௠௕௘௥,௞ ܲ ݎ݂݂݁ݑܾ 5

6 update ܥ௦ூௗ
ீ௡௨௠௕௘௥, ݇ //Counters

7 go to Line 22
8 Line 10-13 & 18-21 Encode received packet with

9 buffered packets

10 If ݈݈ܵ݁݁ݒ ൐ ݁ݖ݅ܵܩ

11 Encode ܲ with buffered ௦ܲூௗ,ீ௡௨௠௕௘௥,௞

12 ௦ܲூௗ,ீ௡௨௠௕௘௥,௞ ൌ , ൫ܲ ܥܮܴܧ ௦ܲூௗ,ீ௡௨௠௕௘௥,௞൯
13 Else

14 If ܥ௦ூௗ
ீ௡௨௠௕௘௥< ݈݅݉݅ݐ௦ூௗ

ீ௡௨௠௕௘௥
 ܲ ݎ݂݂݁ݑܾ 15
16 update ܥ௦ூௗ

ீ௡௨௠௕௘௥, ݇
17 Else

18 Encode ܲ with buffered ௦ܲூௗ,ீ௡௨௠௕௘௥,௞

݅ ݎ݋݂ 19 ൌ ௦ூௗݐ݈݅݉݅ ݋ݐ 1
ீ௡௨௠௕௘௥ ݀݋,

20 ௦ܲூௗ,ீ௡௨௠௕௘௥,௜ ൌ , ൫ܲ ܥܮܴܧ ௦ܲூௗ,ீ௡௨௠௕௘௥,௜൯
21 store ௦ܲூௗ,ீ௡௨௠௕௘௥,௜ with purge time

22 Forward Packet to parent

23 Forward ܲ

24 Removing packet from buffer

25 On purge event remove ࢑,࢘ࢋ࢈࢓࢛࢔ࡳ,ࢊࡵ࢙ࡼ from buffer
26 Send packets to sink to recover from packet loss

27 On Query Q(݀ܫݏ, ,ݎܾ݁݉ݑ݊ܩ ሻݏݏ݋݈

՚ ݐ 28 ݇
29 while ݎܾ݁݉ݑ݊ܩ െ ௦ூௗܥ > ݏݏ݋݈

ீ௡௨௠௕௘௥, t > 0 and loss >0
30 Send encoded packet

31 Decrement t, loss

32 If loss > 0

33 If insufficient packets to recover then forward query

34 to child

35 Forward query Q(݀ܫݏ, ,ݎܾ݁݉ݑ݊ܩ ሻݏݏ݋݈

packets of current generation, it generates the query message
asking for packets of incomplete generation which contains
loss details and the number of independent packets required to
successfully decode the generation. The required number of
independent packets is the difference between generation size
and rank of the identity matrix. Intermediate nodes send the
required packet if they have or they forward the query message
to the child node. As all the packets have information about
generation, it helps to reduce packet recovery cost. Here loss is
the difference between generation size and rank of received
packets.

Algorithm III: Sink Node
1 Line 2 -6 receive packet

2 On packet receive ܲ
3 Get ݀ܫݏ, ܲ from ݎܾ݁݉ݑ݊ܩ ݀݊ܽ ݈݁ݒ݈݁ݏ
݀ܫݏܥ ݂݅ 4

ݎܾ݁݉ݑ݊ܩ ൏ or not new generation ݁ݖ݅ݏܩ
 as ௦ܲூௗ,ீ௡௨௠௕௘௥,௞ ܲ ݎ݂݂݁ݑܾ 5

6 update ܥ௦ூௗ
ீ௡௨௠௕௘௥, ݇

7 Line 9 to 16 packet decoding and sending query

8 to child on information loss.

9 else

10 Rank ൌ ܥܮܴܴ ሺ ௦ܲூௗ,ீ௡௨௠௕௘௥,ଵ, … . . , ௦ܲூௗ,ீ௡௨௠௕௘௥,௞)
11 If rank < Gsize or On time out

12 update ܥ௦ூௗ
ீ௡௨௠௕௘௥, ݇

13 Send Query(݀ܫݏ, ,ݎܾ݁݉ݑ݊ܩ ݁ݖ݅ݏܩ െ rank)

14 Else ݂ݎ݋ ݅ ൌ 1 ݋ݐ ݋݀ ݁ݖ݅ܵܩ

15 ௜ܲ ൌ ܥܮܴܦ ሺ ௦ܲூௗ,ீ௡௨௠௕௘௥,ଵ, … . . , ௦ܲூௗ,ீ௡௨௠௕௘௥,௞)
16 remov݁ ݃݁݊݁݊݋݅ݐܽݎ ,݀ܫݏ ݎ݂݂݁ݑܾ ݉݋ݎ݂ ݎܾ݁݉ݑ݊ܩ

