

Design of Image Processing Algorithms for
Multicore Processor: Implementation and
Performance Analysis on Cell Broadband

Engine

By

 RUCHANDANI KAPIL V.

(06MCE018)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY OF SCIENCE & TECHNOLOGY
AHMEDABAD 382 481

MAY 2008

Major Project

On

Design of Image Processing Algorithms for
Multicore Processor: Implementation and
Performance Analysis on Cell Broadband

Engine

Submitted in partial fulfillment of the requirements

For the degree of

Master of Technology in Computer Science & Engineering

By

 Ruchandani Kapil V.
(06MCE018)

Under Guidance of

Dr. S.N. Pradhan

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY OF SCIENCE & TECHNOLOGY
Ahmedabad 382481

May 2008

This is to certify that Dissertation entitled

Design of Image Processing Algorithms for
Multicore Processor: Implementation and

Performance Analysis on Cell Broadband Engine

Submitted by

Ruchandani Kapil V

has been accepted towards fulfillment of the requirement

for the degree of

Master of Technology in Computer Science & Engineering

Dr. S. N. Pradhan Prof. D. J. Patel

P.G.Coordinator Head of the Department

Prof. A. B. Patel

Director, Institute of Technology

CERTIFICATE

This is to certify that the Major Project entitled “Design of Image

Processing Algorithms for Multicore Processor: Implementation and

Performance Analysis on Cell Broadband Engine” submitted by Mr.

Ruchandani Kapil (06MCE018), towards the partial fulfillment of the

requirements for the degree of Master of Technology in Computer Science &

Engineering, Nirma University of Science and Technology, Ahmedabad is the

record of work carried out by him under my supervision and guidance. In my

opinion, the submitted work has reached a level required for being accepted

for examination. The results embodied in this major project, to the best of

my knowledge, haven’t been submitted to any other university or institution

for award of any Master degree.

Dr. S.N.Pradhan

Project Guide,

P. G. Coordinator,

Department of Computer Science & Engineering,

Institute of Technology,

Nirma University,

Ahmedabad.

Date:-

ACKNOWLEDGEMENT

It gives me immense pleasure in expressing thanks and profound gratitude

to Dr. S.N Pradhan, P.G. Coordinator, Computer Science & Engineering

Department, Nirma University, Ahmedabad for his valuable guidance and

continual encouragement throughout my Major project. I am heartily

thankful to him for his precious time, suggestions and sorting out the

difficulties of my topic that helped me a lot during this study.

I would like to give my special thanks to Prof. D.J Patel, Head, Computer

Science & Engineering Department, Nirma University, Ahmedabad for his

encouragement and motivation throughout the Major Project. I am also

thankful to Prof. A. B. Patel, Director, Institute of Technology, Nirma

University, Ahmedabad for his kind support in all respect during my study.

I am thankful to all faculty members of Computer Science & Engineering

Department, Nirma University, Ahmedabad for their special attention and

suggestions towards the project work.

Ruchandani Kapil
Roll No. 06MCE018

 IV

ABSTRACT

Enhancement of CPU processing power and speed has been a priority issue in

the past several years. Conventional approaches to satisfy this demand were

to improve the performance of the core singularly. However the CPU design

became much more complex, causing problems as increases in power

consumption, over-heating and manufacturing cost. That’s why world is

moving towards multi-core configurations. Multi-core architecture offers

higher performance at same power consumption and manufacturing cost.

The Cell Broadband Engine Architecture (CBEA) is a multi-core architecture,

including a 64-bit PowerPC Processor Element and eight Synergistic

Processor Elements which offers a raw compute power of up to 200 GFlops

per 3.2 GHz chip. The Cell bears a huge potential for compute intensive

applications like Image processing applications, scientific applications etc.

Image processing applications such as filtering, edge detection, correlation

etc. require large computation power. Processing large images on a single

core system consumes a lot of time. Such applications can be ported on

CBEA and performance can be improved. However it requires addressing

many challenges for implementing such applications for CBEA.

The goal of this dissertation is to implement image processing algorithms for

CELL Broadband Engine, address the challenges occurring because of

multiple cores and achieve higher performance than conventional systems.

 V

CONTENTS

Certificate .. II

Acknowledgement .. IV

Abstract... V

Contents ... VI

List of Figures.. VIII

List of Tables .. X

List of Abbreviations ... XI

Chapter 1 INTRODUCTION... 1

1.1 General ...1

1.2 Motivation ...2

1.3 Scope of the Work ..3

1.4 Outline of Report ..4

Chapter 2 THE CELL ARCHITECTURE .. 5

2.1 History of the Cell project ..5

2.2 Architectural Overview ..6

2.3 PowerPC Processor Element8

2.4 Synergistic Processor Elements.................................13

2.5 Element Interconnect Bus ..17

2.6 Memory Interface Controller.....................................18

2.7 Cell Broadband Engine Interface19

2.8 CELL Architecture Advantages19

2.9 Systems based on CELL Architecture20

Chapter 3 CELL SDK... 23

3.1 Prerequisites...23

3.2 Installing the SDK ...24

3.3 IBM’s Full-System Simulator- SystemSim25

Chapter 4 PROGRAMMING THE CELL.. 38

 VI

4.1 Programming Overview ...38

4.2 Application Partitioning..38

4.3 Data Partitioning ..41

4.4 Program Control and Data Flow42

4.5 Advanced Cell Programming.....................................42

Chapter 5 DIP ALGORITHMS AND THEIR IMPLEMENTATION.......... 50

5.1 Spatial Domain Filter...50

5.2 JPEG...54

Chapter 6 Conclusion... 60

References .. 62

Appendix A ... 64

Appendix B ... 66

Appendix C ... 68

 VII

LIST OF FIGURES

2-1 Cell Broadband Engine Overview 7

2-2 PPE Block Diagram 8

2-3 PPE Functional Units 9

2-4 PPE User Register Set 11

2-5 SIMD Add Operations 12

2-6 SPE Block Diagram 13

2-7 SPU Functional Units 15

2-8 LS Access Methods 16

2-9 SPE Register Set 17

2-10 Element Interconnect Bus 18

3-1 Simulator Stack for the Cell Broadband Engine 26

3-2 Simulator Structure and Screens 28

3-3 Graphical User Interface for the Simulator 30

3-4 Simulator GUI started in SMP mode 31

3-5 SystemSim Cell Graphical User Interface 35

3-6 SystemSim Spu Performance Modes 35

4-1 Application Partitioning Model 39

4-2 PPE Centric Multistage Pipeline Model and Parallel Stages

Model

39

4-3 PPE Centric Services Model 40

4-4 Data Partitioning for Parallel Processing 41

4-5 SPE program execution sequence 42

4-6 Mailboxes 43

4-7 SPU Signal Notification Modes 45

4-8 DMA Transfer (16 Bytes or Less) 47

4-9 Basic Programs Involving DMA Transfer 48

4-10 DMA Double Buffering Method 49

 VIII

5-1 Image portion transferred to SPE 51

5-2 Vectors containing the pixel value 51

5-3 Filter mask 52

5-4 Differential DC encoding and Zig-zag sequence 58

 IX

LIST OF TABLES

3-1 Recommended system configuration for CELL SDK

installation

23

5-1 Performance results for Spatial Domain Filters 53

5-2 Luminance Quantization Table 57

5-3 Chrominance Quantization Table 57

5-4 Performance Results for DCT and Quantization 59

 X

LIST OF ABBREVIATIONS

BEI Cell Broadband Engine Interface

CBE Cell Broadband Engine

CMP Chip Multiprocessors

DCT Discrete Cosine Transform

DIP Digital Image Processing

DMA Direct Memory Access

EIB Elementary Interconnect Bus

FXU Fixed-Point Unit

IU Instruction Unit

LS Local Store

LSU Load and Store Unit

MFC Memory Flow Controller

MIC Memory Interface Controller

MMU Memory Management Unit

P-4 Pentium 4

PPE PowerPC Processor Element

PPSS PowerPC Processor Storage Subsystem

PPU PowerPC Processor Unit

PS3 Playstation 3

RISC Reduced Instruction Set Computer

SCN SPU Control Unit

SDK Software Development Kit

SFP SPU Floating-Point Unit

SFS SPU Odd Fixed-Point Unit

SFX SPU Even Fixed-Point Unit

SIMD Single Instruction Multiple Data

SLS SPU Load and Store Unit

 XI

SNR Signal Notification Registers

SPE Synergistic Processor Element

SPU Synergistic Processor Unit

SSC SPU Channel and DMA Unit

VSU Vector/Scalar Unit

YDL Yellow Dog Linux

 XII

1 INTRODUCTION

1.1 General

Image processing applications such as filtering, edge detection, correlation

etc. require large computation power. Processing large images on a system

with single processors consumes a lot of time. Using DSPs we can improve

the performance of such applications. However performance gain is limited.

We can use multiprocessor or multicore system to improve performance of

such applications.

Cell Broadband Engine (Cell BE) which is a multicore system can be used for

this purpose. Cell BE is the result of collaboration between Sony, Toshiba,

and IBM. Although the Cell BE was initially intended for application in game

consoles and media-rich consumer-electronics devices such as high-definition

televisions, the architecture can be used for compute intensive applications

such as satellite image processing, medical imaging, digital media,

communications, and some scientific applications to improve performance.

The Cell BE performs significantly faster than existing CPUs for many

applications. IBM provides the Cell SDK for programming and simulating the

cell architecture.

As exciting as it may sound, using the PS3 for scientific computing is a

bumpy ride. Parallel programming models for multi-core processors are in

their infancy, and standardized APIs are not even on the horizon. As a result,

presently, only hand-written code fully exploits the hardware capabilities of

the CELL processor. Ultimately, the suitability of the PS3 platform for

scientific computing is most heavily impaired by the devastating

disproportion between the processing power of the processor and the

crippling slowness of the interconnect. Nevertheless, the CELL processor is a

revolutionary chip, delivering ground-breaking performance and now

available in an affordable package. Programming such a multicore system is

Chapter 1. Introduction

a challenging task. To make full use of the architecture potential the

algorithm design must be done carefully. All the cores of Cell BE are SIMD

based architecture cores. Hence Cell BE provides two levels of parallelism.

This needs to be taken care of while designing the algorithm.

This report shows the details of the Cell architecture and design of Image

Processing algorithms for Cell BE.

1.2 Motivation

Enhancement of CPU processing power and speed has been a priority issue in

the past several years due to the widespread use of multimedia applications,

medical imaging, scientific applications as well as the advent of 3D games

and other advanced video applications that demand higher-speed processing

of massive audio/video data to offer higher-quality entertainment.

Conventional approaches to satisfy this demand counted on the improvement

of the performance of the core singularly used in each CPU. However, they

soon proved to have limitations – the CPU design became much more

complex, causing problems as increases in power consumption, over-heating

and manufacturing cost. That’s why CPU manufacturers set about developing

multi-core configurations that allow multiple cores to run in parallel on a

single chip to realize further performance upgrades.

The Cell employs the heterogeneous multi-core processor configuration.

