
Performance Measure of Digital Image
Processing on FPGA based Co-processor and

DSP Processor

By

 TANK PRANAV S.

(06MCE016)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY OF SCIENCE & TECHNOLOGY
AHMEDABAD 382 481

MAY 2008

M.TECH. MAJOR PROJECT TANK PRANAV S. MAY 2008

Major Project

On

Performance Measure of Digital Image
Processing on FPGA based Co-processor and

DSP Processor

Submitted in partial fulfillment of the requirements

For the degree of

Master of Technology in Computer Science &
Engineering

By

 Tank Pranav S.
(06MCE016)

Under Guidance of

Dr. S.N. Pradhan

Department Of Computer Science & Engineering
Institute Of Technology

Nirma University Of Science & Technology
Ahmedabad 382 481

May 2008

This is to certify that Dissertation entitled

Performance Measure of Digital Image
Processing on FPGA based Co-processor and

DSP Processor

Submitted by

Tank Pranav S.
(06MCE016)

has been accepted towards fulfillment of the requirement

for the degree of

Master of Technology in Computer Science & Engineering

Dr. S. N. Pradhan Prof. D. J. Patel

P. G. Coordinator Head of The Department

Prof. A. B. Patel

Director, Institute of Technology

CERTIFICATE

This is to certify that the work presented here by Mr. Tank Pranav entitled

“Performance Measure of Digital Image Processing on FPGA based Co-

processor and DSP Processor” has been carried out at Institute Of

Technology, Nirma University during the period September 2007 – May 2008

is the bonafide record of the research carried out by him under my guidance

and supervision and is up to the standard in respect of the content and

presentation for being referred to the examiner. The results embodied in this

major project, to the best of my knowledge, haven’t been submitted to any

other university or institution for award of any masters degree.

Dr. S. N. Pradhan

Guide and P.G. Coordinator,

Department of Computer Science & Engineering,

Institute of Technology,

Nirma University,

Ahmedabad.

Date: / /2008

 ACKNOWLEDGEMENTS

The successful completion of a project is generally not an individual effort.

It is an outcome of the cumulative efforts of a number of persons, each

having own importance to the objective. This session is a vote of thanks

and gratitude towards all those persons who have directly or indirectly

contributed in their own specials way towards the completion of this

project.

It gives me great pleasure in expressing thanks and profound gratitude to

Dr. S. N. Pradhan, Guide and P.G. Coordinator, Department of Computer

Engineering, Institute of Technology, Nirma University, Ahmedabad for his

valuable guidance and continual encouragement throughout the project. I

heartily thankful him for his time to time suggestions and the clarity of the

concepts of the topic that helped me a lot during the project. I also

express thanks to Mrs. Swati Jain, Project Co-Coordinator and Asst.

Professor, Department of Computer Engineering, Institute of Technology,

Nirma University, Ahmedabad for her support, guidance and continuous

encouragement throughout the dissertation work.

I would like to give my special thanks to Prof. D. J. Patel, Head,

Department of Computer Engineering, Institute of Technology, Nirma

University for his continual kind words of encouragement and motivation

throughout the Project. I am thankful to all faculty members for their

special attention and suggestion towards the project work.

I extend my sincere thanks to my colleagues specially Jaimin Chavda,

Gaurang Thakkar, Kapil Ruchandani for their support in my dissertation

work. I would like to express my gratitude towards my family members

who have always been my source of inspiration and motivation.

Tank Pranav

Roll No. 06MCE016

 III

 ABSTRACT

As the processing capability of processor increases the computation

requirements of application two folds, especially Digital Image Processing

algorithms applied on satellite images require tremendous amount of

calculations because high resolution images are common in aerial and

satellite surveillance, even larger amounts of data are coming in near

future. Convolution and cross-correlation are fundamental algorithms

required in many image processing tasks, in order to speed up their

computation often they are implemented on parallel hardware.

 Therefore, to reach constraints imposed, two approaches are

possible; one is to use DSP processors having characteristics of SIMD and

VLIW architecture, MAC operations which can exploit parallelism. The

other is to use hybrid architecture consisting of DSP and FPGA as

coprocessor. To implement above mentioned approaches proper DSP need

to be selected. As a part of this, some basic image processing algorithms

have been studied, implemented and simulated for various leading DSPs.

The same algorithms have been implemented for P-IV and the results

obtained are compared and analyzed.

The second approach has been implemented for 1D FFT algorithm.

As FPGA get rid of pipeline hazards, it can result in faster execution. Here

algorithm computation distribution has been suggested which implies

implementation of complex multiplications to be implemented in FPGA and

other calculations to be done in DSP. For this scenario the speed up is

measured and analyzed.

 IV

 CONTENTS
Certificate..I

Acknowledgement.. III

Abstract ..IV

Contents .. V

List of Figures ...VII

List of Tables ...VIII

Chapter 1 INTRODUCTION ...1

1.1 General... 1

1.2 Motivation ... 3

1.3 Scope of the Work .. 4

1.4 Outline of Report.. 6

Chapter 2 LITERATURE SURVEY ...7

2.1 Introduction of stereo imaging 7

2.2 Architectural Overview.. 10

2.3 Architecture of tiger-sharc dsp processor................... 16

2.4 Simulation tools ... 24

Chapter 3 IMAGE PROCESSING ALGORITHMS29

3.1 Overview of algorithms.. 29

3.2 Profiling of algorithms.. 33

3.3 Intel integrated performance primitives...................... 34

Chapter 4 SIMULATION OF IP ALGORITHM ON P-IV PROCESSOR ..38

4.1 Simple-scalar simulator... 38

Chapter 5 FFT ALGORITHMS ON HYRID ARCHITECTURE.................45

5.1 Hybrid architecture (fpga & dsp) 45

5.2 FPGA interface to the c6000 dsp platform using EMIF .. 47

5.3 Theoretical calculation of performance 49

Chapter 6 RESULTS ..55

6.1 Benchmarking results .. 55

6.2 1024 point, 1-D Fast Fourier Transform..................... 56

 V

Chapter 7 CONCLUSION ..57

References ..58

Appendix – A ..60

Appendix – B ..62

 VI

LIST OF FIGURES

2-1 TMS320C67x DSP Block Diagram 10

2-2 L1 Cache 14

2-3 Tiger Sharc Architecture 17

3-1 Butterfly diagram for DIT algorithm 30

3-1 Sobel Operator 32

3-3 Automatic CPU Detection and Code Dispatch 35

5-1 Hybrid architecture 46

5-2

5-3

FIFO Based EMIF Interface Design Example

Flow chart of 1024 point 1-D FFT

48

52

5-3 1024 points 1-D FFT on DSP & FPGA architecture 53

 VII

LIST OF TABLES

Table-1 Specifying the processor core

Table-2 Specifying the memory hierarchy

Table-3 Pentium 4 Processor Configuration

Table-4 Simulation result of Convolution algorithm

Table-5 Time taken on hybrid architecture

Table-6 Simulation result for various image processing algorithms

Table-7 Theoretical result for 1-D FFT algorithm

 VIII

1 INTRODUCTION

1.1 GENERAL

Digital image processing is characterized by very high computational

demands. Although it can be handled by “standard” computer hardware,

such solution is not viable for an embedded system, where dimensions of

the computer system, power consumption or data throughput are of

concern. For these reasons, specialized hardware solutions based on a

digital signal processor (DSP) or a Field Programmable Gate Array (FPGA)

are usually used in embedded systems. As increasingly complex

algorithms are implemented using digital signal processing, the

performance demands of these algorithms rise exponentially. For cost-

sensitive, high-volume applications like stereo image processing, online

video processing, development of extremely specialized ASP(Application

specific processors) are driven. However, for many other applications, the

only options for implementing high-performance digital signal processing

have been general-purpose DSPs and, more recently, FPGAs. Available

Processor types range from general purpose processors that handle a wide

variety of applications, to application-specific processors like DSPs, which

are specific to a particular application class such as signal processing, to

single purpose processors, which are customized to a very specific

function.

The heart of any digital signal processing architecture is the Multiply-and-

Accumulate (MAC) unit. Most signal processing applications utilize a great

deal of multiplication: The MAC unit of a DSP accelerates this type of

calculation by performing the multiplication of two numbers and then

adding the result to all of the previous multiplications in what is called an

"accumulator". Another key enabling technology of DSPs is the ability to

process several operations at the same time. One way that DSPs can

execute four operations at the same time is to use what is known as Very

Long Instruction Word (VLIW) architecture. A VLIW is a single instruction

that actually represent several operations. DSPs have typically been used

to implement many of these applications. Although DSPs are

programmable through software, the DSPs’ hardware architecture is not

Chapter 1 Introduction

flexible. Therefore, DSPs are limited by fixed hardware architecture such

as bus performance bottlenecks, a fixed number of MAC blocks, fixed

memory, fixed hardware accelerator blocks and fixed data widths. The

DSPs’ fixed hardware architecture is not suitable for many applications

that require customized DSP function implementations. The architecture of

FPGA, on the other hand, is designed with fine-grain parallelism, which

makes it well suited for massively parallel algorithms. The basic

characteristics of FPGA are relatively small capacity of the on-chip

memory and relatively narrow throughput of memory interfaces, lack of

wide-word processing units, and high cost of performing complex

numerical operations, such as division, square root, logarithmic,

exponential, and trigonometry functions (in smaller devices, these

operations cannot be implemented at all). FPGAs provide a reconfigurable

solution for implementing traditional applications and offer higher

throughput along with DSP. Systems implemented in FPGA and DSPs can

have customized architecture, customized bus structure, and customized

memory, customized hardware accelerator blocks and a variable number

of MAC blocks. A major advantage of FPGAs for many system

architectures is that FPGA can behave as an acceleration purpose

processor along with DSP , to increase throughput of the over all system.

System architects use this capability to create products with various price

points and performance capabilities without significantly affecting

development costs or inventory. FPGA devices provide a reconfigurability

which can be useful in changing design which is already ported into FPGA.

FPGA devices incorporate a variety of embedded features such as

embedded processors, memory blocks, etc.

Stereo Image Processing is a special class of image processing area where

high amount of computation power is required. Stereo Image Processing

implements functions like image correction, image rectification, image

matching and disparity calculations like tasks. In this tasks image

matching is a very basic but most expensive task. Stereo image matching

requires two preprocessed images and matching of these images done by

suitable algorithm. Results of algorithms for image matching may vary

because different algorithms have different computation costs, running

 2

Chapter 1 Introduction

time, accuracy as well as artificial intelligence may also be involved. In

this dissertation Hierarchical matching algorithm is used for the level by

level comparisons and generating accurate results.

1.2 MOTIVATION

Image processing is a one of the fast developing research area of

computer vision. Faster image processing is very essential in current

scenario for work automation .This work is useful in developing the vision

using the computerized analysis , object detection and classification of the

images captured by the sensors for better interpretation and analysis.

When it comes to processing the digital images of high resolution in order

of 4Kx4K, 8Kx8K and higher then this ,normal workstations can able to

deliver the output but by taking the more computational resources in

terms of memory and time to generate the output (or with decreased

performance). Space agencies use the special purpose satellites for the

earth surveillance which results the high resolution satellite images.

Processing of these satellite images and video takes more time in

processing .Sometimes it is possible that the real time faster processing is

required and that work is generally not supported by the workstations. To

resolve this we require special purpose processors like DSPs or ASPs

specifically designed for these types of applications.

Digital Image Processing is a special class of Digital Signal Processing

functions where image is a function of integer values. Using Digital Signal

Processors resides between ASPs and GPPs(General Purpose Processor). It

provides faster execution than GPPs while providing more flexibility than

ASPs. Digital Signal Processors are useful for providing High throughput

while operating at lower frequency than GPPs. DSP processors are

microprocessors designed to perform digital signal processing—the

mathematical manipulation of digitally represented signals. Today’s DSP

processors (or “DSPs”) are sophisticated devices with impressive

capabilities. Implementing basic image processing algorithms focus on the

image enhancement, correction, preprocessing, frequency domain

analysis like tasks. Some of the specific applications like stereo imaging,

medical imaging like applications needs special treatment than that of the

 3

Chapter 1 Introduction

basic tasks. Developing this kind of application on DSPs requires more

attention than just implementation. Stereo imaging library requires large

amount of computation power which is not available at the workstation

end and also these workstations are not efficient and capable handling the

resource requirement for these applications. These applications require

special attention for real time execution in timely manner so that the

constant high throughput can be achieved. This thesis aims at the

proposing the solution for faster throughput by the means of using the

DSP and FPGA’s hybrid architecture. To achieve the mentioned goal would

require the development of Library of Image processing functions for DSP

and FPGA designs developed as special purpose processors.

