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                                                                        ABSTRACT 

 
As the processing capability of processor increases the computation 

requirements of application two folds, especially Digital Image Processing 

algorithms applied on satellite images require tremendous amount of 

calculations because high resolution images are common in aerial and 

satellite surveillance, even larger amounts of data are coming in near 

future. Convolution and cross-correlation are fundamental algorithms 

required in many image processing tasks, in order to speed up their 

computation often they are implemented on parallel hardware. 

 

 Therefore, to reach constraints imposed, two approaches are 

possible; one is to use DSP processors having characteristics of SIMD and 

VLIW architecture, MAC operations which can exploit parallelism. The 

other is to use hybrid architecture consisting of DSP and FPGA as 

coprocessor. To implement above mentioned approaches proper DSP need 

to be selected. As a part of this, some basic image processing algorithms 

have been studied, implemented and simulated for various leading DSPs. 

The same algorithms have been implemented for P-IV and the results 

obtained are compared and analyzed. 

 

The second approach has been implemented for 1D FFT algorithm. 

As FPGA get rid of pipeline hazards, it can result in faster execution. Here 

algorithm computation distribution has been suggested which implies 

implementation of complex multiplications to be implemented in FPGA and 

other calculations to be done in DSP. For this scenario the speed up is 

measured and analyzed. 
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1               INTRODUCTION 

1.1 GENERAL 

Digital image processing is characterized by very high computational 

demands. Although it can be handled by “standard” computer hardware, 

such solution is not viable for an embedded system, where dimensions of 

the computer system, power consumption or data throughput are of 

concern. For these reasons, specialized hardware solutions based on a 

digital signal processor (DSP) or a Field Programmable Gate Array (FPGA) 

are usually used in embedded systems. As increasingly complex 

algorithms are implemented using digital signal processing, the 

performance demands of these algorithms rise exponentially. For cost-

sensitive, high-volume applications like stereo image processing, online 

video processing, development of extremely specialized ASP(Application 

specific processors) are driven. However, for many other applications, the 

only options for implementing high-performance digital signal processing 

have been general-purpose DSPs and, more recently, FPGAs. Available 

Processor types range from general purpose processors that handle a wide 

variety of applications, to application-specific processors like DSPs, which 

are specific to a particular application class such as signal processing, to 

single purpose processors, which are customized to a very specific 

function.  

 

The heart of any digital signal processing architecture is the Multiply-and-

Accumulate (MAC) unit. Most signal processing applications utilize a great 

deal of multiplication: The MAC unit of a DSP accelerates this type of 

calculation by performing the multiplication of two numbers and then 

adding the result to all of the previous multiplications in what is called an 

"accumulator". Another key enabling technology of DSPs is the ability to 

process several operations at the same time. One way that DSPs can 

execute four operations at the same time is to use what is known as Very 

Long Instruction Word (VLIW) architecture. A VLIW is a single instruction 

that actually represent several operations. DSPs have typically been used 

to implement many of these applications. Although DSPs are 

programmable through software, the DSPs’ hardware architecture is not 
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flexible. Therefore, DSPs are limited by fixed hardware architecture such 

as bus performance bottlenecks, a fixed number of MAC blocks, fixed 

memory, fixed hardware accelerator blocks and fixed data widths. The 

DSPs’ fixed hardware architecture is not suitable for many applications 

that require customized DSP function implementations. The architecture of 

FPGA, on the other hand, is designed with fine-grain parallelism, which 

makes it well suited for massively parallel algorithms. The basic 

characteristics  of FPGA are relatively small capacity of the on-chip 

memory and relatively narrow throughput of memory interfaces, lack of 

wide-word processing units, and high cost of performing complex 

numerical operations, such as division, square root, logarithmic, 

exponential, and trigonometry functions (in smaller devices, these 

operations cannot be implemented at all). FPGAs provide a reconfigurable 

solution for implementing traditional applications and offer higher 

throughput along with DSP. Systems implemented in FPGA and DSPs can 

have customized architecture, customized bus structure, and customized 

memory, customized hardware accelerator blocks and a variable number 

of MAC blocks. A major advantage of FPGAs for many system 

architectures is that FPGA can behave as an acceleration purpose 

processor along with DSP , to increase throughput of the over all system. 

System architects use this capability to create products with various price 

points and performance capabilities without significantly affecting 

development costs or inventory. FPGA devices provide a reconfigurability 

which can be useful in changing design which is already ported into FPGA. 

FPGA devices incorporate a variety of embedded features such as 

embedded processors, memory blocks, etc.  

 

Stereo Image Processing is a special class of image processing area where 

high amount of computation power is required. Stereo Image Processing 

implements functions like image correction, image rectification, image 

matching and disparity calculations like tasks. In this tasks image 

matching is a very basic but most expensive task. Stereo image matching 

requires two preprocessed images and matching of these images done by 

suitable algorithm. Results of algorithms for image matching may vary 

because different algorithms have different computation costs, running 

 2 
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time, accuracy as well as artificial intelligence may also be involved. In 

this dissertation Hierarchical matching algorithm is used for the level by 

level comparisons and generating accurate results.  

1.2 MOTIVATION  

Image processing is a one of the fast developing research area of 

computer vision. Faster image processing is very essential in current 

scenario for work automation .This work is useful in developing the vision 

using the computerized analysis , object detection and classification of the 

images captured by the sensors for better interpretation and analysis. 

When it comes to  processing the digital images of high resolution in order 

of 4Kx4K, 8Kx8K and higher then this ,normal workstations  can able to 

deliver the output but by taking the more computational resources in 

terms  of memory and time to  generate the output (or with decreased 

performance). Space agencies use the special purpose satellites for the 

earth surveillance which results the high resolution satellite images. 

Processing of these satellite images and video takes more time in 

processing .Sometimes it is possible that the real time faster processing is 

required and that work is generally not supported by the workstations. To 

resolve this we require special purpose processors like DSPs or ASPs 

specifically designed for these types of applications.  

 

Digital Image Processing is a special class of Digital Signal Processing 

functions where image is a function of integer values. Using Digital Signal 

Processors resides between ASPs and GPPs(General Purpose Processor). It 

provides faster execution than GPPs while providing more flexibility than 

ASPs. Digital Signal Processors are useful for providing High throughput 

while operating at  lower frequency than GPPs. DSP processors are 

microprocessors designed to perform digital signal processing—the 

mathematical manipulation of digitally represented signals. Today’s DSP 

processors (or “DSPs”) are sophisticated devices with impressive 

capabilities. Implementing basic image processing algorithms focus on the 

image enhancement, correction, preprocessing, frequency domain 

analysis like tasks. Some of the specific applications like stereo imaging, 

medical imaging like applications needs special treatment than that of the 

 3 
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basic tasks. Developing this kind of application on DSPs requires more 

attention than just implementation. Stereo imaging library requires large 

amount of computation power which is not available at the workstation 

end and also these workstations are not efficient and capable handling the 

resource requirement for these applications. These applications require 

special attention for real time execution in timely manner so that the 

constant high throughput can be achieved. This thesis aims at the 

proposing the solution for faster throughput by the means of using the 

DSP and FPGA’s hybrid architecture. To achieve the mentioned goal would 

require the development of Library of Image processing functions for DSP 

and FPGA designs developed as special purpose processors.   

1.3 SCOPE OF WORK 

As the title suggests the goal of this dissertation focuses on the providing 

solution of high computation need for stereo image processing. To achieve 

this goal, work carried out in this research is useful for the organizations 

which require high computation power for processing of high resolution 

satellite images. Stereo imaging is one of the application which demands 

more computation power for generating disparity map and depth 

calculation of objects on the earth. By testing basic image processing 

algorithms on different DSPs as well as on FPGAs we decide suitable 

processor in performing image matching for the calculation of disparity 

between the stereo image pair. Analysis and benchmarking on image 

processing algorithms tested on TI DSP c64xx(Texas Instruments), TS-

201(Analog Devices) and Pentium-4 (on Simple Scalar 3.0 Simulator 

Toolkit) and comparing the performance of each Processor .This includes 

selection of right DSP processors and development of algorithms by 

partitioning the parallel computation tasks between the FPGA(Spartan-3) 

and DSP Processor for increased throughput. Wherever intensive 

parallelism is available in algorithm that module is performed in FPGA and 

the remaining module is developed in DSP. DSPs are used for the complex 

functions implementation which requires more resources on FPGA as well 

as which can not be done parallel or pipelined manner. DSPs are providing 

solution for the applications which require complex functions to be 

implemented on DSPs for faster than GPPs. In this dissertation focus is on 

 4 
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the FPGA Development is done in Handel-C language and verification of 

results is done through the Handel-C simulator using Xilinx Spartan-

3(1500L) FPGA. Procedure of testing and benchmarking of image 

processing algorithms is carried out for various steps of Stereo 

Reconstruction Pipeline. At the end of this dissertation work one can have 

outputs in terms of disparity map and depth map for the stereo image 

pair. These images can be used for efficient stereo reconstruction 

(Generating 3d space from 2d images).  

 5 
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1.4 OUTLINE OF THE THESIS 

 

This thesis is organized a follows: 

 

Chapter 2, Literature survey, consist of basic theories related with 

architecture of different Digital Signal processors, various simulation tools. 

 

Chapter 3, Benchmarking Image Processing Algorithms, which describes 

various DIP algorithms and its profiling, as well as brief overview of Intel 

Integrated performance primitives, optimized libraries. 

 

Chapter 4, Simulation of DIP algorithm on Pentium-IV processor, 

discussed architecture of Simple Scalar simulator, different simulation 

engine as well method of performance analysis for profiling. 

 

Chapter 5, FFT algorithms on hybrid architecture, describes hybrid 

architecture as a FPGA co-processor, clock cycle saving with hybrid 

architecture. 

 

Chapter 6, Result discusses the benchmarking of DIP algorithm, also clock 

cycle saving with hybrid architecture in comparison with single DSP. 

 

Chapter 7, This chapter discusses the conclusion, which DSP is better in 

execution of DIP algorithms. 
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2             LITERATURE SURVEY 

2.1 INTRODUCTION OF STEREO IMAGING 

2.1.1 General 

Stereo Imaging is the process of constructing the 3-Dimentional model 

using the 2-Dimentional Images for better human understanding. The task 

of building a general purpose computational-vision system is a grand 

challenge due to the compute-intensive nature of many vision algorithms. 

However, researchers have been successful in designing algorithms and 

building systems that deal with some specific tasks of the human vision 

system. One important feature of the human vision system is its ability to 

perceive depth of a viewed scene. This ability to perceive depth, known as 

stereo vision, or stereopsis is made possible by the difference in 

viewpoints of the scene when sensed by our left and right eyes. The 

information about depth in a scene is of great importance because it helps 

us navigate in a three-dimensional environment and aids us in recognizing 

objects of interest, among other tasks. In computer based stereo-vision 

systems, a stereo-rig is a pair of cameras placed side-by-side, much like 

our eyes, to capture the left and right images. In a stereo-vision system, 

this processing is carried out using a computing platform that can be 

based on software, hardware, or a mixture of the two. The depth 

information is encoded in the disparity [1], defined as the difference in 

pixel locations of corresponding points in the image pair. The disparity is 

inversely proportional to the distance of an object from the cameras, so 

the disparity increases as objects get closer to the cameras. The 

estimation of this disparity then becomes the primary task of a stereo-

vision system. 