Instead of conventional multi-application cores, the Cell uses two types of

cores optimized for different applications: a control-intensive processor core

that excels in handling frequent thread switching and thus is suited for use

with the operating system, and a simple compute-intensive processor core

that addresses multimedia processing. With this configuration, each core can

maintain its processing performance. The core structure can also be

simplified drastically.

 - 2 -

Chapter 1. Introduction

Initially the Cell project was intended for Playstation3 so the main

concentration of the developers of Cell processor was on the better

performance on gaming consoles. But later it was realized that the immense

computing power of Cell Broadband engine can be utilized for other compute

intensive scientific fields. Though the programmability of the this processor

architecture is a bit complex but its worth taking pains to utilize its

computing power. A lot of work is being done in this direction and a lot of

success has been achieved using this processor architecture for diverse

application areas.

Image processing applications such as filtering, edge detection, correlation

etc. require large computation power. Processing large images on a system

with single processors consumes a lot of time. In this thesis work some

Image processing algorithms, which consumes a lot of processing power, are

implemented on CELL processor so as to take full advantage of the high

processing power provided by its novice architecture. The reason for

selecting image processing as the area of application is that image processing

algorithms provide a lot of scope for parallelism, which is the hallmark of Cell

processor architecture. Cell architecture provides two levels of parallelism,

one at the inter-SPU level which is provided by the 8 SPU’s and other at the

intra-SPU level which is provided by the vector support. Image processing

algorithms are very well suited to exploit these two levels of parallelism

provided by Cell BE. Because the image can be easily broken into smaller

images and also in image processing algorithms we generally have to

perform the same operation over each and every pixel which gives us a

scope for utilizing vector operations.

1.3 Scope of the Work

The main objective of this thesis is to modify the existing scalar image

processing algorithms to utilize the Cell processor architecture and to claim

the performance improvement over the traditional scalar versions of it. But

since the architecture of CELL processor is quite new and different, the

 - 3 -

Chapter 1. Introduction

existing Image processing algorithms are designed for singlecore processors

and would not be able to exploit the computing power provided by CELL B.E.

So these algorithms have to be redesigned and restructured in such a way so

that all nine cores can be fully utilized. Also the SIMD feature provided by all

these cores has to be taken care of while designing the algorithms. This

makes the task of programming for CELL processor quite complex and the

onus is on the programmer to restructure the algorithms carefully.

The scope of this thesis work encompasses the detailed architectural study

and programming methodology of the Cell architecture. Based on this

knowledge two image processing algorithms are selected: Spatial Domain

Filter and various stages of Baseline JPEG compression. These algorithms are

then worked upon and redesigned to execute on Cell B.E so as to give a

performance Speedup over the scalar versions of these algorithms executed

on conventional single core processors.

1.4 Outline of Report

• Chapter 2 presents the details of the Cell architecture like detail

architecture of the processor cores used in it, details of memory

interface controller and bus connecting all the elements. It also

presents some advantages of Cell architecture and gives specifications

of some systems based on Cell architecture.

• Chapter 3 presents contents of the SDK used for programming cell and

lists SDK installation steps.

• Chapter 4 describes the programming methods for Cell. It also

describes some points to consider while partitioning the application

and data between various cores and how the program control and data

flows between processor cores. In the end it gives some advanced

techniques for programming the cell.

• Chapter 5 explains various Image Processing algorithms and proposed

algorithms which are optimized for CELL Broadband Engine. It also

shows implementation details and performance results.

 - 4 -

2 THE CELL ARCHITECTURE

2.1 History of the Cell Project

Cell represents a revolutionary extension of conventional microprocessor

architecture and organization. This report discusses the history of the

project, the program objectives and challenges, the design concept, the

architecture and programming models, and the implementation.

Initial discussion on the collaborative effort to develop Cell began with

support from CEOs from the Sony and IBM companies: Sony as a content

provider and IBM as a leading-edge technology and server company.

Collaboration was initiated among SCEI (Sony Computer Entertainment

Incorporated), IBM, for microprocessor development, and Toshiba, as a

development and high-volume manufacturing technology partner. This led to

high-level architectural discussions among the three companies during the

summer of 2000. During a critical meeting in Tokyo, it was determined that

traditional architectural organizations would not deliver the computational

power that SCEI sought for their future interactive needs. SCEI brought to

the discussions a vision to achieve 1,000 times the performance of

PlayStation2. At this stage of the interaction, the IBM Research Division

became involved for the purpose of exploring new organizational approaches

to the design IBM process technology was also involved, contributing state-

of-the-art 90-nm process with silicon-on insulator (SOI), low-k dielectrics,

and copper interconnects. During this interaction, a wide variety of multi core

proposals were discussed, ranging from conventional chip multiprocessors

(CMPs) to dataflow oriented multiprocessors. By the end of 2000 an

architectural concept had been agreed on, that combined the 64-bit Power

Architecture with memory flow control and ‘‘synergistic’’ processors in order

to provide the required computational density and power efficiency. After

several months of architectural discussion and contract negotiations, the STI

(SCEI–Toshiba–IBM) Design Center was formally opened in Austin, Texas, on

Chapter 2. The Cell Architecture

March 9, 2001. The STI Design Center represented a joint investment in

design of about $400,000,000.Separate joint collaborations were also set in

place for process technology development. A number of key elements were

employed to drive the success of the Cell multiprocessor design. First, a

holistic design approach was used, encompassing processor architecture,

hardware implementation, system structures, and software programming

models. Second, the design center staffed key leadership positions from

various IBM sites. Third, the design incorporated many flexible elements

ranging from reprogrammable synergistic processors to reconfigurable I/O

interfaces in order to support many systems configurations with one high-

volume chip. Although the STI design center for this ambitious, large-scale

project was based in Austin (with IBM, the Sony Group, and Toshiba as

partners), many other IBM sites were also involved and were critical to the

project.

2.2 Architectural Overview

The Cell Broadband Engine is a single-chip multiprocessor with nine

processors operating on a shared, coherent memory. There are two types of

processors in it: the PowerPC Processor Element (PPE), and the Synergistic

Processor Element (SPE). The Cell Broadband Engine has one PPE and eight

SPEs [1], [2], [4]. The first type of processor element, the PPE, is a 64-bit

PowerPC Architecture core. It is fully compliant with the 64-bit PowerPC

Architecture and can run 32-bit and 64-bit operating systems and

applications. The second type of processor element, the SPE, is optimized for

running compute-intensive applications, and it is not optimized for running

an operating system. The SPEs are independent processors, each running its

own individual application programs. Each SPE has full access to coherent

shared memory, including the memory-mapped I/O space. The SPEs are

designed to be programmed in high-level languages and support a rich

instruction set that includes extensive single-instruction, multiple-data

(SIMD) functionality.

 - 6 -

Chapter 2. The Cell Architecture

Figure 2-1 shows a block diagram of the Cell Broadband Engine.

Figure 2-1 Cell Broadband Engine Overview

The PPE is more adept at control-intensive tasks and quicker at task

switching. The SPEs are more adept at compute-intensive tasks and slower at

task switching. A significant difference between the SPE and the PPE is how

they access memory. The PPE accesses main storage (the effective-address

space that includes main memory) with load and store instructions that go

between a private register file and main storage (which may be cached).

However, the SPEs access main storage with direct memory access (DMA)

commands that go between main storage and a private local memory used to

store both instructions and data. SPE instruction-fetches and load and store

 - 7 -

Chapter 2. The Cell Architecture

instructions access this private local store, rather than shared main storage.

This 3-level organization of storage (register file, local store, main storage),

with asynchronous DMA transfers between local store and main storage, is a

radical break with conventional architecture and programming models,

because it explicitly parallelizes computation and the transfers of data and

instructions.

2.3 PowerPC Processor Element (PPE)

The PPE is the main processor. It contains a 64-bit PowerPC Architecture

reduced instruction set computer (RISC) core. It runs an operating system,

manages system resources, and is intended primarily for control processing,

including the allocation and management of SPE threads. It supports both

the PowerPC instruction set and the Vector/SIMD Multimedia Extension

instruction set. The PPE contains two main units: the PowerPC Processor Unit

(PPU) and the PowerPC Processor Storage Subsystem (PPSS), shown

in figure 2-2.

Figure 2-2 PPE Block Diagram

 - 8 -

Chapter 2. The Cell Architecture

2.3.1 PowerPC Processor Unit (PPU)

The PPU is the processing unit in the PPE. It contains six execution units. It

also contains a primary cache comprised of a 32KB instruction cache and a

32KB data cache. The PPU executes the PowerPC Architecture instruction set

and the Vector/SIMD Multimedia Extension instructions. It has duplicate sets

of the PowerPC and vector user-state register files (one set for each thread)

plus one set of the following functional units:

Figure 2-3. PPE Functional Units

• Instruction Unit (IU): The IU performs the instruction-fetch, decode,

dispatch, issue, branch, and completion portions of execution. It

contains the L1 instruction cache, which is 32 KB, 2- way set-

associative, parity protected. The cache-line size is 128 bytes.

• Load and Store Unit (LSU): The LSU performs all data accesses,

including execution of load and store instructions. It contains the L1

 - 9 -

Chapter 2. The Cell Architecture

data cache, which is 32 KB, 4-way set-associative, write-through, and

parity protected. The cache-line size is 128 bytes.

• Vector/Scalar Unit (VSU): The VSU includes a Floating-Point Unit

(FPU) and a 128-bit Vector/SIMD Multimedia Extension Unit (VXU),

which together execute floating-point and Vector/SIMD Multimedia

Extension instructions.

• Fixed-Point Unit (FXU): The FXU executes fixed-point (integer)

operations, including add, multiply, divide, compare, shift, rotate, and

logical instructions.

• Memory Management Unit (MMU): The MMU manages address

translation for all memory accesses. It has a 64-entry Segment

Lookaside Buffer (SLB) and 1024-entry, unified, parity protected

Tanslation Lookaside Buffer (TLB).

2.3.2 PowerPC Processor Storage Subsystem (PPSS)

The PPSS handles all memory accesses by the PPU. The PPSS has a unified,

512-KB, 8-way set-associative, write-back L2 cache. Like the L1 caches, the

cache-line size for the L2 is 128 bytes. The cache has a single-port read/write

interface to main storage that supports eight software-managed data-

prefetch streams. It includes the contents of the L1 data cache but is not

guaranteed to contain the contents of the L1 instruction cache, and it

provides fully coherent symmetric multiprocessor (SMP) support.

The PPSS performs data-prefetch for the PPU and bus arbitration. Traffic

between the PPU and PPSS is supported by a 32-byte load port, and a 16-

byte store port. The interface between the PPSS and EIB supports 16-byte

load and 16-byte store buses.

2.3.3 PPE Registers

The PPE problem-state (user) registers are shown in Figure 2-4. All

computational instructions operate on registers; no computational

instructions modify main storage. To use a storage operand in a computation

and then modify the same or another storage location, the contents of the

 - 10 -

Chapter 2. The Cell Architecture

storage operand must be loaded into a register, modified, and then stored

back to the target location.