1.3 SCOPE OF WORK

As the title suggests the goal of this dissertation focuses on the providing

solution of high computation need for stereo image processing. To achieve

this goal, work carried out in this research is useful for the organizations

which require high computation power for processing of high resolution

satellite images. Stereo imaging is one of the application which demands

more computation power for generating disparity map and depth

calculation of objects on the earth. By testing basic image processing

algorithms on different DSPs as well as on FPGAs we decide suitable

processor in performing image matching for the calculation of disparity

between the stereo image pair. Analysis and benchmarking on image

processing algorithms tested on TI DSP c64xx(Texas Instruments), TS-

201(Analog Devices) and Pentium-4 (on Simple Scalar 3.0 Simulator

Toolkit) and comparing the performance of each Processor .This includes

selection of right DSP processors and development of algorithms by

partitioning the parallel computation tasks between the FPGA(Spartan-3)

and DSP Processor for increased throughput. Wherever intensive

parallelism is available in algorithm that module is performed in FPGA and

the remaining module is developed in DSP. DSPs are used for the complex

functions implementation which requires more resources on FPGA as well

as which can not be done parallel or pipelined manner. DSPs are providing

solution for the applications which require complex functions to be

implemented on DSPs for faster than GPPs. In this dissertation focus is on

 4

Chapter 1 Introduction

the FPGA Development is done in Handel-C language and verification of

results is done through the Handel-C simulator using Xilinx Spartan-

3(1500L) FPGA. Procedure of testing and benchmarking of image

processing algorithms is carried out for various steps of Stereo

Reconstruction Pipeline. At the end of this dissertation work one can have

outputs in terms of disparity map and depth map for the stereo image

pair. These images can be used for efficient stereo reconstruction

(Generating 3d space from 2d images).

 5

Chapter 1 Introduction

1.4 OUTLINE OF THE THESIS

This thesis is organized a follows:

Chapter 2, Literature survey, consist of basic theories related with

architecture of different Digital Signal processors, various simulation tools.

Chapter 3, Benchmarking Image Processing Algorithms, which describes

various DIP algorithms and its profiling, as well as brief overview of Intel

Integrated performance primitives, optimized libraries.

Chapter 4, Simulation of DIP algorithm on Pentium-IV processor,

discussed architecture of Simple Scalar simulator, different simulation

engine as well method of performance analysis for profiling.

Chapter 5, FFT algorithms on hybrid architecture, describes hybrid

architecture as a FPGA co-processor, clock cycle saving with hybrid

architecture.

Chapter 6, Result discusses the benchmarking of DIP algorithm, also clock

cycle saving with hybrid architecture in comparison with single DSP.

Chapter 7, This chapter discusses the conclusion, which DSP is better in

execution of DIP algorithms.

 6

2 LITERATURE SURVEY

2.1 INTRODUCTION OF STEREO IMAGING

2.1.1 General

Stereo Imaging is the process of constructing the 3-Dimentional model

using the 2-Dimentional Images for better human understanding. The task

of building a general purpose computational-vision system is a grand

challenge due to the compute-intensive nature of many vision algorithms.

However, researchers have been successful in designing algorithms and

building systems that deal with some specific tasks of the human vision

system. One important feature of the human vision system is its ability to

perceive depth of a viewed scene. This ability to perceive depth, known as

stereo vision, or stereopsis is made possible by the difference in

viewpoints of the scene when sensed by our left and right eyes. The

information about depth in a scene is of great importance because it helps

us navigate in a three-dimensional environment and aids us in recognizing

objects of interest, among other tasks. In computer based stereo-vision

systems, a stereo-rig is a pair of cameras placed side-by-side, much like

our eyes, to capture the left and right images. In a stereo-vision system,

this processing is carried out using a computing platform that can be

based on software, hardware, or a mixture of the two. The depth

information is encoded in the disparity [1], defined as the difference in

pixel locations of corresponding points in the image pair. The disparity is

inversely proportional to the distance of an object from the cameras, so

the disparity increases as objects get closer to the cameras. The

estimation of this disparity then becomes the primary task of a stereo-

vision system.

In the simplest setup of a stereo-rig, where the optical axes of the two

cameras [2] are parallel and the vertical axes are aligned, corresponding

pixels lie at the same vertical coordinate in the image pair. The search for

the corresponding pixel is therefore limited to the same scanline in the

image pair, which allows processing of each scanline as they arrive. In the

more general case where the cameras are not aligned as described above,

the search for corresponding pixel may span across numerous scanlines

Chapter 2 Literature Survey

[3] and this increases the computational load of the system. When the

cameras are not in the ideal setup, Image rectification of input images can

be performed. Rectification is the process by which the input image pair is

warped to resemble the output from an aligned stereo-rig.

Often, when viewing a scene from different viewpoints as in a stereo

setup, objects visible in one image may not be visible in the other image.

A foreground object hides, or occludes, different parts of the background

in the left and right views, a phenomenon known as occlusion. In addition,

the information present at the left edge of the image captured by the left

camera is not available in the right image and vice-versa as this part of

the scene falls outside the viewing area of the other camera. This further

complicates the task of accurate disparity estimation because pixels

visible in one image may not have a corresponding match in the other

image of the pair. Related areas of Stereo Imaging:

• Robotic Vision/Machine Vision.

• 3D Computer Graphics.

• Computer Vision Geometry.

2.1.2 TMS320C6000 DSP Family Overview

The TMS320DSP family consists of fixed-point, floating-point, and

multiprocessor digital signal processors (DSPs). TMS320DSPs have an

architecture designed specifically for real-time signal processing.

With a performance of up to 6000 million instructions per second (MIPS)

and an efficient C compiler, the TMS320C6000 DSPs [4] give system

architects unlimited possibilities to differentiate their products. High

performance, ease of use, and affordable pricing make the C6000

generation the ideal solution for multifunction applications, such as, 3-D

transformations, Image compression/transmission, Image enhancement,

Pattern recognition, Robot vision, etc. The newest member of the C6000

family, the C64x, brings the highest level of performance for processing

data in this era of data convergence. At clock rates of 600 MHz and

greater, the C64x can process information at a rate of 4800-6400 MIPS.

8

Chapter 2 Literature Survey

In addition to clock rate, more work can be done each cycle with the

VelociTI architecture. These extensions include new instructions to

accelerate performance in key applications and extend the parallelism of

the architecture. Increased clock rate and increased CPU throughput are

only part of the solution. Processing data at these extremely high rates

increases the need for I/O bandwidth.

Three flexible Multi–channel Buffered Serial Ports can each supply

100Mbits/sec each of additional throughput. The internal DMA engine can

provide over 2Gbytes/sec of I/O bandwidth with 64 independent channels.

The C64x goes beyond a core and peripheral set to bring the maximum

level of performance for processing digital data quickly. The tight coupling

of the CPU architecture and the compiler help to maximize processor

throughput. The RISC like instruction set and extensive use of pipelining

allow many instructions to be scheduled and executed in parallel. The key

extensions made to the ‘C62x architecture that allow the ‘C64x to perform

more work each clock cycle include wider data paths, a larger register file,

greater orthogonality and new instructions that support packed data

processing.

2.1.3 TMS320C64x DSP Architecture

The C64x central processing unit (CPU) [5], as shown in Figure 1, consists

of eight functional units, two register files, and two data paths. Like the

C62x/C67x, two of these eight functional units are multipliers. The C64x

multiplier has been enhanced so that it is capable of performing two 16-

bit x 16-bit multiplies every clock cycle. Four 16-bit x 16-bit multiplier can

be executed every cycle on the C64x. Using 600 MHz to represent early

C64x performance, this means 2.4 billion 16-bit multiplies can occur every

second. Moreover, each multiplier on the C64x has the capability of

performing four 8-bit x 8-bit multiplies every clock cycle. At 600 MHz, this

is equivalent to 4.8 billion 8-bit multiplies occurring every second.

9

Chapter 2 Literature Survey

Figure 1: TMS320C67x DSP Block Diagram

The dual 16-bit extensions built into the multiply functional unit are also

present in the other six functional units. These include dual 16-bit

addition/subtraction, compare, and shift, min/max, and absolute value

operations. The quad 8-bit extensions built into the multiply functional

unit are found in four of the six remaining functional units. These include

quad 8-bit addition/subtraction, compare, average, min/max, and bit

expansion operations. Packed 8-bit and 16-bit data types are used by the

code generation tools to take full advantage of these extensions. By

doubling the registers in the register file and doubling the width of the

data path as well as utilizing advanced instruction packing, the C6000

compiler can improve performance with even fewer restrictions placed

upon it by the architecture. These additions and others make the C64x an

even better compiler target than the original C62x architecture, while

reducing code size by up to 25%.

2.2 ARCHITECTURAL OVERVIEW

2.2.1 C6000 CPU

The C6000 CPU components consist of:

 Two general-purpose register files (A and B)

10

Chapter 2 Literature Survey

 Eight functional units (.L1, .L2, .S1, .S2, .M1, .M2, .D1, and .D2)

 Two load-from-memory data paths (LD1 and LD2)

 Two store-to-memory data paths (ST1 and ST2)

 Two data address paths (DA1 and DA2)

2.2.2 Register File Enhancements

There are two general-purpose register files (A and B) in the C6000 data

paths. For the C62x/C67x, each of these files contains 16 32-bit registers

(A0-A15 for file A and B0-B15 for file B). The general-purpose registers

can be used for data address pointers, or condition registers. The C64x

register file doubles the number of general-purpose registers that are in

the C62x/C67x cores with 32 32-bit registers per data path (A0-A31 for

file A and B0-B31 for file B). On the C64x, A0 may be used as a condition

register as well, bringing the total to six condition registers. In all C6000

devices, registers A4-A7 and B4-B7 can be used for circular addressing.

The Values larger than 32 bits, such as 40-bit long and 64-bit float

quantities, are stored in register pairs, with the 32 LSBs of data placed in

an even-numbered register and the remaining 8 or 32 MSBs in the next

upper register (which is always an odd-numbered register). The C64x

register file supports all the C62x data types and extends this by

additionally supporting packed 8-bit types and 64-bit fixed-point data

types. Packed data types store either four 8-bit values or two 16-bit

values in a single 32-bit register or four 16-bit values in a 64-bit register

pair.

2.2.3 Instruction Set

The TMS320C64x uses an opcode operand assembly language format

where each instruction has an opcode field for the operation and an

operand field for one to four operands. All instructions on the

TMS320C64x can be executed conditionally. Six designated general

purpose registers can be used as conditional registers. Many TMS320C64x

instructions are simple and RISC-like , as on the TMS320C62x. However ,

the addition of extensive SIMD capabilities and application specific

instructions means that some TMS320C64x instructions support multiple

parallel operations within a single instruction.

11

Chapter 2 Literature Survey

The TMS320C64x does not support hardware looping, so all loops must be

implemented in software. However, the parallel architecture of the

processor allows the implementation of software loops with virtually no

overhead. Because the TMS320C64x is a highly parallel architecture,

obtaining maximum performance requires the programmer or code

generation tools to schedule instruction carefully. This can be a challenge

because the TMS320C64x has a complex architecture and long variable

instruction latencies. Texas instruments assembly optimizer tools and C

compiler simplify code development by automating the scheduling and

parallelization processes.

2.2.4 Functional Units

The eight functional units in the C6000 data paths can be divided into two

groups of four; each functional unit in one data path is almost identical to

the corresponding unit in the other data path. The C64x is object code

compatible with the C62x. Besides being able to perform all the C62x

instructions, the C64x also contains many 8–bit and 16–bit extensions to

the instruction set. For example, the MPYU4 instruction performs four 8x8

unsigned multiplies with a single instruction on a .M unit. The ADD4

instruction performs four 8–bit additions with a single instruction on a .L

unit.

2.2.5 Register File Paths

Each functional unit reads directly from and writes directly to the register

file within its own data path. That is, the .L1, .S1, .D1, and .M1 units write

to register file A, and the .L2, .S2, .D2, and .M2 units write to register file

B. Most data lines in the CPU support 32-bit operands, and some support

long (40-bit) and double word (64-bit) operands. Each functional unit has

its own 32-bit write port into a general-purpose register file. Each

functional unit has two 32-bit read ports for source operands src1 and

src2. Four units (.L1, .L2, .S1, and .S2) have an extra 8-bit-wide port for

40-bit long writes, as well as an 8-bit input for 40-bit long reads. Because

each unit has its own 32-bit write port, all eight units can be used in

parallel with every cycle when performing 32 bit operations. Since each

C64x multiplier can return up to a 64-bit result, an extra write port has

12

Chapter 2 Literature Survey

been added from the multipliers to the register file, as compared to the

C62x.