 

In the simplest setup of a stereo-rig, where the optical axes of the two 

cameras [2] are parallel and the vertical axes are aligned, corresponding 

pixels lie at the same vertical coordinate in the image pair. The search for 

the corresponding pixel is therefore limited to the same scanline in the 

image pair, which allows processing of each scanline as they arrive. In the 

more general case where the cameras are not aligned as described above, 

the search for corresponding pixel may span across numerous scanlines 
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[3] and this increases the computational load of the system. When the 

cameras are not in the ideal setup, Image rectification of input images can 

be performed. Rectification is the process by which the input image pair is 

warped to resemble the output from an aligned stereo-rig. 

 

Often, when viewing a scene from different viewpoints as in a stereo 

setup, objects visible in one image may not be visible in the other image. 

A foreground object hides, or occludes, different parts of the background 

in the left and right views, a phenomenon known as occlusion. In addition, 

the information present at the left edge of the image captured by the left 

camera is not available in the right image and vice-versa as this part of 

the scene falls outside the viewing area of the other camera. This further 

complicates the task of accurate disparity estimation because pixels 

visible in one image may not have a corresponding match in the other 

image of the pair. Related areas of Stereo Imaging: 

 

• Robotic Vision/Machine Vision. 

• 3D Computer Graphics. 

• Computer Vision Geometry. 

2.1.2 TMS320C6000 DSP Family Overview 

The TMS320DSP family consists of fixed-point, floating-point, and 

multiprocessor digital signal processors (DSPs). TMS320DSPs have an 

architecture designed specifically for real-time signal processing. 

 

With a performance of up to 6000 million instructions per second (MIPS) 

and an efficient C compiler, the TMS320C6000 DSPs [4] give system 

architects unlimited possibilities to differentiate their products. High 

performance, ease of use, and affordable pricing make the C6000 

generation the ideal solution for multifunction applications, such as, 3-D 

transformations, Image compression/transmission, Image enhancement, 

Pattern recognition, Robot vision, etc. The newest member of the C6000 

family, the C64x, brings the highest level of performance for processing 

data in this era of data convergence. At clock rates of 600 MHz and 

greater, the C64x can process information at a rate of 4800-6400 MIPS. 

8 
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In addition to clock rate, more work can be done each cycle with the 

VelociTI architecture. These extensions include new instructions to 

accelerate performance in key applications and extend the parallelism of 

the architecture. Increased clock rate and increased CPU throughput are 

only part of the solution. Processing data at these extremely high rates 

increases the need for I/O bandwidth. 

 

Three flexible Multi–channel Buffered Serial Ports can each supply 

100Mbits/sec each of additional throughput. The internal DMA engine can 

provide over 2Gbytes/sec of I/O bandwidth with 64 independent channels. 

The C64x goes beyond a core and peripheral set to bring the maximum 

level of performance for processing digital data quickly. The tight coupling 

of the CPU architecture and the compiler help to maximize processor 

throughput. The RISC like instruction set and extensive use of pipelining 

allow many instructions to be scheduled and executed in parallel. The key 

extensions made to the ‘C62x architecture that allow the ‘C64x to perform 

more work each clock cycle include wider data paths, a larger register file, 

greater orthogonality and new instructions that support packed data 

processing. 

2.1.3 TMS320C64x DSP Architecture 

The C64x central processing unit (CPU) [5], as shown in Figure 1, consists 

of eight functional units, two register files, and two data paths. Like the 

C62x/C67x, two of these eight functional units are multipliers. The C64x 

multiplier has been enhanced so that it is capable of performing two 16-

bit x 16-bit multiplies every clock cycle. Four 16-bit x 16-bit multiplier can 

be executed every cycle on the C64x. Using 600 MHz to represent early 

C64x performance, this means 2.4 billion 16-bit multiplies can occur every 

second. Moreover, each multiplier on the C64x has the capability of 

performing four 8-bit x 8-bit multiplies every clock cycle. At 600 MHz, this 

is equivalent to 4.8 billion 8-bit multiplies occurring every second.  

9 
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Figure 1: TMS320C67x DSP Block Diagram 

The dual 16-bit extensions built into the multiply functional unit are also 

present in the other six functional units. These include dual 16-bit 

addition/subtraction, compare, and shift, min/max, and absolute value 

operations. The quad 8-bit extensions built into the multiply functional 

unit are found in four of the six remaining functional units. These include 

quad 8-bit addition/subtraction, compare, average, min/max, and bit 

expansion operations. Packed 8-bit and 16-bit data types are used by the 

code generation tools to take full advantage of these extensions. By 

doubling the registers in the register file and doubling the width of the 

data path as well as utilizing advanced instruction packing, the C6000 

compiler can improve performance with even fewer restrictions placed 

upon it by the architecture. These additions and others make the C64x an 

even better compiler target than the original C62x architecture, while 

reducing code size by up to 25%. 

2.2 ARCHITECTURAL OVERVIEW 

2.2.1 C6000 CPU 

The C6000 CPU components consist of: 

 Two general-purpose register files (A and B) 

10 
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 Eight functional units (.L1, .L2, .S1, .S2, .M1, .M2, .D1, and .D2) 

 Two load-from-memory data paths (LD1 and LD2) 

 Two store-to-memory data paths (ST1 and ST2) 

 Two data address paths (DA1 and DA2) 

2.2.2 Register File Enhancements 

There are two general-purpose register files (A and B) in the C6000 data 

paths. For the C62x/C67x, each of these files contains 16 32-bit registers 

(A0-A15 for file A and B0-B15 for file B). The general-purpose registers 

can be used for data address pointers, or condition registers. The C64x 

register file doubles the number of general-purpose registers that are in 

the C62x/C67x cores with 32 32-bit registers per data path (A0-A31 for 

file A and B0-B31 for file B). On the C64x, A0 may be used as a condition 

register as well, bringing the total to six condition registers. In all C6000 

devices, registers A4-A7 and B4-B7 can be used for circular addressing. 

The Values larger than 32 bits, such as 40-bit long and 64-bit float 

quantities, are stored in register pairs, with the 32 LSBs of data placed in 

an even-numbered register and the remaining 8 or 32 MSBs in the next 

upper register (which is always an odd-numbered register). The C64x 

register file supports all the C62x data types and extends this by 

additionally supporting packed 8-bit types and 64-bit fixed-point data 

types. Packed data types store either four 8-bit values or two 16-bit 

values in a single 32-bit register or four 16-bit values in a 64-bit register 

pair. 

2.2.3 Instruction Set 

The TMS320C64x uses an opcode operand assembly language format 

where each instruction has an opcode field for the operation and an 

operand field for one to four operands. All instructions on the 

TMS320C64x can be executed conditionally. Six designated general 

purpose registers can be used as conditional registers. Many TMS320C64x 

instructions are simple and RISC-like , as on the TMS320C62x. However , 

the addition of extensive SIMD capabilities and application specific 

instructions means that some TMS320C64x instructions support multiple 

parallel operations within a single instruction. 

 

11 
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The TMS320C64x does not support hardware looping, so all loops must be 

implemented in software. However, the parallel architecture of the 

processor allows the implementation of software loops with virtually no 

overhead. Because the TMS320C64x is a highly parallel architecture, 

obtaining maximum performance requires the programmer or code 

generation tools to schedule instruction carefully. This can be a challenge 

because the TMS320C64x has a complex architecture and long variable 

instruction latencies. Texas instruments assembly optimizer tools and C 

compiler simplify code development by automating the scheduling and 

parallelization processes. 

2.2.4 Functional Units 

The eight functional units in the C6000 data paths can be divided into two 

groups of four; each functional unit in one data path is almost identical to 

the corresponding unit in the other data path. The C64x is object code 

compatible with the C62x. Besides being able to perform all the C62x 

instructions, the C64x also contains many 8–bit and 16–bit extensions to 

the instruction set. For example, the MPYU4 instruction performs four 8x8 

unsigned multiplies with a single instruction on a .M unit. The ADD4 

instruction performs four 8–bit additions with a single instruction on a .L 

unit. 

2.2.5 Register File Paths 

Each functional unit reads directly from and writes directly to the register 

file within its own data path. That is, the .L1, .S1, .D1, and .M1 units write 

to register file A, and the .L2, .S2, .D2, and .M2 units write to register file 

B. Most data lines in the CPU support 32-bit operands, and some support 

long (40-bit) and double word (64-bit) operands. Each functional unit has 

its own 32-bit write port into a general-purpose register file. Each 

functional unit has two 32-bit read ports for source operands src1 and 

src2. Four units (.L1, .L2, .S1, and .S2) have an extra 8-bit-wide port for 

40-bit long writes, as well as an 8-bit input for 40-bit long reads. Because 

each unit has its own 32-bit write port, all eight units can be used in 

parallel with every cycle when performing 32 bit operations. Since each 

C64x multiplier can return up to a 64-bit result, an extra write port has 

12 
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been added from the multipliers to the register file, as compared to the 

C62x. 

2.2.6 Increased Orthogonality 

When we talk about orthogonality in the VelociTI architecture, we mean 

that there is a great deal of generality in the architecture. We have 

already discussed that the register file is general purpose. The registers 

can be a pointer to data or can contain data. We have also discussed how 

an ADD instruction can be performed on six of the eight functional units. 

This flexibility allows the compiler to achieve maximum performance. The 

C64x contains even more orthogonality than the original C62x/C67x 

architecture. The .D unit can now perform 32-bit logical instructions in 

addition to the .S and .L units. Also, the .D unit now directly supports load 

and store instructions for double-word data values. The C62x does not 

directly support loads and stores of double words, and the C67x only 

directly supports loads of double words. The .L and .D units can now be 

used to load 5-bit constants in addition to the .S unit’s ability to load 16-

bit constants. There is an additional factor that provides the compiler with 

more flexibility. On the C62x/C67x, one long source and one long result 

per data path could occur every clock cycle. On the C64x, up to two long 

sources and two long results can be accessed on each data path every 

clock cycle. 

2.2.7 Two–Level Cache Architecture 

On initial C64x devices, the CPU interfaces directly to dedicated level–one 

program (L1P) and data (L1D) caches of 16 Kbytes each. These caches 

operate at the full speed of CPU access. A second level unified L2 

program/data memory provides flexible storage. Figure 2 depicts an 

example L2 of size 1024 Kbytes; the size and segmentation of the L2 

cache in the C64x family may change over time. One configuration for L2 

is entirely mapped SRAM. The other configurations have both SRAM and a 

4-way set associative cache of various sizes. Changing the way memory 

can be mapped,  

13 
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       Figure 2: L1 Cache 

 

Allows the memory can be mapped allows the user to lock critical code 

such as interrupt service routines or commonly called functions in on–chip 

RAM. It also allows critical data sections such as the software stack and 

often re–used coefficients to be locked on–chip. 

2.2.8 Powerful Enhanced DMA Controller 

The C64x EDMA can provide over 2Gbytes/sec of external bandwidth on 

initial implementations. The EDMA supports up to 64 channels triggered 

by independent events. A total of 85 parameter sets are available for 

linking or chaining. Linking allows a sequence of transfers to be issued 

when a single event occurs. Chaining allows one EDMA channel to trigger 

another channel upon data transfer completion. Linking and chaining allow 

continuous auto–initialization of DMA operation with only initial 

configuration by the CPU. These features also allow circular buffers, ping–

pong buffers, and transfers of complex data structures. Transfers can be 

triggered on an element by element or frame by frame basis. 