Figure 2-4. PPE User Register Set

2.3.4 Vector/SIMD Multimedia Extension Instructions

PPE supports PowerPC instructions as well as Vector/SIMD Multimedia

Extension instructions. Vector/SIMD Multimedia Extension instructions can be

freely mixed with PowerPC instructions in a single program. The 128-bit

Vector/SIMD Multimedia Extension unit (VXU) operates concurrently with the

PPU’s 32-bit fixed-point unit (FXU) and 64-bit floating-point unit (FPU). Like

PowerPC instructions, the Vector/SIMD Multimedia Extension instructions are

four bytes long and word-aligned. The Vector/SIMD Multimedia Extension

instructions support simultaneous execution on multiple elements that make

 - 11 -

Chapter 2. The Cell Architecture

up the 128-bit vector operands. Vector/SIMD Multimedia Extension

instructions do not generate exceptions (other than data storage interrupt

exceptions on loads and stores), do not support unaligned memory accesses

or complex functions, and share few resources or communication paths with

the other PPE execution units.

A vector is an instruction operand containing a set of data elements packed

into a one-dimensional array. The elements can be fixed-point or floating-

point values. Most Vector/SIMD Multimedia Extension and SPU instructions

operate on vector operands. Vectors are also called Single-Instruction,

Multiple-Data (SIMD) operands, or packed operands. SIMD processing

exploits data-level parallelism. Data-level parallelism means that the

operations required to transform a set of vector elements can be performed

on all elements of the vector at the same time. That is, a single instruction

can be applied to multiple data elements in parallel.

Figure 2-5. SIMD Add Operations

Support for SIMD operations is pervasive in the CBE processor. In the PPE,

they are supported by the Vector/SIMD Multimedia Extension instructions. In

the SPEs, they are supported by the SPU instruction set. In both the PPE and

SPEs, vector registers hold multiple data elements as a single vector. The

 - 12 -

Chapter 2. The Cell Architecture

data paths and registers supporting SIMD operations are 128 bits wide,

corresponding to four full 32-bit words. This means that four 32-bit words

can be loaded into a single register, and, for example, added to four other

words in a different register in a single operation. Figure 2-5 shows such an

operation. Similar operations can be performed on vector operands

containing 16 bytes, 8 halfwords, or 2 doublewords.

2.4 Synergistic Processor Elements (SPEs)

Figure 2-6. SPE Block Diagram

The eight SPEs are SIMD processors optimized for data-rich operations

allocated to them by the PPE. Each of these identical elements contains a

RISC core, 256-KB, software-controlled local store for instructions and data,

and a large (128-bit, 128-entry) unified register file. The SPEs support a

special SIMD instruction set, and they rely on asynchronous DMA transfers to

move data and instructions between main storage and their local stores. The

SPEs are not intended to run an operating system. The SPE contains two

main units: Synergistic Processor unit (SPU) and Memory Flow Control

(MFC).

 - 13 -

Chapter 2. The Cell Architecture

2.4.1 Synergistic Processor Unit (SPU)

Each SPE incorporates its own SPU to perform its allocated computational

task. The SPUs use a unique instruction set designed specifically for their

operations. It contains six execution units and a 256 KB local store. The SPU

fetches instructions from its unified (instructions and data) 256-KB local store

(LS), and it loads and stores data between its LS and its single register file

for all data types, which has 128 registers, each 128 bits wide. The SPU has

a DMA interface and a channel interface for communicating with its MFC, the

PPE and other devices (including other SPEs). Each SPU is an independent

processor element with its own program counter, optimized to run SPU

programs. The SPU fills its LS by requesting DMA transfers from its MFC,

which implements the DMA transfers using its DMA controller. Then, the SPU

fetches and executes instructions from its LS, and it loads and stores data to

and from its LS. The main SPU functional units are shown in Figure 2-7.

These include the Synergistic Execution Unit (SXU), the LS, and the SPU

Register File Unit (SRF).

The SPU can issue and complete up to two instructions per cycle, one on

each of the two (odd and even) execution pipelines. Whether an instruction

goes to the odd or even pipeline depends on the instruction type. The

instruction type is also related to the execution unit that performs the

function.

• SPU Odd Fixed-Point Unit (SFS): Executes quadword shift and

rotates mask operations on bits, bytes, halfwords, and words, and

shuffle operations on bytes.

• SPU Even Fixed-Point Unit (SFX): Executes arithmetic instructions,

logical instructions, word SIMD shifts and rotates, floating-point

compares, and floating-point reciprocal and reciprocal square-root

estimates.

 - 14 -

Chapter 2. The Cell Architecture

Figure 2-7. SPU Functional Units

• SPU Floating-Point Unit (SFP): Executes single- and double-

precision floating-point instructions, integer multiplies and

conversions, and byte operations. The SPU supports only 16-bit

multiplies, so 32-bit multiplies are implemented in software using 16-

bit multiplies.

• SPU Load and Store Unit (SLS): Executes load and store

instructions and load branch-target- buffer (BTB) instructions. It also

handles DMA requests to the LS.

• SPU Control Unit (SCN): Fetches and issues instructions to the two

pipelines, executes branch instructions, arbitrates access to the LS and

register file, and performs other control functions.

• SPU Channel and DMA Unit (SSC): Enables communication, data

transfer, and control into and out of the SPU.

2.4.2 Local Store (LS)

The Local Store (LS) is a 256-KB, single-ported, noncaching memory. It

 - 15 -

Chapter 2. The Cell Architecture

stores all instructions and data used by the SPU. It supports one access per

cycle from either SPE software or DMA transfers. SPU instruction prefetches

are 128 bytes per cycle. SPU data-access bandwidth is 16 bytes per cycle,

quadword aligned. DMA-access bandwidth is 128 bytes per cycle. It is the

only memory that can be referenced directly from the SPU. It’s controlled by

software running on SPU.

Figure 2-8. LS Access Methods

The SPU accesses its LS with load and store instructions, and it performs no

address translation for such accesses. Privileged software on the PPE can

assign effective-address aliases to LS. This enables the PPE and other SPEs

to access the LS in the main-storage domain. The PPE performs such

accesses with load and store instructions, without the need for DMA

transfers. However other SPEs must use DMA transfers to access the LS in

the main-storage domain. Figure 2-8 illustrates the methods by which an

SPU, the PPE, other SPEs, and I/O devices access the SPU’s associated LS,

 - 16 -

Chapter 2. The Cell Architecture

when the LS has been aliased to the main storage domain.

2.4.3 Memory Flow Controller (MFC)

oller (MFC). The MFC serves as the

.4.4 Register File

, 128-bit register file stores all data types—integer,

Each SPU has its own Memory Flow Contr

SPU's interface, by means of the Element Interconnect Bus (EIB), to main-

storage and other processor elements and system devices. The MFC’s

primary role is to interface its LS with the main-storage domain. It does this

by means of a DMA controller that moves instructions and data between its

LS and main storage. The MFC also supports synchronization between main

storage and the LS, and communication functions (such as mailbox and

signal-notification messaging) with the PPE and other SPEs and devices.

2

The SPU’s 128-entry

single- and double-precision floating-point, scalars, vectors, logical, bytes,

and others [1]. It also stores return addresses, results of comparisons, and

so forth. All computational instructions operate on registers—there are no

computational instructions that modify storage. Figure 2-9 shows SPE

register file.

Figure 2-9. SPE Register Set

.5 Element Interconnect Bus (EIB)

 is the communication path for

2

The Element Interconnect Bus (EIB)

 - 17 -

Chapter 2. The Cell Architecture

commands and data between all processor elements on the CBE processor

and the on-chip controllers for memory and I/O. The EIB supports full

memory-coherent and symmetric multiprocessor (SMP) operations [3].

Figure 2-10. Element Interconnect Bus

EIB works on half the proc 4-ring structure (two

.6 Memory Interface Controller (MIC)

 (MIC) provides the interface

essor clock rate. The EIB is a

clockwise and two counterclockwise). Each ring supports 3 transfers

simultaneously. The EIB’s internal bandwidth is 96 bytes per cycle (4 rings *

3 simultaneous transfers/ring * 16 bytes/ring /2). A Resource Allocation

Management (RAM) facility resides in the EIB and privileged software can use

it to regulate the rate at which resource requestors (the PPE, SPEs, and I/O

devices) can use memory and I/O resources.

2

The on-chip Memory Interface Controller

between the EIB and physical memory. It supports one or two Rambus

Extreme Data Rate (XDR) memory interfaces. Memory accesses on each

interface are 1 to 8, 16, 32, 64, or 128 bytes. Up to 64 reads and 64 writes

can be queued.

 - 18 -

Chapter 2. The Cell Architecture

2.7 Cell Broadband Engine Interface (BEI)

e EIB and I/O devices. It

he on-chip Cell Broadband Engine Interface (BEI) Unit supports I/O

.8 CELL Architecture Advantages

te-Intensive Algorithms: With the

• Each SPE contains a 256 KB high-

• Because the

The BEI manages data transfers between th

provides address translation, command processing, an internal interrupt

controller, and bus interfacing. It supports two Rambus FlexIO external I/O

channels.

T

interfacing. It includes a Broadband Interface Controller (BIC), I/O Controller

(IOC), and Internal Interrupt Controller (IIC). It manages data transfers

between the EIB and I/O devices and provides I/O address translation and

command processing. The BEI supports two Rambus FlexIO interfaces.

2

• Faster Processing of Compu

combination of single-precision 32-bit floating-point and 16-bit integer

(or fixed-point) processing, the Cell BE processor handles compute-

intensive algorithms and is particularly impressive for those requiring

many floating-point calculations.

Higher Bandwidth Interconnect:

speed local store and a DMA (direct memory access) engine for

moving data and code to and from XDR memory and even to other

SPEs – all via the EIB interconnect. The DMA engine can

simultaneously read and write at the rate of 24 GB/s to and from the

EIB and can handle numerous outstanding DMA requests.

Backward Compatibility with PowerPC Applications:

Cell architecture is compatible with PowerPC processors, existing

PowerPC applications can run on the Cell BE processor without

modification. This flexibility provides a convenient entry point for

programmers with symmetric multiprocessor (SMP) experience and

eases the porting of existing software, including the operating system,

to the Cell architecture.

 - 19 -

Chapter 2. The Cell Architecture

• Power with High Performance/High

• ommunication and Ease of Programming: The Cell BE

2.9 Systems based on CELL Architecture

ELL architecture. One is Sony

.9.1 IBM BladeCenter QS20

Engine based system [6]. It is a high

ell BE Processors

lus 256KB of local store

• per processor)

Low Voltage/Low

Frequency: The small number of gates per cycle enables the Cell BE

processor to operate at low voltage and low power while maintaining

high performance and high frequency. By using the SIMD architecture

for both the vector media extensions (VMX) on the PPE and the

instruction set of the SPEs, both performance and power efficiency are

improved.

Efficient C

processor’s high-bandwidth memory and on-chip, coherent, high-

bandwidth EIB deliver higher performance on memory bandwidth-

intensive applications by enabling high-bandwidth internal interactions

among the SPEs and the PPE. This coherency allows the SPEs and the

PPE to share a single address space for efficient communication and

ease of programming.