2.2.6 Increased Orthogonality

When we talk about orthogonality in the VelociTI architecture, we mean

that there is a great deal of generality in the architecture. We have

already discussed that the register file is general purpose. The registers

can be a pointer to data or can contain data. We have also discussed how

an ADD instruction can be performed on six of the eight functional units.

This flexibility allows the compiler to achieve maximum performance. The

C64x contains even more orthogonality than the original C62x/C67x

architecture. The .D unit can now perform 32-bit logical instructions in

addition to the .S and .L units. Also, the .D unit now directly supports load

and store instructions for double-word data values. The C62x does not

directly support loads and stores of double words, and the C67x only

directly supports loads of double words. The .L and .D units can now be

used to load 5-bit constants in addition to the .S unit’s ability to load 16-

bit constants. There is an additional factor that provides the compiler with

more flexibility. On the C62x/C67x, one long source and one long result

per data path could occur every clock cycle. On the C64x, up to two long

sources and two long results can be accessed on each data path every

clock cycle.

2.2.7 Two–Level Cache Architecture

On initial C64x devices, the CPU interfaces directly to dedicated level–one

program (L1P) and data (L1D) caches of 16 Kbytes each. These caches

operate at the full speed of CPU access. A second level unified L2

program/data memory provides flexible storage. Figure 2 depicts an

example L2 of size 1024 Kbytes; the size and segmentation of the L2

cache in the C64x family may change over time. One configuration for L2

is entirely mapped SRAM. The other configurations have both SRAM and a

4-way set associative cache of various sizes. Changing the way memory

can be mapped,

13

Chapter 2 Literature Survey

 Figure 2: L1 Cache

Allows the memory can be mapped allows the user to lock critical code

such as interrupt service routines or commonly called functions in on–chip

RAM. It also allows critical data sections such as the software stack and

often re–used coefficients to be locked on–chip.

2.2.8 Powerful Enhanced DMA Controller

The C64x EDMA can provide over 2Gbytes/sec of external bandwidth on

initial implementations. The EDMA supports up to 64 channels triggered

by independent events. A total of 85 parameter sets are available for

linking or chaining. Linking allows a sequence of transfers to be issued

when a single event occurs. Chaining allows one EDMA channel to trigger

another channel upon data transfer completion. Linking and chaining allow

continuous auto–initialization of DMA operation with only initial

configuration by the CPU. These features also allow circular buffers, ping–

pong buffers, and transfers of complex data structures. Transfers can be

triggered on an element by element or frame by frame basis.

Programmable triggering allows both sample by sample transfers and

buffer by buffer transfers. Each channel supports both one and two–

dimensional transfers. Strides are independently programmable for each

dimension. Using 1–D and 2–D the user can transfer sub frames of an

image as well as automatically interleave or de–interleave time–division

multiplexed (TDM) digital streams. Byte, word, half-word, and double-

word data sizes are supported.

2.2.9 Three External Buses

The initial C64x chip architecture supports up to 3 parallel external buses:

two external memory interfaces (EMIFs) and one host port interface (HPI).

14

Chapter 2 Literature Survey

One EMIF (EMIFA) is 64–bits wide and is intended for direct connection to

high– speed synchronous memory. A second 16–bit EMIF (EMIFB) is

intended for external I/O peripherals such as FIFOs and parallel data

converters. Decoupling memory from I/O devices both simplifies board

design and provides I/O concurrency. Although the intent of the two

EMIFs are different, they are identical except for their width, allowing for a

variety of system designs. On initial implementations, these EMIFs have a

maximum bus rate of 133 MHz. Each EMIF has four chips enable (CE)

spaces. EMIFA can support read and write operations to 64–, 32–, 16–,

and 8–bit external devices. Similarly, EMIFB can support read and write

operations to both 16– and 8–bit devices. Variable width support allows

interoperability with many external I/O peripherals and allows the system

designer to make bandwidth/cost/power tradeoffs. Each EMIF has three

memory controllers. The SDRAM controller supports 16 Mbit – 256 Mbit

SDRAM devices. Finally, a programmable asynchronous controller with

independent setup, strobe, and hold control allows easy interface to many

asynchronous SRAMs, FIFOs, and peripheral devices. The EMIFs operate

with dedicated external clock inputs that decouple CPU operating

frequency from bus frequency. In addition, particular controllers can

operate at 1x, 1/2x or 1/4x the bus input clock. All these features are

independently configurable for each CE space of each EMIF. A 32–bit wide

HPI provides dedicated connection to a variety of industry standard host

processors and PCI bridge chips. The HPI can operate in either a 32–bit

(HPI32) or 16–bit (HPI16) wide mode. An additional use of the HPI is as a

slave port through which a mastering peripheral can stream data into the

DSP. In some C64x devices, the 32-bit wide HPI is replaced by a

dedicated PCI port. The C64x PCI port supports connection of the DSP to a

PCI host via the integrated PCI master/slave bus interface and features a

32-bit address/data bus at 33MHz. The C64x PCI port contains the logic

required to implement a fully compliant PCI Specification revision 2.2

bursting master/slave with access into the DSP’s memory map

(peripherals, on-chip RAM, and external memory through the EMIF). The

C64x PCI port interfaces to the DSP via the EDMA internal address

generation hardware. This architecture allows for both PCI master and

15

Chapter 2 Literature Survey

slave transactions, while keeping the EDMA channel resources available

for other applications.

2.3 ARCHITECTURE OF TIGER-SHARC TS-201 DSP PROCESSOR

2.3.1 Overview

The ADSP-TS201S TigerSharc processor is an ultrahigh performance,

static superscalar processor optimized for large signal processing tasks

and communications infrastructure. The DSP combines very wide memory

widths with dual computation blocks supporting floating-point (IEEE 32-bit

and extended precision 40-bit) and fixed-point (8-, 16-, 32-, and 64-bit)

processing— to set a new standard of performance for digital signal

processors. The TigerSharc architecture [6] lets the DSP execute up to

four instructions each cycle, performing 24 fixed-point (16-bit) operations

or six floating-point operations. Four independent 128-bit wide internal

data buses, each connecting to the six 4M bit memory banks, enable

quad-word data, instruction, and I/O access and provide 33.6G bytes per

second of internal memory bandwidth. Operating at 600 MHz, the ADSP-

TS201S processor’s core has a 1.67 ns instruction cycle time. Using its

single-instruction, multiple-data (SIMD) features, the ADSP-TS201S

processor can perform 4.8 billion, 40-bit MACS or 1.2 billion, 80-bit MACS

per second.

Above Functional Block Diagram shows the ADSP-TS201S processor’s

architectural blocks. These blocks include:

• Dual compute blocks, each consisting of an ALU, multiplier, 64-bit

shifter, 128-bit CLU, and 32-word register file and associated data

alignment buffers (DABs)

• Dual integer ALUs (IALUs), each with its own 31-word register file

for data addressing and a status register

16

Chapter 2 Literature Survey

Figure 3: Tiger Sharc Architecture

• A program sequencer with instruction alignment buffer (IAB) and

branch target buffer (BTB)

• An interrupt controller that supports hardware and software

interrupts, supports level- or edge-triggers, and supports

prioritized, nested interrupts

• Four 128-bit internal data buses, each connecting to the six 4M bit

memory banks

• On-chip DRAM (24M bit)

• An external port that provides the interface to host processors,

multiprocessing space (DSPs), off-chip memory mapped

peripherals, and external SRAM and SDRAM

• A 14-channel DMA controller

• Four full-duplex LVDS link ports

• Two 64-bit interval timers and timer expired pin

• An 1149.1 IEEE-compliant JTAG test access port for on chip

emulation

17

Chapter 2 Literature Survey

The TigerSharc DSP uses Static Superscalar architecture. This architecture

is superscalar in that the ADSP-TS201S processor’s core can execute

simultaneously from one to four 32-bit instructions encoded in a very

large instruction word (VLIW) instruction line using the DSP’s dual

compute blocks. Because the DSP does not perform instruction re-

ordering at runtime— the programmer selects which operations will

execute in parallel prior to runtime—the order of instructions is static.

With few exceptions, an instruction line, whether it contains one, two,

three, or four 32-bit instructions, executes with a throughput of one cycle

in a 10-deep processor pipeline. For optimal DSP program execution,

programmers must follow the DSP’s set of instruction parallelism rules

when encoding an instruction line. In general, the selection of instructions

that the DSP can execute in parallel each cycle depends on the instruction

line resources each instruction requires and on the source and destination

registers used in the instructions. The programmer has direct control of

three core components—the IALUs, the compute blocks, and the program

sequencer. The ADSP-TS201S processor, in most cases, has a two-cycle

execution pipeline that is fully interlocked, so—whenever a computation

result is unavailable for another operation dependent on it—the DSP

automatically inserts one or more stall cycles as needed. Efficient

programming with dependency-free instructions can eliminate most

computational and memory transfer data dependencies. In addition, the

ADSP-TS201S processor supports SIMD operations two ways—SIMD

compute blocks and SIMD computations. The programmer can load both

compute blocks with the same data (broadcast distribution) or different

data (merged distribution).

2.3.2 Dual Compute Blocks

The ADSP-TS201S processor has compute blocks that can execute

computations either independently or together as a single instruction,

multiple-data (SIMD) engine. The DSP can issue up to two compute

instructions per compute block each cycle, instructing the ALU, multiplier,

shifter, or CLU to perform independent, simultaneous operations. Each

compute block can execute eight 8-bit, four 16-bit, two 32-bit, or one 64-

bit SIMD computations in parallel with the operation in the other block.

18

Chapter 2 Literature Survey

These computation units support IEEE 32-bit single-precision floating-

point, extended-precision 40-bit floating point, and 8-, 16-, 32-, and 64-

bit fixed-point processing. The compute blocks are referred to as X and Y

in assembly syntax, and each block contains four computational units—an

ALU, a multiplier, a 64-bit shifter, a 128-bit CLU—and a 32- word register

file. Fully orthogonal register file is used for transferring data between the

computation units, data buses and for storing intermediate results.

Instructions can access the registers in the register file individually (word-

aligned), in sets of two (dual-aligned), or in sets of four (quad-aligned), as

• ALU—the ALU performs a standard set of arithmetic operations in

both fixed- and floating-point formats. It also performs logic

operations

• Multiplier—the multiplier performs both fixed- and floating- point

multiplication and fixed-point multiply and accumulate

• Shifter—the 64-bit shifter performs logical and arithmetic shifts, bit

and bit stream manipulation, and field deposit and extraction

operations

• Provide 8 MACS per cycle peak and 7.1 MACS per cycle sustained

16-bit performance and provide 2 MACS per cycle peak and 1.8

MACS per cycle sustained 32-bit performance (based on FIR)

• Execute six single-precision floating-point or execute 24 fixed-point

(16-bit) operations per cycle, regular operations performance at

600 MHz

• Perform two complex 16-bit MACS per cycle

• Execute eight trellis butterflies in one cycle

2.3.3 DUAL INTEGER ALU (IALU)

The ADSP-TS201S processor has two IALUs that provide powerful address

generation capabilities and perform many general-purpose integer

operations. The IALUs are referred to as J and K in assembly syntax and

have the following features:

• Provide memory addresses for data and update pointers

19

Chapter 2 Literature Survey

• Support circular buffering and bit-reverse addressing

• Perform general-purpose integer operations, increasing

programming flexibility

• Include a 31-word register file for each IALU

As address generators, the IALUs perform immediate or indirect (pre- and

post-modify) addressing. They perform modulus and bit-reverse

operations with no constraints placed on memory addresses for the

modulus data buffer placement. Each IALU can specify either a single-,

dual-, or quad-word access from memory. The IALUs have hardware

support for circular buffers, bit reverse, and zero-overhead looping.

Circular buffers facilitate efficient programming of delay lines and other

data structures required in digital signal processing, and they are

commonly used in digital filters and Fourier transforms. Each IALU

provides registers for four circular buffers, so applications can set up a

total of eight circular buffers. The IALUs handle address pointer

wraparound automatically, reducing overhead, increasing performance,

and simplifying implementation. Circular buffers can start and end at any

memory location. Because the IALU’s computational pipeline is one cycle

deep, in most cases integer results are available in the next cycle.