Programmable triggering allows both sample by sample transfers and 

buffer by buffer transfers. Each channel supports both one and two–

dimensional transfers. Strides are independently programmable for each 

dimension. Using 1–D and 2–D the user can transfer sub frames of an 

image as well as automatically interleave or de–interleave time–division 

multiplexed (TDM) digital streams. Byte, word, half-word, and double-

word data sizes are supported. 

2.2.9 Three External Buses 

The initial C64x chip architecture supports up to 3 parallel external buses: 

two external memory interfaces (EMIFs) and one host port interface (HPI). 
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One EMIF (EMIFA) is 64–bits wide and is intended for direct connection to 

high– speed synchronous memory. A second 16–bit EMIF (EMIFB) is 

intended for external I/O peripherals such as FIFOs and parallel data 

converters. Decoupling memory from I/O devices both simplifies board 

design and provides I/O concurrency. Although the intent of the two 

EMIFs are different, they are identical except for their width, allowing for a 

variety of system designs. On initial implementations, these EMIFs have a 

maximum bus rate of 133 MHz. Each EMIF has four chips enable (CE) 

spaces. EMIFA can support read and write operations to 64–, 32–, 16–, 

and 8–bit external devices. Similarly, EMIFB can support read and write 

operations to both 16– and 8–bit devices. Variable width support allows 

interoperability with many external I/O peripherals and allows the system 

designer to make bandwidth/cost/power tradeoffs. Each EMIF has three 

memory controllers. The SDRAM controller supports 16 Mbit – 256 Mbit 

SDRAM devices. Finally, a programmable asynchronous controller with 

independent setup, strobe, and hold control allows easy interface to many 

asynchronous SRAMs, FIFOs, and peripheral devices. The EMIFs operate 

with dedicated external clock inputs that decouple CPU operating 

frequency from bus frequency. In addition, particular controllers can 

operate at 1x, 1/2x or 1/4x the bus input clock. All these features are 

independently configurable for each CE space of each EMIF. A 32–bit wide 

HPI provides dedicated connection to a variety of industry standard host 

processors and PCI bridge chips. The HPI can operate in either a 32–bit 

(HPI32) or 16–bit (HPI16) wide mode. An additional use of the HPI is as a 

slave port through which a mastering peripheral can stream data into the 

DSP. In some C64x devices, the 32-bit wide HPI is replaced by a 

dedicated PCI port. The C64x PCI port supports connection of the DSP to a 

PCI host via the integrated PCI master/slave bus interface and features a 

32-bit address/data bus at 33MHz. The C64x PCI port contains the logic 

required to implement a fully compliant PCI Specification revision 2.2 

bursting master/slave with access into the DSP’s memory map 

(peripherals, on-chip RAM, and external memory through the EMIF). The 

C64x PCI port interfaces to the DSP via the EDMA internal address 

generation hardware. This architecture allows for both PCI master and 
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slave transactions, while keeping the EDMA channel resources available 

for other applications.  

2.3 ARCHITECTURE OF TIGER-SHARC TS-201 DSP PROCESSOR 

2.3.1 Overview  

The ADSP-TS201S TigerSharc processor is an ultrahigh performance, 

static superscalar processor optimized for large signal processing tasks 

and communications infrastructure. The DSP combines very wide memory 

widths with dual computation blocks supporting floating-point (IEEE 32-bit 

and extended precision 40-bit) and fixed-point (8-, 16-, 32-, and 64-bit) 

processing— to set a new standard of performance for digital signal 

processors. The TigerSharc architecture [6] lets the DSP execute up to 

four instructions each cycle, performing 24 fixed-point (16-bit) operations 

or six floating-point operations. Four independent 128-bit wide internal 

data buses, each connecting to the six 4M bit memory banks, enable 

quad-word data, instruction, and I/O access and provide 33.6G bytes per 

second of internal memory bandwidth. Operating at 600 MHz, the ADSP-

TS201S processor’s core has a 1.67 ns instruction cycle time. Using its 

single-instruction, multiple-data (SIMD) features, the ADSP-TS201S 

processor can perform 4.8 billion, 40-bit MACS or 1.2 billion, 80-bit MACS 

per second. 

 

Above Functional Block Diagram shows the ADSP-TS201S processor’s 

architectural blocks. These blocks include: 

 

• Dual compute blocks, each consisting of an ALU, multiplier, 64-bit 

shifter, 128-bit CLU, and 32-word register file and associated data 

alignment buffers (DABs) 

• Dual integer ALUs (IALUs), each with its own 31-word register file 

for data addressing and a status register 
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Figure 3: Tiger Sharc Architecture 

 

• A program sequencer with instruction alignment buffer (IAB) and 

branch target buffer (BTB) 

• An interrupt controller that supports hardware and software 

interrupts, supports level- or edge-triggers, and supports 

prioritized, nested interrupts 

• Four 128-bit internal data buses, each connecting to the six 4M bit 

memory banks 

• On-chip DRAM (24M bit) 

• An external port that provides the interface to host processors, 

multiprocessing space (DSPs), off-chip memory mapped 

peripherals, and external SRAM and SDRAM 

• A 14-channel DMA controller 

• Four full-duplex LVDS link ports 

• Two 64-bit interval timers and timer expired pin 

• An 1149.1 IEEE-compliant JTAG test access port for on chip 

emulation 
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The TigerSharc DSP uses Static Superscalar architecture. This architecture 

is superscalar in that the ADSP-TS201S processor’s core can execute 

simultaneously from one to four 32-bit instructions encoded in a very 

large instruction word (VLIW) instruction line using the DSP’s dual 

compute blocks. Because the DSP does not perform instruction re-

ordering at runtime— the programmer selects which operations will 

execute in parallel prior to runtime—the order of instructions is static. 

With few exceptions, an instruction line, whether it contains one, two, 

three, or four 32-bit instructions, executes with a throughput of one cycle 

in a 10-deep processor pipeline. For optimal DSP program execution, 

programmers must follow the DSP’s set of instruction parallelism rules 

when encoding an instruction line. In general, the selection of instructions 

that the DSP can execute in parallel each cycle depends on the instruction 

line resources each instruction requires and on the source and destination 

registers used in the instructions. The programmer has direct control of 

three core components—the IALUs, the compute blocks, and the program 

sequencer. The ADSP-TS201S processor, in most cases, has a two-cycle 

execution pipeline that is fully interlocked, so—whenever a computation 

result is unavailable for another operation dependent on it—the DSP 

automatically inserts one or more stall cycles as needed. Efficient 

programming with dependency-free instructions can eliminate most 

computational and memory transfer data dependencies. In addition, the 

ADSP-TS201S processor supports SIMD operations two ways—SIMD 

compute blocks and SIMD computations. The programmer can load both 

compute blocks with the same data (broadcast distribution) or different 

data (merged distribution). 

2.3.2 Dual Compute Blocks 

The ADSP-TS201S processor has compute blocks that can execute 

computations either independently or together as a single instruction, 

multiple-data (SIMD) engine. The DSP can issue up to two compute 

instructions per compute block each cycle, instructing the ALU, multiplier, 

shifter, or CLU to perform independent, simultaneous operations. Each 

compute block can execute eight 8-bit, four 16-bit, two 32-bit, or one 64-

bit SIMD computations in parallel with the operation in the other block. 
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These computation units support IEEE 32-bit single-precision floating-

point, extended-precision 40-bit floating point, and 8-, 16-, 32-, and 64-

bit fixed-point processing. The compute blocks are referred to as X and Y 

in assembly syntax, and each block contains four computational units—an 

ALU, a multiplier, a 64-bit shifter, a 128-bit CLU—and a 32- word register 

file. Fully orthogonal register file is used for transferring data between the 

computation units, data buses and for storing intermediate results. 

Instructions can access the registers in the register file individually (word-

aligned), in sets of two (dual-aligned), or in sets of four (quad-aligned), as  

 

• ALU—the ALU performs a standard set of arithmetic operations in 

both fixed- and floating-point formats. It also performs logic 

operations 

• Multiplier—the multiplier performs both fixed- and floating- point 

multiplication and fixed-point multiply and accumulate 

• Shifter—the 64-bit shifter performs logical and arithmetic shifts, bit 

and bit stream manipulation, and field deposit and extraction 

operations 

• Provide 8 MACS per cycle peak and 7.1 MACS per cycle sustained 

16-bit performance and provide 2 MACS per cycle peak and 1.8 

MACS per cycle sustained 32-bit performance (based on FIR) 

• Execute six single-precision floating-point or execute 24 fixed-point 

(16-bit) operations per cycle, regular operations performance at 

600 MHz 

• Perform two complex 16-bit MACS per cycle 

• Execute eight trellis butterflies in one cycle 

2.3.3 DUAL INTEGER ALU (IALU) 

The ADSP-TS201S processor has two IALUs that provide powerful address 

generation capabilities and perform many general-purpose integer 

operations. The IALUs are referred to as J and K in assembly syntax and 

have the following features: 

 

• Provide memory addresses for data and update pointers 
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• Support circular buffering and bit-reverse addressing 

• Perform general-purpose integer operations, increasing 

programming flexibility 

• Include a 31-word register file for each IALU 

 

As address generators, the IALUs perform immediate or indirect (pre- and 

post-modify) addressing. They perform modulus and bit-reverse 

operations with no constraints placed on memory addresses for the 

modulus data buffer placement. Each IALU can specify either a single-, 

dual-, or quad-word access from memory. The IALUs have hardware 

support for circular buffers, bit reverse, and zero-overhead looping. 

Circular buffers facilitate efficient programming of delay lines and other 

data structures required in digital signal processing, and they are 

commonly used in digital filters and Fourier transforms. Each IALU 

provides registers for four circular buffers, so applications can set up a 

total of eight circular buffers. The IALUs handle address pointer 

wraparound automatically, reducing overhead, increasing performance, 

and simplifying implementation. Circular buffers can start and end at any 

memory location. Because the IALU’s computational pipeline is one cycle 

deep, in most cases integer results are available in the next cycle. 

Hardware (register dependency check) causes a stall if a result is 

unavailable in a given cycle. 

2.3.4 Program Sequencer 

The ADSP-TS201S processor’s program sequencer supports the following: 

 

• A fully interruptible programming model with flexible programming 

in assembly and C/C++ languages; handles hardware interrupts 

with high throughput and no aborted instruction cycles 

• A 10-cycle instruction pipeline—four-cycle fetch pipe and six-cycle 

execution pipe—computation results available two cycles after 

operands are available 

• Supply of instruction fetch memory addresses; the sequencer’s 

instruction alignment buffer (IAB) caches up to five fetched 

instruction lines waiting to execute; the program sequencer 

20 



Chapter 2      Literature Survey 
 

extracts an instruction line from the IAB and distributes it to the 

appropriate core component for execution 

• Management of program structures and program flow determined 

according to JUMP, CALL, RTI, RTS instructions, loop structures, 

conditions, interrupts, and software exceptions 

• Branch prediction and a 128-entry branch target buffer (BTB) to 

reduce branch delays for efficient execution of conditional and 

unconditional branch instructions and zero-overhead looping; 

correctly predicted branches occur with zero overhead cycles, 

overcoming the five-to-nine stage branch penalty 

2.3.5 Flexible Instruction Set 

The 128-bit instruction line, which can contain up to four 32-bit 

instructions, accommodates a variety of parallel operations for concise 

programming. For example, one instruction line can direct the DSP to 

conditionally execute a multiply, an add, and a subtract in both 

computation blocks while it also branches to another location in the 

program. Some key features of the instruction set include: 

 

• Algebraic assembly language syntax 

• Direct support for all DSP, imaging, and video arithmetic types 

• Eliminates toggling DSP hardware modes because modes are 

supported as options (for example, rounding, saturation, and 

others) within instructions 

• Branch prediction encoded in instruction; enables zero overhead 

loops 

• Parallelism encoded in instruction line 

• Conditional execution optional for all instructions 

• User-defined partitioning between program and data memory 

2.3.6 DSP Memory 

The DSP’s internal and external memory is organized into a unified 

memory map, which defines the location (address) of all elements in the 

system. The memory map is divided into four memory areas—host space, 

external memory, multiprocessor space, and internal memory—and each 
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memory space, except host memory, is subdivided into smaller memory 

spaces.   