There are two systems available based on C

PLAYSTATION 3 ant other is IBM BladeCenter QS20. Their details are given

below.

2

It is the first Cell Broadband

performance blade especially suitable for some compute intensive, single-

precision, floating-point workloads. It helps to accelerate these targeted

workloads to many times the speed of a traditional microprocessor, including

image processing, signal processing, and graphics rendering applications.

Its specifications are as follows:

• Processor: Two 3.2 GHz C

• L2 Cache: 512KB per Cell BE Processor, p

memory for each SPE

Memory: 1GB (512MB

• Disk Storage: 40GB IDE HDD

 - 20 -

Chapter 2. The Cell Architecture

• Networking: Dual Gigabit Ethernet

iBand 4x adapters connected via

• ystem: Fedora core 5 Linux

.9.2 Sony PLAYSTATION 3

S3, is another system based on the CELL

erra Soft Solutions has developed Yellow Dog Linux 5 in cooperation with

reparing PS3 for Installation

initial settings if you are using it first time.

r OS. This will

• Optional connectivity: 1 or 2 Infin

PCI-Express

Operating S

2

PLAYSTATION 3, also called P

architecture. It’s basically a very high resolution gaming console. It provides

direct support for installing and booting foreign operating systems. Of course,

many of the game-related features such as video acceleration are locked out

for the third-party operating systems, but this series focuses on more

general-purpose and scientific applications anyway. Note the PS3 has one of

the SPE disabled, and one SPE reserved for system use, leaving seven

processing units at your disposal [7].

T

Sony specifically for the PS3. Yellow Dog Linux (also known as YDL) has been

an exclusively PowerPC-based distribution since its inception, so it was not

surprising that Sony contracted it to develop the next version of YDL

specifically for the PS3. YDL 5.0 includes libspe [Appendix A] support so that

one can utilize power of all the SPEs available within PS3. We can get free

version of YDL (YDL 5.0) from Terra Soft Solutions website which can be

installed on PS3. See below for instructions on installing the YDL 5 onto the

PS3.

P

• Start your PS3 and perform

• Go to Settings, then System Settings, and choose Format Utility.

• Select Format Hard Disk, and confirm your selection twice.

• Select that you want a Custom partitioning scheme.

• Select that you want to Allot 10GB to the Othe

automatically reserve the remaining disk space for the PS3's game

 - 21 -

Chapter 2. The Cell Architecture

operating system. When finished, it will restart the system.

Once the PS3 restarts, it's ready to have Linux installed on it.•

DL Installation Steps

L bootloader from Terra Soft and save it as

• flash drive create a directory called PS3. Immediately under

• PS3.

s, and then choose Install Other

• m the location of the installer, and follow the screens for the

• inishes, go to Settings, then System Settings, and

•

rd and mouse.

o this by holding down the PS

• up, you will get a kboot prompt.

rough the HDMI

• oot PS3, you need to type

Y

• Download the YD

otheros.bld. This bootloader will be installed by gameOS preinstalled

on PS3.

On your

the PS3 directory, create another directory called otheros and copy

otheros.bld in this directory.

 Insert the flash drive into the

• Go to Settings, then System Setting

OS.

Confir

installation process. Note that this only installs the bootloader, not the

operating system.

When the installer f

select Default System. Then choose Other OS and press the X button.

Insert the YDL 5 DVD.

• Plug in your USB keyboa

• Now restart the system. You can either d

button on the controller and then choosing Turn off the system, or by

simply holding the power button down for five seconds. Then turn the

system back on.

When it boots back

• At this prompt type install if your output is going th

port, or installtext if you are going analog. After this YDL installation

will start in a low resolution graphics mode.

After completion of installation when you reb

in ydl480i at the kboot: boot prompt if you are using analog output.

Otherwise it will likely change the output to a resolution that the

analog output isn't capable of.

 - 22 -

3 CELL SDK

IBM provides the Software Development Kit for programming and simulating

the CELL Architecture. The Software Development Kit 2.1 (SDK) for the Cell

Broadband Engine (Cell B.E.) is a complete package of tools to enable you to

program applications on the Cell B.E. Processor. The SDK includes both PPU

and SPU compilers for all the supported platforms [8]. A Cell B.E. application

can run natively on a BladeCenter QS20, PlayStation 3 or in the IBM Full-

System Simulator (simulator), which is supported on all of the host

platforms. The SDK is composed of following items:

• SDK 2.1 Installation Guide

• Programmer's Guide

• Cell Broadband Engine Programming Tutorial

• XL C/C++ compiler

• IBM Full-System Simulator

• SIMD math AND MASS libraries

• Sample libraries and files

3.1 Prerequisites

This section shows some prerequisites for installation of CELL SDK on your

host system. The Cell/B.E. SDK runs in Fedora Core 6, which must be

installed before you install the SDK. Table 3.1 shows the recommended

system configuration for CELL SDK installation.

Table 3.1 Recommended system configuration for CELL SDK installation

System Recommended minimum

configuration

x86 or x86-64 2GHz Pentium® 4 processor

PowerPC 64-bit PPC with a clock speed of 1.42

GHz. 32-bit PPC platforms are not

supported.

Chapter 3. Cell SDK

All systems should have:

• 5 GB Hard disk space to install the source package and the

accompanying development tools

• 1 GB RAM on the host system

3.2 Installing the SDK

This section shows how to install CELL SDK on your host system. The cellsdk

shell script handles the SDK installation. The SDK’s tools are primarily

installed in /opt/ibm, although some of the toolchain commands are installed

in the regular path. for example, the spu-gcc command is installed in

/usr/bin on a PPC machine and in /opt/cell on an x86 machine. The simulator

is installed in /opt/ibm/systemsim-cell, and the SDK in /opt/ibm/cell-

sdk/prototype/. The script checks to see what features might be needed and

what features are available. If some of the other installation files (from the

BSC Web site) are needed, they are automatically downloaded to the

directory /tmp/cellsdk-1.1.

Do the following to install the SDK :

1. As root download the SDK ISO disk image, CellSDK21.iso from the

Cell/B.E. SDK alphaWorks Web site:

 http://www.alphaworks.ibm.com/tech/cellsw

2. Create a mount directory and make sure nothing else is mounted on

this directory:

 mkdir –p /mnt/cellsdk

3. Mount the disk image on the mount directory:

 mount –o loop CellSDK21.iso /mnt/cellsdk

4. Change directory to /mnt/cellsdk/software:

 cd /mnt/cellsdk/software

5. Install the SDK by using the following command and answer any

prompts:

 ./cellsdk install

 - 24 -

Chapter 3. Cell SDK

6. Optionally build the samples and libraries and copy into the sysroot

image for the simulator:

 cd /opt/ibm/cell-sdk/prototype/src

 ./cellsdk build

7. Change directory to any directory which is not the mount directory or

below it:

 cd /

8. Unmount the disk image: umount /mnt/cellsdk

3.3 IBM’s Full-System Simulator- SystemSim

3.3.1 Simulator Overview

The IBM Full-System Simulator for the Cell Broadband Engine is a

generalized simulator that can be configured to simulate a broad range of

full-system configurations. It supports functional simulation of complete

systems based on the Cell Broadband Engine processor, including simulation

of the PPE, SPUs, MFCs, memory, disk, network, and system console [9]. The

SDK, however, provides a ready-made configuration of the simulator for Cell

Broadband Engine system development and analysis. The simulator also

includes support for performance simulation (or timing simulation) of certain

components to allow users to analyze performance of Cell Broadband Engine

applications. It can simulate and capture many levels of operational details

on instruction execution, cache and memory subsystems, interrupt

subsystems, communications, and other important system functions. Figure

1-1 shows the simulation stack. The simulator is part of the software

development kit (SDK), which is available through IBM alphaWorks Emerging

Technologies at http://www.alphaworks.ibm.com/tech/cellsystemsim.

 - 25 -

Chapter 3. Cell SDK

Figure 3.1 Simulator Stack for the Cell Broadband Engine

If accurate timing information and performance statistics are not required,

the simulator can be used in its functional only mode, simulating the

architectural behavior of the system to test the functions and features of a

program. For performance analysis, the simulator can be used in

performance simulation mode. The simulator is a general tool that can be

configured for a broad range of microprocessors and hardware simulations.

The SDK, however, provides a ready-made configuration of the simulator for

Cell Broadband Engine system development.

3.3.2 Invoking the Simulator

The simulator is invoked using the systemsim command. This command is in

the bin directory of the systemsim-cell release, which should be added to the

user's PATH before invoking systemsim.

When the simulator starts, it loads an initial run script which typically

configures and initializes the simulated machine. The name of the initial run

script can be passed to systemsim with the -f option. When not specified on

the command line, the simulator will look in the current directory for the file

.systemsim.tcl, and if present, will use this file as the initial run script.

 - 26 -

Chapter 3. Cell SDK

Otherwise, it will use the file systemsim.tcl in the lib/cell directory of the

systemsim-cell release. When specified using the -f option, the name of the

initial run script can contain an absolute or relative path. The simulator

searches for Initial run scripts with a relative path by first looking in the

current directory, and then in the lib/cell directory of the systemsim-cell

release, and finally in the lib directory of the systemsim-cell release. If the

simulator fails to find the initial run script specified with the -f option, it

issues an error message and exits.

It is generally the task of the initial run script to locate the operating system

and filesystem images to be used by simulated machine. For the Cell

simulator, the default initial run script searches for a Linux kernel image

named vmlinux and a filesystem image named sysroot_disk. The script will

look first in the current directory and then in the systemsim-cell/images/cell

directory, and uses the first instance it finds for these images. If the script

fails to find either of these images in one of these locations, it will print an

error message and terminate the simulator.

The following examples illustrate various ways to invoke the simulator. These

examples assume that the simulator was installed into /opt/ibm/systemsim-

cell.

(1). To run the simulator without the GUI, issue:

PATH=/opt/ibm/systemsim-cell/bin:$PATH systemsim

If the user has created a run script named .systemsim.tcl in the current

directory, the simulator will use this as the initial run script. Otherwise, the

simulator uses systemsim.tcl in the lib/cell directory of the systemsim-cell

release as the initial run script.

(2). To start the simulator with the GUI window enabled, specify the "-g"

option on the command line when invoking systemsim. For example, to run

 - 27 -

Chapter 3. Cell SDK

the simulator with the GUI using either the user’s .systemsim.tcl or the

simulator’s lib/cell/systemsim.tcl as the initial run script, issue:

PATH=/opt/ibm/systemsim-cell/bin:$PATH systemsim -g

(3). To run the simulator without the gui, without a console window (-n), in

quiet mode (-q), using the initial run script myrun.tcl, issue:

PATH=/opt/ibm/systemsim-cell/bin:$PATH systemsim -n -q -f myrun.tcl

When the simulator starts, the window in which it was started becomes the

simulator command window where you can enter simulator commands. The

simulator also creates the console window (unless this was disabled with -n)

which is initially labeled UART0 in the window’s title bar, and a GUI window if

this was requested with the -g option.