IV. SIMULATION RESULTS
 We have done our simulation on Network Simulator-2

(NS-2). In our simulation 100 nodes are deployed on a 10x10
grid. Nodes allocate fixed buffer B to each passing generation.
Boundary nodes are source nodes and the sink node is located
at the centre of the grid. We have compared our network
coding scheme (NCS) with conventional coding scheme
(CCS). Since generation size concept is only applicable to NCS
and not to CCS, to make a fair comparison, we have kept the
bulk size (number of packet generated at a time) equal to the
generation size. For the given generation or bulk, total
available buffer TB୳୤୤ୣ୰ ൌ Slevel כ B is same in both the
schemes. Performance parameters of interest are buffer
availability, information loss, and cost for packet recovery. Due
to limited buffer or network conditions, packets are lost in the
network. We have analyzed the cost to recover packet loss and
effect of limited buffer on information loss and redundant
information in the network.

 Figure 1 shows the availability of buffer. Here we have
plotted available buffer size as function of generation size. This
analysis is of limited buffer case, where each node has fixed
buffer for a generation of a source node. The figure shows that

Figure 1: Average un-utilized buffer in network coding scheme and

conventional coding scheme

0

10

20

30

40

50

60

70

80

90

100

5 10 15 20 25 30

B
uf

fe
r

A
va

ila
bi

lit
y

Generation Size

CCS

NCS

Figure 2: Recovery cost (in # packets) for network coding scheme and

conventional coding scheme.

as the generation size (bulk size) increases, free buffer size
decreases in both schemes but in NCS, the rate of decrease in
much less then in CCS. It means that NCS requires less buffer
size for given generation size (bulk size) compared to CCS.
Once the bulk size is greater than the buffer size, packets are
lost with significant rate in CCS.

 From the result, we conclude that CCS has more
redundant packets in the network compared to NCS and so
more packets get dropped once buffer is full resulting in more
information loss. As a result, more messages are required for
packets recovery. In NCS, equation 1 and network coding
spread the source information on nodes along the path and
amount of redundant information is between 0 to 15% which is
much lower than CCS.

Figure 2 shows the recovery cost of packet loss as function
of generation size. CCS performs better then NCS when the
generation size (bulk size) is smaller then the buffer size. It
performs better because sink gets required packets nearer to it.
This analysis is average case analysis with random packet loss
at each level. At higher generation size (bulk size), nodes
randomly remove packets from buffer to make room for new
packet. But as the generation size (bulk size) increases, CCS
has more information loss. To recover packet, it has to travel
more hops towards the source. That increases the recovery
cost. In case of NCS, packets belonging to same generation
have information about all the packets of generation. That
reduces the search compared to individual packet search. For
recovery, it requires any independent packet of same
generation than the specific individual packet. This helps in
reducing the recovery cost.

V. CONCLUSION
In this paper we have proposed buffer management scheme

for uniform buffer utilization with minimum redundancy in
stored data and reduced loss recovery cost with limited buffer
size. Our scheme is designed for many to one data traffic
pattern but it can also work when network layer provides

bidirectional path between source and destination. We have
used in-network processing of packets which is random linear
coding. Source node and intermediate nodes apply network
coding on generated or forwarded packets and store only
required number of packets which depends on loss rate and
uniform buffer allocation. Our results show that compared to
CCS, NCS requires smaller buffer size and has uniform buffer
allocation with minimum redundancy. NCS also has less
recovery cost compared to CCS.

REFERENCES

[1] Kuorilehto, M., Hännikäinen, M., and Hämäläinen, T. D. 2005. “A
survey of application distribution in wireless sensor networks”.
EURASIP J. Wirel. Commun. Netw. 5, 5 (Oct. 2005), 774-788.

[2] V. Raghunathan, C. Schurgers, S. Park, and M. B. Srivastava, “Energy
aware wireless microsensor networks,” IEEE Signal Processing
Magazine, vol. 19, iss. 2, pp. 40--50, March 2002.

[3] A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton, and J. Zhao.
“Habitat monitoring: Application driver for wireless communications
technology.” In Proceedings of the 2001 ACM SIGCOMM Workshop on
Data Communications in Latin America and the Caribbean, April 2001.,
2001.

[4] Edoardo Biagioni and Kent Bridges. “The application of remote sensor
technology to assist the recovery of rare and endangered species”. In
Special issue on Distributed Sensor Networks for the International
Journal of High Performance Computing Applications, Vol. 16, N. 3,
August 2002.

[5] K. Chintalapudi, T. Fu, R. Govindan, E. Johnson, “Structural Damage
Detection and Localization using Wireless Sensor Networks with Low
Power Consumption”, Proc. of the 5h International Conference on
Structural Health Monitoring, 2005.

[6] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network
information flow,” in IEEE Transactions on Information Theory, vol.
46, pp. 1204-1216, July 2000.