 

The ADSP-TS201S processor internal memory has 24M bits of on-chip 

DRAM memory, divided into six blocks of 4M bits (128K words × 32 bits). 

Each block—M0, M2, M4, M6, M8, and M10—can store program 

instructions, data, or both, so applications can configure memory to suit 

specific needs. Placing program instructions and data in different memory 

blocks, however, enables the DSP to access data while performing an 

instruction fetch. Each memory segment contains a 128K bit cache to 

enable single cycle access to internal DRAM. The six internal memory 

blocks connect to the four 128-bit wide internal buses through a crossbar 

connection, enabling the DSP to perform four memory transfers in the 

same cycle. The DSP’s internal bus architecture provides a total memory 

bandwidth of 33.6G bytes per second, enabling the core and I/O to access 

eight 32-bit data-words and four 32-bit instructions each cycle. The DSP’s 

flexible memory structure enables: 

 

• DSP core and I/O accesses to different memory blocks in the same 

cycle 

• DSP core access to three memory blocks in parallel—one instruction 

and two data accesses 

• Programmable partitioning of program and data memory 

• Program access of all memory as 32-, 64-, or 128-bit words—16-bit 

words with the DAB 

2.3.7 External Port (Off-Chip Memory/Peripherals Interface) 

The ADSP-TS201S processor’s external port provides the DSP’s interface 

to off-chip memory and peripherals. The 4G word address space is 

included in the DSP’s unified address space. The separate on-chip buses—

four 128-bit data buses and four 32-bit address buses—are multiplexed at 

the SOC interface and transferred to the external port over the SOC bus 

to create an external system bus transaction. The external system bus 

provides a single 64-bit data bus and a single 32-bit address bus. The 

external port supports data transfer rates of 1G byte per second over the 
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external bus. The external bus can be configured for 32-bit or 64-bit, 

little-endian operations. When the system bus is configured for 64-bit 

operations, the lower 32 bits of the external data bus connect to even 

addresses, and the upper 32 bits connect to odd addresses. The external 

port supports pipelined, slow, and SDRAM protocols. Addressing of 

external memory devices and memory mapped peripherals is facilitated by 

on-chip decoding of high order address lines to generate memory bank 

select signals. 

 

The ADSP-TS201S processor provides programmable memory, pipeline 

depth, and idle cycle for synchronous accesses; and external acknowledge 

controls to support interfacing to pipelined or slow devices, host 

processors, and other memory mapped peripherals with variable access, 

hold, and disable time requirements. 

2.3.8 Host Interface  

The ADSP-TS201S processor provides an easy and configurable interface 

between its external bus and host processors through the external port . 

To accommodate a variety of host processors, the host interface supports 

pipelined or slow protocols for ADSP-TS201S processor access of the host 

as slave or pipelined for host access of the ADSP-TS201S processor as 

slave. Each protocol has programmable transmission parameters, such as 

idle cycles, pipe depth, and internal wait cycles. The host interface 

supports burst transactions initiated by a host processor. After the host 

issues the starting address of the burst and asserts the BRST signal, the 

DSP increments the address internally while the host continues to assert 

BRST. The host interface provides a deadlock recovery mechanism that 

enables a host to recover from deadlock situations involving the DSP.  

2.3.9 DMA Controller 

The ADSP-TS201S processor’s on-chip DMA controller, with 14 DMA 

channels, provides zero-overhead data transfers without processor 

intervention. The DMA controller operates independently and invisibly to 

the DSP’s core, enabling DMA operations to occur while the DSP’s core 

continues to execute program instructions. The DMA controller performs 

DMA transfers between internal memory, external memory, and memory-
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mapped peripherals; the internal memory of other DSPs on a common 

bus, a host processor, or link port I/O; between external memory and 

external peripherals or link port I/O; and between an external bus master 

and internal memory or link port I/O. The DMA controller performs the 

following DMA operations: 

 

• External port block transfers. Four dedicated bidirectional DMA 

channels transfer blocks of data between the DSP’s internal 

memory and any external memory or memory mapped peripheral 

on the external bus. These transfers support master mode and 

handshake mode protocols 

• Link port transfers. Eight dedicated DMA channels (four transmit 

and four receive) transfer quad-word data only between link ports 

and between a link port and internal or mode protocol. DMA priority 

rotates between the four receive channels 

• AutoDMA transfers. Two dedicated unidirectional DMA channels 

transfer data received from an external bus master to internal 

memory or to link port I/O. These transfers only use slave mode 

protocol, and an external bus master must initiate the transfer 

2.4 SIMULATION TOOLS 

2.4.1 Key components of the Code Composer Studio IDE (Texas 

Instruments) 

 

 Intelligent IDE with Code Maestro Technology 

 C/C++ Compiler, Assembly Optimizer and Linker (Code Generation 

Tools) 

 Real-Time Operating System (DSP/BIOS) 

 Real-Time Data Exchange between host and target (RTDX) 

2.4.1.1 Code Composer Studio Setup 

Code Composer Studio Setup is a utility that is used to define the target 

board or simulator you will use with the Code Composer Studio IDE [7]. 

This information is called the system configuration and consists of a 

device driver that handles communication with the target plus other 
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information and files that describe the characteristics of your target, such 

as the default memory map. The Code Composer Studio IDE needs this 

information to establish communication with your target system and to 

determine which tools are applicable for the given target. With the 

exception of a DSP Starter Kit (DSK), which comes automatically 

configured for the DSK board, Code Composer Studio IDE will be 

configured for a simulator by default. You may wish to change the system 

configuration to match your environment prior to launching Code 

Composer Studio IDE. 

2.4.1.2 Code Generation Tools 

In the past, developing high performance DSP code has required to 

developer to optimize assembly code by hand and to have an intimate 

knowledge of the particular DSP architecture. Because time-to-market is 

becoming increasingly important, while the time and skill to optimally 

code a DSP are increasingly hard to find, there is a need for a more robust 

code development environment. The Code Composer Studio compile tools 

address this need by shifting the burden of optimization from hand-coded 

assembly to the C Compiler. With these tools it is possible to exploit the 

high performance of TI’s DSP platforms without ever writing hand-coded 

assembly. 

2.4.1.3 Interactive Profiler 

Performance is a key issue for embedded systems developers. As 

programs grow in size and complexity it becomes more difficult for 

developers to isolate the subtle problems that cause poor performance. 

Profiling helps reduce the time it takes to identify and eliminate 

performance bottlenecks. The profiler analyzes program execution and 

shows where your program is spending its time. For example, a profile 

analysis can report how many cycles a particular function takes to execute 

and how often it is called. Profiling helps you to direct valuable 

development time toward optimizing the sections of code that most 

dramatically affect program performance. 

 

Code Composer Studio IDE represents the evolution of the DSP 

development environment. It contains all of the functionality needed by 
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today’s larger, distributed, global project teams. The intelligent IDE can 

help save valuable development time by making developers more 

productive enabling them to focus their energies on innovation instead of 

repetitive tasks and tool development. 

2.4.2 Development tool – VDSP++ for Tiger – Sharc DSP 

The ADSP-TS201S processor is supported with a complete set of 

CROSSCORE software and hardware development tools, including Analog 

Devices emulators and VisualDSP++ development environment. The same 

emulator hardware that supports other TigerSHARC processors also fully  

emulates the ADSP-TS201S processor. 

 

The VisualDSP++ project management environment lets programmers 

develop and debug an application. This environment includes an easy to 

use assembler (which is based on an algebraic syntax), an archiver 

(librarian/library builder), a linker, a loader, a cycle-accurate instruction-

level simulator, a C/C++ compiler, and a C/C++ run-time library that 

includes DSP and mathematical functions. A key point for theses tools is 

C/C++ code efficiency. The compiler has been developed for efficient 

translation of C/C++ code to DSP assembly. The DSP has architectural 

features that improve the efficiency of compiled C/C++ code. The 

VisualDSP++ debugger has a number of important features. Data 

visualization is enhanced by a plotting package that offers a significant 

level of flexibility. This graphical representation of user data enables the 

programmer to quickly determine the performance of an algorithm. As 

algorithms grow in complexity, this capability can have increasing 

significance on the designer’s development schedule, increasing 

productivity. Statistical profiling enables the programmer to poll the 

processor as it is running the program.This feature, unique to 

VisualDSP++, enables the software developer to passively gather 

important code execution metrics without interrupting the real-time 

characteristics of the program.  

 

Essentially, the developer can identify bottlenecks in software quickly and 

efficiently. By using the profiler, the programmer can focus on those areas 

26 



Chapter 2      Literature Survey 
 

in the program that impact performance and take corrective action. 

Debugging both C/C++ and assembly programs with the VisualDSP++ 

debugger, programmers can: 

 

• View mixed C/C++ and assembly code (interleaved source and 

object information) 

• Insert breakpoints 

• Set conditional breakpoints on registers, memory, and stacks 

• Trace instruction execution 

• Perform linear or statistical profiling of program execution 

• Fill, dump, and graphically plot the contents of memory 

• Perform source level debugging 

• Create custom debugger windows 

The VisualDSP++ IDE lets programmers define and manage DSP software 

development. Its dialog boxes and property pages let programmers 

configure and manage all of the TigerSHARC processor development tools, 

including the color syntax highlighting in the VisualDSP++ editor. This 

capability permits programmers to: 

• Control how the development tools process inputs and generate 

outputs 

• Maintain a one-to-one correspondence with the tool’s command line 

switches 

• The VisualDSP++ Kernel (VDK) incorporates scheduling and 

resource management tailored specifically to address the memory 

and timing constraints of DSP programming. These capabilities 

enable engineers to develop code more effectively, eliminating the 

need to start from the very beginning when developing new 

application code. The VDK features include threads, critical and 

unscheduled regions, semaphores, events, and device flags. The 

VDK also supports priority-based, preemptive, cooperative, and 

time-sliced scheduling approaches. In addition, the VDK was 

designed to be scalable. If the application does not use a specific 

feature, the support code for that feature is excluded from the 

target system 
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• The Analog Devices families of emulators are tools that every DSP 

developer needs in order to test and debug hardware and software 

systems. Analog Devices has supplied an IEEE 1149.1 JTAG test 

access port (TAP) on each JTAG DSP. The emulator uses the TAP to 

access the internal features of the DSP, allowing the developer to 

load code, set breakpoints, observe variables, observe memory, 

and examine registers. The DSP must be halted to send data and 

commands, but once an operation has been completed by the 

emulator, the DSP system is set running at full speed with no 

impact on system timing 
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3           IMAGE PROCESSING ALGORITHMS 

3.1 OVERVIEW OF ALGORITHMS 

3.1.1 FFT (Fast Fourier Transform) 

FFT algorithm has been implemented on 1024 inputs, 512-complex 

twiddle factors. The N-point Discrete Fourier Transform (DFT) of a finite 

duration sequence x(n) is defined as follows. 