Figure 3.2 Simulator Structure and Screens

 - 28 -

Chapter 3. Cell SDK

3.3.3 Operating-System Modes

A key attribute of the IBM Full-System Simulator is its ability to boot and run

a complete PowerPC system. By booting an operating system, such as Linux,

the IBM Full-System Simulator can execute many typical application

programs that utilize standard operating system functionality. Alternatively,

applications can be run in standalone mode, in which all operating system

functions are supplied by the simulator and normal operating system effects

do not occur, such as paging and scheduling. The IBM Full-System Simulator

can also execute SPU programs in standalone mode on a given SPU. These

two approaches to running applications on the simulator are referred to as

Linux mode and standalone mode [9].

• Linux Mode: In Linux mode, after the simulator is configured and

loaded, the simulator boots the Linux operating system on the

simulated system. At runtime, the operating system is simulated along

with the running programs. The simulated operating system takes care

of all the system calls, just as it would in a nonsimulation (real)

environment.

• Standalone Mode: In standalone mode, the application is loaded

without an operating system. Standalone applications are user-mode

applications that are normally run on an operating system. On a real

system, these applications rely on the operating system to perform

certain tasks, including loading the program, address translation, and

system-call support. In standalone mode, the simulator provides some

of this support, allowing applications to run without having to first boot

an operating system on the simulator.

However, there are limitations that apply when building an application to be

loaded and run by the simulator without an operating system. For example,

applications should be linked statically with any libraries they require since

the standard operating system shared libraries are not available in

standalone mode. Another example is support for virtual memory address

 - 29 -

Chapter 3. Cell SDK

translation. Typically, the operating system provides address-translation

support. Since an operating system is not present in standalone mode, the

simulator loads executables without address translation, so that the effective

address is the same as the real address. Therefore, all addresses referenced

in the executable must be valid real addresses. If the simulator has been

configured with 64 MB of memory, all addresses must fit in the range of x‘0’

to x‘3FFFFFF’.

3.3.4 Graphical User Interface

The simulator’s GUI offers a visual display of the state of the simulated

system, including the PPE and the eight SPEs. You can view the values of the

registers, memory, and channels, as well as viewing performance statistics.

The GUI also offers an alternate method of interacting with the simulator.

Figure 3.3 Graphical User Interface for the Simulator

 - 30 -

Chapter 3. Cell SDK

The main GUI window has two basic areas: the vertical panel on the left, and

the rows of buttons on the right. The vertical panel represents the simulated

system and its components. The rows of buttons are used to control the

simulator. When the simulator is started it creates a simulated machine

containing a Cell Broadband Engine processor and displays the main GUI

window, labeled with the name of the simulator program. When the GUI

window first appears, click the Go button to boot the Linux operating system.

If the simulator is launched in SMP, or dual Cell-based system, the vertical

panel in the main window displays each BE with its components, as shown in

Figure 3.4

Figure 3.4 Simulator GUI started in SMP mode

 - 31 -

Chapter 3. Cell SDK

3.3.5 Accessing the Host Environment: The Callthru Utility

The callthru utility allows you to copy files between the host system and the

simulated system while it is running. This utility runs within the simulated

system and accesses files in the host system using special callthru functions

of the simulator. The source code for this utility is provided with the

simulator in the sample/callthru directory as a sample of the use of the

simulator callthru functions. In the Cell SDK, the callthru utility is installed as

a binary application in the simulator system root image in the /usr/bin

directory. The callthru utility supports the following options:

 To write standard input into <filename> on the host system, issue

callthru sink <filename>

 To write the contents of <filename> on the host system to standard

output, issue

callthru source <filename>

Redirecting appropriately lets you copy files between the host and simulated

system. For example, to copy the /tmp/matrix_mul application from the host

into the simulated system and then run it, issue the following commands in

the console window of the simulated system:

callthru source /tmp/matrix_mul > matrix_mul

chmod +x matrix_mul

./matrix_mul

Another commonly used feature of the callthru utility is the exit option, which

will stop the simulation, similar to the stop button of the GUI, but initiated by

the callthru utility inside the simulator rather than through user interaction.

This is especially useful for constructing “scripted” executions of the

simulator that involve alternating steps in the simulator and the simulated

system.

 - 32 -

Chapter 3. Cell SDK

To stop the simulator and return control back to currently active run script

or the GUI / command line, issue

callthru sink <filename>

3.3.6 Simulator Support for Performance Analysis

The simulator provides several modes of functional-only and performance

simulation. In most cases, the simulation mode can be changed dynamically

at any point in the simulation. However, certain “warm-up” effects may affect

the results of performance simulation for some portion of the simulation

following a change to cycle mode.

• Simple (functional-only) mode models the effects of instructions,

without attempting to accurately model the time required to execute

the instructions. In simple mode, a fixed latency is assigned to each

instruction; the latency can be arbitrarily altered by the user. Since

latency is fixed, it does not account for processor implementation and

resource conflict effects that cause instruction latencies to vary.

Functional-only mode assumes that memory accesses are synchronous

and instantaneous. This mode is useful for software development and

debugging, when a precise measure of execution time is not required.

• Fast mode is similar to functional-only mode in that it fully models the

effects of instructions while making no attempt to accurately model

execution time. In addition, fast mode bypasses many of the standard

analysis features provided in functional-only mode, such as statistics

collection, triggers, and emitter record generation. Fast mode

simulation is intended to be used to quickly advance the simulation

through uninteresting portions of program execution to a point where

detailed analysis is to be performed.

• Cycle (performance) mode models not only functional accuracy but

also timing. It considers internal execution and timing policies as well

 - 33 -

Chapter 3. Cell SDK

as the mechanisms of system components, such as arbiters, queues,

and pipelines. Operations may take several cycles to complete,

accounting for both processing time and resource constraints.

The cycle mode allows you to:

• Gather and compare performance statistics on individual components

(such as the SPU) or full systems.

• Characterize the system workload.

• Forecast performance at future loads, and fine-tune performance

benchmarks for future validation.

In the cycle mode, the simulator automatically collects many performance

statistics. Some of the more important SPE statistics are:

• Total cycle count

• Count of branch instructions

• Count of branches taken

• Count of branches not taken

• Count of branch-hint instructions

• Count of branch-hints taken

• Contention for an SPE’s local store

• Stall cycles due to dependencies on various pipelines

The performance models described above can be enabled from the GUI using

the performance models dialog or with simulator commands. The

performance models can be enabled at any time after the simulated machine

has been defined, but typically are not enabled until after the operating

system has been booted. To enable the performance models in a simulation,

complete the following steps:

To enable the performance models from the graphical user interface:

1. Click the Perf Models button on the main GUI window.

 - 34 -

Chapter 3. Cell SDK

Figure 3.5 SystemSim Cell Graphical User Interface

2. SystemSim displays the following window that provides checkboxes to

enable the performance model for SPEs.

Figure 3.6 SystemSim Spu Performance Modes

 - 35 -

Chapter 3. Cell SDK

a. For each individual SPU, click the level of timing mode to simulate:

Pipe, Instruction, or Fast.

b. To enable the same timing mode for all SPUs in the BE, click the

corresponding button.

c. Click Refresh to synchronize the window with any changes to the

modeling mode that may have been updated by the command line

interface or the tree view.

3.3.7 Performance Profile Checkpoints

The simulator can collect performance statistics for each SPU running in

pipeline mode that are useful in determining the sources of performance

egradation, such as channel stalls and instruction-scheduling problems. You

can also use performance profile checkpoints to delimit a specific region of

code over which performance statistics are to be gathered. Performance

profile checkpoints can be used to capture higher-level statistics such as the

total number of instructions, the number of instructions other than no-op

instructions, and the total number of cycles executed by the profiled code

segment. The checkpoints are special no-op instructions that indicate to the

simulator that some special action should be performed. No-op instructions

are used because they allow the same program to be executed on real

hardware. he application program interface (API) for the performance profile

checkpoints is defined in the profile.h header file. This file provides the C-

language procedures, named prof_cp{n}() where n is a numeric value

ranging from 0 to 31, that generate the special no-op instructions. In

addition to displaying performance information, certain performance profile

checkpoints can control the statistics-gathering functions of the SPU.

For example, profile checkpoints can be used to capture the total cycle count

on a specific SPE. The resulting statistic can then be used to further guide

the tuning of an algorithm or structure of the SPE. The following examples

illustrate the profile-checkpoint code that can be added to an SPE program in

order to clear, start, and stop a performance counter:

 - 36 -

Chapter 3. Cell SDK

#include <profile.h>

. . .

prof_clear(); // clear performance counter

prof_start(); // start recording performance statistics

. . .

<code_to_be_profiled>

. . .

prof_stop(); // stop recording performance statistics

When a profile checkpoint is encountered in the code, the simulator prints

data identifying the calling SPE and the associated timing event. The data is

displayed on the simulator control window in the following format:

SPUn: CPm, xxxxx(yyyyy), zzzzzzz

where n is the number of the SPE on which the profile checkpoint has been

issued, m is the checkpoint number, xxxxx is the instruction counter, yyyyy

is the instruction count excluding no-ops, and zzzzzz is the cycle counter.

 - 37 -

4 PROGRAMMING THE CELL

4.1 Programming Overview

The instruction set for the PPE is an extended version of the PowerPC

instruction set. The extensions consist of the Vector/SIMD Multimedia

Extension instruction set plus a few additions and changes to PowerPC

SPEs execute SIMD instructions, the two instruction sets are different, and

programs for the PPE and SPEs must be compiled by different compilers. C

language extension for both PPE and SPE instruction set and their compilers

are provided with SDK.

In order to maximize the performance of the Cell, the following two points

need to be paid attention to [5]:

• Operate multiple SPEs in parallel to maximize operations that can be

executed in certain time unit.

• Perform SIMD parallelization on each SPE to maximize operations can

be executed per instruction.

4.2 Application Partitioning

Programs running on the Cell Broadband Engine’s nine processor elements

typically partition the work among the available processor elements. In

determining when and how to distribute the workload and data, take into

account the following considerations [5]:

• Processing-load distribution

• and data access patterns

• d data movement

among processors

instructions. The instruction set for the SPE is similar to that of the PPE’s

Vector/SIMD Multimedia Extension instruction set. Although the PPE and the

• Program structure

 Program data flow

 Cost, in time and complexity of code movement an

Chapter 4. Programming the Cell

The main model for partitioning an application is PPE-centric, as shown in

Figure 4-1.

Figure 4-1 Application Partitioning Model

In the PPE-centric model, the main application runs on the PPE, and

individual tasks are offloaded to the SPEs. The PPE then waits for, and

coordinates, the results returning from the SPEs. This model fits an

application with serial data and parallel computation. In the SPE-centric

model, most of the application code is distributed among the SPEs. The PPE

acts as a centralized resource manager for the SPEs. Each SPE fetches its

next work item from main storage (or its own local store) when it completes

its current work.

Figure 4-2 PPE-Centric Multistage Pipeline Model and Parallel Stages Model

 - 39 -

Chapter 4. Programming the Cell

There are three ways in which the SPEs can be used in the PPE-centric model

(1) Multistage Pipeline Model (2) the Parallel Stages Model and (3) the

Services Model [5]. The first two of these are shown in Figure 4-2.