Hardware (register dependency check) causes a stall if a result is

unavailable in a given cycle.

2.3.4 Program Sequencer

The ADSP-TS201S processor’s program sequencer supports the following:

• A fully interruptible programming model with flexible programming

in assembly and C/C++ languages; handles hardware interrupts

with high throughput and no aborted instruction cycles

• A 10-cycle instruction pipeline—four-cycle fetch pipe and six-cycle

execution pipe—computation results available two cycles after

operands are available

• Supply of instruction fetch memory addresses; the sequencer’s

instruction alignment buffer (IAB) caches up to five fetched

instruction lines waiting to execute; the program sequencer

20

Chapter 2 Literature Survey

extracts an instruction line from the IAB and distributes it to the

appropriate core component for execution

• Management of program structures and program flow determined

according to JUMP, CALL, RTI, RTS instructions, loop structures,

conditions, interrupts, and software exceptions

• Branch prediction and a 128-entry branch target buffer (BTB) to

reduce branch delays for efficient execution of conditional and

unconditional branch instructions and zero-overhead looping;

correctly predicted branches occur with zero overhead cycles,

overcoming the five-to-nine stage branch penalty

2.3.5 Flexible Instruction Set

The 128-bit instruction line, which can contain up to four 32-bit

instructions, accommodates a variety of parallel operations for concise

programming. For example, one instruction line can direct the DSP to

conditionally execute a multiply, an add, and a subtract in both

computation blocks while it also branches to another location in the

program. Some key features of the instruction set include:

• Algebraic assembly language syntax

• Direct support for all DSP, imaging, and video arithmetic types

• Eliminates toggling DSP hardware modes because modes are

supported as options (for example, rounding, saturation, and

others) within instructions

• Branch prediction encoded in instruction; enables zero overhead

loops

• Parallelism encoded in instruction line

• Conditional execution optional for all instructions

• User-defined partitioning between program and data memory

2.3.6 DSP Memory

The DSP’s internal and external memory is organized into a unified

memory map, which defines the location (address) of all elements in the

system. The memory map is divided into four memory areas—host space,

external memory, multiprocessor space, and internal memory—and each

21

Chapter 2 Literature Survey

memory space, except host memory, is subdivided into smaller memory

spaces.

The ADSP-TS201S processor internal memory has 24M bits of on-chip

DRAM memory, divided into six blocks of 4M bits (128K words × 32 bits).

Each block—M0, M2, M4, M6, M8, and M10—can store program

instructions, data, or both, so applications can configure memory to suit

specific needs. Placing program instructions and data in different memory

blocks, however, enables the DSP to access data while performing an

instruction fetch. Each memory segment contains a 128K bit cache to

enable single cycle access to internal DRAM. The six internal memory

blocks connect to the four 128-bit wide internal buses through a crossbar

connection, enabling the DSP to perform four memory transfers in the

same cycle. The DSP’s internal bus architecture provides a total memory

bandwidth of 33.6G bytes per second, enabling the core and I/O to access

eight 32-bit data-words and four 32-bit instructions each cycle. The DSP’s

flexible memory structure enables:

• DSP core and I/O accesses to different memory blocks in the same

cycle

• DSP core access to three memory blocks in parallel—one instruction

and two data accesses

• Programmable partitioning of program and data memory

• Program access of all memory as 32-, 64-, or 128-bit words—16-bit

words with the DAB

2.3.7 External Port (Off-Chip Memory/Peripherals Interface)

The ADSP-TS201S processor’s external port provides the DSP’s interface

to off-chip memory and peripherals. The 4G word address space is

included in the DSP’s unified address space. The separate on-chip buses—

four 128-bit data buses and four 32-bit address buses—are multiplexed at

the SOC interface and transferred to the external port over the SOC bus

to create an external system bus transaction. The external system bus

provides a single 64-bit data bus and a single 32-bit address bus. The

external port supports data transfer rates of 1G byte per second over the

22

Chapter 2 Literature Survey

external bus. The external bus can be configured for 32-bit or 64-bit,

little-endian operations. When the system bus is configured for 64-bit

operations, the lower 32 bits of the external data bus connect to even

addresses, and the upper 32 bits connect to odd addresses. The external

port supports pipelined, slow, and SDRAM protocols. Addressing of

external memory devices and memory mapped peripherals is facilitated by

on-chip decoding of high order address lines to generate memory bank

select signals.

The ADSP-TS201S processor provides programmable memory, pipeline

depth, and idle cycle for synchronous accesses; and external acknowledge

controls to support interfacing to pipelined or slow devices, host

processors, and other memory mapped peripherals with variable access,

hold, and disable time requirements.

2.3.8 Host Interface

The ADSP-TS201S processor provides an easy and configurable interface

between its external bus and host processors through the external port .

To accommodate a variety of host processors, the host interface supports

pipelined or slow protocols for ADSP-TS201S processor access of the host

as slave or pipelined for host access of the ADSP-TS201S processor as

slave. Each protocol has programmable transmission parameters, such as

idle cycles, pipe depth, and internal wait cycles. The host interface

supports burst transactions initiated by a host processor. After the host

issues the starting address of the burst and asserts the BRST signal, the

DSP increments the address internally while the host continues to assert

BRST. The host interface provides a deadlock recovery mechanism that

enables a host to recover from deadlock situations involving the DSP.

2.3.9 DMA Controller

The ADSP-TS201S processor’s on-chip DMA controller, with 14 DMA

channels, provides zero-overhead data transfers without processor

intervention. The DMA controller operates independently and invisibly to

the DSP’s core, enabling DMA operations to occur while the DSP’s core

continues to execute program instructions. The DMA controller performs

DMA transfers between internal memory, external memory, and memory-

23

Chapter 2 Literature Survey

mapped peripherals; the internal memory of other DSPs on a common

bus, a host processor, or link port I/O; between external memory and

external peripherals or link port I/O; and between an external bus master

and internal memory or link port I/O. The DMA controller performs the

following DMA operations:

• External port block transfers. Four dedicated bidirectional DMA

channels transfer blocks of data between the DSP’s internal

memory and any external memory or memory mapped peripheral

on the external bus. These transfers support master mode and

handshake mode protocols

• Link port transfers. Eight dedicated DMA channels (four transmit

and four receive) transfer quad-word data only between link ports

and between a link port and internal or mode protocol. DMA priority

rotates between the four receive channels

• AutoDMA transfers. Two dedicated unidirectional DMA channels

transfer data received from an external bus master to internal

memory or to link port I/O. These transfers only use slave mode

protocol, and an external bus master must initiate the transfer

2.4 SIMULATION TOOLS

2.4.1 Key components of the Code Composer Studio IDE (Texas

Instruments)

 Intelligent IDE with Code Maestro Technology

 C/C++ Compiler, Assembly Optimizer and Linker (Code Generation

Tools)

 Real-Time Operating System (DSP/BIOS)

 Real-Time Data Exchange between host and target (RTDX)

2.4.1.1 Code Composer Studio Setup

Code Composer Studio Setup is a utility that is used to define the target

board or simulator you will use with the Code Composer Studio IDE [7].

This information is called the system configuration and consists of a

device driver that handles communication with the target plus other

24

Chapter 2 Literature Survey

information and files that describe the characteristics of your target, such

as the default memory map. The Code Composer Studio IDE needs this

information to establish communication with your target system and to

determine which tools are applicable for the given target. With the

exception of a DSP Starter Kit (DSK), which comes automatically

configured for the DSK board, Code Composer Studio IDE will be

configured for a simulator by default. You may wish to change the system

configuration to match your environment prior to launching Code

Composer Studio IDE.

2.4.1.2 Code Generation Tools

In the past, developing high performance DSP code has required to

developer to optimize assembly code by hand and to have an intimate

knowledge of the particular DSP architecture. Because time-to-market is

becoming increasingly important, while the time and skill to optimally

code a DSP are increasingly hard to find, there is a need for a more robust

code development environment. The Code Composer Studio compile tools

address this need by shifting the burden of optimization from hand-coded

assembly to the C Compiler. With these tools it is possible to exploit the

high performance of TI’s DSP platforms without ever writing hand-coded

assembly.

2.4.1.3 Interactive Profiler

Performance is a key issue for embedded systems developers. As

programs grow in size and complexity it becomes more difficult for

developers to isolate the subtle problems that cause poor performance.

Profiling helps reduce the time it takes to identify and eliminate

performance bottlenecks. The profiler analyzes program execution and

shows where your program is spending its time. For example, a profile

analysis can report how many cycles a particular function takes to execute

and how often it is called. Profiling helps you to direct valuable

development time toward optimizing the sections of code that most

dramatically affect program performance.

Code Composer Studio IDE represents the evolution of the DSP

development environment. It contains all of the functionality needed by

25

Chapter 2 Literature Survey

today’s larger, distributed, global project teams. The intelligent IDE can

help save valuable development time by making developers more

productive enabling them to focus their energies on innovation instead of

repetitive tasks and tool development.

2.4.2 Development tool – VDSP++ for Tiger – Sharc DSP

The ADSP-TS201S processor is supported with a complete set of

CROSSCORE software and hardware development tools, including Analog

Devices emulators and VisualDSP++ development environment. The same

emulator hardware that supports other TigerSHARC processors also fully

emulates the ADSP-TS201S processor.

The VisualDSP++ project management environment lets programmers

develop and debug an application. This environment includes an easy to

use assembler (which is based on an algebraic syntax), an archiver

(librarian/library builder), a linker, a loader, a cycle-accurate instruction-

level simulator, a C/C++ compiler, and a C/C++ run-time library that

includes DSP and mathematical functions. A key point for theses tools is

C/C++ code efficiency. The compiler has been developed for efficient

translation of C/C++ code to DSP assembly. The DSP has architectural

features that improve the efficiency of compiled C/C++ code. The

VisualDSP++ debugger has a number of important features. Data

visualization is enhanced by a plotting package that offers a significant

level of flexibility. This graphical representation of user data enables the

programmer to quickly determine the performance of an algorithm. As

algorithms grow in complexity, this capability can have increasing

significance on the designer’s development schedule, increasing

productivity. Statistical profiling enables the programmer to poll the

processor as it is running the program.This feature, unique to

VisualDSP++, enables the software developer to passively gather

important code execution metrics without interrupting the real-time

characteristics of the program.

Essentially, the developer can identify bottlenecks in software quickly and

efficiently. By using the profiler, the programmer can focus on those areas

26

Chapter 2 Literature Survey

in the program that impact performance and take corrective action.

Debugging both C/C++ and assembly programs with the VisualDSP++

debugger, programmers can:

• View mixed C/C++ and assembly code (interleaved source and

object information)

• Insert breakpoints

• Set conditional breakpoints on registers, memory, and stacks

• Trace instruction execution

• Perform linear or statistical profiling of program execution

• Fill, dump, and graphically plot the contents of memory

• Perform source level debugging

• Create custom debugger windows

The VisualDSP++ IDE lets programmers define and manage DSP software

development. Its dialog boxes and property pages let programmers

configure and manage all of the TigerSHARC processor development tools,

including the color syntax highlighting in the VisualDSP++ editor. This

capability permits programmers to:

• Control how the development tools process inputs and generate

outputs

• Maintain a one-to-one correspondence with the tool’s command line

switches

• The VisualDSP++ Kernel (VDK) incorporates scheduling and

resource management tailored specifically to address the memory

and timing constraints of DSP programming. These capabilities

enable engineers to develop code more effectively, eliminating the

need to start from the very beginning when developing new

application code. The VDK features include threads, critical and

unscheduled regions, semaphores, events, and device flags. The

VDK also supports priority-based, preemptive, cooperative, and

time-sliced scheduling approaches. In addition, the VDK was

designed to be scalable. If the application does not use a specific

feature, the support code for that feature is excluded from the

target system

27

Chapter 2 Literature Survey

• The Analog Devices families of emulators are tools that every DSP

developer needs in order to test and debug hardware and software

systems. Analog Devices has supplied an IEEE 1149.1 JTAG test

access port (TAP) on each JTAG DSP. The emulator uses the TAP to

access the internal features of the DSP, allowing the developer to

load code, set breakpoints, observe variables, observe memory,

and examine registers. The DSP must be halted to send data and

commands, but once an operation has been completed by the

emulator, the DSP system is set running at full speed with no

impact on system timing

28

3 IMAGE PROCESSING ALGORITHMS

3.1 OVERVIEW OF ALGORITHMS

3.1.1 FFT (Fast Fourier Transform)

FFT algorithm has been implemented on 1024 inputs, 512-complex

twiddle factors. The N-point Discrete Fourier Transform (DFT) of a finite

duration sequence x(n) is defined as follows.

where W= e ^ –j (2πn/N) is referred as the twiddle factor, N is the transform

size and j = √-1. The FFT is an efficient algorithm to compute the DFT

and its inverse (Cooley and Tukey). It generally falls into two classes:

Decimation In Time (DIT), and Decimation In Frequency (DIF). The DIT

algorithm first rearranges the input elements in bit reversed order and

then builds the output transform. The DIF algorithm first transforms and

then rearranges the output values. The basic idea of these algorithms is to

break up an N–point DFT transform into successive smaller and smaller

transform known as a butterfly (basic computational element). The

smallest transform used is a 2-point DFT known as radix-2, it processes

groups of 2 samples.