                          

where W= e ^ –j (2πn/N) is referred as the twiddle factor, N is the transform 

size and  j = √-1. The FFT is an efficient algorithm to compute the DFT 

and its inverse (Cooley and Tukey). It generally falls into two classes: 

Decimation In Time (DIT), and Decimation In Frequency (DIF). The DIT 

algorithm first rearranges the input elements in bit reversed order and 

then builds the output transform. The DIF algorithm first transforms and 

then rearranges the output values. The basic idea of these algorithms is to 

break up an N–point DFT transform into successive smaller and smaller 

transform known as a butterfly (basic computational element). The 

smallest transform used is a 2-point DFT known as radix-2, it processes 

groups of 2 samples. 

 

To calculate FFT for N number of inputs, Decimation in Time algorithm 

requires following points. 

 L = log2N  stages 

 ((N/2) * L) number of complex multiplications 

 ( N * L) number of additions 

 (N/2) twiddle factors should be stored 

In order that the computation may be done in place, the input sequence 

must be stored in a non-sequential order. In fact, the order in which the 

input data are stored and accessed is referred to as bit-reversed order. 

Butterfly DIT FFT algorithm can be explained from the following figure-4. 

 

If (n2, n1, n0) is the binary representation of the index of the sequence 

x[n], then the sequence value x [n2, n1, n0] is stored in the array position 
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X0[n0, n1, n2]. That is, in determining the position of x [n2, n1, n0] in the 

input array, one must reverse the order of the bits of the index n. 

 

         

Figure 4: Butterfly diagram for DIT algorithm 
 

3.1.2 Image Convolution 

Image Convolution has been implemented on 256 x 3 inputs, and 3 x 3 

mask. The process by which we move a mask from pixel to pixel in an 

image, and compute a predefined quantity at each pixel, is the foundation 

of the convolution process. Formally, the discrete convolution of two 

function f(x,y) and h(x,y) of size M X N is denoted by f(x,y) * h(x,y) and 

is defined by the expression 

               M-1     N-1 

     f(x,y) * h(x,y) =    ∑        ∑    f(m,n) h(x-m,y-n)   

              m=0    n=0  

The minus sign in particular simply mean that function h is mirrored about 

the origin. Above equation is really nothing more than an implementation 

for 
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 Flipping one function about the origin 

 Sifting that function with respect to the other by changing the 

values of (x,y) 

 Computing a sum of products over all values of m and n, for each 

displacement (x, y) 

3.1.3 Image Correlation 

Image Correlation has been implemented on 720 x 3 inputs and 3 x 3 

masks. Consider the scenario for finding matches of sub image w(x, y) of 

size J x K within an image f(x, y) of size M x N, where we assume that      

J <= M and K <= N. In its simplest form, the correlation between f(x, y) 

and w(x, y) is 

 

C(x, y) =     ∑   ∑ f(s, t) w(x+s, y+t)      

          s    t 

For x = 0  ,1 ,2 , … , M-1 and y = 0,1,2,…,N-1 , and the summation is 

taken over the image region where w and f overlap. For one value of      

(x, y), say(x0, y0) inside f, application of above equation yields one value 

of c. As x and y are varied, w moves around the image area, giving the 

function c(x,y).The maximum value (s) of c indicated the position where w 

best matches f. The correlation function given in above equation has 

disadvantage of being sensitive to changes in the amplitude of f and w. 

For example, doubling all values of f doubles the value of c(x, y). An 

approach frequently used to overcome this difficulty is to perform 

matching via the correlation coefficient, which is defined as  

      ∑ ∑ [f(s, t) – f’ (s, t)] [w(x+t, y+t) – w’] 

               s  t  

N.C.  =     --------------------------------------------------------------   eq(3) 

                       

{  ∑ ∑  [f(s,t) – f ’ (s,t)]2  ∑ ∑ [w(x+t,y+t) – w ’]2   } 1/2

                       s  t     s  t 

where x = 0,1,2,M-1 and y = 0,1,2,N-1 , w’ is the average value of the 

pixels in w(computed only once), f’ is the average value of f in the region 

coincident with the current location of w, and the summations are taken 

over the coordinates common to both f and w. The correlation coefficient 
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is scaled in the range -1 to 1, independent of scale changes in the 

amplitude of f and w. 

3.1.4 Sobel Operator  

This algorithm has been implanted on 256 inputs. The difference between 

the third and first rows of 3 x 3 image region approximates the derivative 

in the x  

 

         
 Figure 5:  Sobel Operator 

 

direction, and the difference between the third and first columns 

approximates the derivative in the y direction. The masks shown in the 

figure-5 are called the Sobel operators. The idea behind using a weight 

value of 2 is to achieve some smoothing by giving more importance to the 

center point. The coefficients in all the masks shown in figure 5 sum to 

zero, indicating that they would give a response of zero in an are of 

constant gray level, as expected of a derivative operator. 

3.1.5 Median Filter 

Median filter has been implemented on 256 x 3 inputs and 3 x 3 sobel 

mask. Order-statistics filters are nonlinear spatial filters whose response is 

based on ordering (ranking) the pixels contained in the image area 

encompassed by the filter, and then replacing the value of the center pixel 

with the value   determined by the ranking result. 

 

The best-known example in this category is the median filter, which, as its 

name implies, replaces the value of a pixel by the median of the gray 

levels in the neighborhood of that pixel (the original value of the pixel is 

included in the computation of the median). Median filters are quite 
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popular because, for certain types of random noise, they provide excellent 

noise-reduction capabilities, with considerably less blurring than linear 

smoothing filters of similar size. Median filters are particularly effective in 

the presence of impulse noise, also called salt-and-pepper noise because 

of its appearance as white and black dots superimposed on an image. The 

median, j, of a set of values is such that half the values in the set are less 

than or equal to j, and half are greater than or equal to j. In order to 

perform median filtering at a point in an image, we first sort the values of 

the pixel in question and its neighbors, determine their median, and 

assign this value to that pixel. For example, in a 3*3 neighborhood the 

median is the 5th largest value, in a 5*5 neighborhood the 13th largest 

value, and so on. When several values in a neighborhood are the same, all 

equal values are grouped. For example, suppose that a 3*3 neighborhood 

has values (10, 20, 20, 20, 15, 20, 20, 25, and 100). These values are 

sorted as (10, 15, 20, 20, 20, 20, 20, 25, 100), which results in a median 

of 20. Thus, the principal function of median filters is to force points with 

distinct gray levels to be more like their neighbors. In fact, isolated 

clusters of pixels that are light or dark with respect to their neighbors, and 

whose area is less than n2/2 (one-half the filter area), are eliminated by 

an n*n median filter. In this case “eliminated” means forced to the 

median intensity of the neighbors. Larger clusters are affected 

considerably less. 

3.2 PROFILING OF ALGORITHMS 

Above algorithms were implemented in Code composer studio as well as 

VDSP++ simulators. Parameters of profiling are measured, by keeping 

equal number of inputs and same source code on both of the simulators. 

After compiling the given algorithm, we need to load the assembly code in 

to memory to execute it. In CCS simulator, it provides us profiling 

information in terms of clock cycles , while in VDSP ++ simulator , one 

need to generate clock measuring source code. After executing algorithm 

on both of the simulators, one can match the results of both of the 

simulators. Execution time can be found out by dividing clock cycles with 

the frequency of the DSP processor.  
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For example, 1-D FFT took 43214 cycles on CCS simulator from Texas 

Instrument. Operating speed of TI DSP is 600 MHz. 

Execution time = (43214) / (600 * (10 ^ 6)) = 72.06 µs. 

3.3 INTEL INTEGRATED PERFORMANCE PRIMITIVES 

Intel Integrated Performance Primitives (Intel® IPP) is an extensive 

library of multi-core-ready, highly optimized software functions for 

multimedia, data processing, and communications applications. Intel IPP 

is available as a standalone product, or with the Intel Compiler 

Professional Editions for a more complete and cost-effective solution. Intel 

IPP offers thousands of optimized functions covering frequently-used, 

fundamental algorithms in: 

•  Video coding 

• Signal processing 

• Audio coding 

• Image processing 

• Speech coding 

• JPEG coding 

• Speech recognition 

• Computer vision 

• Data compression 

• Image color conversion 

• Vector/Matrix mathematics 

3.3.1 Basic Features 

The Intel Integrated Performance Primitives [8], like other members of 

the Intel Performance Libraries, is a collection of high-performance code 

that performs domain-specific operations. It is distinguished by providing 

a low-level, stateless interface. Based on experience in developing and 

using Intel Performance Libraries, Intel IPP has the following major 

distinct features: 

• The Intel IPP provides basic low-level functions for creating 

applications in several different domains, such as signal processing, 

image and video processing, and operations on small matrices 
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• Intel IPP functions follow the same interface conventions including 

uniform naming rules and similar composition of prototypes for 

primitives that refer to different application domains 

• Intel IPP functions use abstraction level which is best suited to 

achieve superior performance figures by the application programs. 

 

To speed up performance, Intel IPP functions are optimized to use all 

benefits in variation of different Intel architecture processors. Besides 

that, most of Intel IPP functions do not use complicated data structures, 

which helps reduce overall execution overhead. 

3.3.2 Automatic CPU Detection and Dispatching 

Automatic CPU detection and dispatch is a key feature in the Intel IPP for 

Pentium and Intel Xeon processors; this feature enables highly-optimized 

cross-platform development. With this transparent mechanism, the built in 

dispatcher determines the best Intel IPP code to execute based on the 

underlying processor. Automatic CPU detection and dispatch enhances the 

advantage of a common API by removing the burden of platform 

optimization from the developer.  

 

Figure 6: Automatic CPU Detection and Code Dispatch 

3.3.3 Performance 

Intel offers a full suite of library functions that can help developers easily 

create the fastest software possible on Intel architecture. The libraries 

provide high-quality code that is optimized to take advantage of the 

specific performance features built into each of the Intel Intel IPP 

functions are designed to deliver performance beyond what optimized 
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compilers alone can deliver by matching the function algorithms to low-

level optimizations based on the processor’s available features such as 

Streaming SIMD Extensions (SSE) and other optimized instruction sets. 

 

The Intel IPP library provides cross-platform support through a single API. 

The large set of utility functions that Intel IPP provides supports a broad 

range of Intel processor families. For each of the supported target 

processors, Intel IPP provides API-conformant, variant code that is 

specifically written to yield the best system performance for the target 

processor, taking into account memory bandwidth and caching behavior of 

the target environment. Wherever applicable, the code was written with 

thread safety in mind. These libraries also offer a variant form that takes 

advantage of execution thread concurrency for those functions that can 

realize performance increases due to threading. Intel IPP functions yield 

significantly better performance than equivalent compiler-generated C 

code. By replacing sections of C code with equivalent Intel IPP functions, 

application programs are able to complete key tasks in significantly 

shorter timeframes. This ability to complete critical tasks in a timely 

manner is particularly important for event-driven and real-time 

constrained operations. Such operations typically take place within device 

drivers, audio and video processing and motion picture rendering. 