If a task requires sequential stages, the SPEs can act as a multistage

pipeline. The left side of Figure 4-2 shows a multistage pipeline. Here, the

stream of data is sent into the first SPE, which performs the first stage of the

processing. The first SPE then passes the data to the next SPE for the next

stage of processing. After the last SPE has done the final stage of processing

on its data, that data is returned to the PPE. As with any pipeline

architecture, parallel processing occurs, with various portions of data in

different stages of being processed. Multistage Model increases the data-

movement requirement because data must be moved for each stage of the

pipeline.

If the task to be performed is not a multistage task, but a task in which there

is a large amount of data that can be partitioned and acted on at the same

time, then it typically make sense to use SPEs to process different portions of

that data in parallel. This Parallel Stages Model is shown on the right side of

Figure 4-2.

Figure 4-3 PPE-Centric Services Model

 - 40 -

Chapter 4. Programming the Cell

The third way in which SPEs can be used in a PPE-centric model is the

Services Model. In the Services Model, the PPE assigns different services to

different SPEs, and the PPE’s main process calls upon the appropriate SPE

when a particular service is needed. Figure 4-3 shows the PPE-centric

Services Model.

4.3 Data Partitioning

With Cell programming, how the work is partitioned among available SPEs is

an important consideration. Although there are many ways of doing this, the

following explanation is based on a model that subdivides data to enable

concurrent processing. The data-partitioning application model parallels the

same program across multiple SPEs. Data is partitioned by the PPE program

and uniformly distributed to SPEs. Figure. 4.4 provide an image of this

approach.

Figure 4-4 Data Partitioning for Parallel Processing

 - 41 -

Chapter 4. Programming the Cell

4.4 Program Control and Data Flow

In line with the Cell architecture, let’s take a look at how PPE and SPE

programs are executed, together with how necessary data is transmitted and

received [5].

Figure 4-5 SPE program execution sequence

1. PPE program loads the SPE program to the LS.

2. PPE program instructs the SPEs to execute the SPE program.

3. SPE program transfers required data from the main memory to the LS.

4. SPE program processes the received data.

5. SPE program transfers the processed result from the LS to the main

memory.

6. SPE program notifies the PPE program of the termination of

processing.

4.5 Advanced Cell Programming

This section shows advanced Cell programming techniques which can be used

 - 42 -

Chapter 4. Programming the Cell

to improve performance further [13].

4.5.1 Communication between PPE and SPE

The described earlier SPE makes use of the MFC to transfer data between

itself and another SPE or the PPE. The MFC incorporates a DMA controller to

allow DMA transfer.

Now let’s take a look into some other means of communication offered by the

MFC to support the transactions between an SPE and its external world

(other SPEs and the PPE). Typical among them are the mailboxes and signal

notification registers.

4.5.1.1 Mailboxes

 While DMA transfer allows transfer of up to 16K bytes of data between the

main memory and each SPE’s LS, mailboxes are designed for transfer of 32-

bit data between the PPE and the SPE.

Figure 4-6 Mailboxes

To put it another way, mailboxes are fit for transferring small data such as

 - 43 -

Chapter 4. Programming the Cell

status information and parameters. Structurally, mailboxes are FIFO queues.

The MFC provides three types of mailbox queues, each with a different

behavior and data transfer direction as shown in Fig. 4.6.

• SPU Inbound Mailbox: Used to send data from the PPE to the SPE.

This mailbox has space for storing up to four 32-bit messages at a

time. If no message is found when the SPE program accessed the

queue, the SPE stalls until data is written by the PPE program.

• SPU Outbound Mailbox: Used to pass data from the SPE to the PPE.

This mailbox has the capacity to accept only one 32-bit message. If

the SPU outbound mailbox is full, writing of the next data is suspended

until the PPE reads the data from the queue.

• SPU Outbound Interrupt Mailbox: Like the SPU outbound mailbox,

this is used to send data from the SPE to the PPE. When this mailbox is

written, however, an interrupt event is generated to notify the PPE

when to read the data.

These mailboxes can be accessed either from the SPE or PPE programs. The

SPE program uses a channel interface to access the mailboxes. The PPE

program does this via mailbox API functions offered by libspe2.

4.5.1.2 Signal Notification Registers

SPU signal notification registers (SNRs) are 32-bit registers used to send

signals, such as control messages and events, to an SPE from other SPEs or

the PPE. There are two SNRs for each SPE.

The sending processor (either PPE or SPE) writes the signal value in the form

of 32-bit data into the SNR of the receiving processor (one of other SPEs).

When the value is read by the receiving processor, all bits in the SNR are

reset to zero. If the SNR is empty when it is read, the receiving processor

stops execution until the signal is written.

Each bit of the 32-bit signal data can be assigned to the program's own

specific meaning. By doing so, the signal can notify the SPE of anything from

 - 44 -

Chapter 4. Programming the Cell

the change of status to the completion of processing. The SNRs can also be

configured for overwrite mode or logical OR mode. The overwrite mode is

useful in a one-to-one signaling environment, whereas the logical OR mode

enables many-to-one signaling. Either of these modes can be selected for

each SNR, independently of the other.

Figure 4-7 SPU Signal Notification Modes

SNRs are similar to the SPU inbound mailbox. A major difference between

the two is that SNRs can be used not only for data transfer between the PPE

and SPE but also for that between SPEs, whereas the mailbox is limited to

use between the PPE and SPE only. Capitalizing on the logical OR mode that

allows many-to-one data transfer, the SNRs also make barrier

synchronization of multiple SPE programs possible.

4.5.2 Effective Utilization of DMA Transfer

This section gives a closer look into the precautions we have to bear in mind

when programming DMA transfer for the Cell and learn about the techniques

for getting the most from this data transfer system.

 - 45 -

Chapter 4. Programming the Cell

4.5.2.1 Transferable Data Size and Address Alignment

It is previously explained that DMA transfer of data is a multiple of 16 bytes.

However, the Cell can also handle DMA transfer smaller than this data size.

Any data that meets the following size and alignment requirements is

pursuant to the Cell’s DMA transfer constraints.

• DMA Transfer Size: The data size must basically be specified in a

multiple of 16 bytes (16, 32, 48, etc.). For DMA transfer of data

smaller than 16 bytes, the Cell also supports data size of 1, 2, 4 or 8

bytes. The maximum data size that can be transferred at one time is

16K bytes.

• Address Alignment in DMA Transfer of More than or Equal to 16

Bytes: When the data to be transferred is greater than or equal to 16

bytes, the addresses on both sending and receiving sides (i.e.,

effective address and LS address) must be aligned on 16-byte

boundaries. The execution performance of DMA transfer is maximized

when the addresses of the data area on both sides begin on a 128-

byte boundary.

• Address Alignment in DMA Transfer of Less than 16 Bytes:

When the data to be transferred is smaller than 16 bytes, the

addresses of the data area on both sending and receiving sides must

satisfy the following conditions.

 Address alignment is consistent with the transfer size, i.e.,

addresses are aligned on the byte boundary equal to the transfer size.

 The lower 4 bits (indicating the relative position from the 16-byte

boundary) of the effective address and the LS address are the same.

 Taking DMA transfer of 4-byte data as an example, Fig. 4.3

graphically illustrates these requirements. To review again, the

effective address and the LS address must not only be aligned on 4-

byte boundaries but also begin at the same relative position from the

16-byte boundary.

 - 46 -

Chapter 4. Programming the Cell

Figure 4-8 DMA Transfer (16 Bytes or Less)

Unless the above-mentioned rules are observed, the MFC will stop, resulting

in a DMA alignment error interrupt, which may cause abnormal termination

of both the PPE and SPE programs.

4.5.2.2 DMA Double Buffering

For most applications, DMA transfer accounts for a large percentage of the

time required for processing by the SPE program, which is to say, improving

efficiency of DMA transfer is a significant means of making applications run

faster. In this section, therefore, introduces double buffering, a technique for

improving the efficiency of DMA transfer, while maximizing SPE performance.

Let’s start by quickly reviewing the efficiency of the DMA transfer. With the

basic programs, DMA transfer is performed in the following sequence.

(1) Initiates DMA transfer (GET) to the input buffer.

(2) Waits for Step (1) to complete.

(3) Processes data and stores the calculated result in the output buffer.

(4) Initiates DMA transfer (PUT) from the output buffer.

(5) Waits for Step (4) to complete.

(6) Repeats Steps (1) through (5).

This sequence can be described as shown in Fig. 4.9 (a) in terms of time

series from the viewpoint of input/output buffer operations. It can also be

diagrammed as shown in Fig. 4.9 (b) when viewed from the relationship

 - 47 -

Chapter 4. Programming the Cell

between MFC and SPU operations.

Figure 4-9 Basic Programs Involving DMA Transfer

What’s clear from Fig. 4.9 (b) is that the MFC does nothing while the SPU is

executing its computational task, or the SPU simply stalls until the DMA

transfer by the MFC is complete, making it impossible to fully realize the

SPU’s performance potentials. That’s why a variety of techniques have been

developed to achieve more efficient DMA transfer. Double buffering is one of

such techniques. The double buffering method uses two separate buffers in

parallel for both input and output so that while one of them is used for

computation, the other one can be filled or emptied by DMA transfer. In

contrast to double buffering, the previously explained DMA transfer using

only a single pair of input and output buffer is called single buffering.

Fig. 4.10 (a) illustrates the time series processing flow of double buffered

DMA transfer. Fig. 4.10 (b) shows this processing flow reconfigured to

highlight the concurrency between the MFC process and SPU process.

As can be seen from Fig. 4.10 (b), the MFC performs DMA transfers in

parallel with the SPU’s calculations, and the SPU does not spend a time just

to wait for the completion of the transfers. Double buffering greatly improves

the SPE’s computational capability by enabling DMA transfers in parallel with

 - 48 -

Chapter 4. Programming the Cell

calculations.

Figure 4-10 DMA Double Buffering Method

 - 49 -

5 DIP ALGORITHMS AND THEIR IMPLEMENTATION

5.1 Spatial Domain Filter

5.1.1 General

Filtering of the image can be done in two ways: in frequency domain and in

spatial domain. In spatial domain filtering, operation is performed directly on

pixels of an image. The process consists of moving the filter mask from point

to point in an image. At each point (x, y) the response of the filter at that

point is calculated using a predefined relationship. For spatial filters, the

response is given by sum of products of the filter coefficients and the

corresponding image pixels in the area spanned by the mask. This process is

similar to the process of convolution and is referred as “convolving a mask

with an image” [10].

We can implement various filters such as smoothing filter, sharpening filter,

laplacian filter etc. just by selecting appropriate filter mask.

Algorithm

This section shows the algorithm of spatial domain filter for CELL BE. It

divides the data such that the computation power of all processors can be

used simultaneously. It also makes use of vectorization in SPEs to achieve

better performance.

In this algorithm, the image is first divided into 8 equal parts by PPE. For

example if the image is 256 X 256 pixels, then it is divided into 8 equal parts

of 256 X 32 size and passed to each SPE. This image part is shown in figure

5-1.