To calculate FFT for N number of inputs, Decimation in Time algorithm

requires following points.

 L = log2N stages

 ((N/2) * L) number of complex multiplications

 (N * L) number of additions

 (N/2) twiddle factors should be stored

In order that the computation may be done in place, the input sequence

must be stored in a non-sequential order. In fact, the order in which the

input data are stored and accessed is referred to as bit-reversed order.

Butterfly DIT FFT algorithm can be explained from the following figure-4.

If (n2, n1, n0) is the binary representation of the index of the sequence

x[n], then the sequence value x [n2, n1, n0] is stored in the array position

Chapter 3 Image Processing Algorithms

X0[n0, n1, n2]. That is, in determining the position of x [n2, n1, n0] in the

input array, one must reverse the order of the bits of the index n.

Figure 4: Butterfly diagram for DIT algorithm

3.1.2 Image Convolution

Image Convolution has been implemented on 256 x 3 inputs, and 3 x 3

mask. The process by which we move a mask from pixel to pixel in an

image, and compute a predefined quantity at each pixel, is the foundation

of the convolution process. Formally, the discrete convolution of two

function f(x,y) and h(x,y) of size M X N is denoted by f(x,y) * h(x,y) and

is defined by the expression

 M-1 N-1

 f(x,y) * h(x,y) = ∑ ∑ f(m,n) h(x-m,y-n)

 m=0 n=0

The minus sign in particular simply mean that function h is mirrored about

the origin. Above equation is really nothing more than an implementation

for

 30

Chapter 3 Image Processing Algorithms

 Flipping one function about the origin

 Sifting that function with respect to the other by changing the

values of (x,y)

 Computing a sum of products over all values of m and n, for each

displacement (x, y)

3.1.3 Image Correlation

Image Correlation has been implemented on 720 x 3 inputs and 3 x 3

masks. Consider the scenario for finding matches of sub image w(x, y) of

size J x K within an image f(x, y) of size M x N, where we assume that

J <= M and K <= N. In its simplest form, the correlation between f(x, y)

and w(x, y) is

C(x, y) = ∑ ∑ f(s, t) w(x+s, y+t)

 s t

For x = 0 ,1 ,2 , … , M-1 and y = 0,1,2,…,N-1 , and the summation is

taken over the image region where w and f overlap. For one value of

(x, y), say(x0, y0) inside f, application of above equation yields one value

of c. As x and y are varied, w moves around the image area, giving the

function c(x,y).The maximum value (s) of c indicated the position where w

best matches f. The correlation function given in above equation has

disadvantage of being sensitive to changes in the amplitude of f and w.

For example, doubling all values of f doubles the value of c(x, y). An

approach frequently used to overcome this difficulty is to perform

matching via the correlation coefficient, which is defined as

 ∑ ∑ [f(s, t) – f’ (s, t)] [w(x+t, y+t) – w’]

 s t

N.C. = -- eq(3)

{ ∑ ∑ [f(s,t) – f ’ (s,t)]2 ∑ ∑ [w(x+t,y+t) – w ’]2 } 1/2

 s t s t

where x = 0,1,2,M-1 and y = 0,1,2,N-1 , w’ is the average value of the

pixels in w(computed only once), f’ is the average value of f in the region

coincident with the current location of w, and the summations are taken

over the coordinates common to both f and w. The correlation coefficient

 31

Chapter 3 Image Processing Algorithms

is scaled in the range -1 to 1, independent of scale changes in the

amplitude of f and w.

3.1.4 Sobel Operator

This algorithm has been implanted on 256 inputs. The difference between

the third and first rows of 3 x 3 image region approximates the derivative

in the x

 Figure 5: Sobel Operator

direction, and the difference between the third and first columns

approximates the derivative in the y direction. The masks shown in the

figure-5 are called the Sobel operators. The idea behind using a weight

value of 2 is to achieve some smoothing by giving more importance to the

center point. The coefficients in all the masks shown in figure 5 sum to

zero, indicating that they would give a response of zero in an are of

constant gray level, as expected of a derivative operator.

3.1.5 Median Filter

Median filter has been implemented on 256 x 3 inputs and 3 x 3 sobel

mask. Order-statistics filters are nonlinear spatial filters whose response is

based on ordering (ranking) the pixels contained in the image area

encompassed by the filter, and then replacing the value of the center pixel

with the value determined by the ranking result.

The best-known example in this category is the median filter, which, as its

name implies, replaces the value of a pixel by the median of the gray

levels in the neighborhood of that pixel (the original value of the pixel is

included in the computation of the median). Median filters are quite

 32

Chapter 3 Image Processing Algorithms

popular because, for certain types of random noise, they provide excellent

noise-reduction capabilities, with considerably less blurring than linear

smoothing filters of similar size. Median filters are particularly effective in

the presence of impulse noise, also called salt-and-pepper noise because

of its appearance as white and black dots superimposed on an image. The

median, j, of a set of values is such that half the values in the set are less

than or equal to j, and half are greater than or equal to j. In order to

perform median filtering at a point in an image, we first sort the values of

the pixel in question and its neighbors, determine their median, and

assign this value to that pixel. For example, in a 3*3 neighborhood the

median is the 5th largest value, in a 5*5 neighborhood the 13th largest

value, and so on. When several values in a neighborhood are the same, all

equal values are grouped. For example, suppose that a 3*3 neighborhood

has values (10, 20, 20, 20, 15, 20, 20, 25, and 100). These values are

sorted as (10, 15, 20, 20, 20, 20, 20, 25, 100), which results in a median

of 20. Thus, the principal function of median filters is to force points with

distinct gray levels to be more like their neighbors. In fact, isolated

clusters of pixels that are light or dark with respect to their neighbors, and

whose area is less than n2/2 (one-half the filter area), are eliminated by

an n*n median filter. In this case “eliminated” means forced to the

median intensity of the neighbors. Larger clusters are affected

considerably less.

3.2 PROFILING OF ALGORITHMS

Above algorithms were implemented in Code composer studio as well as

VDSP++ simulators. Parameters of profiling are measured, by keeping

equal number of inputs and same source code on both of the simulators.

After compiling the given algorithm, we need to load the assembly code in

to memory to execute it. In CCS simulator, it provides us profiling

information in terms of clock cycles , while in VDSP ++ simulator , one

need to generate clock measuring source code. After executing algorithm

on both of the simulators, one can match the results of both of the

simulators. Execution time can be found out by dividing clock cycles with

the frequency of the DSP processor.

 33

Chapter 3 Image Processing Algorithms

For example, 1-D FFT took 43214 cycles on CCS simulator from Texas

Instrument. Operating speed of TI DSP is 600 MHz.

Execution time = (43214) / (600 * (10 ^ 6)) = 72.06 µs.

3.3 INTEL INTEGRATED PERFORMANCE PRIMITIVES

Intel Integrated Performance Primitives (Intel® IPP) is an extensive

library of multi-core-ready, highly optimized software functions for

multimedia, data processing, and communications applications. Intel IPP

is available as a standalone product, or with the Intel Compiler

Professional Editions for a more complete and cost-effective solution. Intel

IPP offers thousands of optimized functions covering frequently-used,

fundamental algorithms in:

• Video coding

• Signal processing

• Audio coding

• Image processing

• Speech coding

• JPEG coding

• Speech recognition

• Computer vision

• Data compression

• Image color conversion

• Vector/Matrix mathematics

3.3.1 Basic Features

The Intel Integrated Performance Primitives [8], like other members of

the Intel Performance Libraries, is a collection of high-performance code

that performs domain-specific operations. It is distinguished by providing

a low-level, stateless interface. Based on experience in developing and

using Intel Performance Libraries, Intel IPP has the following major

distinct features:

• The Intel IPP provides basic low-level functions for creating

applications in several different domains, such as signal processing,

image and video processing, and operations on small matrices

 34

Chapter 3 Image Processing Algorithms

• Intel IPP functions follow the same interface conventions including

uniform naming rules and similar composition of prototypes for

primitives that refer to different application domains

• Intel IPP functions use abstraction level which is best suited to

achieve superior performance figures by the application programs.

To speed up performance, Intel IPP functions are optimized to use all

benefits in variation of different Intel architecture processors. Besides

that, most of Intel IPP functions do not use complicated data structures,

which helps reduce overall execution overhead.

3.3.2 Automatic CPU Detection and Dispatching

Automatic CPU detection and dispatch is a key feature in the Intel IPP for

Pentium and Intel Xeon processors; this feature enables highly-optimized

cross-platform development. With this transparent mechanism, the built in

dispatcher determines the best Intel IPP code to execute based on the

underlying processor. Automatic CPU detection and dispatch enhances the

advantage of a common API by removing the burden of platform

optimization from the developer.

Figure 6: Automatic CPU Detection and Code Dispatch

3.3.3 Performance

Intel offers a full suite of library functions that can help developers easily

create the fastest software possible on Intel architecture. The libraries

provide high-quality code that is optimized to take advantage of the

specific performance features built into each of the Intel Intel IPP

functions are designed to deliver performance beyond what optimized

 35

Chapter 3 Image Processing Algorithms

compilers alone can deliver by matching the function algorithms to low-

level optimizations based on the processor’s available features such as

Streaming SIMD Extensions (SSE) and other optimized instruction sets.

The Intel IPP library provides cross-platform support through a single API.

The large set of utility functions that Intel IPP provides supports a broad

range of Intel processor families. For each of the supported target

processors, Intel IPP provides API-conformant, variant code that is

specifically written to yield the best system performance for the target

processor, taking into account memory bandwidth and caching behavior of

the target environment. Wherever applicable, the code was written with

thread safety in mind. These libraries also offer a variant form that takes

advantage of execution thread concurrency for those functions that can

realize performance increases due to threading. Intel IPP functions yield

significantly better performance than equivalent compiler-generated C

code. By replacing sections of C code with equivalent Intel IPP functions,

application programs are able to complete key tasks in significantly

shorter timeframes. This ability to complete critical tasks in a timely

manner is particularly important for event-driven and real-time

constrained operations. Such operations typically take place within device

drivers, audio and video processing and motion picture rendering.

3.3.4 Compatibility

Intel is committed to smoothing application program migration through

the evolving generations of CPUs and computer architecture. By adhering

to the abstract model defined by the Intel Performance Libraries’ single

API, developers are freed to focus on their own code development without

worrying about library compatibility issues. Intel IPP 5.3 supports

Windows Vista and 64-bit Mac OS X applications. Code re-use and cross-

platform operating system development is simplified by having one library

API for Windows, Linux and Mac OS. Intel IPP is fully compatible with

other development tools from Intel, such as compilers, performance and

threading analyzers, and other Intel Performance Libraries. In addition,

Intel IPP is easily used and integrated with popular development tools and

environments, such as Microsoft Visual Studio, Xcode, Eclipse, and the

 36

Chapter 3 Image Processing Algorithms

GNU Compiler Collection (GCC). Multi-core processors, including Intel

Core2 Quad, Intel Core2 Extreme, Intel Core2 Duo, Intel Core Duo, Intel

Xeon and Intel Pentium D processors. Intel 64 architecture-based

systems, including Intel Core 2 processors, Intel Xeon processors, Intel

Pentium D processors, and compatible AMD processors. IA-32

architecture-based processors, including Intel Core processor family, Intel

Pentium processors, and compatible AMD processors.

3.4 Implementation of IP algorithms using IPP

Intel IPP functions perform two-dimensional finite linear convolution

operation between two source images and write the result into the image.

Convolution is used to perform many common image processing

operations including sharpening, blurring, noise reduction, embossing, and

edge enhancement.