3.3.4 Compatibility 

Intel is committed to smoothing application program migration through 

the evolving generations of CPUs and computer architecture. By adhering 

to the abstract model defined by the Intel Performance Libraries’ single 

API, developers are freed to focus on their own code development without 

worrying about library compatibility issues. Intel IPP 5.3 supports 

Windows Vista and 64-bit Mac OS X applications. Code re-use and cross-

platform operating system development is simplified by having one library 

API for Windows, Linux and Mac OS. Intel IPP is fully compatible with 

other development tools from Intel, such as compilers, performance and 

threading analyzers, and other Intel Performance Libraries. In addition, 

Intel IPP is easily used and integrated with popular development tools and 

environments, such as Microsoft Visual Studio, Xcode, Eclipse, and the 
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GNU Compiler Collection (GCC). Multi-core processors, including Intel 

Core2 Quad, Intel Core2 Extreme, Intel Core2 Duo, Intel Core Duo, Intel 

Xeon and Intel Pentium D processors. Intel 64 architecture-based 

systems, including Intel Core 2 processors, Intel Xeon processors, Intel 

Pentium D processors, and compatible AMD processors. IA-32 

architecture-based processors, including Intel Core processor family, Intel 

Pentium processors, and compatible AMD processors. 

3.4 Implementation of IP algorithms using IPP 

Intel IPP functions perform two-dimensional finite linear convolution 

operation between two source images and write the result into the image. 

Convolution is used to perform many common image processing 

operations including sharpening, blurring, noise reduction, embossing, and 

edge enhancement.  

3.4.1 Convolution Function 

IppStatus ippiConvFull_<mod>(const Ipp<datatype> pSrc1, int src1Step, 

IppiSize src1Size, const Ipp<datatype> pSrc2, int src2Step, IppiSize 

src2Size, Ipp<datatype> pDst, int dstStep, int divisor); 

 

For convenience, one can represent any digital image f as a matrix with Mf 

columns and Nf rows that contains pixel values f [i,j], 0 ≤ i < Mf, 0 ≤ j < 

Nf. Here input size of matrix has been taken as 4x4 and mask size as 3x3. 

We must get output matrix size of 6x6. After comparing output of image 

processing functions obtained by IPP optimized function and the function 

used in Texas instrument DSP, we can measure the performance of IPP 

functions. Profiling of such optimized library IPP function can be obtained 

by GetCpuClock () function which also belongs to IPP optimized libraries 

family. By taking help of this function one can achieve performance in 

terms of clock cycles on Pentium processor. 
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4.1 SIMPLE-SCALAR SIMULATOR 

The Simple-Scalar tool set is a system software infrastructure used to 

build modeling applications for program performance analysis, detailed 

micro architectural modeling, and hardware-software co-verification. 

Using the Simple Scalar tools, users can build modeling applications that 

simulate real programs running on a range of modern processors and 

systems.  The tool set includes sample simulators ranging from a fast 

functional simulator to a detailed, dynamically scheduled processor model 

that supports non-blocking caches, speculative execution, and state-of-

the-art branch prediction. 

 

Simple-Scalar simulators [12] can emulate the Alpha, PISA, ARM, and x86 

instruction sets.  The tool set includes a machine definition infrastructure 

that permits most architectural details to be separated from simulator 

implementations.  All of the simulators distributed with the current release 

of Simple-Scalar can run programs from any of the above listed 

instruction sets.  Complex instruction set emulation (e.g., x86) can be 

implemented with or without microcode, making the Simple-Scalar tools 

particularly useful for modeling CISC instruction sets. 

 

The PISA instruction set (a.k.a. the portable instruction set architecture) is 

a simple MIPS-like instruction set maintained primarily for instructional 

use. A GNU GCC-based cross-compiler and pre-built libraries are also 

available for this target.  The PISA target is particularly useful for 

computer engineering instruction as the tools can be built on a wide range 

of host platforms, including Linux/x86, Win2000, SPARC Solaris, and 

others. 

 

Simple-Scalar builds on most 32-bit and 64-bit flavors of UNIX and 

Windows NT-based operating systems.  The internal software architecture 

of the tool set includes a host interface module, permitting fast porting to 

other host platforms.  The host interface module permits cross-endian 

emulation, thus it is possible to use emulate a target on a host platform 
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with a different endian, e.g., running Alpha ISA emulation on a SPARC 

Solaris host platform 

4.1.1 Learning Objectives 

To be able to use the Simple-Scalar tool set to test out a range of 

architectural parameters, such as cache size and configuration, relative 

fetch/issue rates, inorder/out-of-order strategies, and load/store buffering 

strategies. Also to gain experience with setting up special benchmark 

trials to profile the performance of a new CPU. Finally, to experiment with 

dramatically different architectures, pipeline lengths, and number. 

 

When developing a simulator the three opposing dimensions, 

Performance, Flexibility and Detail need to be reconciled for the needs of 

the user. The sim-outorder simulator is the most detailed CPU simulator 

provided with the Simple-Scalar tool set and suffering some reduction in 

performance. It was originally based on the MIPS-4 instruction set 

architecture and models a very modern superscalar microprocessor with 

10 execution units (pipelines). Newer ARM and x86 versions have also 

been developed by other research labs. It attempts to maximally exploit 

ILP (Instruction Level Parallelism) and keep all the execution units busy by 

using out-of-order instruction execution. In many ways it realistically 

models the current processors found in the latest workstations/PCs. Sim-

fast is a functional simulator, with a single, serial instruction stream, no 

caching and no command line switches. Also it does not capture timing 

information, unlike sim-outorder. An alternative, slower but more detailed 

simulation can be carried out by sim-safe. Simple-Scalar is widely used in 

academic research as well as commercial product development. The 

performance is good, on a P4/1.8 GHz host, sim-fast will emulate 10 Mips, 

while sim-outorder achieves 350 kips.  

4.1.2 The Simple-Scalar architecture 

The Simple-Scalar architecture is derived from the MIPS-IV ISA. The tool 

suite defines both little-endian and big-endian versions of the architecture 

to improve portability (the version used on a given host machine is the 

one that matches the endianness of the host). The semantics of the 
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Simple-Scalar ISA are a superset of MIPS with the following notable 

differences and additions: 

• There are no architected delay slots: loads, stores, and control 

transfers do not execute the succeeding instruction 

• Loads and stores support two addressing modes—for all data 

types—in addition to those found in the MIPS architecture. These 

are: indexed (register + register), and auto-increment/decrement 

• A square-root instruction, which implements both single and 

double-precision floating point square roots 

• An extended 64-bit instruction encoding 

4.1.2.1 Functional simulation 

Sim-fast does no time accounting, only functional simulation—it executes 

each instruction serially, simulating no instructions in parallel. Sim-fast is 

optimized for raw speed, and assumes no cache, instruction checking. A 

separate version of sim-fast, called sim-safe, also performs functional 

simulation, but checks for correct alignment and access permissions for 

each memory reference. Although similar, sim-fast and sim-safe are split 

(i.e., protection is not toggled with a command-line argument in a merged 

simulator) to maximize performance. Neither of the simulators accepts 

any additional command-line arguments. Both versions are very simple: 

less than 300 lines of code—they therefore make good starting points for 

understanding the internal workings of the simulators. 

4.1.2.2 Cache simulation 

The Simple-Scalar distribution comes with two functional cache 

simulators; sim-cache and sim-cheetah. These simulators are ideal for 

fast simulation of caches if the effect of cache performance on execution. 

Sim-cache accepts the following arguments: 

- cache:dl1 <config> configures a level-one data cache 

- cache:dl2 <config> configures a level-two data cache 

- cache:il1 <config> configures a level-one instr. cache 

- cache:il2 <config> configures a level-two instr. cache 

- tlb:dtlb <config> configures the data TLB 

- tlb:itlb <config> configures the instruction TLB 

The defaults used in sim-cache are as follows: 
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- L1 instruction cache: il1:256:32:1:l (8 KB) 

- L1 data cache: dl1:256:32:1:l (8 KB) 

- L2 unified cache: ul2:1024:64:4:l (256 KB) 

- Instruction TLB: itlb:16:4096:4:l (64 entries) 

- Data TLB: dtlb:32:4096:4:l (128 entries) 

4.1.2.3 The Cheetah  

This engine simulates fully associative caches efficiently, as well as 

simulating a sometimes-optimal replacement policy. This policy was called 

MIN,  although the simulator refers to it as opt. Opt uses future 

knowledge to select a replacement; it chooses the block that will be 

referenced the furthest in the future (if at all). This policy is optimal for 

read-only instruction streams. It is not optimal for write-back caches 

because it may be more expensive to replace a block referenced 

further in the future if the block must be written back, as opposed to a 

clean block referenced slightly less far in the future. 

 

Both of these simulators are ideal for performing high-level cache studies 

that do not take access time of the caches into account (e.g., studies that 

are concerned only with miss rates). 

4.1.2.4 Out-of-order processor timing simulation 

The most complicated and detailed simulator in the distribution, by far, is 

sim-outorder. This simulator supports out-of-order issue and execution, 

based on the (RUU) Register Update Unit. The RUU scheme uses a reorder 

buffer to automatically rename registers and hold the results of pending 

instructions. Each cycle the reorder buffer retires completed instructions in 

program order to the architected register file. The processor’s memory 

system employs a load/store queue. Store values are placed in the queue 

if the store is speculative. Loads are dispatched to the memory system 

when the addresses of all previous stores are known. Loads may be 

satisfied either by the memory system or by an earlier store value 

residing in the queue, if their addresses match. Speculative loads may 

generate cache misses, but speculative TLB misses stall the pipeline until 

the branch condition is known.  
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Following table-1 explains the defalut configuration of simple scalar 

simulator. Table-2 explains the cache configuration of cache memory.  

 

Table-1: Specifying the processor core 

 

fetch: ifqsize <size> 
 

Set the fetch width to be <size> instructions. Must 
be a power of two. The default is 4. 

fetch: speed <ratio> 
 

Set the ratio of the front end speed relative to the 
execution core (allowing <ratio> times as many 
instructions to be fetched as decoded per cycle). 

fetch: plat <cycles> Set the branch misprediction latency. The default is 
3 cycles. 

decode: width <insts> Set the decode width to be <insts>, which must be a 
power of two. The default is 4. 

issue:width <insts> Set the maximum issue width in a given cycle. Must 
be a power of two. The default is 4. 

issue:inorder Force the simulator to use in-order issue. The default 
is false. 

issue:wrongpath Allow instructions to issue after a miss peculation. 
The default is true. 

ruu:size <insts> Capacity of the RUU (in instructions). The default is 
16. 

lsq:size <insts>  
 

Capacity of the load/store queue (in instructions). 
The default is 8. 

res:ialu <num> Specify number of integer ALUs. The default is 4. 
res:imult <num> Specify number of integer multipliers/dividers. The 

default is 1. 
res:memports <num> Specify number of L1 cache ports. The default is 2. 
res:fpalu <num> Specify number of floating point ALUs. The default is 

4. 
res: fpmult <num> Specify number of floating point multipliers/dividers. 

The default is 1. 
 