[7] T. Ho, R. Koetter, M. M`edard, D. R. Karger, and M. Effros, “The
benefits of coding over routing in a randomized setting,” in IEEE
International Symposium on Information Theory, 2003.

[8] Rudolf Ahlswede, Ning Cai, ShuoYen Robert Li, and Raymond W. Ye-
ung. “Network information flow”. In IEEE Transactions on Information
Theory, vol. 46, pp. 12041216, July 2000.

[9] ShuoYen Robert Li, Raymond W. Yeung, and Ning Cai. “Linear
network coding”. In IEEE Transactions on Information Theory, vol. 49,
pp. 371381, February 2003.

[10] Tracey Ho, Ralf Koetter, Muriel M`edard, David R. Karger, and
Michelle Effros. “The benefits of coding over routing in a randomized
setting”, In IEEE International Symposium on Information Theory,
2003.

[11] Christina Fragouli, JeanYves Le Boudec, and Jorg “Widmer. Network
coding: An instant primer.” In ACM SIGCOMM Computer Communica-
tion Review, January 2006.

[12] D. Wang, Q. Zhang, and J. Liu, “Partial network coding:
Theory and application for continuous sensor data collection,” in 14th
IEEE International Workshop on Quality of Service, June 2006.

[13] L. ShanShan, Z. PeiDong, and L. XiangKe, “Energy efficient multipath
routing using network coding in wireless sensor networks,” in ADHOC-
NOW, 2006.

[14] A. L. Toledo and X. Wang, “Efficient multipath in sensor networks
using diffusion and network coding,” in 40th Annual Conference on
Information Sciences and Systems, March 2006.

APPENDIX
Following example explains the working of random linear

network coding. In the example we have take n ൌ 2, p ൌ 1,
m ൌ 2 and field size s ൌ 8, Fଶఴ.

0

20

40

60

80

100

120

5 10 15 20 25 30

R
ec

ov
er

y
C

os
t

Generation Size

CCS

NCS

A. Encoding

 M is our original packet generated by one of the source
and G is our coefficient vector from field Fଶఴ.

ܯ ൌ ቆ
ଵܯ

ଶቇܯ ൌ ൬
161
87 ൰

ܩ ൌ ൬݃ଵ
ଵ ݃ଶ

ଵ

݃ଵ
ଶ

ଵ݃
ଶ൰ ൌ ቀ230 33

155 85ቁ

݃ܺ ൌ ቀ230 33
155 85ቁ ൬

161
87 ൰ ൌ ൬

108
104൰ ൌ ቆ

ܺଵ

ܺଶቇ ൌ ܺ

 Following steps are for applying encoding on already
encoded packets. Node receives g ൌ ሺgଵ, Xଵሻ applies encoding
on it and generates new encoded packet ሺk, Yሻ. Here new
coefficient vector k is calculated by k୧ ൌ ∑ h୧g୧

୨୫
୨ୀ଴ and

ܻ ൌ ∑ ݄௜ܺ௜௠
௝ୀ଴ .

݃ ൌ ቀ230 33
155 85ቁ , ܺ ൌ ൬

108
104൰

݄ ൌ ൬݄ଵ
ଵ ݄ଶ

ଵ

݄ଵ
ଶ ݄ଵ

ଶ൰ ൌ ቀ 39 202
236 141ቁ

Getting re-encoded packet using new coefficient ݄ from ܨଶఴ.

݄ܺ ൌ ቀ 39 202
236 141ቁ ൬

108
104൰ ൌ ൬

142
97 ൰ ൌ ቆ

ܻଵ

ܻଶቇ ൌ ܻ

Calculation new coefficient vector ݇ from ݄ and ݃

.
݄݃ ൌ ቀ 39 202

236 141ቁ ቀ230 33
155 85ቁ ൌ ቀ133 33

155 85ቁ

݄݃ ൌ ൬݇ଵ
ଵ ݇ଶ

ଵ

݇ଵ
ଶ ݇ଵ

ଶ൰ ൌ ݇

B. Decoding

 At decoding node, node receives the encoded packet ሺ݇, ܻሻ.
To get original packets node applies gauss-elimination for the
system of ݉ linear equation.

݇ ൌ ቀ133 186
127 123ቁ , ܻ ൌ ൬

142
97 ൰

ቀ133 186
127 123ቁ ቆ

ଵܯ

ଶቇܯ ൌ ൬
142
97

൰

 After applying gauss-elimination we have following results.
In which left-hand side matrix is identity matrix with rank
equals to ݊ . To decode it successfully one need ݉
independent equations, in other words ݉ independent packets.
If its rank is less than ݊ then our ݉ linear equations are not
independent and generation can not get decoded.

ቀ1 0
0 1ቁ ቆ

ଵܯ

ଶቇܯ ൌ ൬
161
87 ൰