3.4.1 Convolution Function

IppStatus ippiConvFull_<mod>(const Ipp<datatype> pSrc1, int src1Step,

IppiSize src1Size, const Ipp<datatype> pSrc2, int src2Step, IppiSize

src2Size, Ipp<datatype> pDst, int dstStep, int divisor);

For convenience, one can represent any digital image f as a matrix with Mf

columns and Nf rows that contains pixel values f [i,j], 0 ≤ i < Mf, 0 ≤ j <

Nf. Here input size of matrix has been taken as 4x4 and mask size as 3x3.

We must get output matrix size of 6x6. After comparing output of image

processing functions obtained by IPP optimized function and the function

used in Texas instrument DSP, we can measure the performance of IPP

functions. Profiling of such optimized library IPP function can be obtained

by GetCpuClock () function which also belongs to IPP optimized libraries

family. By taking help of this function one can achieve performance in

terms of clock cycles on Pentium processor.

 37

4 SIMULATION OF IP ALGORITHMS ON P-IV PROCESSOR

4.1 SIMPLE-SCALAR SIMULATOR

The Simple-Scalar tool set is a system software infrastructure used to

build modeling applications for program performance analysis, detailed

micro architectural modeling, and hardware-software co-verification.

Using the Simple Scalar tools, users can build modeling applications that

simulate real programs running on a range of modern processors and

systems. The tool set includes sample simulators ranging from a fast

functional simulator to a detailed, dynamically scheduled processor model

that supports non-blocking caches, speculative execution, and state-of-

the-art branch prediction.

Simple-Scalar simulators [12] can emulate the Alpha, PISA, ARM, and x86

instruction sets. The tool set includes a machine definition infrastructure

that permits most architectural details to be separated from simulator

implementations. All of the simulators distributed with the current release

of Simple-Scalar can run programs from any of the above listed

instruction sets. Complex instruction set emulation (e.g., x86) can be

implemented with or without microcode, making the Simple-Scalar tools

particularly useful for modeling CISC instruction sets.

The PISA instruction set (a.k.a. the portable instruction set architecture) is

a simple MIPS-like instruction set maintained primarily for instructional

use. A GNU GCC-based cross-compiler and pre-built libraries are also

available for this target. The PISA target is particularly useful for

computer engineering instruction as the tools can be built on a wide range

of host platforms, including Linux/x86, Win2000, SPARC Solaris, and

others.

Simple-Scalar builds on most 32-bit and 64-bit flavors of UNIX and

Windows NT-based operating systems. The internal software architecture

of the tool set includes a host interface module, permitting fast porting to

other host platforms. The host interface module permits cross-endian

emulation, thus it is possible to use emulate a target on a host platform

Chapter 4 Simulation of DIP Algorithms on P-IV Processor

with a different endian, e.g., running Alpha ISA emulation on a SPARC

Solaris host platform

4.1.1 Learning Objectives

To be able to use the Simple-Scalar tool set to test out a range of

architectural parameters, such as cache size and configuration, relative

fetch/issue rates, inorder/out-of-order strategies, and load/store buffering

strategies. Also to gain experience with setting up special benchmark

trials to profile the performance of a new CPU. Finally, to experiment with

dramatically different architectures, pipeline lengths, and number.

When developing a simulator the three opposing dimensions,

Performance, Flexibility and Detail need to be reconciled for the needs of

the user. The sim-outorder simulator is the most detailed CPU simulator

provided with the Simple-Scalar tool set and suffering some reduction in

performance. It was originally based on the MIPS-4 instruction set

architecture and models a very modern superscalar microprocessor with

10 execution units (pipelines). Newer ARM and x86 versions have also

been developed by other research labs. It attempts to maximally exploit

ILP (Instruction Level Parallelism) and keep all the execution units busy by

using out-of-order instruction execution. In many ways it realistically

models the current processors found in the latest workstations/PCs. Sim-

fast is a functional simulator, with a single, serial instruction stream, no

caching and no command line switches. Also it does not capture timing

information, unlike sim-outorder. An alternative, slower but more detailed

simulation can be carried out by sim-safe. Simple-Scalar is widely used in

academic research as well as commercial product development. The

performance is good, on a P4/1.8 GHz host, sim-fast will emulate 10 Mips,

while sim-outorder achieves 350 kips.

4.1.2 The Simple-Scalar architecture

The Simple-Scalar architecture is derived from the MIPS-IV ISA. The tool

suite defines both little-endian and big-endian versions of the architecture

to improve portability (the version used on a given host machine is the

one that matches the endianness of the host). The semantics of the

 39

Chapter 4 Simulation of DIP Algorithms on P-IV Processor

Simple-Scalar ISA are a superset of MIPS with the following notable

differences and additions:

• There are no architected delay slots: loads, stores, and control

transfers do not execute the succeeding instruction

• Loads and stores support two addressing modes—for all data

types—in addition to those found in the MIPS architecture. These

are: indexed (register + register), and auto-increment/decrement

• A square-root instruction, which implements both single and

double-precision floating point square roots

• An extended 64-bit instruction encoding

4.1.2.1 Functional simulation

Sim-fast does no time accounting, only functional simulation—it executes

each instruction serially, simulating no instructions in parallel. Sim-fast is

optimized for raw speed, and assumes no cache, instruction checking. A

separate version of sim-fast, called sim-safe, also performs functional

simulation, but checks for correct alignment and access permissions for

each memory reference. Although similar, sim-fast and sim-safe are split

(i.e., protection is not toggled with a command-line argument in a merged

simulator) to maximize performance. Neither of the simulators accepts

any additional command-line arguments. Both versions are very simple:

less than 300 lines of code—they therefore make good starting points for

understanding the internal workings of the simulators.

4.1.2.2 Cache simulation

The Simple-Scalar distribution comes with two functional cache

simulators; sim-cache and sim-cheetah. These simulators are ideal for

fast simulation of caches if the effect of cache performance on execution.

Sim-cache accepts the following arguments:

- cache:dl1 <config> configures a level-one data cache

- cache:dl2 <config> configures a level-two data cache

- cache:il1 <config> configures a level-one instr. cache

- cache:il2 <config> configures a level-two instr. cache

- tlb:dtlb <config> configures the data TLB

- tlb:itlb <config> configures the instruction TLB

The defaults used in sim-cache are as follows:

 40

Chapter 4 Simulation of DIP Algorithms on P-IV Processor

- L1 instruction cache: il1:256:32:1:l (8 KB)

- L1 data cache: dl1:256:32:1:l (8 KB)

- L2 unified cache: ul2:1024:64:4:l (256 KB)

- Instruction TLB: itlb:16:4096:4:l (64 entries)

- Data TLB: dtlb:32:4096:4:l (128 entries)

4.1.2.3 The Cheetah

This engine simulates fully associative caches efficiently, as well as

simulating a sometimes-optimal replacement policy. This policy was called

MIN, although the simulator refers to it as opt. Opt uses future

knowledge to select a replacement; it chooses the block that will be

referenced the furthest in the future (if at all). This policy is optimal for

read-only instruction streams. It is not optimal for write-back caches

because it may be more expensive to replace a block referenced

further in the future if the block must be written back, as opposed to a

clean block referenced slightly less far in the future.

Both of these simulators are ideal for performing high-level cache studies

that do not take access time of the caches into account (e.g., studies that

are concerned only with miss rates).

4.1.2.4 Out-of-order processor timing simulation

The most complicated and detailed simulator in the distribution, by far, is

sim-outorder. This simulator supports out-of-order issue and execution,

based on the (RUU) Register Update Unit. The RUU scheme uses a reorder

buffer to automatically rename registers and hold the results of pending

instructions. Each cycle the reorder buffer retires completed instructions in

program order to the architected register file. The processor’s memory

system employs a load/store queue. Store values are placed in the queue

if the store is speculative. Loads are dispatched to the memory system

when the addresses of all previous stores are known. Loads may be

satisfied either by the memory system or by an earlier store value

residing in the queue, if their addresses match. Speculative loads may

generate cache misses, but speculative TLB misses stall the pipeline until

the branch condition is known.

 41

Chapter 4 Simulation of DIP Algorithms on P-IV Processor

Following table-1 explains the defalut configuration of simple scalar

simulator. Table-2 explains the cache configuration of cache memory.

Table-1: Specifying the processor core

fetch: ifqsize <size>

Set the fetch width to be <size> instructions. Must
be a power of two. The default is 4.

fetch: speed <ratio>

Set the ratio of the front end speed relative to the
execution core (allowing <ratio> times as many
instructions to be fetched as decoded per cycle).

fetch: plat <cycles> Set the branch misprediction latency. The default is
3 cycles.

decode: width <insts> Set the decode width to be <insts>, which must be a
power of two. The default is 4.

issue:width <insts> Set the maximum issue width in a given cycle. Must
be a power of two. The default is 4.

issue:inorder Force the simulator to use in-order issue. The default
is false.

issue:wrongpath Allow instructions to issue after a miss peculation.
The default is true.

ruu:size <insts> Capacity of the RUU (in instructions). The default is
16.

lsq:size <insts>

Capacity of the load/store queue (in instructions).
The default is 8.

res:ialu <num> Specify number of integer ALUs. The default is 4.
res:imult <num> Specify number of integer multipliers/dividers. The

default is 1.
res:memports <num> Specify number of L1 cache ports. The default is 2.
res:fpalu <num> Specify number of floating point ALUs. The default is

4.
res: fpmult <num> Specify number of floating point multipliers/dividers.

The default is 1.

Table-2: Specifying the memory hierarchy

cache:dl1lat <cycles>

Specify the hit latency of the L1 data cache. The
default is 1 cycle.

cache:d12lat <cycles> Specify the hit latency of the L2 data cache. The
default is 6 cycles.

cache:il1lat <cycles> Specify the hit latency of the L1 instruction cache.
The default is 1 cycle.

cache:il2lat <cycles>

Specify the hit latency of the L2 instruction cache.
The default is 6 cycles.

mem: lat <1st> <next>

Specify main memory access latency (first, rest).
The defaults are 18 cycles and 2 cycles.

mem: width <bytes>

Specify width of memory bus in bytes. The default is
8 bytes.

tlb: lat <cycles> Specify latency (in cycles) to service a TLB miss. The
default is 30 cycles.

 42

Chapter 4 Simulation of DIP Algorithms on P-IV Processor

Table-3 explains the exact Pentium-IV processor’s configuration, so that

user can simulate the performance parameters by concentrating Pentium-

IV processor [9].

Table-3: Pentium 4 Processor Configuration

Instruction fetch queue size (in insts) -fetch: ifqsize 64

Extra branch mis-prediction latency -fetch: mplat 3

bimodal predictor BTB size -bpred:bimod 2048

2-level predictor config (<l1size> <l2size><hist_size>) -bpred:2lev 1 1024 8

Instruction decode B/W (insts/cycle) -decode:width 4

Instruction issue B/W (insts/cycle) -issue:width 4

run pipeline with in-order issue -issue: inorder false

issue instructions down wrong execution paths -issue: wrongpath true

register update unit (RUU) size -ruu: size 16

load/store queue (LSQ) size -lsq: size 8

l1 data cache config, i.e., {<config>|none} -cache: dl1 dl1:128:64:4:l

l1 data cache hit latency (in cycles) -cache: dl1lat 1

l2 data cache config, i.e., {<config>|none} -cache:dl2 ul2:16384:64:8:l

l2 data cache hit latency (in cycles) -cache: dl2lat 6

l1 inst cache config, i.e., {<config>|dl1|dl2|none} -cache:il1 il1:512:32:1:l

l1 instruction cache hit latency (in cycles) -cache:il1lat 2

l2 instruction cache hit latency (in cycles) -cache:il2lat 7

flush caches on system calls -cache:flush false

convert 64-bit inst addresses to 32-bit inst equivalents -cache: compress false

memory access latency (<first_chunk> <inter_chunk>) -mem:lat 18 2

Memory access bus width (in bytes) -mem: width 8

Instruction TLB config, i.e., {<config>|none} -tlb: itlb dtlb: 16:4096:4: l

data TLB config, i.e., {<config>|none} -tlb: dtlb dtlb: 16:4096:4: l

inst/data TLB miss latency (in cycles) -tlb: lat 30

total number of integer ALU's available -res:ialu 2

total number of integer multiplier/dividers available -res:imult 1

total number of floating point ALU's available -res:fpalu 1

number of floating point multiplier/dividers available -res:fpmult 1

 43

Chapter 4 Simulation of DIP Algorithms on P-IV Processor

Execution of convolution algorithm obtained through Simple-Scalar

simulator. Because of using Release version in running DIP algorithm with

DSP, one can also use optimization option –O3 in this simulator. The

results of convolution algorithm through Simple-Scalar simulator are

shown in the following table.