 
Table-2: Specifying the memory hierarchy 
 
 
cache:dl1lat <cycles> 
 

Specify the hit latency of the L1 data cache. The 
default is 1 cycle. 

cache:d12lat <cycles> Specify the hit latency of the L2 data cache. The 
default is 6 cycles. 

cache:il1lat <cycles> Specify the hit latency of the L1 instruction cache. 
The default is 1 cycle. 

cache:il2lat <cycles> 
 

Specify the hit latency of the L2 instruction cache. 
The default is 6 cycles. 

mem: lat <1st> <next> 
 

Specify main memory access latency (first, rest). 
The defaults are 18 cycles and 2 cycles. 

mem: width <bytes> 
 

Specify width of memory bus in bytes. The default is 
8 bytes. 

tlb: lat <cycles> Specify latency (in cycles) to service a TLB miss. The 
default is 30 cycles. 
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Table-3 explains the exact Pentium-IV processor’s configuration, so that 

user can simulate the performance parameters by concentrating Pentium-

IV processor [9]. 

Table-3: Pentium 4 Processor Configuration 

Instruction fetch queue size (in insts) -fetch: ifqsize                     64 

Extra branch mis-prediction latency -fetch: mplat                       3 

bimodal predictor BTB size -bpred:bimod                    2048 

2-level predictor config (<l1size> <l2size><hist_size>) -bpred:2lev            1      1024       8 

Instruction decode B/W (insts/cycle) -decode:width                      4 

Instruction issue B/W (insts/cycle) -issue:width                       4 

run pipeline with in-order issue -issue: inorder                 false 

issue instructions down wrong execution paths -issue: wrongpath                true 

register update unit (RUU) size -ruu: size                         16 

load/store queue (LSQ) size -lsq: size                          8 

l1 data cache config, i.e., {<config>|none} -cache: dl1              dl1:128:64:4:l  
 

l1 data cache hit latency (in cycles) -cache: dl1lat                      1 

l2 data cache config, i.e., {<config>|none} -cache:dl2              ul2:16384:64:8:l 

l2 data cache hit latency (in cycles) -cache: dl2lat                      6 

l1 inst cache config, i.e., {<config>|dl1|dl2|none} -cache:il1              il1:512:32:1:l 

l1 instruction cache hit latency (in cycles) -cache:il1lat                      2 

l2 instruction cache hit latency (in cycles) -cache:il2lat                      7 

flush caches on system calls -cache:flush                   false 

convert 64-bit inst addresses to 32-bit inst equivalents -cache: compress     false 

memory access latency (<first_chunk> <inter_chunk>) -mem:lat               18 2 

Memory access bus width (in bytes) -mem: width                         8 

Instruction TLB config, i.e., {<config>|none} -tlb: itlb               dtlb: 16:4096:4: l 

data TLB config, i.e., {<config>|none} -tlb: dtlb               dtlb: 16:4096:4: l 

inst/data TLB miss latency (in cycles) -tlb: lat                          30 

total number of integer ALU's available -res:ialu                          2 

total number of integer multiplier/dividers available -res:imult                     1 

total number of floating point ALU's available -res:fpalu                         1 

number of floating point multiplier/dividers available -res:fpmult                 1 
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Execution of convolution algorithm obtained through Simple-Scalar 

simulator. Because of using Release version in running DIP algorithm with 

DSP, one can also use optimization option –O3 in this simulator. The 

results of convolution algorithm through Simple-Scalar simulator are 

shown in the following table. 

 

Table-4: Simulation result of Convolution algorithm 

 

sim_num_insn 92918 Total number of instructions 
committed. 

sim_num_refs 23342 Total number of loads and stores 
committed. 

sim_num_loads 18910 Total number of loads committed. 
sim_num_stores 4432.0000 Total number of stores committed. 
sim_num_branches 7042 Total number of branches 

committed. 
sim_elapsed_time 1 Total simulation time in seconds. 
sim_inst_rate 92918.0000 Simulation speed (in insts/sec). 
sim_total_insn 96741 Total number of instructions 

executed. 
sim_total_refs 25626 Total number of loads and stores 

executed. 
sim_total_loads 21125 Total number of loads executed. 
sim_total_stores 4501.0000 Total number of stores executed. 
sim_total_branches 7137 Total number of branches executed. 
sim_cycle 53047 Total simulation time in cycles. 
sim_IPC 1.7516 Instructions per cycle. 
sim_CPI 0.5709 Cycles per instruction. 
sim_IPB 13.1948 Instruction per branch. 

 

Total no. of cycles  = no of instruction executed * (cycles / instruction) 

For convolution algorithm, 

Total no. of cycles     = 96741 * 0.5709  

      = 55229.4369 ~ 55230  

Execution time     = Total number of cycles/operating frequency of μp

      = 55230 / 1.8 GHz 

        = 30.6830205 μsec 
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5.1 HYBRID ARCHITECTURE (FPGA & DSP) 

5.1.1 Architecture 

Programmable digital signal processors have been utilized in a wide range 

of signal processing applications. They have been designed with optimized 

instruction sets to execute digital signal processing algorithms like FFTs 

and finite impulse response (FIR) filters. Unfortunately, programmable 

digital signal processor performance has not kept up with the demands of 

the newest system applications, which often require dramatically higher 

data rates and increased channel counts. This has forced system 

designers to implement costly arrays of digital signal processors to satisfy 

these needs. However, these arrays tend to occupy more board real 

estate and require increased power consumption, which affects the overall 

system cost and poses significant implementation challenges, including 

the arbitration of shared memory between different processors. Hybrid 

architecture can be explained in the following figure 7. 

 

Xilinx provides designers with the flexibility to implement an FPGA co-

processor design that easily interfaces to a wide range of digital signal 

processors or general purpose processors (GPPs). This co-processor model 

can be adopted to fit virtually any target application because of the 

programmable nature of the FPGA’s device fabric. Additionally, designers 

are able to customize and construct functions in a way that fully exploits 

the parallel nature of a hardware implementation within the FPGA, 

enabling power-efficient multichannel designs (useful in communication 

systems) with high data throughputs. The following steps provide a high-

level description of the FPGA co-processor design flow: 

1. Profile applications in software to identify computationally intensive          

algorithms suitable for off-loading to co-processors.  

2. Integrate an off-the-shelf co-processor to develop a custom co-

processor block using a hardware design language like Handel-C or 

using a hardware description language (HDL). 
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Figure 7: Hybrid architecture 

 

3. Evaluate co-processor system architectures and select a suitable 

processor interface. 

4. Integrate the hardware and software design components. 

5. Verify the system in simulation and hardware. 

 

The FFT co-processor [10] in this reference design is a relatively simple 

example. For larger co-processing systems that may consist of several co-

processor functions, design considerations need to be made to maximize 

the data processing within the FPGA. The larger co-processing reduces the 

data-transfer overhead between the digital signal processor and the FPGA 

relative to the data processing time, thereby maximizing the overall 

system throughput performance. Several enhancements to the solution 

presented in this reference design can be considered if the user is starting 

a new board-level FPGA co-processor design. First, both the TI digital 

signal processor and FPGA can be integrated on the same board. Care 

must be taken when routing board-level interconnections between the TI 

digital signal processor and the FPGA to ensure that the maximum data 

throughput and clock rate of the EMIF can be leveraged to reduce the 
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round-trip delay time. The current C64x family of digital signal processors 

can support up to 64-bits of EMIF data at clock rates up to 133 MHz. 

5.2 FPGA INTERFACE TO THE TMS320C6000 DSP PLATFORM 

USING EMIF 

To describe an interface between Virtex™-II, Virtex-II Pro™, or Spartan™-

3 devices to a Texas Instruments TMSC6000 DSP platform. The External 

Memory Interface (EMIF) [11] in the TMS DSP platform is used as the 

interface to the FPGA. Normally, the EMIF connects to different types of 

memory devices (SRAM, Flash RAM, DDR-RAM, etc.). In this application 

note, the EMIF connects to the FPGA, making the FPGA perform as a 

coprocessor, high-speed data processor, or high-speed data transfer 

interface. Texas Instruments has published EMIF application notes for 

memory designs. The design interface example is a seamless connection 

to the FPGA block RAM. One side of the dual-port block RAM is used to 

communicate with the DSP in Read/Write, FIFO, or memory mode. The 

other side is used for communication with internal FPGA logic or 

processor(s). 

 

The flexibility of the FPGA makes it possible to create different designs, 

performing as different types of memory, with selectable bus widths (8-bit 

to 64-bit). Interfaces can be designed for the FPGA to work as 

synchronous or asynchronous standard memory, or as synchronous or 

asynchronous FIFOs. Interfaces can be designed for the FPGA to interface 

synchronously or asynchronously with the EMIF interface. In synchronous 

mode, the ECLKOUTx clock is used to clock the FPGA interface logic. It is 

even possible to clock the entire FPGA from this clock. An FPGA possesses 

an enormous amount of processing power using its logic functions, 

dedicated multipliers, processors (PPC405 or MicroBlaze), etc. The FPGA 

can thus serve as a co-processor or a high-speed data processing and 

transfer device. The memory size of an FPGA is smaller than the possible 

addressable memory space in the TMSC64x type DSP. FPGA memory must 

be assembled using the available FPGA block RAM. The TMSC64x to FPGA 

interface described is of a FIFO type structure and an FPGA interface 

reacting as a memory block. 
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5.2.1 TMSC64x to FPGA Interface Signals 

For a FIFO interface, the standard TMSC64x EMIF FIFO interface scheme 

can be used. This scenario is explained in figure-8. 

 

 

 

   Figure 8: FIFO Based EMIF Interface Design Example 
 
• EMIF signals: 

 CEn DSP Output  : EMIF active-Low chip select for memory space 

 AOE DSP Output : Active-Low o/p enable for memory interface 

 AWE DSP Output : Active-Low write strobe for memory interface  

 ARE DSP Output : Active-Low read strobe for memory interface 

 INTx DSP Input : Interrupt signal x. 

 INTy DSP Input : Interrupt signal y. 

 INTz DSP Input : Interrupt signal z. 
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 ED[63:0] DSP Bidirectional : EMIF 64-bit,32-bit or 16-bit data bus 

I/O 

 

The FIFO requires a contiguous read clock and continuous write clock. 

These clocks are generated from the ARE and AWE signals, and are routed 

using the local clocking capabilities of the FPGA. After exchange of all 

required hand-shake signals data transfer starts between DSP and FPGA. 

5.2.2 Block ram 

All recent Xilinx architectures have access to block memories. These 4Kbit 

blocks in the Virtex, Virtex-E, and Spartan-II devices were increased in 

size to 18Kbit blocks in the Virtex-II, Virtex-II Pro, and Spartan-3 devices. 

The blocks are fully synchronous, true dual-port memories. The user can 

read from or write to each port independently (with the exception of 

simultaneous reads and writes to the same address). In addition, each 

port has a separate clock, and the data widths for each port are 

independently programmable. 

 

In the proposed algorithm of 10 stage FFT, use have to forward 1024 

inputs from DSP to FPGA, through EMIF. Generally, EMIF consist of 32 or 

64 bit wide parallel bus, so user can transmit or receive 1 float operand 

between DSP and FPGA. Bandwidth of EMIF interface is 1 operand per 

clock cycle. For 1024 inputs EMIF whole process of either transmitting or 

receiving operands to and from DSP to FPGA will take 1024 clock cycles. 