5.1.2 Proposed

Chapter 5. DIP Algorithms and their Implementation

Figure 5-1 Image portion transferred to SPE

Then the convolution of the mask must be done with the entire image. As we

know that SPEs support SIMD so we can take advantage of it and perform

the convolution of mask with more than one pixel at a time. Following

example shows this task:

a) First of all 9 vectors are taken. The pixel values in each vector are

shown in following figure. Here (x,y) means value of pixel at (x,y).

Figure 5-2 Vectors containing the pixel value

b) The mask (example mask) to be multiplied is shown in following

figure. Let us call it m.

 - 51 -

Chapter 5. DIP Algorithms and their Implementation

 Figure 5-3 Filter mask

Now vector 1 is multiplied by first element of mask. Vector 2 is

multiplied by second element of mask and so on.

c) Now all the vectors are added. And result is divided for scaling.

Let us say the image data is I and mask is m. Then the first element of

result will be

I(1,1)m(1,1) + I(1,2)m(1,2) + I(1,3)m(1,3) + I(2,1)m(2,1) +

I(2,2)m(2,2) + I(2,3)m(2,3) + I(3,1)m(3,1) + I(3,2)m(3,2) +

I(3,3)m(3,3)

Which is convolution of pixel at position I(2,2) with the mask. Similarly

second element of result is convolution of I(2,3) with the mask and so

on.

Thus we get convolution of four pixels with the mask simultaneously.

d) Repeat the steps (a.) to (c.) for next four pixels.

After completion of work by SPE, i.e. application of mask on all the parts

of the image by SPE, results are collected by PPE and filtered image is

generated.

5.1.3 Implementation and Result

Algorithm for spatial domain filter was developed in four different ways: (A)

original (scalar) version which can run on any single core system such as

 - 52 -

Chapter 5. DIP Algorithms and their Implementation

Intel Pentium-4 (B) parallel version without vectorization, (C) parallel version

with four element vectors and (D) parallel version with eight element

vectors. The algorithm was applied on a 256 X 256 gray scale image and

performance was measured. While processing the image using parallel

versions, horizontal lines were generated at regular interval due to boundary

problems while applying filter to all the parts. This problem was solved by

overlapping of two rows.

Original version of the algorithm was executed on SimpleScalar simulator

(configured for Pentium 4) [Appendix B], while parallel versions of the

program were executed on simulator called Systemsim, which is provided

with Cell Software Development Kit by IBM. In all the cases performance was

measured in terms of clock cycles. The results are shown in following table:

Table 5-1 Performance results for Spatial Domain Filters

 Compiler Simulator Clock

Cycles

Case A Scalar Version

gcc Simplescalar 2,207,290

Case B Parallel Version

without Vectorization

gcc IBM

Systemsim

520,591

Case C Parallel Version

with four element Vectors

gcc IBM

Systemsim

350,641

Case D Parallel Version

 with eight element Vectors

gcc IBM

Systemsim

208,300

So from Table 1, we can observe that if we use all the eight SPEs, but

without vectorization the speedup achieved is (2,207,290)/ (520,591) =

4.23. Here we are using eight cores but Speedup achieved is not eight. This

is because of inter-processor communication and memory stalls because all

the eight cores can’t access memory simultaneously.

 - 53 -

Chapter 5. DIP Algorithms and their Implementation

Now let us consider the effect of the vectors. The speedup achieved using 4

element vectors over without vectorization i.e. (Case B/ Case C) is

(520,591)/ (350,641) = 1.48. Thus instead of 4 the speedup achieved is

only 1.48. This is because conversion from vector to scalar and scalar to

vector incurs lots of overhead. Similarly if we use 8 element vectors the

speed achieved is (520,591)/ (208,300) = 2.49 instead of 8.

The maximum performance is achieved using parallel version with eight

element vector. In that case the speedup achieved (maximum speedup) is

(Case A/ Case D) = (2,207,290)/ (208,300) = 10.59.

We can calculate theoretical speedup using Amdahl’s law [Appendix C]. As

we saw Cell provides two level of parallelism: one is multiple cores and other

is SIMD within each core. Therefore program can be improved 8X8=64 times

(using 8 element vector). In our case the portion of the program that has

been parallelized takes 99.8 % of the whole program execution time.

Therefore using Amdahl’s law

64
998.0)998.01(

1

+−
=Speedup = 56.85

Thus theoretical speedup is around 57 but we are getting the speedup

around 11. This difference is because the reasons given above.

5.2 JPEG

JPEG is one of the most popular still image compression standards. It defines

four different coding processes (1) Baseline process (2) Extended DCT based

process (3) Lossless process (4) Hierarchical process [12].

JPEG baseline process includes following steps:

• Colour space transformation

• DCT

• Quantization

• Zig-zag ordering

 - 54 -

Chapter 5. DIP Algorithms and their Implementation

• Entropy coding

In baseline process the input and output data precision is limited to 8 bits.

Following sections explains various stages of baseline process in detail.

5.2.1 Colour space transformation

In this step image is transformed into a suitable colour space. This is a no-op

for gray scale, but color images are generally transformed into a

luminance/chrominance color space (YCbCr, YUV, etc). Following figure

shows relation between RGB and YCbCr. The luminance component is gray

scale and the other two axes are color information. The reason for doing this

is that we can afford to lose a lot more information in the chrominance

components than we can in the luminance component: the human eye is not

as sensitive to high-frequency chroma info as it is to high-frequency

luminance. We don't have to change the color space if we don't want to,

since the remainder of the algorithm works on each color component

independently, and doesn't care just what the data is. However, compression

will be less in this case.

16
32768
3176

32768
16425

32786
8432

+++= BGRy ------ (1)

128
32768
14345

32768
9627

32786
4818

++−−= BGRCb ------ (2)

128
32768
2300

32768
12045

32786
14245

+−−= BGRCr ------ (3)

5.2.2 Discrete Cosine Transform

After color space transformation the image is first subdivided into pixel

blocks of size 8X8, which are processed left to right, top to bottom. Then all

the 64 pixels of the block are level shifted by subtracting 2(n-1), where 2(n) is

the maximum gray level. The 2-D discrete cosine transform of the block is

computed in accordance with equation 4.

 - 55 -

Chapter 5. DIP Algorithms and their Implementation

∑∑
= =

++=
7

0

7

0

)16/)1(2cos()16/)1(2cos(),()()(
4
1),(

x y

vyuxyxfvCuCvuF ππ ------ (4)

Where

 2/1)(=xC x=0

 Otherwise 1)(=xC

The output of the transformation will result in the mean value, the DC

coefficient, to be located on the top left corner of the data unit and higher

frequency coefficients will be further away from this DC coefficient. These are

called AC components.

5.2.3 Quantization

After output from the DCT, each of the 64 DCT coefficients is uniformly

quantized in conjunction with a 64-element Quantization Table, which must

be specified by the application (or user) as an input to the encoder [11].

Each element can be any integer value from 1 to 255, which specifies the

step size of the quantizer for its corresponding DCT coefficient. The purpose

of quantization is to achieve further compression by representing DCT

coefficients with no greater precision than is necessary to achieve the desired

image quality. Quantization is a many-to-one mapping, and therefore is

fundamentally lossy. It is the principal source of lossiness in DCT-based

encoders. Quantization is defined as division of each DCT coefficient by its

corresponding quantizer step size, followed by rounding to the nearest

integer.

FQ (u, v) = Integer Round (F (u, v)/Q (u, v)) ----- (5)

JPEG standard defines default quantization tables for both luminance and

chrominance components. These tables can be used if user doesn’t want to

specify so. Following tables shows these tables.

 - 56 -

Chapter 5. DIP Algorithms and their Implementation

Table 5.2 Luminance Quantization Table

 16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 110 103 99

Table 5-3 Chrominance Quantization Table

17 18 24 47 99 99 99 99

18 21 26 66 99 99 99 99

24 26 56 99 99 99 99 99

47 66 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

5.2.4 Zig-zag Ordering

After quantization, the DC coefficient is treated separately from the 63 AC

coefficients [11]. The DC coefficient is a measure of the average value of the

64 image samples. Because there is usually strong correlation between the

DC coefficients of adjacent 8x8 blocks, the quantized DC coefficient is

encoded as the difference from the DC term of the previous block in the

encoding order as shown in following figure.

 - 57 -

Chapter 5. DIP Algorithms and their Implementation

Figure 5-4 Differential DC encoding and Zig-zag sequence

After Differential DC encoding all of the quantized coefficients are ordered

into the zig-zag sequence, also shown in above figure. This ordering helps to

facilitate entropy coding by placing low-frequency coefficients (which are

more likely to be nonzero) before high-frequency coefficients.

5.2.5 Entropy Coding

This is the final step of baseline process. This step achieves additional

compression losslessly by encoding the quantized DCT coefficients more

compactly based on their statistical characteristics. The JPEG proposal

specifies two entropy coding methods - Huffman coding and arithmetic

coding. The Baseline sequential codec uses Huffman coding [11].

Entropy coding is a two step process. First step is Run Length Coding and

second step is Huffman coding. Huffman coding requires that one or more

sets of Huffman code tables be specified by the application. The same tables

used to compress an image are needed to decompress it. Huffman tables

may be predefined and used within an application as defaults, or computed

specifically for a given image. JPEG standard defines two Huffman tables one

 - 58 -

Chapter 5. DIP Algorithms and their Implementation

for luminance components and other for chrominance components. These

tables can be used as default if user doesn’t want to define its own tables.

5.2.6 Implementation and Result

Various stages of JPEG baseline compression are explained above. From

these stages DCT and quantization were implemented using 4 element

vectors, while zig-zag ordering and entropy coding can be implemented as

scalar because they can not be vectorized. The performance of these stages

was measured individually for 8X8 block on single SPE as well as combined

performance of both the stages was measured for entire image. The

performance was measured in terms of clock cycles using simulator as

explained in section 5.1.3. The performance results are shown in following

table.

Table 5-4 Performance Results for DCT and Quantization

 Pentium 4 Cell Architecture

DCT

(1 SPE, 8X8 Block)

1,032,710 289,036

Quantization

(1 SPE, 8X8 Block)

9,584 4,064

DCT + Quantization

(8 SPEs, 256X256 Image)

811,854,149 53,862,796

From above table we can see that a single SPE can perform (1,032,710)/

(289,036) = 3.57 times faster than P-4 for DCT, while for quantization it can

perform (9,584)/ (4,064) = 2.35 times faster than P-4.

In the third case DCT and Quantization were performed on 256X256 gray

scale image and performance was measured using 8 SPEs. In that case

Speedup achieved is (811,854,149)/ (53,862,796) = 15.07.

 - 59 -

6 CONCLUSION AND FUTURE WORK

Throughout the thesis the architecture of the Cell Broadband Engine,

programming methods for Cell and partitioning the application and data

among cores have been studied. Then Image processing algorithms for Cell

BE have been implemented and results have been compared with Pentium 4.