Table-4: Simulation result of Convolution algorithm

sim_num_insn 92918 Total number of instructions
committed.

sim_num_refs 23342 Total number of loads and stores
committed.

sim_num_loads 18910 Total number of loads committed.
sim_num_stores 4432.0000 Total number of stores committed.
sim_num_branches 7042 Total number of branches

committed.
sim_elapsed_time 1 Total simulation time in seconds.
sim_inst_rate 92918.0000 Simulation speed (in insts/sec).
sim_total_insn 96741 Total number of instructions

executed.
sim_total_refs 25626 Total number of loads and stores

executed.
sim_total_loads 21125 Total number of loads executed.
sim_total_stores 4501.0000 Total number of stores executed.
sim_total_branches 7137 Total number of branches executed.
sim_cycle 53047 Total simulation time in cycles.
sim_IPC 1.7516 Instructions per cycle.
sim_CPI 0.5709 Cycles per instruction.
sim_IPB 13.1948 Instruction per branch.

Total no. of cycles = no of instruction executed * (cycles / instruction)

For convolution algorithm,

Total no. of cycles = 96741 * 0.5709

 = 55229.4369 ~ 55230

Execution time = Total number of cycles/operating frequency of μp

 = 55230 / 1.8 GHz

 = 30.6830205 μsec

 44

5 FFT ALGORITHMS ON HYRID ARCHITECTURE

5.1 HYBRID ARCHITECTURE (FPGA & DSP)

5.1.1 Architecture

Programmable digital signal processors have been utilized in a wide range

of signal processing applications. They have been designed with optimized

instruction sets to execute digital signal processing algorithms like FFTs

and finite impulse response (FIR) filters. Unfortunately, programmable

digital signal processor performance has not kept up with the demands of

the newest system applications, which often require dramatically higher

data rates and increased channel counts. This has forced system

designers to implement costly arrays of digital signal processors to satisfy

these needs. However, these arrays tend to occupy more board real

estate and require increased power consumption, which affects the overall

system cost and poses significant implementation challenges, including

the arbitration of shared memory between different processors. Hybrid

architecture can be explained in the following figure 7.

Xilinx provides designers with the flexibility to implement an FPGA co-

processor design that easily interfaces to a wide range of digital signal

processors or general purpose processors (GPPs). This co-processor model

can be adopted to fit virtually any target application because of the

programmable nature of the FPGA’s device fabric. Additionally, designers

are able to customize and construct functions in a way that fully exploits

the parallel nature of a hardware implementation within the FPGA,

enabling power-efficient multichannel designs (useful in communication

systems) with high data throughputs. The following steps provide a high-

level description of the FPGA co-processor design flow:

1. Profile applications in software to identify computationally intensive

algorithms suitable for off-loading to co-processors.

2. Integrate an off-the-shelf co-processor to develop a custom co-

processor block using a hardware design language like Handel-C or

using a hardware description language (HDL).

Chapter 5 FFT Algorithms on Hybrid Architecture

Host
PC

DSP Processor
TI C64xx

FPGA Xilinx Spartan 3
32,@33/66Mhz

N

Control bus

32/64

Data bus

Complex
Parallel
Multipliers

BRAM2

BRAM3

BRAM0

BRAM1

E
M
I
F

PCI

PCI

Figure 7: Hybrid architecture

3. Evaluate co-processor system architectures and select a suitable

processor interface.

4. Integrate the hardware and software design components.

5. Verify the system in simulation and hardware.

The FFT co-processor [10] in this reference design is a relatively simple

example. For larger co-processing systems that may consist of several co-

processor functions, design considerations need to be made to maximize

the data processing within the FPGA. The larger co-processing reduces the

data-transfer overhead between the digital signal processor and the FPGA

relative to the data processing time, thereby maximizing the overall

system throughput performance. Several enhancements to the solution

presented in this reference design can be considered if the user is starting

a new board-level FPGA co-processor design. First, both the TI digital

signal processor and FPGA can be integrated on the same board. Care

must be taken when routing board-level interconnections between the TI

digital signal processor and the FPGA to ensure that the maximum data

throughput and clock rate of the EMIF can be leveraged to reduce the

 46

Chapter 5 FFT Algorithms on Hybrid Architecture

round-trip delay time. The current C64x family of digital signal processors

can support up to 64-bits of EMIF data at clock rates up to 133 MHz.

5.2 FPGA INTERFACE TO THE TMS320C6000 DSP PLATFORM

USING EMIF

To describe an interface between Virtex™-II, Virtex-II Pro™, or Spartan™-

3 devices to a Texas Instruments TMSC6000 DSP platform. The External

Memory Interface (EMIF) [11] in the TMS DSP platform is used as the

interface to the FPGA. Normally, the EMIF connects to different types of

memory devices (SRAM, Flash RAM, DDR-RAM, etc.). In this application

note, the EMIF connects to the FPGA, making the FPGA perform as a

coprocessor, high-speed data processor, or high-speed data transfer

interface. Texas Instruments has published EMIF application notes for

memory designs. The design interface example is a seamless connection

to the FPGA block RAM. One side of the dual-port block RAM is used to

communicate with the DSP in Read/Write, FIFO, or memory mode. The

other side is used for communication with internal FPGA logic or

processor(s).

The flexibility of the FPGA makes it possible to create different designs,

performing as different types of memory, with selectable bus widths (8-bit

to 64-bit). Interfaces can be designed for the FPGA to work as

synchronous or asynchronous standard memory, or as synchronous or

asynchronous FIFOs. Interfaces can be designed for the FPGA to interface

synchronously or asynchronously with the EMIF interface. In synchronous

mode, the ECLKOUTx clock is used to clock the FPGA interface logic. It is

even possible to clock the entire FPGA from this clock. An FPGA possesses

an enormous amount of processing power using its logic functions,

dedicated multipliers, processors (PPC405 or MicroBlaze), etc. The FPGA

can thus serve as a co-processor or a high-speed data processing and

transfer device. The memory size of an FPGA is smaller than the possible

addressable memory space in the TMSC64x type DSP. FPGA memory must

be assembled using the available FPGA block RAM. The TMSC64x to FPGA

interface described is of a FIFO type structure and an FPGA interface

reacting as a memory block.

 47

Chapter 5 FFT Algorithms on Hybrid Architecture

5.2.1 TMSC64x to FPGA Interface Signals

For a FIFO interface, the standard TMSC64x EMIF FIFO interface scheme

can be used. This scenario is explained in figure-8.

 Figure 8: FIFO Based EMIF Interface Design Example

• EMIF signals:

 CEn DSP Output : EMIF active-Low chip select for memory space

 AOE DSP Output : Active-Low o/p enable for memory interface

 AWE DSP Output : Active-Low write strobe for memory interface

 ARE DSP Output : Active-Low read strobe for memory interface

 INTx DSP Input : Interrupt signal x.

 INTy DSP Input : Interrupt signal y.

 INTz DSP Input : Interrupt signal z.

 48

Chapter 5 FFT Algorithms on Hybrid Architecture

 ED[63:0] DSP Bidirectional : EMIF 64-bit,32-bit or 16-bit data bus

I/O

The FIFO requires a contiguous read clock and continuous write clock.

These clocks are generated from the ARE and AWE signals, and are routed

using the local clocking capabilities of the FPGA. After exchange of all

required hand-shake signals data transfer starts between DSP and FPGA.

5.2.2 Block ram

All recent Xilinx architectures have access to block memories. These 4Kbit

blocks in the Virtex, Virtex-E, and Spartan-II devices were increased in

size to 18Kbit blocks in the Virtex-II, Virtex-II Pro, and Spartan-3 devices.

The blocks are fully synchronous, true dual-port memories. The user can

read from or write to each port independently (with the exception of

simultaneous reads and writes to the same address). In addition, each

port has a separate clock, and the data widths for each port are

independently programmable.

In the proposed algorithm of 10 stage FFT, use have to forward 1024

inputs from DSP to FPGA, through EMIF. Generally, EMIF consist of 32 or

64 bit wide parallel bus, so user can transmit or receive 1 float operand

between DSP and FPGA. Bandwidth of EMIF interface is 1 operand per

clock cycle. For 1024 inputs EMIF whole process of either transmitting or

receiving operands to and from DSP to FPGA will take 1024 clock cycles.

5.3 THEORETICAL CALCULATION OF PERFORMANCE:-

5.3.1 ALGORITHMS DESIGN USING DSP AND FPGA

Image will be transferred from the Host Pc to DSP.

a. Data transfer to and from is done through EMIF from DSP side and

Block-ram at the FPGA side.

b. In this algorithm number of inputs are 1024 and already calculated

complex twiddle factors has been used, also a module of calculation

of FFT algorithm will be divided in two parts.

 49

Chapter 5 FFT Algorithms on Hybrid Architecture

c. For the particular FFT algorithm summation operation is done by the

DSP processor and the multiplication which can be run parallel, are

done on FPGA. Which will include following data transfers:

1. Data transfer between DSP and FPGA (only inputs).

2. Data transfer between FPGA and DSP (only outputs).

• For performing 1-complex multiplication 4 fixed point

multiplications are required.

• As this experiment on FPGA (Spartan-3) simulator, one can able

to compile 64 parallel fixed point multiplications. After getting one

complex multiplication output, this algorithm proceeds in

pipelining manner for further multiplication. So, at each clock

cycles four fixed point multiplication can be achieved.

• To accomplish this task, 1024 fixed point operands (32-bit-

operand) should be transferred from DSP RAM to FPGA block RAM.

• Those operands are to be read from Block RAM to an array and

perform parallel multiplication and write back the results to block

RAM.

• After getting results of multiplications, those results are to be

written to DSP RAM to start addition of single stage FFT.

• According to research papers latency of EMIF is 1 cycle per 32-bit

operand. To transfer 2K operands, it will take 2K cycles for this

transfer.

• Generally block RAMs are dual port RAMs, so one can at a

moment read operands in to an array of FPGA as well as write

operands in to Block RAM.

The following figure-8 explains fft algorithm division between DSP and

FPGA. Schematic diagram representation is explained in figure-9.

 50

Chapter 5 FFT Algorithms on Hybrid Architecture

Y

MATLAB
OR

VC++

R
T
D
X

TI

DSP

R
T
D
X

FOR EACH STAGE
OF FFT N <= 10?

START READING
RESULTS OF

COMPLEX
MULTIPLICATION

FROM BLOCK
RAM

TRANFER
COMPLETED?

Y

Y

READ THE OPERANDS TWIDDLE
FACTORS & INPUT FROM BLOCK RAM

TRANSFER I/P TO FPGA(BRAM) THROUGH EMIF

UNPACK OPERAND VALUES IN FIXED
POINT STRUCTURE

FEED THIS OPERANDS IN 4 PARALLEL
FIXED POINT MULTIPLICATION

PIPELINED UNIT

PACK O/P OF AVOVE STAGE INTO
UNSIGNED VARIABLE & WRITE BACK TO

BLCOK RAM

NUMBER OF
COMPLEX

MULT
PERFORMED

< 512 ?

FEED O/P OF ABOVE STAGE TO
ADDITION/SUBTRACTION UNIT PIPELINE

AS I/P

END

A

B

N

N

 51

Chapter 5 FFT Algorithms on Hybrid Architecture

PERFORM ADDITION / SUBTRACTION

A

ALL STAGES
OF FFT

COMPLETED?

END

Y

N

B

 Figure: 9 Flow chart of 1024 point 1-D FFT.

 52

Chapter 5 FFT Algorithms on Hybrid Architecture

HOST PC

 PCI

10 STAGE FFT on DSP

1 2 10

 Variables ac

 bd

 ad

 bc

BLOCK
RAM-1

BLOCK
RAM-2

BLOCK
RAM-3

BLOCK
RAM-4

a

b

c

d

Imaginary o/p

Real o/p

(a+bi) * (c+di)
Real = ac-bd, img = ad+bc

32 bit
EMIF

 OP-1

OP-2

Write back calculated
complex

multiplication to
block RAM

64 bits@66 MHz
PCI

Complex multiplication on FPGA

1024
input
Points

512
complex
twiddle
factors

Figure 10: 1024 points 1-D FFT on DSP & FPGA architecture

For calculating 10 stage FFT for 1024 inputs, Total time for execution of

FFT algorithm

= Data transfer between DSP and FPGA (only inputs) +

Execution time of multiplication on FPGA +

Data transfer between FPGA and DSP (only outputs).