5.3 THEORETICAL CALCULATION OF PERFORMANCE:- 

5.3.1 ALGORITHMS DESIGN USING DSP AND FPGA 

Image will be transferred from the Host Pc to DSP. 

a. Data transfer to and from is done through EMIF from DSP side and 

Block-ram at the FPGA side. 

b. In this algorithm number of inputs are 1024 and already calculated 

complex twiddle factors has been used, also a module of calculation 

of FFT algorithm will be divided in two parts. 
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c. For the particular FFT algorithm summation operation is done by the 

DSP processor and the multiplication which can be run parallel, are 

done on FPGA. Which will include following data transfers: 

 

1.  Data transfer between DSP and FPGA (only inputs). 

2. Data transfer between FPGA and DSP (only outputs). 

 

• For performing 1-complex multiplication 4 fixed point 

multiplications are required. 

• As this experiment on FPGA (Spartan-3) simulator, one can able 

to compile 64 parallel fixed point multiplications. After getting one 

complex multiplication output, this algorithm proceeds in 

pipelining manner for further multiplication. So, at each clock 

cycles four fixed point multiplication can be achieved. 

•  To accomplish this task, 1024 fixed point operands (32-bit-

operand) should be transferred from DSP RAM to FPGA block RAM. 

• Those operands are to be read from Block RAM to an array and 

perform parallel multiplication and write back the results to block 

RAM. 

• After getting results of multiplications, those results are to be 

written to DSP RAM to start addition of single stage FFT. 

• According to research papers latency of EMIF is 1 cycle per 32-bit 

operand. To transfer 2K operands, it will take 2K cycles for this 

transfer. 

• Generally block RAMs are dual port RAMs, so one can at a 

moment read operands in to an array of FPGA as well as write 

operands in to Block RAM.  

The following figure-8 explains fft algorithm division between DSP and 

FPGA. Schematic diagram representation is explained in figure-9. 
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     Figure: 9 Flow chart of 1024 point 1-D FFT. 
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Figure 10: 1024 points 1-D FFT on DSP & FPGA architecture 

For calculating 10 stage FFT for 1024 inputs, Total time for execution of 

FFT algorithm  

= Data transfer between DSP and FPGA (only inputs)   +  

Execution time of multiplication on FPGA                  +  

Data transfer between FPGA and DSP (only outputs). 

=       1024 + 515 + 1024 

Here one thing is to be noted, that as and when multiplication are getting 

done in FPGA, simultaneously result of those multiplication are to be sent 

from FPGA to DSP. So, if we don’t consider 515 multiplication time then 

total time for execution of single stage FFT algorithm will be, 

= 1024 + 1024  

= 2048     for one FFT stage, 

= 2048 * 10    for all 10 stages, 

= 20480 

How much time 10 stage FFT with 1024 points inputs will take on hybrid 

architecture, can be shown from following table-5. 
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      TABLE 5:  TIMES TAKEN ON HYBRID ARCHITECTURE  

 
1,33,000 Clock cycles on Single DSP. 

   33,062 Clock cycles without multiplications on DSP. 

   20,480 Clock cycles multiplication on FPGA. 

   53,542 Clock cycles with hybrid architecture. 

(1,33,000-53,542) = 79,458 Clock cycles benefit in comparison with single DSP.  

 
   133,000 clock cycles on Single DSP. 

    33,062 clock cycles without multiplications on DSP. 

    20,480 clock cycles multiplication on FPGA. 

    53,542 clock cycles with hybrid architecture. 

 (133,000 - 53,542) = 79,458 clock cycles benefit in comparison 

with single DSP.    

Depending on the result of the table-5, one can conclude that rather 

using image processing on single DSP processor, if such algorithms are 

executed on hybrid architecture such as DSP & FPGA, in which FPGA 

will serve the purpose as a co-processor then number of clock cycles 

can be saved. 
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6              RESULTS 

6.1 Benchmarking results 

Following table-6 shows the benchmarking result of clock cycles taken by 

several image processing algorithms executed on Texas instrument DSP 

simulator named Code composer studio and Tiger sharc simulator named 

Visual DSP++. Also, third column shows the clock cycles taken by image 

processing algorithms on Pentium-IV processor using simple scalar 

simulator. 

 

TABLE 6: SIMULATION RESULT FOR VARIOUS IMAGE PROCESSING ALGORITHMS. 

 

Algorithms  

TI C64xx 

600MHz 

TigerSharc 

600MHz P4  1.8GHz 

  CCStudio VDSP++ SimpleScalar 

1-D FFT Clock 43214 57555 63339 

 Exe.Time(μsec) 72.02 95.92 35 

Convolution Clock 2065 6629 60361 

 Exe.Time(μsec) 3.41 11.09 33.534 

Correlation Clock 3554 9804 61562 

 Exe.Time(μsec) 5.9 16.34 34 

Median Filter Clock 2893 9676 52185 

 Exe.Time(μsec) 4.821 16.12 28.99 

Sobel Operator Clock 1714 3346 24716 

 Exe.Time(μsec) 2.85 5.57 13.71 

 

As we can see in the table, number of clock cycles needed to execute 

given five algorithms on different processors are shown: Now looking at 

every row we can realize that TMS320C64xx TI DSP takes quite less clock 

cycles compare to other DSP & p-4 processor. For every algorithm the 

clock cycles for TMS320C64xx are as less as twice the other processors. 

Only in case of 1-D FFT clock cycles are not as less as other algorithms. 

The strength of DSP is VLIW architecture that means DSP can execute 8 

instructions in same clock cycle by packing all instruction in very large 
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instruction word. For VLIW architecture, all instruction which are packed in 

long word has to be data independent from each other. In case of FFT the 

calculations of one stage depends on outcome of previous level. Hence, 

the data dependency is high in case of FFT which results in large number 

of instruction, hence more clock cycles. 

6.2 1024 point, 1-D Fast Fourier Transform (Hybrid Architecture) 

Following table-7 shows the clock cycles details of 1-D FFT algorithm 

executed on single DSP as well as on hybrid architecture. 

 

Table 7: Theoretical result for 1-D FFT algorithm 

Clock cycles Result 

133,000 Clock cycles on SINGLE DSP. 

33,062 Clock cycles without multiplications on DSP. 

20,480 Clock cycles multiplication on FPGA. 

53,542 Clock cycles executed on HYBRID ARCHITECTURE. 

(133,000 - 53,542) = 79,458 Clock cycles SAVED.    

 

Above table explains that hybrid architecture is far better in executing 

image processing algorithms in comparison with single DSP, which saves 

clock cycles as well as execution time. 
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7                    CONCLUSION 

 

Rather than executing Digital Image processing algorithms on single DSP, 

it’s very much efficient to execute such algorithms on hybrid architecture 

which involves FPGA as a co-processor with DSP. To design DSP with 

FPGA co-processor hybrid architecture, the selection of apt DSP is 

required.  

 

Putting together the experimental results from investigation and 

discussion it could be realized that Texas Instrument DSP (TMS320C64xx) 

can compute the required DIP algorithms using less clock cycles than the 

Tiger Sharc DSP (TS-201) processor. Though Pentium-IV processor 

operates at speed of 1.8 GHz, Texas Instrument DSP operating at speed 

of 600MHz, gives better performance in executing DIP algorithms, 

because of its special features like MAC operations and VLIW architecture. 

Hence, it could be concluded that Texas Instruments DSP should be used 

in hybrid architecture.  

 

A novel approach to calculate FFT calculation has been proposed which 

exploits the parallelism using FPGA. Bottleneck of the improvement in 

cycles is communication latency of EMIF between DSP and FPGA. If this 

latency can be improved, better results could be achieved. 
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TMS320C64xx TEXAS INSTRUMENT DSP PROCESSOR 

Internal architecture and Peripherals 

• Two general-purpose register files (A and B) 

• Eight functional units (.L1, .L2, .S1, .S2, .M1, .M2, .D1, and .D2) 

• Two load-from-memory data paths (LD1 and LD2) 

• Two store-to-memory data paths (ST1 and ST2) 

• Two data address paths (DA1 and DA2) 

• Two register file data cross paths (1X and 2X) 

• Harvard architecture of memory (program memory and data 

memory) 

• L1D 80-KB & L1P 32-KB while L2 is of 128-KB cache 

• CPU Operating speed is 600 MHz 

• Enhanced direct memory access controller 

• Peripheral component interconnect 

• Universal test and operation PHY interface for ATM (UTOPIA) 

• External memory interfaces 

• Multi-channel buffered serial ports 

• Host port interfaces 

• 32-bit expansion bus 

• Serial RapidIO 

• Phase locked loop (PLL) 

Applications 

Wireless infrastructure (adaptive antennas, base stations, gateways), 

telecom infrastructure (RAS, PBX, VoIP), digital video (conferencing, 

surveillance, encoders, imaging (medical, machine vision/inspection, 

defense/radar/sonar) 

Features 

• VelociTI.2 architecture extensions with new instructions to 

accelerate performance in key applications  

• Increased parallelism with quad 16-bit and octal 8-bit multiply-

accumulate performance 



 Appendix-A 

• Improved orthogonality with frequently used instructions available 

in more functional units 

• Double the bandwidth resulting from more registers, wider 

load/store data paths and enlarged two-level cache 
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    TIGER-SHARC (TS-201) ANALOG DSP PROCESSOR 

 

Key Features 

• Up to 600MHz, 1.67 ns instruction cycle rate 24M bits of internal—

on-chip—DRAM memory 

• 25 mm × 25 mm (576-ball) thermally enhanced ball grid array 

package 

• Dual-computation blocks—each containing an ALU, a multiplier, a                   

shifter, a register file, and a   communications logic unit (CLU) 

• Dual-integer ALUs, providing data addressing and pointer 

Manipulation 

• Integrated I/O includes 14-channel DMA controller, external port, 

four link ports, SDRAM controller, programmable flag pins, two 

timers, and timer expired pin for system integration 

• 1149.1 IEEE-compliant JTAG test access port for on-chip emulation 

• Single-precision IEEE 32-bit and extended-precision 40-bit floating-

point data formats and 8-, 16-, 32-, and 64-bit fixed-point data 

formats 

• Eight 16-bit MACs/cycle with 40-bit accumulation 

• Two 32-bit MACs/cycle with 80-bit accumulation 

• Specific support for Viterbi decoding through the implementation of                   

add compare-select (ACS) sequencing 

• Add-subtract instruction and bit reversal in hardware for FFTs 

• IEEE floating-point compatible highly integrated 

• Three variants offering 24-Mb, 12- Mb, and 4-Mb on-chip embedded 

DRAM 

• Glue less multiprocessing 

• Four link ports—1 GBps transfer rate each 

• 64-bit external port, 125 MHz, 1 GBps 

• 14 DMA channels Flexible Programming in Assembly and C 

Languages 

• User-defined partitioning between program and data memory 

• 128 general-purpose registers 
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• Algebraic assembly language syntax 

• Optimizing C compiler 

• VisualDSP++ tools support 

• Single-instruction, multiple-data (SIMD) instructions, or direct-issue 

capability 

• Predicated execution 

• Fully interruptible with full computation performance 

 

KEY BENEFITS 

• Provides high performance static superscalar DSP operations, 

optimized for telecommunications infrastructure and other large, 

demanding multiprocessor DSP applications 

• Performs exceptionally well on DSP algorithm and I/O benchmarks 

Supports low overhead DMA transfers between internal memory, 

external memory, memory-mapped peripherals, link ports, host 

processors, and other (multiprocessor) DSPs 

• Eases DSP programming through extremely flexible instruction set 

and high-level-language-friendly DSP architecture Enables scalable 

multiprocessing systems with low communications Overhead 

• Provides on-chip arbitration for glue less multiprocessing 
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