This implementation led to the following conclusion:

The CELL is a multi-core architecture in which all the cores can be

programmed separately from each other. It can perform many times faster

than conventional (single-core) systems for applications which can be divided

in such a way that power of all the cores can be fully utilized. Image

processing applications are best suited for such environment because it

requires similar operations to be performed on entire image. Hence work can

be evenly distributed. However this distribution task is very tedious and

requires lots of programming efforts.

ithms of Spatial domain filters, DCT and Quantization were

implemented for Cell and performance was measured for 256X256 gray scale

image on both Cell as well as Pentium 4. From the results it has been

observed that the CELL performed around 11 times faster than Pentium 4 for

Spatial Domain filters while for DCT and Quantization, it performed around

15 times faster. Thus Cell not only performed better than Pentium 4 but it

performed better for application requiring more computations.

6.1 Future Work

As shown in section 5.1.3 the theoretical performance is 57 while

performance achieved practically is around 11. The performance can still be

improved by using advanced programming methods (section 4.5) such as

double buffering and proper inter-processor communication.

The algor

Chapter 6 Conclusion and Future Work

Throughout this thesis all the algorithms were developed using parallel stage

model (Section 4.2) i.e. same task is assigned to all the SPEs and all SPEs

work in parallel. Instead of this multistage pipeline model can be used for

application like JPEG or MPEG compression. Such applications requires

sequential stages, the task of each stage can be assigned to different SPE. In

this model the SPEs can act as a multistage pipeline. In this case the data

flows from one SPE to other. The algorithms can be implemented using this

approach and performance can be compared with parallel model.

 - 61 -

REFERENCES

[1] Cell Broadband Engine Programming Handbook, version 1.0,

cellsdk/pdfs.

[2] Cell Broadband Engine Programming Tutorial, version 2.1,

cellsdk/pdfs.

[3] David Krolak,” The Element Interconnect Bus”, Papers from the Fall

Processor Forum 2005,

http://www.ibm.com/developerworks/power/library/pa-fpfeib/

[4] http://www.kernel.org/pub/linux/kernel/people/geoff/cell/CELL-

Linux-L20070831ADDON/doc/CellProgrammingTutorial/BasicsOf

CellArchitecture.html

[5] http://www.kernel.org/pub/linux/kernel/people/geoff/cell/CELL-

Linux-CL20070831_ADDON/doc/CellProgrammingTutorial/Basics

OfSPEProgramming.html

[6] IBM BladeCenter QS20, cellsdk/pdfs.

[7] http://www.ibm.com/developerworks/power/library/pa-linuxps3-1/

[8] Software Development Kit 2.1 Installation Guide, Version 2.1,

cellsdk/pdfs.

[9] IBM Full-System Simulator User’s Guide, Version 2.1, cellsdk/pdfs.

[10] Rafael C. Gonzalez, Richard E. Woods, “Digital Image Processing”,

Pearson Prentice Hall

References

[11] Gregory K. Wallace, “The JPEG Still Picture Compression Standard”,

IEEE Transactions on Consumer Electronics, December 1991.

[12] ITU –T81 “Information Technology – Digital Compression And

Coding Of Continuous-Tone Still Images – Requirements And

Guidelines” www.w3.org/Graphics/JPEG/itu-t81.pdf

[13] http://www.kernel.org/pub/linux/kernel/people/geoff/cell/CELL-

Linux-CL_20080201-ADDON/doc/CellProgrammingTutorial

/AdvancedCellProgramming.html

 - 63 -

APPENDIX A LIBSPE

A-1 Overview

The SPE Runtime Management Library (libspe) is the standardized low-level

application programming interface (API) that enables application access to

the Cell/B.E. SPEs. This library provides an API that is neutral with respect to

the underlying operating system and its methods to manage SPEs.

Implementations of libspe can provide additional functionality that enables

access to operating system or implementation-dependent aspects of SPE

runtime management. In general, applications do not have control over the

physical SPE system resources. The operating system manages these

resources. Applications manage and use software constructs called SPE

contexts. These SPE contexts are a logical representation of an SPE and are

the base object on which libspe operates. The operating system schedules

SPE contexts from all running applications onto the physical SPE resources in

the system for execution according to the scheduling priorities and policies

The basic scheme for a simple application using an SPE is as follows:

1. Create an SPE context.

2. Load an SPE executable object into the SPE context local store.

3. Run the SPE context. This transfers control to the operating system,

which requests the actual scheduling of the context onto a physical

SPE in the system.

4. Destroy the SPE context.

A-2 PPE functions

To provide this functionality, libspe consists of the following sets of PPE

functions to:

• Create and destroy SPE and gang contexts

• Load SPE objects into SPE local store memory for execution

associated with the runable SPE contexts. Libspe also provides the means for

communication and data transfer between PPE threads and SPEs.

Appendix A LIBSPE

• Start the execution of SPE programs and to obtain information about

• an SPE

e facilities

ome useful functions for creating SPE context and start execution of SPE

e: Create a new SPE context.

context.

am.

ntext.

reasons why an SPE has stopped running

Receive asynchronous events generated by

• Access the MFC (Memory Flow Control) problem stat

S

program are given below:

• spe_context_creat

• spe_context_destroy: Destroy the specified SPE

• spe_image_open: Open an SPE ELF executable.

• spe_image_close: Close an SPE ELF object.

• spe_program_load: Load an SPE main progr

• spe_context_run: Request execution of an SPE co

 - 65 -

APPENDIX B SIMPLE SCALAR SIMULATOR

The Simple-Scalar tool set is a system software infrastructure used to build

modelling applications for program performance analysis, detailed micro

architectural modelling, and hardware-software co-verification. Using the

Simple Scalar tools, users can build modelling applications that simulate real

programs running on a range of modern processors and systems. The tool

set includes sample simulators ranging from a fast functional simulator to a

detailed, dynamically scheduled processor model that supports non-blocking

caches, speculative execution, and state-of-the-art branch prediction.

Simple-Scalar simulators can emulate the Alpha, PISA, ARM, and x86

instruction sets. The tool set includes a machine definition infrastructure that

permits most architectural details to be separated from simulator

implementations. All of the simulators distributed with the current release of

Simple-Scalar can run programs from any of the above listed instruction sets.

lar distribution comes with three types of simulators: Sim-

fast, sim-safe and sim-outorder. Sim-fast does no time accounting, only

functional simulation—it executes each instruction serially, simulating no

instructions in parallel. Sim-fast is optimized for raw speed, and assumes no

cache, instruction checking. A separate version of sim-fast, called sim-safe,

also performs functional simulation, but checks for correct alignment and

access permissions for each memory reference. The most complicated and

detailed simulator in the distribution, by far, is sim-outorder. This simulator

supports out-of-order issue and execution and gives the exact timing

measurements.

As given above, Simple-Scalar simulator can simulate x86 instruction sets.

We can pass configuration of Pentium-4 to Simple-Scalar so that it will give

exact timing analysis for Pentium-4. Table B-1 gives the exact Pentium-IV

processor’s configuration.

The Simple-Sca

Appendix B Simple Scalar Simulator

Table B-1: Pentium 4 Processor Configuration

Instruction fetch queue size (in insts) -fetch: ifqsize 64

Extra branch mis-predic 3 tion latency -fetch: mplat

bimodal predictor BTB size -bpred:bimod 2048

2-level predictor config (<l1size> <l2size><hist_size>) -bpred:2lev 1024 8 1

Instruction decode B/W (insts/cycle) -decode:width 4

Instruction issue B/W (insts/cycle) -issue:width 4

run pipeline with in-order issue -issue: inorder false

issue instructions down wrong execution paths -issue: wrongpath e tru

register update unit (RUU) size -ruu: size 16

load/store queue (LSQ) size -lsq: size 8

l1 data cache config, i.e., {<config>|none} -cache: dl1 128:64:4:l dl1:

l1 data cache hit latency (in cycles) -cache: dl1lat 1

l2 data cache config, i.e., {<config>|none} -cache:dl2 ul2:16384:64:8:l

l2 data cache hit latency (in cycles) -cache: dl2lat 6

l1 inst cache config, i.e., {<config>|dl1|dl2|none} -cache:il1 il1:512:32:1:l

l1 instruction cache hit latency (in cycles) -cache:il1lat 2

l2 instruction cache hit latency (in cycles) -cache:il2lat 7

flush caches on system calls -cache:flush false

convert 64-bit inst addresses to 32-bit inst equivalents -cache: compress se fal

memory access latency (<first_chunk> <inter_chunk>) -mem:lat 18 2

Memory access bus width (in bytes) -mem: width 8

Instruction TLB config, i.e., {<config>|none} -tlb: itlb dtlb: 16:4096:4:
l

data TLB config, i.e., {<config>|none} -tlb: dtlb dtlb: 16:4096:4:
l

inst/data TLB miss latency (in cycles) -tlb: lat 30

total number of integer ALU's available -res:ialu 2

total number of integer multiplier/dividers available -res:imult 1

total number of floating point ALU's available -res:fpalu 1

number of floating point multiplier/dividers available -res:fpmult 1

 - 67 -

APPENDIX C AMDAHL’S LAW

Amdahl's law is a model for the relationship between the expected speedup

of parallelized implementations of an algorithm relative to the serial

algorithm. It is often used in parallel computing to predict the theoretical

maximum speedup using multiple processors.

More technically, the law is concerned with the speedup achievable from an

improvement to a computation that affects a proportion P of that

computation where the improvement has a speedup of S. (For example, if an

improvement can speed up 30% of the computation, P will be 0.3; if the

improvement makes the portion affected twice as fast, S will be 2.) Amdahl's

law states that the overall speedup of applying the improvement will be

S
PP

Speedup
+−

=
)1(

1

To see how this formula was derived, assume that the running time of the

old computation was 1, for some unit of time. The running time of the new

computation will be the length of time the unimproved fraction takes, (which

is 1 − P), plus the length of time the improved fraction takes. The length of

time for the improved part of the computation is the length of the improved

part's former running time divided by the speedup, making the length of time

of the improved part P/S. The final speedup is computed by dividing the old

running time by the new running time, which is what the above formula

does.

Similarly in case of parallelization, Amdahl's law states that if P is the

proportion of a program that can be made parallel (i.e. benefit from

parallelization), and (1 − P) is the proportion that cannot be parallelized

Appendix C Amdahl’s Law

(remains serial), then the maximum speedup that can be achieved by using

N processors is

N
PP

Speedup
+−

=
)1(

1

In the limit, as N tends to infinity, the maximum speedup tends to 1 / (1-P).

As an example, if P is 90%, then (1 − P) is 10%, and the problem can be

sped up by a maximum of a factor of 10, no matter how large the value of N

used. For this reason, parallel computing is only useful for either small

numbers of processors, or problems with very high values of P: so-called

embarrassingly parallel problems. A great part of the craft of parallel

programming consists of attempting to reduce (1-P) to the smallest possible

value.

 - 69 -

http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Embarrassingly_parallel
http://en.wikipedia.org/wiki/Parallel_programming
http://en.wikipedia.org/wiki/Parallel_programming

	1.doc
	2.doc
	3.doc
	4.doc
	chapter 1.doc
	chapter 2.doc
	chapter 3.doc
	chapter 4.doc
	chapter 5.doc
	chapter 6.doc
	chapter 7.doc
	chapter 8.doc
	chapter 9.doc
	chapter 10.doc