= 1024 + 515 + 1024

Here one thing is to be noted, that as and when multiplication are getting

done in FPGA, simultaneously result of those multiplication are to be sent

from FPGA to DSP. So, if we don’t consider 515 multiplication time then

total time for execution of single stage FFT algorithm will be,

= 1024 + 1024

= 2048 for one FFT stage,

= 2048 * 10 for all 10 stages,

= 20480

How much time 10 stage FFT with 1024 points inputs will take on hybrid

architecture, can be shown from following table-5.

 53

Chapter 5 FFT Algorithms on Hybrid Architecture

 TABLE 5: TIMES TAKEN ON HYBRID ARCHITECTURE

1,33,000 Clock cycles on Single DSP.

 33,062 Clock cycles without multiplications on DSP.

 20,480 Clock cycles multiplication on FPGA.

 53,542 Clock cycles with hybrid architecture.

(1,33,000-53,542) = 79,458 Clock cycles benefit in comparison with single DSP.

 133,000 clock cycles on Single DSP.

 33,062 clock cycles without multiplications on DSP.

 20,480 clock cycles multiplication on FPGA.

 53,542 clock cycles with hybrid architecture.

 (133,000 - 53,542) = 79,458 clock cycles benefit in comparison

with single DSP.

Depending on the result of the table-5, one can conclude that rather

using image processing on single DSP processor, if such algorithms are

executed on hybrid architecture such as DSP & FPGA, in which FPGA

will serve the purpose as a co-processor then number of clock cycles

can be saved.

 54

6 RESULTS

6.1 Benchmarking results

Following table-6 shows the benchmarking result of clock cycles taken by

several image processing algorithms executed on Texas instrument DSP

simulator named Code composer studio and Tiger sharc simulator named

Visual DSP++. Also, third column shows the clock cycles taken by image

processing algorithms on Pentium-IV processor using simple scalar

simulator.

TABLE 6: SIMULATION RESULT FOR VARIOUS IMAGE PROCESSING ALGORITHMS.

Algorithms

TI C64xx

600MHz

TigerSharc

600MHz P4 1.8GHz

 CCStudio VDSP++ SimpleScalar

1-D FFT Clock 43214 57555 63339

 Exe.Time(μsec) 72.02 95.92 35

Convolution Clock 2065 6629 60361

 Exe.Time(μsec) 3.41 11.09 33.534

Correlation Clock 3554 9804 61562

 Exe.Time(μsec) 5.9 16.34 34

Median Filter Clock 2893 9676 52185

 Exe.Time(μsec) 4.821 16.12 28.99

Sobel Operator Clock 1714 3346 24716

 Exe.Time(μsec) 2.85 5.57 13.71

As we can see in the table, number of clock cycles needed to execute

given five algorithms on different processors are shown: Now looking at

every row we can realize that TMS320C64xx TI DSP takes quite less clock

cycles compare to other DSP & p-4 processor. For every algorithm the

clock cycles for TMS320C64xx are as less as twice the other processors.

Only in case of 1-D FFT clock cycles are not as less as other algorithms.

The strength of DSP is VLIW architecture that means DSP can execute 8

instructions in same clock cycle by packing all instruction in very large

Chapter 6 Results

instruction word. For VLIW architecture, all instruction which are packed in

long word has to be data independent from each other. In case of FFT the

calculations of one stage depends on outcome of previous level. Hence,

the data dependency is high in case of FFT which results in large number

of instruction, hence more clock cycles.

6.2 1024 point, 1-D Fast Fourier Transform (Hybrid Architecture)

Following table-7 shows the clock cycles details of 1-D FFT algorithm

executed on single DSP as well as on hybrid architecture.

Table 7: Theoretical result for 1-D FFT algorithm

Clock cycles Result

133,000 Clock cycles on SINGLE DSP.

33,062 Clock cycles without multiplications on DSP.

20,480 Clock cycles multiplication on FPGA.

53,542 Clock cycles executed on HYBRID ARCHITECTURE.

(133,000 - 53,542) = 79,458 Clock cycles SAVED.

Above table explains that hybrid architecture is far better in executing

image processing algorithms in comparison with single DSP, which saves

clock cycles as well as execution time.

 56

7 CONCLUSION

Rather than executing Digital Image processing algorithms on single DSP,

it’s very much efficient to execute such algorithms on hybrid architecture

which involves FPGA as a co-processor with DSP. To design DSP with

FPGA co-processor hybrid architecture, the selection of apt DSP is

required.

Putting together the experimental results from investigation and

discussion it could be realized that Texas Instrument DSP (TMS320C64xx)

can compute the required DIP algorithms using less clock cycles than the

Tiger Sharc DSP (TS-201) processor. Though Pentium-IV processor

operates at speed of 1.8 GHz, Texas Instrument DSP operating at speed

of 600MHz, gives better performance in executing DIP algorithms,

because of its special features like MAC operations and VLIW architecture.

Hence, it could be concluded that Texas Instruments DSP should be used

in hybrid architecture.

A novel approach to calculate FFT calculation has been proposed which

exploits the parallelism using FPGA. Bottleneck of the improvement in

cycles is communication latency of EMIF between DSP and FPGA. If this

latency can be improved, better results could be achieved.

REFERENCES

[1] Stephen t. Barnard and martin a. Fischler. “Computational Stereo”.

SRI International, Menlo Park, California 94025, ACM Computing
Surveys (CSUR), Volume 14.

[2] Naveed Bin Rais. Hammad A. Khan, Dr. Farrukh Kamran. Dr.

Habibullah Jamal. “A new algorithm of Stereo matching using Epipolar
Geometry”, International Journal of Computer Vision.

[3] Richard Hartley. “Multiple View Geometry in Computer Vision”,

University of Oxford, UK.

[4] “A BDTI analysis of Texas Instrument TMS320C64x DSP”,

http://www.bdti.com/articles/c64_summary_report.pdf,
Berkely Design Technology, Inc.

[5] “TMS320C64x Technical Overview and architecture”,

focus.ti.com/lit/ug/spru395b/spru395b.pdf, Texas Instruments.

[6] “Architecture of analog DSP processor ADSP-TS201S”,

http://www.analog.com/UploadedFiles/Data_Sheets/ADSP_TS201S.pdf,
White paper from Analog Devices.

[7] John Stevenson. “Code Composer Studio IDE v2 White Paper”,

http://focus.ti.com/dsp/docs/dspsupporttechdocsc.tsp?sectionId=3&ta
bId=409&abstractName=spra004, Texas Instruments.

[8] “Cross-Platform Software Development with Intel Integrated

Performance Primitives”, http://isdlibrary.inteldispatch.com/isd/107/
cross-arch_with_ipp.pdf, White paper from Intel Software
Development Products.

[9] Glenn Hinton, Dave Sager, Mike Upton, Darrell Boggs, Doug Carmean,

“The Micro architecture of the Pentium-4 Processor”,
http://www.intel.com/technology/itj/q12001/pdf/art_2.pdf, Intel
Technology Journal Q1.

[10] Luxin Yan, Tianxu Zhang and Sheng Zhong, ”A DSP/FPGA -Based

Parallel Architecture for Real-time Image Processing”, Proceedings of
the 6th World Congress on Intelligent Control and Automation,
June 21 - 23, 2006, Dalian, China.

References

[11] Marc Defossez, “FPGA Interface to the TMSC6000 DSP Platform Using
EMIF”. Application Note: Virtex-II Pro Family.

[12] Rob Williams, “SimpleScalar CPU Simulator”, http://www.cems.uwe.

ac.uk/~rwilliam/ACA_ufeEHK-20-3/Worksheets/simplescalar.pdf

59

 APPENDIX-A

TMS320C64xx TEXAS INSTRUMENT DSP PROCESSOR

Internal architecture and Peripherals

• Two general-purpose register files (A and B)

• Eight functional units (.L1, .L2, .S1, .S2, .M1, .M2, .D1, and .D2)

• Two load-from-memory data paths (LD1 and LD2)

• Two store-to-memory data paths (ST1 and ST2)

• Two data address paths (DA1 and DA2)

• Two register file data cross paths (1X and 2X)

• Harvard architecture of memory (program memory and data

memory)

• L1D 80-KB & L1P 32-KB while L2 is of 128-KB cache

• CPU Operating speed is 600 MHz

• Enhanced direct memory access controller

• Peripheral component interconnect

• Universal test and operation PHY interface for ATM (UTOPIA)

• External memory interfaces

• Multi-channel buffered serial ports

• Host port interfaces

• 32-bit expansion bus

• Serial RapidIO

• Phase locked loop (PLL)

Applications

Wireless infrastructure (adaptive antennas, base stations, gateways),

telecom infrastructure (RAS, PBX, VoIP), digital video (conferencing,

surveillance, encoders, imaging (medical, machine vision/inspection,

defense/radar/sonar)

Features

• VelociTI.2 architecture extensions with new instructions to

accelerate performance in key applications

• Increased parallelism with quad 16-bit and octal 8-bit multiply-

accumulate performance

 Appendix-A

• Improved orthogonality with frequently used instructions available

in more functional units

• Double the bandwidth resulting from more registers, wider

load/store data paths and enlarged two-level cache

 61

 APPENDIX-B

 TIGER-SHARC (TS-201) ANALOG DSP PROCESSOR

Key Features

• Up to 600MHz, 1.67 ns instruction cycle rate 24M bits of internal—

on-chip—DRAM memory

• 25 mm × 25 mm (576-ball) thermally enhanced ball grid array

package

• Dual-computation blocks—each containing an ALU, a multiplier, a

shifter, a register file, and a communications logic unit (CLU)

• Dual-integer ALUs, providing data addressing and pointer

Manipulation

• Integrated I/O includes 14-channel DMA controller, external port,

four link ports, SDRAM controller, programmable flag pins, two

timers, and timer expired pin for system integration

• 1149.1 IEEE-compliant JTAG test access port for on-chip emulation

• Single-precision IEEE 32-bit and extended-precision 40-bit floating-

point data formats and 8-, 16-, 32-, and 64-bit fixed-point data

formats

• Eight 16-bit MACs/cycle with 40-bit accumulation

• Two 32-bit MACs/cycle with 80-bit accumulation

• Specific support for Viterbi decoding through the implementation of

add compare-select (ACS) sequencing

• Add-subtract instruction and bit reversal in hardware for FFTs

• IEEE floating-point compatible highly integrated

• Three variants offering 24-Mb, 12- Mb, and 4-Mb on-chip embedded

DRAM

• Glue less multiprocessing

• Four link ports—1 GBps transfer rate each

• 64-bit external port, 125 MHz, 1 GBps

• 14 DMA channels Flexible Programming in Assembly and C

Languages

• User-defined partitioning between program and data memory

• 128 general-purpose registers

 Appendix-B

• Algebraic assembly language syntax

• Optimizing C compiler

• VisualDSP++ tools support

• Single-instruction, multiple-data (SIMD) instructions, or direct-issue

capability

• Predicated execution

• Fully interruptible with full computation performance

KEY BENEFITS

• Provides high performance static superscalar DSP operations,

optimized for telecommunications infrastructure and other large,

demanding multiprocessor DSP applications

• Performs exceptionally well on DSP algorithm and I/O benchmarks

Supports low overhead DMA transfers between internal memory,

external memory, memory-mapped peripherals, link ports, host

processors, and other (multiprocessor) DSPs

• Eases DSP programming through extremely flexible instruction set

and high-level-language-friendly DSP architecture Enables scalable

multiprocessing systems with low communications Overhead

• Provides on-chip arbitration for glue less multiprocessing

 63

	Title & statement-copy-binding.doc
	I Initial docs_pranav_project-02-05-08.doc
	II ACKNOWLEDGEMENTS & REMAINING INITIAL DOC.doc
	1- Introduction-pranav-Chapter-240408.doc
	2 Literature survey - 240408 - Final.doc
	3 Image Processing Algorithms-24_04_08.doc
	4 Simple-Scalar-24 04 08.doc
	5 FFT algorithm on Hybrid Architecture - 24 -04 - 08.doc
	6 Results-24-04-08.doc
	7 CONCLUSION-24_04_08.doc
	8 References-06-05-08.doc
	9 Appendix-A.doc
	10 Appendix-B.doc

